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Abstract
Causality has been a burgeoning field of research leading to the point where the literature 
abounds with different components addressing distinct parts of causality. For researchers, it 
has been increasingly difficult to discern the assumptions they have to abide by in order to 
glean sound conclusions from causal concepts or methods. This paper aims to disambigu-
ate the different causal concepts that have emerged in causal inference and causal discovery 
from observational data by attributing them to different levels of Pearl’s Causal Hierarchy. 
We will provide the reader with a comprehensive arrangement of assumptions necessary to 
engage in causal reasoning at the desired level of the hierarchy. Therefore, the assumptions 
underlying each of these causal concepts will be emphasized and their concomitant graphi-
cal components will be examined. We show which assumptions are necessary to bridge the 
gaps between causal discovery, causal identification and causal inference from a parametric 
and a non-parametric perspective. Finally, this paper points to further research areas related 
to the strong assumptions that researchers have glibly adopted to take part in causal discov-
ery, causal identification and causal inference.

Keywords Causal discovery · Causal identification · Causal inference · Observational 
data · Causal assumptions

1 Introduction

Causality is a field that has percolated multiple research areas such as medical treatment 
(Shalit 2020), policy-making (Kreif and DiazOrdaz 2019), social science (Sobel and 
Legare 2014) epidemiology (Halloran and Struchiner 1995) and cybersecurity (Andrew 
et al. 2022; Dhir et al. 2021). Historically, the fundamental problem of causality, the fact 
that we cannot observe the outcome under treatment as well as control in a single unit of 
observation, has long precluded researchers from making causal claims (Holland 1986). 
Therefore, the earliest methods for drawing causal conclusions from data were the rand-
omized controlled trials (RCTs), where units of analysis were randomly assigned treatment 
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or control, eliminating any confounding relation between assignment and outcome. How-
ever, in many cases randomized control trials are unethical or impractical. This has set the 
stage for causal research with observational data.

While research on causality with observational data is burgeoning, more specific sub-
fields of causality are starting to emerge. Nowadays, the number of different causal con-
cepts is increasing exponentially. The reason for this is twofold. First, different causal con-
cepts correspond to different subtasks of causality. One can be interested in exploring the 
causal1 dynamics by exploiting statistical properties, which is known as causal discovery. 
Alternatively, one can engage in estimation of an outcome variable under possible alterna-
tions, known as causal inference. The latter can also be further differentiated into three lev-
els of increasingly complex queries known as Pearl’s Causal Hierarchy (Bareinboim et al. 
2022). Some approaches to the two more complex levels of the hierarchy require the use of 
different calculi to reduce the query of interest to known quantities that provide a unique 
solution to the query, which is called causal identification (Pearl 1997). Second, causal 
concepts are merely ramifications of the assumptions a researcher is willing to adopt. For 
every departure of putative assumptions, new causal concepts emerge that account for that 
deviation. For example, in epidemiology patients that take a vaccine might not only protect 
themselves but also those they come in contact with. Therefore, epidemiologists probably 
would like to work with causal concepts that account for interference.

The most straightforward way of disentangling causal concepts is by starting to examine 
what different queries the field of causal inference is able to address. Hence, we start by 
elucidating the three different levels over which causal questions can be formulated, namely 
the associational, interventional and counterfactual level corresponding to the action of 
seeing, doing and imagining respectively (Pearl and Mackenzie 2018). See Table 1 for an 
overview of the different queries on the hierarchy.

Specifically, we will highlight causal concepts that help addressing corresponding que-
ries at each level of the hierarchy. Because the hierarchy is of increasing complexity, there 
exists a causal object that can be utilized to address queries at all three levels of the hierar-
chy, which is the Structural Causal Model (SCM). This object will be formally introduced 
in Sect. 2. Often, the full specifications of the SCM are empirically unattainable, but one is 
able to use surrogate causal objects to still address queries at lower levels of the hierarchy. 
It has been proven by the Causal Hierarchy Theorem (CHT) (Bareinboim et al. 2022) that 
queries at higher levels of the hierarchy can generally not be addressed with information 

Table 1  Pearl’s Causal Hierarchy

Level Action Query Example

1. Associational 
P(Y ∣ x)

Seeing How does observing X = x 
influence Y?

Do smokers generally tend to have 
more lung cancer than non-smokers?

2. Interventional 
P(Y ∣ do(x), z)

Doing How does intervening on X = x 
affect Y given Z = z?

Is there a causal effect of smoking on 
lung cancer?

3. Counterfactual 
P(Yx ∣ x

�
, y�)

Imagining What would have been Y under 
X = x given that we have 
observed Y = y� under X = x�?

Would a patient have lung cancer if 
he/she had smoked given that the 
patient does not have lung cancer 
and has never smoked?

1 The word ‘causal’ is considered to be ambiguous by some scholars (Dawid 2010). Therefore we will also 
refer to this process as structure learning.
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of lower levels only. Fig. 1 is adopted from Bareinboim et al. (2022) and shows how the 
different levels of the hierarchy relate to each other. It also outlines the scope of this paper.

In this paper, we try to disentangle different causal concepts based on the query it is sup-
posed to address as well as its assumptions lying underneath. Therefore, we give an over-
view of reasoning with causality from observational data to (causal) estimands and esti-
mates2 at each level of the hierarchy where we take the flow of causality as illustrated by 
Fig. 2. At the first two levels of the hierarchy, one starts with observational data and some 
assumptions based on the data generating process. Applying algorithms that recover the 
(causal) structure of the variables will generate graphical objects such as causal diagrams. 
These graphical components can be subjected to additional assumptions that enable iden-
tification of a causal query. During the identification process, the causal query is rewritten 
to contain only the observational information necessary to address the query. Inference is 
then concerned with the process of identifying the relevant observational information for a 
specific question of interest. We will unify the non-parametric approach to causal inference 
with the parametric approach and describe how they have emerged from a different appre-
ciation of the fundamental problem of causality. Specifically, the different assumptions 
both approaches start from will be highlighted and their meeting point will be identified.

The flow illustrated by Fig. 2 is not binding. Some scholars might solely be interested 
in the causal structure among the variables while other scholars rely on domain experts to 
design the graphical structure and focus only on causal identification and inference. This 
paper does not primarily focus on the different methods and algorithms available to do 
structure learning, identification and inference, but mainly tries to delineate the different 
causal concepts as well as their underlying assumptions to engage in structure learning, 
identification and inference. However, when the assumptions are contingent on the algo-
rithms used, we will include them in the discussion although the algorithms’ inner work-
ings will generally not be emphasized. By illuminating the causal concepts and making 
explicit concomitant assumptions we hope to encourage non-experimental causal research 
that social scientists sometimes eschew (Grosz et al. 2020).

Counterfactual: Structural Causal Models, Counterfactual
Models, Identification and Inference.

Interventional: Causal Discovery, Causal
Identification and Causal Inference.

Associational: Structure Learning,
Bayesian Networks and Bayesian
Network Inference.

Fig. 1  Pearl’s Causal Hierarchy of causal concepts and the scope of the paper

2 Estimands are the targets of inference and estimates are targets of estimation. Because restricting the 
scope to estimands would dismiss (semi)-parametric causal inference methods that contributed to the sec-
ond and the third level of the hierarchy, we decided to include parametric inference methods only in regard 
to causality.
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There have been many survey papers written on causality, but, to the best of our knowl-
edge, none of them have tried to bridge the gap between causal discovery and causal infer-
ence from the point of view of necessary assumptions. One of the first causal inference 
papers that can be considered a survey paper is the work of Holland (1986) summarizing 
the research of Rubin (1974, 1978) as well as uniting it with philosophical and statisti-
cal authors and the well-known Granger Causality (Granger 1969). The subsequent survey 
that picked up the advances made in non-experimental estimation techniques is of Nich-
ols (2007) followed by a survey paper on the specific matching technique (Stuart 2010). 
Finally, the most recent paper of causal inference under the potential outcome model as 
well as its underlying assumptions and various departures from those assumptions has been 
written by Yao et al. (2021).

As regards surveys on causal discovery, there are general methodological surveys (Gly-
mour et  al. 2019; Nogueira et  al. 2021, 2022), surveys that focus on continuous optimi-
zation (Vowels et al. 2022), constraint-based methods (Yu et al. 2016), time series meth-
ods (Assaad et al. 2022) and various aspects related to assumptions and practical use of 
the methods (Eberhardt 2009, 2016; Malinsky and Danks 2018). For a general survey on 
causal learning with different sorts of data, we refer the reader to (Guo et al. 2020a).

Central to this paper are the different levels of the hierarchy and therefore we draw the 
relation between causal inference and Bayesian Network inference. There is much (sum-
marizing) research on discrete Bayesian Network inference (Friedman  2009), while non-
parametric (Hanea et al. 2015) and hybrid (Salmerón et al. 2018; Shenoy and West 2011; 
Langseth et al. 2009) Bayesian Network inference are less developed.

Concretely, this paper is structured as follows. After a brief introduction of preliminar-
ies and Structural Causal Models (SCMs) in Sect. 2, this paper starts with an incipient con-
cept of causality in Sect. 3, the Potential Outcome Framework, and continues to examine 
the assumptions inherent to this concept. Then, we introduce Bayesian Networks, d-sepa-
ration and some equivalent Markov assumptions at the associational level of the hierarchy 
in Sect.  4. We will show how the latter contributes to Bayesian Network inference and 
highlight the available tools and contingent assumptions available to conduct inference at 
the first level of the hierarchy in Sect. 4.2. Concepts and assumptions at the interventional 
level of the hierarchy will be introduced in Sect. 5. In Sect. 5.1 different sets of assump-
tions that allow non-parametric as well as parametric structure learning are introduced. 

