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Abstract
Connectivity is among the most essential concerns in graph theory and its applications. 
We consider this issue in a framework that stems from the combination of m-polar fuzzy 
set theory with graphs. We introduce two measurements of connectedness of m-polar 
fuzzy graphs that we call their connectivity and average connectivity indices. Examples 
are given, and the theoretical performance of these concepts is investigated. Particularly, 
we are concerned with the effect of deleting a vertex or an edge from an m-polar fuzzy 
graph, on its connectivity and average connectivity indices. We also establish bounding 
expressions for the connectivity index in complete m-polar fuzzy graphs, complete bipar-
tite m-polar fuzzy graphs, and wheel m-polar fuzzy graphs. Moreover, we introduce some 
special types of vertices called m-polar fuzzy connectivity reducing vertices, m-polar fuzzy 
connectivity enhancing vertices, and m-polar fuzzy connectivity neutral vertices. Our theo-
retical contribution is applied to a product manufacturing problem that takes advantage 
of multi-polar uncertain information. The justification for our application is systematized 
using an algorithm. Finally, we compare the proposed method to existing methodologies to 
demonstrate its feasibility and applicability.
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1  Introduction

Zadeh (1965) extended the notion of classical subsets of a set to fuzzy sets. In order to indi-
cate uncertainty, he looked at the fundamental concept of degree of membership in a dif-
ferent light. This figure was traditionally used to answer the question whether an element 
belongs to a subset or not: 0 holds for ‘no’ and 1 means ‘yes’. For the first time his theory 
allowed an object to belong to a set with a partial degree of membership within [0,  1]. 
Zadeh’s work (Zadeh 1965) has influenced scientists all across the world. Nowadays, many 
extensions of his original postulate exist. One of them owes to the view that many issues, 
from the micro to the macro scale, tend to multi-polarity. As a result, it is no surprise that 
multi-polarity in information and data collection has gained popularity in many basic and 
technological disciplines. In neurobiology, for example, multi-polar neurons in the brain 
collect a lot of information from other neurons. Multi-polar technology may be used to 
manage large-scale systems in information technology. Bearing this fact in mind, and moti-
vated by the concept of bipolar fuzzy sets (Zhang  1994), Chen et al. (2014) presented the 
notion of m-polar fuzzy (m-PF, in short) set as an extension of fuzzy set. The assessment 
of the membership of an element with m different qualities in an m-PF set lies in [0, 1]m , 
and this assessment captures all its separate memberships. This approach is better suited 
to model a variety of real-world uncertain situations, like the case of data originating with 
several agents or informational sources. The influence of Zadeh’s paradigm shift extended 
to graph theory, which is concerned with the relationships among a set