Observational
Data

Assumptions
Structure
Learning

Graphical
Component

Assumptions Identification
and Inference

(Causal) Esti-
mands and
Estimates

Fig. 2  Flow from observational data to estimands and estimates at all levels of Pearl’s Causal Hierarchy. 
The center part contains the input (observational data), the intermediate object (graphical component) 
and the output (estimands and estimates) of a potential flow of causal reasoning. While the light blue part 
indicates at what stage assumptions have to be taken into account, the purple part indicates which task is 
involved at what stage
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Subsequent Sect. 5.2 delineates different assumptions and concepts for non-parametric as 
well as parametric inference approaches while enunciating the meeting point between the 
two approaches. Some possible deviations from putative assumptions at the interventional 
level together with relevant references are mentioned in Sect. 5.3. We continue by the intro-
duction of various counterfactual models and inference techniques to reason with causality 
at the counterfactual level of the hierarchy at Sect. 6. Finally, in Sect. 7 we summarize the 
results and propose future research directions based on the articulated assumptions.

2  Preliminaries

In this section, we discuss general preliminaries and notation conventions we will fol-
low throughout the paper. Random variables are denoted by capital letters and unless 
specified otherwise, Y denotes the outcome variable, T the treatment variable and Z pos-
sible confounding variables. Generally, X = {X1,… ,Xn} denotes the set containing ran-
dom variables Xi that take values xi in corresponding state space ΩXi

.
A graph is denoted by G = (V ,E) where V = {V1,… ,Vn} is the set of vertices (or 

nodes) and E the set of edges. A graph can be directed when every edge has a direc-
tion, undirected when no edge has a direction or partially directed when some but not 
all edges have a direction. A graph can contain a cycle when there exists a directed 
path from a node to itself. When there is no such path and the graph is directed, we call 
this a directed acyclic graph (DAG). Edges can also be bidirected. A graph containing 
only directed and bidirected arrows without directed cycles is called an acyclic directed 
mixed graph (ADMG)

When there is a directed edge from node T to node Y (or T �→ Y  , in short), we say that 
T is a parent of Y and Y a child of T. The set of parents of Y is denoted by pa(Y) and the 
set of children of T is denoted by ch(T) . An ancestor of Y is a node with a directed path to 
Y, including Y itself. The set of ancestors is denoted by an(Y) . Similarly, a descendent of 
Y is a node with a directed path from Y, including Y itself, and the set is denoted by de(Y) . 
The set of non-descendants of Y is denoted by nonde(Y) . Note that due to the exclusion of 
the node itself, this is not the same as an(Y) . Finally, we distinguish a couple of different 
directed graph structures: We call the structure T �→ Z �→ Y  a chain, T ←� Z �→ Y  a fork and 
T �→ Z ←� Y  a v-structure. In the latter case, Z is called the collider.

A topological sort < is any linear ordering of the nodes for which T �→ Z implies T < Z 
in the ordering. Note that this can only exist when the corresponding graph is acyclic. A 
subgraph Gi is defined to be the graph restricted to the nodes that precede and include Vi in 
the topological sort and a mutilated graph G

W
 is the graph for which all arrows to W ⊆ V  

are deleted.
When graphs are endowed with probabilistic meaning, the random variables 

X = {X1,… ,Xn} will correspond to nodes of the graph V = {V1,… ,Vn} and therefore V 
will inherit the probability distributions and state spaces from X (meaning P(V) and vi will 
correspond to P(X) and xi , respectively). In this case, pa(Vi) refers to the random variables 
that are associated with the parents of Vi . The assignment of random variables pa(Vi) is 
denoted by pai , which is an element of state space Ωpa(Vi)

.
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2.1  Structural causal models

The true subject of our investigation to address all levels of the hierarchy is the Structural 
Causal Model. We start by formally introducing it:

Definition 1 (Structural Causal Models (SCM)) A Structural Causal Model M consists of 
an ordered set of endogenous variables V = {V1,… ,Vn} , exogenous variables U and a set 
of functions F = {f1,… , fn} such that: 

1. For all Vi ∈ V  , there exist a corresponding subset of exogenous variables Ui ⊆ U and a 
mapping fi ∶ Ωpa(Vi)∪Ui

�→ ΩVi
 that maps the state space of parents of Vi together with Ui 

to the state space of Vi : 

2. The error terms u are drawn from a probability distribution P(U) over exogenous vari-
ables with state space ΩU.

The SCMs are also known as the Structural Equation Models (SEMs). They can be 
either parametric or non-parametric. Non-parametric structural equation models are some-
times invoked because assumptions about functional forms between respective exogenous 
and endogenous variables are costly. It is important to note that the SCM does not assume 
the independence of exogenous variables.3 However, when this additional property is satis-
fied, the models are known as non-parametric structural equation models with independent 
errors (NPSEM-ie) as will be illustrated in Sect. 6. Since the NPSEM-ie has been subject 
to criticism about their implicit assumptions and unification with graphical components 
(Richardson and Robins 2013b), we will consider the SCM to be the true object of inves-
tigation in the rest of the paper. Henceforth we will not assume the independence of errors 
unless explicitly stated. The SCMs are assumed to be acyclic, also called recursive. Recur-
siveness allows a topological sort to exist over the endogenous variables.

Frequently, the true SCM is unattainable due to a limited ability to observe a system 
(Rubenstein et al. 2017), and one has to settle for surrogate models that do not have equal 
expressive power, but can be sufficient to answer queries of the first two levels of the hier-
archy, see Fig. 1. Before introducing these surrogate models in later sections, we will first 
introduce the core assumptions and some targets of interest via the so-called Potential Out-
come Framework in the next section.

3  Potential outcome framework

In this section, the Potential Outcome Framework (or Neyman-Rubin Causal Model) as 
developed by Rubin (1974) is introduced. The potential outcomes ground the most granular 
sort of queries of the causal hierarchy, the counterfactual, and the framework incorporates 
the core assumptions of causal inference. That means that claims about potential outcomes 
are equivalent to counterfactual claims. Therefore, we will regularly draw comparisons 

vi = fi(pai, ui).

3 In Definition 1 this can be observed from the fact that for Vi,Vj ∈ V  , the corresponding Ui and Uj can 
overlap.



10619Disentangling causality: assumptions in causal discovery…

1 3

between different levels of the hierarchy and the Potential Outcome Framework. The 
framework is logically equivalent to the Structural Causal Model framework (Pearl 2009), 
which was introduced in the previous section. The necessary methods and targets of inter-
est will be defined along with accessory assumptions. For a full picture of these methods 
and assumptions, we refer the reader to Fig. 3. This section naturally revolves around the 
concept of potential outcomes.

3.1  Potential outcomes

Before the potential outcome is introduced, first the treatment will be defined:

Definition 2 (Treatment variable) The treatment variable T is a random variable that 
takes on different values for treatment t.

Definition 3 (Potential outcome) The potential outcome random variables are denoted 
by Y(T = t) (or Y(t) in short) for different treatment values T = t . For a unit of observation 
i (or unit in short) and treatment value t, we denote the potential outcome realizations yt

i
 to 

be the outcome that would have been observed if unit i had been exposed to treatment t.

Classically, t has been considered to take on binary values corresponding to treatment 
(1) and control (0) (Rubin 1974). The first target of interest emerges naturally from this 
definition and is called the unit-level causal effect.

Definition 4 (Unit-level causal effect) Considering binary treatment t, the unit-level 
causal effect for unit i is defined as �i = y1

i
− y0

i
.

The potential outcome of unit i cannot be observed for treatment t = 1 and control t = 0 
in a single observation leading to the fundamental problem of causal inference (Holland 
1986). This means that the unit-level causal effect cannot be calculated exactly but only 
estimated. We call yt

i
 counterfactual when unit i has not been exposed to treatment t but to 

Randomized
Control-
led Trial

Adjustment
Formula

Ignorability
Assumption

Consistency

No-
Interference

Conditional
Ignorability

Positivity

SUTVA

Strong Ignorability

Fig. 3  Methods for inferring causal claims under different assumptions. The ignorability assumption and 
stable unit-treatment value assumption (SUTVA) are implicit in randomized controlled trials for which 
we can draw causal claims. When strong ignorability holds together with SUTVA, the adjustment formula 
should be invoked to calculate causal estimates
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another treatment value t′ ≠ t . The unit-level causal effect also has its statistical population 
counterpart, the average causal effect.

Definition 5 (Average causal effect) Considering binary treatment t, the average causal 
effect for a population i = 1,… , n is defined as

3.2  Randomized control trials

Randomized controlled trials are widely considered to be the golden standard to retrieve 
average causal effects. That is because inherent to the randomized controlled trials are 
three assumptions. The first assumption is called consistency:

Assumption 1 (Consistency) Let T = t be the treatment assignment. Let Y be the 
observed outcome. Then, consistency is satisfied if

Informally, the assumption forces one to unambiguously define treatment and tie the 
potential outcomes to the observed variables. Earliest claims for the use of this assump-
tions to ’simplify matters’ date back to the seventies (Gibbard and Harper 1978), but have 
been formalized later by Robins (1986). Despite the fact that consistency can be derived 
from the definition of potential outcome variables (Malinsky et al. 2019) (which will be 
discussed in Sect. 6), scholars (VanderWeele 2009) propound the view that consistency is 
an assumption rather than a definition or axiom. Although this assumption is sometimes 
known as the no-multiple-treatment assumption, some researchers draw a firm distinction 
between the two (VanderWeele and Hernan 2013). Consistency can be a strong assumption 
in the observational setting, but it is implicit in randomized controlled trials, because expo-
sure to treatment is a result of experimental design (Cole and Frangakis 2009).

The second assumption is known as the no-interference assumption (Cox 1958). It 
explicitly states that a potential outcome of a unit is not dependent on treatment received 
by other units. More formally,

Assumption 2 (No-interference) Let ti be the treatment assignment of unit i for 
i = 1,… , n . Then no-interference is satisfied if

Interference is also known as spillover. In a randomized controlled trial the investigator 
can prevent causal spillover by designing the experiment such that different units do not 
interact.

A combination of both consistency and no-interference leads to the stable unit-treat-
ment value assumption (SUTVA) (Rubin 1980). While interference is hard to restrain in the 
observational setting, in many causal inference applications the stable unit-treatment value 
assumption is implicitly adopted. Although a randomized control trial poses limitations on 

(1)� = �[Y(T = 1) − Y(T = 0)] =
1

n

n
∑

i=1

(y1
i
− y0

i
).

T = t ⟹ Y(T = t) = Y .

Yi(t1,… , tn) = Yi(ti).
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SUTVA violations, the strength of the randomized control trial lies in its implication of the 
ignorability assumption:

Assumption 3 (Ignorability/exchangeability) Consider binary treatment assignment ran-
dom variable T and potential outcome under treatment Y(1) and control Y(0). Then, ignor-
ability is satisfied if

where ⟂⟂P means independence in probability.

In words, the potential outcomes under treatment are independent of treatment assign-
ment. In this case, we can ignore how units ended up in the treatment or control group. 
Equivalently, the group that received treatment could have been exchanged with the group 
receiving control resulting in the same potential outcome.

The three assumptions together constitute the randomized controlled trial (as illustrated 
in Fig. 3) and make calculation of the average causal effect possible by means of reason-
ing with potential outcomes. Besides the use of potential outcomes, the Potential Outcome 
Framework contains one additional element that enables one to bypass the fundamental 
problem of causality beyond randomized controlled trials, which is the assignment mecha-
nism (Imbens and Rubin 2010).

3.3  Beyond randomized control trials

Unlike for randomized controlled trials, the ignorability assumption is easily violated 
when dealing with observational data, because the treatment and control group are 
rarely truly exchangeable. A confounder can causally influence the treatment variable 
as well as the outcome variable as illustrated in Fig. 4. Therefore, more lenient assump-
tions can be adopted to render the calculation of causal effects under the Potential Out-
come Framework still possible in the presence of confounders.

Assumption 4 (Conditional inorability) Let Z denote confounding variables. Consider 
binary treatment assignment random variable T. Then conditional ignorability is satisfied if

That means that treatment and control group are generally not exchangeable, but 
they become exchangeable when we condition on the confounding set. For that reason, 

Y(0), Y(1) ⟂⟂P T ,

Y(0), Y(1) ⟂⟂P T ∣ Z.

Fig. 4  Because Z causally influ-
ences both T and Y, Z is said to 
confound the relation between 
T and Y 

Z

Y

T
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conditonal ignorability is also known as the unconfoundedness assumption. It is useful 
to adjust for confounding to reach conditional ignorability as long as the probability 
of receiving treatment and control remains strictly positive in each of the created sub-
groups. The positivity assumption guarantees this is the case.

Assumption 5 (Positivity) Let Z denote confounding variables. Then positivity is satis-
fied if

There is a tradeoff between conditional ignorability and positivity by virtue of adjust-
ing for covariates (D’Amour et al. 2021), which is the process of conditioning on sub-
groups of the data that share similar covariate values. Intuitively, the more covariates 
are adjusted for, the smaller the subgroups become. This can lead to subgroups being 
entirely assigned to either treatment or control, which is a violation of the positivity 
assumption. Contrary, not sufficiently adjusting for high dimensional covariates may 
lead to violations of conditional ignorability assumptions. In Sect. 5.2.2 we explain how 
this problem gives rise to the use of parametric approaches as opposed to non-paramet-
ric approaches. Both conditional ignorability and positivity together are called strong 
ignorability (Rosenbaum and Rubin 1983; Imbens and Rubin 2015).

Vested with all of the above assumptions, one is able to calculate the average causal 
effect. Assume binary treatment assignment variable T and confounding set Z:

While the first two equalities follow from the laws of probability and expectation, the third 
equality is a result of conditional ignorability and positivity and the fourth equality a result 
of consistency. This result is also called the adjustment formula and the underlying assump-
tions are summarized in Fig. 3. The formula requires one to have insight into the assign-
ment mechanism: the conditional probabilities of treatment given covariates and potential 
outcomes. This is the second element that constitutes the potential outcome framework.

When conditional ignorability does not apply, causal inference becomes significantly 
harder. In some cases instrumental variables, those that causally influence the treatment 
but not the outcome variable, can be utilized (Hartford et al. 2017), the joint distribution of 
latent and observed confounders can be extracted from variational auto-encoders (Louizos 
et al. 2017) and network data as a proxy for latent confounders can still be used to substan-
tiate causal effects (Guo et al. 2020b).

Consistency follows from the definitions of the Structural Causal Models and hence the 
literature rejecting this assumption is not rich (Pearl 2009). SUTVA can easily be violated 
by departures from the no-interference assumption. Concepts that emerge from this depar-
ture at the second level of the hierarchy will be discussed in Sect. 5.3.

P(T = t ∣ Z) ∈ (0, 1) ∀ T , Z.

�[Y(1) − Y(0)]
(1)
=�Z�[Y(1) − Y(0) ∣ Z]

(2)
=�Z[�[Y(1) ∣ Z] − �[Y(0) ∣ Z]]

(3)
=�Z[�[Y(1) ∣ T = 1, Z] − �[Y(0) ∣ T = 0, Z]]

(4)
=�Z[�[Y ∣ T = 1, Z] − �[Y ∣ T = 0, Z]].
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4  Associational level of the hierarchy

In this section we introduce concepts and associated assumptions that are necessary to 
address questions at the first level of Pearl’s Causal Hierarchy, the associational level (see 
Fig.  1). The chapter starts with some preliminaries on the relation between probability 
functions and graphical models. We continue with explaining the features of Bayesian Net-
works (BNs) and introduce Markov Random Fields (MRFs). Because structure learning of 
Bayesian Networks has much resemblance with causal discovery, we refer to Sect. 5.1 for 
information about structure learning. Finally, different inference methods are discussed for 
different types of Bayesian Networks. For an overview of items that are covered in this sec-
tion, we refer the reader to Fig. 5.

4.1  Bayesian networks

In order to address queries at the first level, we need to tie the random variables to the 
graphical components introduced. This is only possible when we invoke additional assump-
tions. Let X1,… ,Xn be random variables with joint probability distribution P(x1,… , xn) . 
According to the chain rule of probability, this can be factorized as

P(x1,… , xn) = P(x1)

n
∏

i=2

P(xi ∣ xi−1,… , x1).

Markov
Assumption

Assumptions

*Minimality
Assumption

Joint
Probability
Distribution

Graphical
Models

Probabilistic Graphical Models

Markov Ran-
dom Fields

Bayesian
Networks

Bayesian Network Inference

Discrete BN
Inference

Linear Gaus-
sian BN
Inference

Hybrid BN
Inference

Fig. 5  Assumptions and concepts discussed at the associational level of the hierarchy. Probability distri-
butions and graphical models can be tied together by means of the Markov assumptions. The minimality 
assumption can be adopted optionally for a parsimonious encoding of the joint distribution. The resulting 
object can either be a Bayesian Network or a Markov Random Field. Because Bayesian Networks can be 
endowed with causal meaning as well, inference methods for various sorts of Bayesian Networks are dis-
cussed
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In Bayesian Networks, the random variables are represented by the nodes of a directed 
acyclic graph and the probabilistic dependencies are represented by the edges via the local 
Markov assumption:

Assumption 6 (Local Markov) Let P(x1,… , xn) be the joint probability distribu-
tion of random variables Xi corresponding to nodes Vi ∈ V  in the directed acyclic graph 
G = (V ,E) . Then the local Markov assumption holds, if for every Xi the following holds in 
the graph:

Since the local Markov assumption ties the random variables together with the graph-
ical structure, V is assumed to inherit all the probabilistic properties from X. Henceforth, 
we will use P(v1,… , vn) instead of P(x1,… , xn) to denote the probability distribution of 
the random variables. The use of the underscore P to imply independence in probability 
is not superfluous as there also exists independence in the graph defined by d-separation 
and denoted by symbol ⟂⟂G.

Definition 6 d-separation A path p between T and Y is d-connected in the directed acy-
clic graph G = (V ,E) by a set of nodes C ⊆ V�{T , Y} if 

1. p does not contain a chain ⋯ �→ Z �→ ⋯ or fork ⋯ ←� Z �→ ⋯ , where Z is contained in C.
2. all colliders of the path p are in C or have a descendant in C.

If there are no d-connecting paths between T and Y given C, then T and Y are d-separated 
by C which is denoted by T ⟂⟂G Y ∣ C.

The concept of graph independencies gives rise to a reformulation of the local Markov 
assumption to the global Markov assumption:

Assumption 7 (Global markov) Let P(v1,… , vn) be the joint probability distribution of 
random variables corresponding to the nodes Vi ∈ V  . Let ⟂⟂G denote d-separation in the 
directed acyclic graph G = (V ,E) and ⟂⟂P independence in distribution. Then the global 
Markov assumption holds if for all T , Y , Z ⊆ V

By relating the independencies of the graph to the independencies of the distribution, 
one can leverage the graphical structure for a parsimonious factorization of the joint prob-
ability distribution. This can also be directly assumed.

Assumption 8 (Bayesian network factorization) Let P(v1,… , vn) be the joint probability 
distribution of random variables corresponding to the nodes Vi ∈ V  in the directed acyclic 
graph G = (V ,E) . Then the Bayesian Network Factorization assumption holds if we can 
factorize the distribution according to the corresponding graphical structure:

Xi ⟂⟂P nonde(Xi) ∣ pa(Xi).

T ⟂⟂G Y ∣ Z ⟹ T ⟂⟂P Y ∣ Z.

P(v1,… vn) =

n
∏

i=1

P(vi ∣ pai).
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Example 1 Consider the Bayesian Network displayed by Fig. 4. According to the Bayesian 
Network Factorization assumption, the joint probability distribution P(Z, Y, T) can be fac-
torized to P(Z)P(T ∣ Z)P(Y ∣ Z, T).

It has been shown that the local Markov assumption, the global Markov assumption and 
the Bayesian Network Factorization are equivalent when positivity is assumed (Koller D, 
Friedman  2009). A probability distribution P is said to be Markov relative (or Markov in 
short) to G = (V ,E)4 if the Markov5 assumption holds.

While the Markov assumption imposes restrictions on the probability distribution via 
the graphical structure, an additional assumption is necessary to enforce limitations on the 
graphical structure by means of the probability distribution dependencies. This assumption 
comes in various forms of increasing strength: SGS-minimality, P-minimality and faithful-
ness (Zhang 2013). We discuss P-minimality here (Pearl 2009), but before introducing this 
assumption, the concept of a preferred graph needs to be introduced:

Definition 7 (Preferred graph) Let P be the set of distributions that is Markov relative 
to G = (V ,E) and G� = (V ,E�) . Then G′ is (strictly) preferred to G if the conditional inde-
pendence relations of G are a (proper) subset of the conditional independence relations of 
G′.

Assumption 9 (Minimality) Let P be the set of distributions that is Markov relative to 
G = (V ,E) . We assume that minimality is satisfied with respect to G if P is not Markov 
relative to a strictly preferred graph G� = (V ,E�) to G.

Although minimality is a desirable assumption because it allows one to encode the joint 
distribution in the most parsimonious graphical structure possible, it is not required to 
answer queries at the first level of the hierarchy.

In concluding this section, it is worth emphasizing that not all independence relations 
can be encoded by a Bayesian Network, as exemplified by the following counterexample:

Example 2 Let X1,X2,X3,X4 be random variables. Then there does not exist a Bayes-
ian Network satisfying conditional independence relations X1 ⟂⟂P X2 ∣ {X3,X4} and 
X3 ⟂⟂P X4 ∣ {X1,X2}.

Therefore, there is another graphical structure that can represent conditional independ-
encies, which is the Markov Random Field (MRF). Markov Random Fields can account 
for cyclic probability relations and work with potential functions, but they cannot account 
for directionality. For more information about Markov Random Fields, we refer the reader 
to the work by Koller D, Friedman  (2009). Both Bayesian Networks and Markov Random 
Fields are probabilistic graphical models as they unify joint probability distributions with 
graphical structures. Because the lack of directionality excludes Markov Random Fields 

4 Sometimes a probability distribution is said to be Markov to the Bayesian Network corresponding to the 
graph G = (V ,E).
5 The Markov assumption is in specific cases known as the causal Markov assumption. Technically, the 
assumption is only causal when the concomitant graphical component has causal meaning (which will be 
introduced in Sect. 5).
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from causal reasoning at the second and the third level of the hierarchy, only inference on 
Bayesian Networks will be examined at this stage.

4.2  Bayesian network inference

The emphasis so far has been on the concepts and assumptions necessary to address dif-
ferent kinds of (associational) queries. We will now delve into the identification of the rel-
evant components to obtain answers of interest, known as inference. Since associational 
queries require estimation, there are no exact solutions to associational queries. However, 
the inference algorithms that identify the relevant components for these queries can be of 
exact or approximate nature. Because many queries of interest are NP-hard, we will refer 
the reader to the appropriate literature for the corresponding exact or approximate algo-
rithms. In this section, the role of the previously introduced material and assumptions is 
emphasized and their necessity at inference at the first level of the hierarchy is explained.

As illustrated in the previous section, at the first level of the hierarchy, there are two 
components tied to each other by the Markov assumption: the independencies implied 
by the graphical structure and the independencies implied by the probability distribution. 
Let P(v1,… , vn) be a probability distribution that is Markov to a directed acyclic graph 
G = (V ,E) . It should be noted that such a Bayesian Network is not unique, since a prob-
ability distribution can be Markov to multiple Bayesian Networks.

We focus specifically on marginal inference, that is the probability of a random variable 
vn when marginalizing the rest of the variables out:

The Bayesian Network Factorization assumption allows to rewrite this in a more efficient 
way:

By leveraging the independencies implied by the Bayesian Network, the sums can be eval-
uated more efficiently, leading to a less expensive way to compute queries of interest. Natu-
rally, efficiency increases as the Bayesian Network becomes more minimal.

Exact methods in discrete Bayesian Networks that exploit the Bayesian Network 
structure are variable elimination and message passing. When the structure of the 
Bayesian Network is not sufficient to reach the desired computational results, approxi-
mate methods can be used. Among them are sampling methods and variational infer-
ence. For a full overview of these various methods, we refer the reader to the work by 
Koller D, Friedman  (2009) and Salmerón et al. (2018).

Inference on hybrid (combination of discrete and continuous) Bayesian Networks 
is much less developed. Obviously, continuous variables can be effectively discretized 
such that well-established discrete methods can be used (Beuzen et  al. 2018). When 
the continuous variables are assumed to have conditional Gaussian distribution, other 
well-established inference methods based on the joint tree methods exist (Koller D, 
Friedman  2009). However, in this case, the discrete variables cannot be dependent on 
continuous parents.

P(vn) =
∑

v1

…
∑

vn−1

P(v1,… , vn−1, vn).

P(vn) =
∑

v1

…
∑

vn−1

n
∏

i=1

P(vi ∣ pai).
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Another powerful method for dealing with hybrid variables in Bayesian Networks 
uses the mixtures of truncated exponentials (MTE) to approximate distributions, 
because they are closed under marginalization (Langseth et al. 2009). A similar tech-
nique approximates mixture of polynomials (MOP) for which closed inference tech-
niques exist (Shenoy and West 2011).

However, some methods do not assume any distribution, such as a method based on 
importance sampling by Yuan and Druzdzel (2007). There is an entire field of Bayes-
ian Network inference without parametric assumptions. An extensive survey paper on 
existing methods and applications is written by Hanea et al. (2015). Finally, some best 
practices for working with Bayesian Network as a modeling technique are described by 
Chen and Pollino (2012).

5  Interventional level of the hierarchy

This section discusses the causal assumptions and components necessary to address 
queries at the second level of the hierarchy. We start with the various sets of assump-
tions necessary to conduct parametric as well as non-parametric causal discovery in 

Discovery with
Causal Sufficiency

Discovery with
LiNGAM Func-
tional Model

Discovery without
Causal Sufficiency

(Semi)-
Markov

(m-)
Faithfulness

Causal
Sufficiency

I.I.D.
Assumption

Acyclicity

LiNGAM

Fig. 6  Causal discovery assumption sets: the different purple circles represent possible sets of assumptions 
described in Sects.  5.1.1–5.1.3 under which causal discovery can be conducted. The boxes represent the 
assumptions necessary for causal discovery, which may have overlap with multiple assumption sets. The 
color of the boxes indicate the nature of the assumptions: while light blue represents sampling assumptions, 
ivory blue indicates assumptions on the data generating process and darker blue is used for causal assump-
tions. (Color figure online)
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Sect. 5.1, specified in Fig. 6. In Sect. 5.2 we show how the output of causal discovery, 
a causal diagram, forms the basis of a non-parametric approach as well as a parametric 
approach, where the approaches differ based on a different appreciation of the funda-
mental problem of causality. The non-parametric approach adopts assumptions inher-
ent to Causal Bayesian Networks that enable inference, while the parametric approach 
emerges by observing that the fundamental problem of causality requires estimation 
by definition. Fig.  7 shows the specifications of the different concepts and assump-
tions necessary for causal inference for each of the two approaches. Finally, we discuss 
causal concepts that emerge when deviating from putative assumptions in Sect. 5.3.

5.1  Causal discovery

This section will discuss causal discovery from the point of view of necessary assump-
tion expanding on previous assumptive approaches (Eberhardt 2009). Technical details will 
be discussed when they are contingent on the introduced assumptions, but for a broader 
account of why causal discovery methods fail in the absence of assumptions, we refer to 
a survey paper by Runge (2018). Although this section can serve as a blueprint for which 
method to use when certain assumptions are adopted, a more practical guide about the 
application of causal discovery methods can be found in the work by Malinsky and Danks 
(2018). While using interventional data can lead to significant improvements to causal 
structure learning (Hauser and Bühlmann 2015; Silva 2016), in this survey we restrict 
ourselves to recovering the structure with observational data alone. Because we consider 
observational data to be the only source of information at both the first and the second 
level of the hierarchy, structure learning at the first two levels of the hierarchy collapse 
(Mahmood 2011). Additionally, in this survey we limit ourselves to static causal discovery 
methods, which are causal discovery methods that do not account for the passage of time. 
There is a body of survey papers on causal discovery methods for longitudinal data and the 
additional assumptions necessary (Assaad et al. 2022; Runge 2018).

(Semi)-
Markov

Assumptions

(Semi)-
Modularity

Causal Diagrams

DAGADMG

Causal Bayesian Networks
Semi-

Markovian
CBN

Markovian
CBN

Assumptions

Consistency

Condtional
Ignorability

Positivity

No-
Interference

Inference

≡G-formula
Truncated

Factorization

Fig. 7  Causal diagrams are the basis for causal inference. They can be endowed with assumptions from 
Sect. 3 to allow inferring causal statements under the g-formula. Alternatively, the diagrams can be sub-
jected to non-parametric assumptions to obtain Causal Bayesian Networks, which can be leveraged for 
inference with the truncated factorization formula
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An assumption most causal discovery methods revolve around is the i.i.d. assumption.

Assumption 10 (Independent and identically distributed (i.i.d.)) The observational data 
is independent and identically distributed.

We first discuss structure learning when the causal sufficiency, Markov, faithfulness, 
acyclicity and i.i.d. assumptions are satisfied. We then move on to causal discovery with 
violations of the causal sufficiency assumption and subsequently discuss relaxations of the 
faithfulness assumption. Some of these approaches are summarized in Fig. 6.6 However, 
there are assumption sets that allow conducting causal discovery beyond the assumption 
sets in Fig. 6. Concepts that emerge when the Markov or the i.i.d. assumptions are violated 
are discussed in Sect. 5.3.

Because the goal of causal discovery is to recover the graphical structure from obser-
vational data, the core assumption within causal discovery should imply features of this 
underlying structure from the probability distributions (that are learned from the data). 
The strongest form of that assumption was already touched upon in Sect. 4.1 and is called 
faithfulness:

Assumption 11 (Faithfulness) Let P(v1,… , vn) be the joint probability distribution 
of random variables Vi ∈ V  corresponding to the nodes in the graph G = (V ,E) . Let ⟂⟂G 
denote d-separation in a graph G = (V ,E) and ⟂⟂P be the independencies in distribution. 
Then the probability distribution P is faithful to G if for all T , Y , Z ⊆ V:

A probability distribution can be faithful to a graph that is acyclic. If this is the 
case then the acyclicity assumption holds in addition to faithfulness. Practitioners that 
adopt faithfulness are not necessarily expected to have access to the full probability 
distributions but are equipped with appropriate independence tests to find (conditional) 
independencies in the data. In order to complete the first collection of assumptions 
necessary to conduct causal discovery, we highlight the causal sufficiency assumption:

Assumption 12 (Causal sufficiency) A set of variables V is assumed to be causal suffi-
cient if and only if V contains all common causes of two or more variables in V.

When causal sufficiency is assumed, the subject of investigation is the directed acy-
clic graph that best fits the data generating process of the observational data. As most 
causal discovery methods do not uniquely determine the entire directed acyclic graph, 
one additional definition should be introduced:

Definition 8 (Completed partially directed acyclic graph) Directed acyclic graphs that 
entail the same conditional independencies are said to be in the same Markov Equivalence 
Class (MEC) for DAGs. The MEC for DAGs is represented by a Completed Partially 

T ⟂⟂P Y ∣ Z ⟹ T ⟂⟂G Y ∣ Z.

6 The list of assumption sets is not exhaustive as more possible assumption sets will be described that 
allow conducting causal discovery. Although constraint-based and score-based causal discovery algorithms 
require the use of appropriate conditional independence tests and scoring methods respectively, these are 
not mentioned as assumptions because they are algorithm-specific.
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Directed Acyclic Graph (CPDAG) for which an edge is directed if all directed acyclic 
graphs in the MEC agree on the direction of the edge and undirected otherwise.

The causal sufficiency, Markov, faithfulness, acyclicity and i.i.d. assumptions make 
up the first assumption set that allow causal discovery.

5.1.1  Causal discovery with causal sufficiency

Vested with this collection of assumptions as illustrated in the top circle of Fig. 6, the 
structure of the underlying data generating process could be investigated with obser-
vational data alone. The first algorithm was the Spirtes, Glymour and Scheines algo-
rithm (SGS) (Spirtes et al. 1990) closely followed by the Peter-Clarke algorithm (PC) 
(Spirtes and Glymour 1991). Both are constraint-based methods, meaning they aim to 
exploit the conditional independencies to inform the structure of the graph. This means 
that they require the use of reliable conditional independence testing methods. The 
algorithms output the CPDAG based on observational data.

Besides constraint-based methods, there are also score-based methods. Score-based 
methods employ the same assumptions, take in the same input and generate the same 
output as constraint-based methods, but work fundamentally differently. The methods 
start with a specific CPDAG and fit it to the data. The fit is scored based on a scoring 
system and compared to the score of a slightly different CPDAG. The best fit is kept 
and the algorithm continues in the same way. In order to restrain the enormous search 
space they often have a forward and a backward phase. The forward phase keeps add-
ing edges which improves the score the most. When no edges can be added that can 
improve the score, the backward phase starts removing edges that improve the score 
the most. If there is no edge that can be removed to improve the score, the algorithm 
ends (Chickering 2003). Score-based methods require the use of the appropriate score 
based on the nature of the data.

5.1.2  Causal discovery without causal sufficiency

The causal sufficiency assumption can be relaxed. In this case, we acknowledge that 
there can be missing common causes in the observational data and the target of interest 
should be able to account for unobserved confounders. The smallest superclass of DAGs 
that accounts for the presence of unobserved confounders and is closed under marginali-
zation is a Maximal Ancestral Graph (MAG) (Richardson and Spirtes 2002). Similar to 
how multiple DAGs can encode the same independence constraints, multiple MAGs can 
also represent the same conditional independencies. This gives rise to the Partial Ances-
tral Graph (PAG) that represents the Markov Equivalence Class of MAGs with the same 
independence constraints.

It is important to note that the existence of unobserved confounding also leads to 
a slightly modified version of d-separation that represents conditional independen-
cies with respect to the MAG, called m-separation. This leads to natural extensions of 
the Markov assumption and the faithfulness assumption that go by the semi-Markov 
assumption and m-faithfulness.

Algorithms that can extract the PAG from observational data such as Fast Causal 
Inference (FCI) (Spirtes et  al. 2000), Greedy Fast Causal Inference (GFCI) (Ogarrio 
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et al. 2016) and Really Fast Causal Inference (RFCI) (Colombo et al. 2012) rely on the 
i.i.d. assumption, the semi-Markov assumption and the m-faithfulness assumption to an 
acyclic system as illustrated in the bottom right circle of Fig. 6.

There are two main drawbacks with the algorithms introduced so far. First, either tra-
ditional faithfulness or its extension to unobserved confounder models (m-faithfulness) 
is assumed. Faithfulness is a strong assumption and it can be easy to find examples 
where faithfulness is violated (Andersen 2013). Second, the output of all introduced 
algorithms entails a representation of a Markov Equivalence Class. In order to exploit 
the obtained graphical structure for inference purposes, additional assumptions on the 
data generating process should be adopted to direct the edges in the graphical struc-
ture, which the algorithm could not provide. Both drawbacks can be skirted by assum-
ing restrictions on the data generating process beforehand. This will be discussed in the 
next section.

5.1.3  Parametric causal discovery and relaxations of faithfulness

In Pearl’s Causal Hierarchy the true subject of investigation is the Structural Causal 
Model (SCM). Because the true SCM is almost always unattainable, one is forced to 
settle for a surrogate model for which at least questions of lower levels of the hierarchy 
can be addressed. However, by taking parametric assumptions on the distribution of the 
underlying SCM, other assumptions can be bypassed.

These methods are based on Functional Causal Models (FCMs), which are equiva-
lent (Goudet et al. 2019) to earlier introduced SCMs, where one writes the dependent 
variable as a function of its parents and a noise term. A special case of a FCM is Linear 
Non-Gaussian Acyclic Model (LiNGAM) and is defined as follows:

Assumption 13 (LiNGAM) A SCM M with an ordered set of endogenous vari-
ables V = {V1,… ,Vn} , exogenous variables U = {U1,… ,Un} and a set of functions 
F = {f1,… , fn} is assumed to be a Linear Non-Gaussian Acyclic Model if: 

1. Every function fi is a linear function of its parents in the topological sort and exogenous 
variable term ui : 

2. The error terms ui are drawn from exogenous variables Ui ∈ U , which are continuous, 
mutually independent and follow a non-Gaussian distribution.

When LiNGAM is assumed, methods exist to fully recover the DAG (Shimizu et  al. 
2006) based on independent component analysis (ICA-LiNGAM). Faithfulness can be 
dropped, but causal sufficiency, acyclity and the i.i.d. assumptions should be adopted. 
The assumption set has been summarized in Fig. 6. Complementary LiNGAM discovery 
methods were further developed to account for the violation of causal sufficiency (Hoyer 
et al. 2008). In addition, there are also variants that allow for a violation of the acyclicity 
assumption (Lacerda et al. 2012).

There are also alternative assumptions (to LiNGAM) on the data generating process that 
can be used to sideline the faithfulness assumptions and retrieve the full DAG. Some of 

vi = fi(pai, ui) =
∑

j∶Vj∈pa(Vi)

bijvj + ui.
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those assume an additive noise data generating process (Hoyer et al. 2008a; Peters et al. 
2014). More general methods assume a post-linear form (Zhang and Hyvärinen 2009), 
where it has been proven that in all but 5 model specification cases the causal direction 
is identifiable. Even though faithfulness does not have to be assumed in some cases, less 
restrictive assumptions do have to be adopted (Peters et al. 2014).

If one is not willing to commit to additional assumptions about the data generating pro-
cess, but still considers faithfulness too strong of an assumption, one can adopt one of the 
many weaker versions of faithfulness (Zhang and Spirtes 2015), such as adjacency faithfulness 
(Spirtes et al. 2000; Ramsey et al. 2017), 2-adjacency faithfulness (Marx et al. 2021) and fru-
gality (Forster et al. 2018) for which causal discovery algorithms exist or could be developed.

5.2  Identification and inference

In this section, we discuss how the concepts from causal discovery can be used for para-
metric as well as non-parametric inference. While we acknowledge the discussion about to 
what degree the result of causal discovery can be called ’causal’ (Dawid 2010), in this sec-
tion we assume that the ADMGs and DAGs convey causal meaning, making them causal 
diagrams. We first discuss how non-parametric causal inference contributed to causal infer-
ence and emphasize its assumptions. Next, we describe what assumptions the parametric 
approach to causal inference adopts and where both approaches meet. Both approaches can 
be summarized by Fig. 7.

5.2.1  Non‑parametric causal inference

In order to be able to infer causal statements, it should be specified how the causal 
meaning is conveyed on top of the earlier introduced Bayesian Networks. This leads to 
the definition of Causal Bayesian Networks. We adopt the ’missing link’ definition as 
described by Bareinboim et al. (2012) among multiple equivalent definitions of Causal 
Bayesian Networks because its definition intuitively implicates the (SGS-)minimality 
assumption. We try to dissect the assumptions inherent to the definitions. Central to this 
notation are (atomic) interventions and therefore we need to introduce the do-operator 
and the accessory interventional distribution.

Definition 9 (Interventional distribution) Let Y and S be random variables. The interven-
tional distribution P(y ∣ do(S = s)) encodes the probability that Y = y given that S is forced 
to take value s (denoted by the do-operator do(S = s) , or do(s) in short) with probability 1.

We first look at Bayesian Networks that do not contain latent variables, which we call 
Markovian.

 Markovian causal Bayesian networks
The behavior of the do-operator within a Bayesian Network can be assumed by the 

modularity assumption:

Assumption 14 (Modularity) Let P be a probability distribution Markov relative to 
Bayesian Network G = (V ,E) and let S ⊆ V  . Then we say an intervention do(S = s) is mod-
ular if: 
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1. For every Vi ∈ V�S , where S and pa(Vi) are disjoint in G, the interventional distribution 
by intervening on the parents of Vi is invariant to other interventions in the graph: 

2. For every Vi ∈ V  , the interventional distribution by intervening on the parents of Vi 
yields the same distribution as observing the parents of Vi : 

Modularity specifies how the interventional distributions operate within the context 
of a Bayesian Network. We can now define a Causal Bayesian Network:

Definition 10 ((Markovian) Causal Bayesian Network) Let P be a probability distri-
bution Markov relative to Bayesian Network G = (V ,E) . Then G = (V ,E) is said to be a 
Causal Bayesian Network (CBN) if for all S ⊆ V  and Vi ∈ V�S : 

1. P(vi ∣ do(S = s)) is Markov relative to G.
2. The intervention do(S = s) is modular.

The assumptions of the interventional distributions implicit in the definition of 
Causal Bayesian Networks immediately imply (SGS-)minimality in case the conditional 
probability distributions are strictly positive. In case they are deterministic, there still is 
good reason to assume (SGS-)minimality (Zhang and Spirtes 2011).

As the Markov assumption implies a factorization of a Bayesian Network, in a simi-
lar way the modularity assumption implicit in the Causal Bayesian Networks enforces 
the truncated factorization for interventional distributions (Bareinboim et al. 2012):

Assumption 15 (Truncated factorization) Let P be a probability distribution Markov 
relative to Bayesian Network G = (V ,E) . Let S ⊆ V  be the set random variables where is 
intervened upon. Then we assume that the truncated factorization holds if:

and 0 otherwise.

The truncated factorization property implicit in Markovian Causal Bayesian Networks 
reduces marginal inference in Markovian Causal Bayesian Networks to marginal infer-
ence in the mutilated Bayesian Networks. These are the networks that are obtained when 
removing all the arrows to these nodes where is intervened upon. Inference techniques dis-
cussed in the previous section can be used accordingly. Although the truncated factoriza-
tion property is sometimes known as the g-formula (Perkovic 2020), it will be emphasized 
in Sect. 5.2.2 that the g-formula is derived from a different appreciation of the fundamental 
problem of causality as shown in Fig. 7.

 Semi-Markovian Causal Bayesian Networks
The concepts and assumptions introduced in this section do naturally extend to the 

case when the models allow for unobserved confounding variables as is the case in semi-
Markovian models. Naturally, the Markov assumption cannot be adopted but is replaced 

P(vi ∣ do(S = s), do(pa(Vi) = pai)) = P(vi ∣ do(pa(Vi) = pai)).

P(vi ∣ do(S = s), do(pa(Vi) = pai)) = P(vi ∣ do(S = s), pa(Vi) = pai).

P(v ∣ do(S = s)) =
∏

i∣Vi∉S

P(vi ∣ pai) if v consistent with intervention s
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by a semi-Markov assumption. Although the full specifications of the semi-Markovian 
Causal Bayesian Network have been detailed by Bareinboim et al. (2022), we would like to 
emphasize that inherent to that definition is an adjusted version of the Markov assumption 
and Modularity assumption tailor-made to account for the complexities when latent vari-
ables are involved.

As we described in Sect.  5.1, the object that emerges when unobserved confounding 
random variables are at play is an ADMG. Naturally, the Markov assumption as defined 
above does not hold when unobserved confounders are involved, because the latent con-
founders cannot be conditioned on. By generalizing d-separation to m-separation, we can 
extend the Markov assumption to ADMGs (Richardson 2014) resulting in the semi-Markov 
assumption. Similarly, as in the original Markov assumption, the semi-Markov assumption 
can also be expressed in terms of m-separation or in terms of truncated factorization of 
the distribution. It has been shown that both definitions are equivalent (Richardson 2014), 
but for specifications of the semi-Markov assumption or the associated semi-modularity 
assumption, we refer the reader to the article by Bareinboim et al. (2022). These assump-
tions together give rise to the semi-Markovian Causal Bayesian Network

Definition 11 (Semi-Markovian Causal Bayesian Network) Let P be a probability dis-
tribution Markov relative to an ADMG G = (V ,E) . Then G = (V ,E) is said to be a Causal 
Bayesian Network if for all S ⊆ V  and Vi ∈ V�S : 

1. P(vi ∣ do(S = s)) is semi-Markov relative to G.
2. The intervention do(S = s) is semi-modular.

Obviously, the factorization implied by the semi-Markov assumption also leads to a 
form of truncated factorization of interventional distributions. For a full overview of this 
factorization and subsequent ways to marginalize out variables, we refer the reader to (the 
appendix of) Bareinboim et al. (2022). It has been proven that the do-calculus provides a 
complete toolkit necessary to rewrite interventional distributions to observational distribu-
tion and the rules of do-calculus are implied by the assumptions implicit in the definition 
of the semi-Markovian Bayesian Network (Shpitser and Pearl 2006). Completeness of the 
do-calculus means that the do-calculus will provide an observational distribution for each 
interventional distribution if it exists. When the interventional distributions cannot be writ-
ten in observational terms, the distribution is called unidentifiable. Identification is a neces-
sary condition for both non-parametric and parametric causal inference approaches

5.2.2  Parametric causal inference

Apart from some causal discovery methods, most of the concepts discussed so far are non-
parametric concepts. Since potential outcomes by nature imply missing values, the funda-
mental problem of causality is essentially an estimation problem. That is why substantial 
contributions to causal inference also involve estimation. We briefly discuss the motivation 
of parametric causal inference and we then address the parametric counterpart of the trun-
cated factorization (parametric g-formula) based on assumptions introduced in Sect. 3. At 
the third level of the hierarchy, these concepts will be extended (see Sect. 6).

The following example motivates the use of parametric methods as a result of esti-
mation problems: according to the truncated factorization, the interventional probability 
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P(y ∣ do(T = t)) corresponding to the DAG of Fig.  4 can be converted to observation 
probabilities:

This is also known as the back-door adjustment (Pearl 2009). Although using paramet-
ric methods would require additional assumptions on the functional form, there are two 
main benefits to using parametric approaches. First, when considering continuous treat-
ment variables, the query of interest P(y ∣ do(T = t)) might not be available from data for 
the intervention do(T = t) of interest. Second, taking into account high-dimensional covari-
ates Z, summing over all the strata z could be intractable. Both estimation problems can be 
circumvented by assuming the functional form (Hernan and Robins 2020).

When returning to the fundamental problem of causality and the adjustment formula 
as a result of various assumptions in Sect.  3, calculating the conditional expectation 
�[Y ∣ do(T = t)] of Fig. 4 can be reduced to evaluating �Z[�[Y ∣ T , Z]] . This would require 
the evaluation of �[Y ∣ T , Z] adjusted for the probability P(z). However, a non-parametric 
evaluation of �[Y ∣ T , Z] is impossible when Z is high-dimensional. Therefore, one can fit 
a linear regression model to the data to receive the estimates for �[Y ∣ T , Z] for each com-
bination of (t, z) and only estimate the P(z) for the z that are present in the data. This is 
called standardization based on parametric models, or in more general form, the paramet-
ric g-formula.

Alternatively, �(Y ∣ do(T = t)) can be further reduced to

meaning we can marginalize out z from the joint probability if we account for the con-
ditional probability P(t ∣ z) for ending up in the treatment group T = t . When Z is high-
dimensional, this cannot be completed with non-parametric methods, but parametric model 
specifications need to be assumed. Logistic regression would be a straightforward choice in 
case of binary treatment. This is an example of inverse probability weighting (IPW).

Together with g-estimation methods, inverse probability weighting and the parametric 
g-formula belong to the family of g-methods, a class of methods that allows the computa-
tion of the average causal effects under time-varying treatments (Naimi et al. 2016). All 
these methods rely on the availability of a causal diagram and on assumptions that have 
been described in Sect. 3. These assumptions include consistency, positivity, (conditional) 
ignorability and no-interference as illustrated by Fig. 7. The connection between the g-for-
mula and the truncated factorization formula looms large because the latter stems from the 
non-parametric causality research while the former originates in its parametric counterpart, 
both being derived from different assumptions.

In a similar way, expressions with the do-operator, such as �(Y ∣ do(T = t)) , can be for-
mulated as expressions containing potential outcomes, �(Y(t)) . Nonetheless, identifiable 
potential outcomes queries cannot always be reduced to observational queries via the do-
calculus, as nested counterfactuals require more refined tooling for reduction. In Sect. 6 we 
explain that some properties of the do-calculus can be extended to account for the reduc-
tion of nested counterfactuals to observational queries as well (Malinsky et al. 2019).

P(y ∣ do(T = t)) =
∑

z

P(y ∣ T = t, z)P(z).

�(Y ∣ do(t)) =
∑

y

∑

z

yP(y, t, z)

P(t ∣ z)
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5.3  Discovery, identification and inference with more relaxations

There are also many more departures from traditional assumptions in causal discovery and 
inference that we have omitted so far and will be discussed here. Deviations that we hence-
forth consider are departures from the no-interference assumption, departures that allow for 
context-specific independence and departures that consider a different kind of intervention.

All of the discussed causal discovery methods in Sect. 5.1 are based on the i.i.d. assump-
tion as illustrated by Fig. 6. There is also an entire body of work in terms of causal discov-
ery and inference when this assumption is violated (Arbour et al. 2016; Maier et al. 2013b, 
a; Lauritzen and Richardson 2002; Hudgens and Halloran 2008; Tchetgen and Vander-
Weele 2012; Ogburn and VanderWeele 2014; Peña 2016; Bhattacharya et al. 2020; Sher-
man and Shpitser 2018; Aronow and Samii 2017). As has been tenaciously demonstrated, 
the causal graphs that emerge as a result of causal discovery under interference, depend on 
the different kinds of causal interference present (Ogburn and VanderWeele 2014). Causal 
research under interference has been bifurcating.

On the one hand, graphs with violations of the i.i.d. assumption allow directed edges for 
causal relationships as well as undirected edges for stable symmetric relationships. These 
can consequently be accounted for by either Laurritzen-Wermuth-Frydenberg chain graphs 
(Lauritzen 1996; Lauritzen and Richardson 2002; Bhattacharya et al. 2020) or Andersson-
Madigan-Perlman chain graphs (Andersson et al. 2001) depending on the Markov property 
interpreted. Generalization of the former by relaxing causal sufficiency leads to segregated 
graphs (Shpitser 2015; Sherman and Shpitser 2018). Complete identification and inference 
methods for segregated graphs with stable symmetric relationships are established (Sher-
man and Shpitser 2018). Alternatively, an absorption of the Andersson-Madigan-Perlman 
chain graphs in combination with ADMGs (Richardson and Spirtes 2002) leads to a new 
family of causal graphs for which causal discovery methods exist for observational and 
interventional data (Peña 2016).

On the other hand, extending the rules of d-separation to relational d-separation, a cri-
terion for conditional independence in case of relational data, has given rise to an alterna-
tive representation, that enables the existence of independencies of relational data, called 
abstract ground graphs (Maier et  al. 2013a). With an extension of the Peter-Clark algo-
rithm, the Relational Causal Discovery (RCD) algorithm (Maier et  al. 2013b) makes it 
possible to extract the true relational causal structure in case of violations of the no-inter-
ference assumption. For every perspective, the relational causal model corresponds to an 
abstract ground graph. Inference is also possible under abstract ground graphs (Arbour 
et al. 2016).

Because the Markov assumption has occasionally been criticized (Cartwright 1999) 
and defended (Hausman and Woodward 1999), there have also been attempts to relax the 
Markov assumption. Claiming that any variable is independent of its non-descendants 
given its parents excludes the possibility of conditional independence relations that only 
hold for a subset of realizations of conditioning variables (Duarte and Solus 2021). Relax-
ing the Markov property to a kind of Markov property that allows for context-specific inde-
pendence (CSI) relations calls for different causal concepts that can account for this such 
as Bayesian Multinets (Geiger and Heckerman 1996), conditional probability tables (CPTs) 
with regularity structure (Boutilier et  al. 1996), Staged Trees and Chain Event Graphs 
(Smith and Anderson 2008) and labeled directed acyclic graphs (LDAGs) (Pensar et  al. 
2015). Various algorithms for causal discovery exist for Staged Trees (Carli et  al. 2020; 
Leonelli and Varando 2021) as well as for LDAGs (Hyttinen et al. 2018) (with a slightly 
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adapted version of faithfulness). There are also inference methods available when context-
specific independence is involved (Tikka et al. 2019).

Besides the atomic or hard interventions discussed in Sect. 5.2, there are also stochastic 
or soft interventions. These interventions do not force the intervened variable to take on 
a fixed value, but merely replace the underlying causal mechanism by a known function 
(Correa and Bareinboim 2020; Eberhardt and Scheines 2007). The do-calculus falls short 
in converting causal queries with soft interventions or conditional interventions. For that 
we need a more general calculus, called �-calculus (Correa and Bareinboim 2020) that can 
account for stochastic interventions and comes with a concomitant inference algorithm.

6  Counterfactuals

The components introduced in the previous two sections are not sufficient to address que-
ries at the third level of the hierarchy. While the second level represents interventions on 
conditioning variables, the third level corresponds to interventions on conditioned vari-
ables. As mentioned in Sect. 3, the object necessary to reason at all levels of the hierarchy, 
including the counterfactual level, is the SCM. Next is an example of how a SCM can be 
utilized to reason at the counterfactual level of the hierarchy when the Causal Bayesian 
Network falls short:

Example 3 Assume the Linear Gaussian (Markovian) Causal Bayesian Network corre-
sponding to the graph X �→ Y  with

The intervention distribution P(Y ∣ do(X = 1)) can be computed via the truncated fac-
torization formula and results in N(2.5, 1) . However, the counterfactual distribution 
P(Y(X = 0) ∣ X = 1, Y = 4) , meaning the probability of Y had X been set to 0 given that 
X = 1 and Y = 4 , cannot be computed with a Causal Bayesian Network alone. In order to 
compute this counterfactual query, access to the SCM is required.

Therefore, assume the following structural equations in the SCM:

The evidence of the counterfactual query, X = 1 and Y = 4 , can be used to update the 
distribution of the exogenous variables in the SCM to u1 ∼ �(1) and u2 ∼ �(4) , with 
�() being the Dirac delta measure. Ingesting the intervention X = 0 into the updated 
structural equations leads to a complete evaluation of the counterfactual query: 
P(Y(X = 0) ∣ X = 1, Y = 4) = f2(X = 0, u2) = �(4).

One of the reasons much research has been dedicated to the first two levels of the 
hierarchy is that access to the fully specified SCM is considered to be implausible. 
While the above Linear Gaussian (Markovian) Bayesian Network gives rise to a natural 
separation between the endogenous and exogenous variables, the interaction between the 
observed and latent variables is often unknown, rendering access to the fully specified 

X ∼ N(1, 4)

Y ∼ N(−0.5X + 3, 1).

f1(u1) = u1 where u1 ∼ N(1, 4)

f2(X, u2) = −0.5X + u2 where u2 ∼ N(3, 1).
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SCM ’hopeless’ (Bareinboim et al. 2022). Despite the inaccessibility of the fully speci-
fied SCM, scholars have painstakingly reasoned with counterfactual models, because it 
plays an essential role in mediation analysis (Robins et al. 2022; Robins and Richardson 
2011). Some counterfactual models have antagonized scholars that have argued that the 
introduced assumptions are not scientific because they lack the possibility of empirical 
validation (Dawid 2000).

In this section we will generalize the Potential Outcome Framework as introduced 
in Sect.  3, which is equivalent to the Structural Causal Model framework introduced in 
Sect. 2, shedding new light on the assumptions involved at the third level of the hierarchy 
(see Fig. 8).7 We emphasize the different counterfactual models emerging from assump-
tions and highlight the inference tools available for each model. Throughout this section, 
we assume the existence of a topological sort on the random variables.

6.1  One‑step‑ahead potential outcomes

The very definition of counterfactuals entails the existence of a hypothetical world that 
may not be empirically verifiable. Therefore, we start by assuming the existence of one-
step-ahead potential outcomes.

One-Step-
Ahead PO

Assumptions

Recursive
Substitution

Counterfactual
Consistency

Causal
Irrelevance

Positivity

FFRCISTG
Independencies

NPSEM-ie
Independencies

Counterfactual Models

FFRCISTGs NPSEM-ie⊃

SWIG

Factorization

Modularity

Inference

Extended
G-Formula

Edge
G-Formula

*

Fig. 8  The definition of the one-step-ahead potential outcomes and recursive substitution imply counterfac-
tual consistency and causal irrelevance. Additional independence assumptions need to be adopted to yield 
a counterfactual model, which can either be a FFRCISTG or a NPSEM-ie. The SWIG unifies these models 
with graphical approaches and features a factorization and modularity property. Together with the positivity 
assumption, inference can be conducted via the extended g-formula or the edge g-formula.

7 The SWIG does not immediately apply the edge g-formula, but the graphical structure of the SWIG can 
be generalized to allow edge interventions as has been shown by Shpitser and Tchetgen (2016).
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Assumption 16 (One-step-ahead potential outcomes) Let X1,… ,Xn be random vari-
ables corresponding to nodes V1,… ,Vn . Then for all Vi ∈ V  and possible assignments 
of parents pai ∈ Ωpa(Vi)

 , we assume the existence of one-step-ahead potential outcomes 
Vi(pa(Vi) = pai).

Note that Vi(pa(Vi) = pai) corresponds to the notation introduced in the Potential Out-
come Framework of Sect. 3. Intuitively, the one-step-ahead potential outcome corresponds 
to the response Vi had the parents of Vi been set to pai . This is emphasized as an assumption 
because the assumed potential outcomes could possibly be counterfactual and therefore 
presuming the existence of a hypothetical world. Since not all potential outcomes naturally 
depend on possible assignments of parent nodes in the topological sort, it is necessary to 
extend the definition of potential outcomes via recursive substitution.

Assumption 17 (Recursive substitution) Let X = {X1,… ,Xn} be random variables cor-
responding to nodes V = {V1,… ,Vn} . Assume the existence of one-step-ahead potential 
outcomes Vi(pa(Vi) = pai) for all Vi ∈ V  and possible assignments of parents pai ∈ Ωpa(Vi)

 . 
Then for all S ⊂ V  and s ∈ ΩS we assume that Vi(s) can be expressed recursively:

Vi(s) is thus the potential outcome where the parents of Vi that are in S had been set to s 
and variables for which Vj ∈ pa(Vi) ⧵ S are set to the values these potential outcomes would 
have had had S been set to s, denoted by Vj(s).

Example 4 Assume the topological sort over the random variables Z, T, Y as implied by 
Fig. 4. Then, we assume the one-step-ahead potential outcome Y(z) is defined recursively 
as

Expressing potential outcomes recursively brings along desirable properties as illus-
trated by Fig. 8. First of all, it directly implies the consistency assumption introduced 
in Sect.  3 (Malinsky et  al. 2019). Second, it proves the so-called causal irrelevance: 
every potential outcome derived from recursive substitution Vi(s) can be expressed as a 
unique minimally causal relevant subset of W ⊆ S : Vi(s) = Vi(w) . The reader can find the 
specifications of a minimally causal relevant subset and the proof in the work of Mal-
insky et  al. (2019). Equivalence between the Structural Causal Model and the Poten-
tial Outcome Framework follows from the equivalent representation of the one-step-
ahead counterfactual Vi(pai) as the output of the structural equation fi(pai, ui) (by letting 
u⃗i = {Vi(pai) ∣ pai ∈ Ωpa(Vi)

} and setting fi(pai, ui) = (u⃗i)pai = Vi(pai)).

6.2  Counterfactual models

In addition to consistency and causal irrelevance, independence relations are assumed to 
reason about counterfactuals. The literature splits along the lines of which independence 
assumptions exactly to adopt. There is the more conservative finest fully randomized 
causally interpretable structured tree graph (FFRCISTG) and the more restrictive 

Vi(s) = Vi(s ∩ pai, {Vj(s) ∣ Vj ∈ pa(Vi),Vj ∉ S}).

Y(z) = Y(z ∩ paY , {Vj(z) ∣ Vj ∈ pa(Y),Vj ∉ Z})

= Y(z, T(z)).
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non-parametric structural equation model with independent errors (NPSEM-ie). We 
start by introducing the FFRCISTG independencies.

Assumption 18 (FFRCISTGS independencies) Assume one-step-ahead counterfactuals 
by recursive substitution. Let v be an assignment for random variables V and let pai be the 
restriction of that assignment to parents variables of Vi . Then for each assignment v, the 
corresponding one-step-ahead counterfactuals consistent with v are mutually independent:

where Vi < Vi+1 in the topological sort.

It is important to note that all counterfactual random variables are consistent with 
each other in the sense that there is no contrary assignment among them. Extra inde-
pendencies across contradicting assignments are imposed by assuming independencies 
of the error terms in the non-parametric structural equation models. Formally, the coun-
terfactual random variables that are independent in the NPSEM-ie model are:

Assumption 19 (NPSEM-ie independencies) Assume one-step-ahead counterfactuals by 
recursive substitution. Then the set of one-step-ahead counterfactuals across possibly con-
tradictory interventions are mutually independent:

where Vi < Vi+1 by the topological sort.

Because the NPSEM-ie independencies also contain the FFRCISTGS independen-
cies, the NPSEM-ie model is strictly stronger than the FFRCISTGS model. Consistency 
and causal irrelevance are implicit in the NPSEM-ie as well as the FFRCISTGS model.

Example 5 Assume one-step-ahead potential outcome random variables corresponding to 
the nodes Z, T, Y respecting the topological sort of Fig. 4. Then, following the FFRCISTGS 
model, for assignment z1, t we have independencies:

In addition to the previous independencies, according to the NPSEM-ie model, other inde-
pendencies across contradictory assignments z1 and z2 are implied, such as:

While DAGs and ADMGs are not expressive enough to account for reasoning 
with one-step-ahead potential outcomes with either NPSEM-ie independencies or 
FFRCISTGS independencies, a more refined graphical construction called a Single 
World Intervention Graph (SWIG) was introduced via a node-splitting operation based 
on causal irrelevance. The SWIG can encode the independence relations of either the 
NPSEM-ie or the FFRCISTGS. Similarly to how the Causal Bayesian Networks assume 
a factorization property of the interventional distributions and modularity property 
about the nature of interventions, the SWIGs obey properties that specify the behav-
ior of counterfactual distributions. Both the NPSEM-ie model and the FFRCISTGS 

V1 ⟂⟂P V2(pa2) ⟂⟂P ⋯ ⟂⟂P Vn(pan),

{V1} ⟂⟂P {V2(pa2) ∣ pa2 ∈ Ωpa(V2)
} ⟂⟂P ⋯ ⟂⟂P {Vn(pan) ∣ pan ∈ Ωpa(Vn)

},

Z ⟂⟂P T(z1) ⟂⟂P Y(t, z1).

Z ⟂⟂P T(z2) ⟂⟂P Y(t, z1).
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model together with consistency imply these factorization and modularity properties for 
SWIGs (Richardson and Robins 2013a) as illustrated by Fig. 8.

6.3  Inference

Inference on the counterfactual level is concerned with the identification of the relevant 
components necessary to address counterfactual queries. In order to calculate the distri-
bution of counterfactuals under different interventions, we can use the g-formula, which 
we have introduced in Sect. 5.2.2. This formula can be extended to account for unit-spe-
cific interventions and the distribution of that intervention (Young et al. 2014) resulting 
in the extended g-formula (Robins et al. 2004; Richardson and Robins 2013b):

Proposition 20 (Extended G-formula) Let S ⊂ V  and V(s) be the one-step-ahead coun-
terfactual defined by recursive substitution. Then given positivity, the joint distribution can 
be written as:

The formula is equivalent to the factorization and modularity property implicit in 
SWIGs and has been proven by Richardson and Robins (2013b) and Shpitser et  al. 
(2022). The strength of the formula is that it rewrites counterfactual distributions in 
terms of observational distributions, but unlike the g-formula, the extended g-formula 
also accounts for nested counterfactuals by having a term for every Vi ∈ V  . Analogously, 
the do-calculus can be extended to rewrite nested counterfactuals such as dynamic treat-
ment regimes or path-specific interventions. For that reason, po-calculus has been intro-
duced by Malinsky et  al. (2019) as a generalization of the do-calculus resulting from 
consistency, causal irrelevance and factorization on SWIGs. Although the po-calculus 
implies the do-calculus for interventional queries (Malinsky et  al. 2019), it has been 
shown that additional identification results consisting of nested counterfactuals follow 
from the po-calculus (Shpitser et al. 2022).

As there exists a hierarchy of causal queries, there is also a hierarchy of interventions. 
The most granular form of interventions are node interventions according to the hierarchy 
of interventions of Shpitser and Tchetgen (2016). Node interventions are a specific form 
of edge interventions which in turn are a specific form of path interventions. Multiple tar-
gets of interest in mediation analysis are defined as edge interventions and for this reason, 
the extended g-formula has also been extended to the edge g-formula (Shpitser and Tchet-
gen 2016). While node interventions are associated with the FFRCISTG model and require 
the extended g-formula for identification, edge interventions correspond to the NPSEM-ie 
model and require the edge g-formula for identification as shown in Fig. 8.

P(V1(s),… ,Vn(s)) =
∏

i∣Vi∈V

P(Vi ∣ s ∩ pai, pa(Vi) ∉ S).
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7  Discussion and future directions

In this paper, we have coalesced the scattered research on causality into a whole by pinning 
different research areas to a place on Pearl’s Causal Hierarchy. The concepts and contin-
gent assumptions necessary to address different queries of the hierarchy have been empha-
sized. There remains a body of directions open for future research.

Because Pearl’s Causal Hierarchy rests upon the existence of the Structural Causal 
Models and recursiveness is often assumed for these models, most of the research in cau-
sality has been operating under the assumption of acyclicity. However, cyclical causal rela-
tions are assumed to be common in real-world applications such as climatological phenom-
ena (Cox et al. 2000). Therefore research is now emerging that accounts for the existence 
of feedback loops in Structural Causal Models (Bongers et al. 2021), but more research is 
necessary.

In order to bring the concepts retrieved from causal discovery to the realm of inference, 
some sort of assumption about the nature of interventions should be included. As discussed 
by Dawid (2010), the Bayesian Network that constitutes the independence relations is an 
entirely different object than the Causal Bayesian Network. Both objects can be related by 
assuming, among other assumptions, that edges convey some causal meaning. Research 
could point out how the relation between causal discovery and causal inference can be 
strengthened even more.

Because multiple agents can be at play at a causal model conducting interventions, it 
makes sense to use causal models as a basis of strategic interactions and take causal mod-
els to the game theoretical realm. There has not been much research in this field yet (Grim-
bly et al. 2021), apart from a few exceptions (Soto et al. 2020; Maes et al. 2007). Further 
research can point out how additional assumptions can bolster the connection between 
game theoretical concepts and causality.

While causality has gained more traction from multiple disciplines, we hope this paper 
helps promulgate causal concepts across different research areas. We encourage research-
ers to examine the causal question they aim to address, assess the validity of the assump-
tions they are abiding by and employ the suitable causal concepts.

Appendix A: Explanation figures

See Figs. 9, 10, and 11 
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what meaning the arrows generally convey with one exception: when assumptions have a directed arrow to 
another assumption outside its group of assumption, it means ’can be combined with’. (Color figure online)
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Fig. 10  First exception: color/shape scheme for the causal hierarchy. (Color figure online)
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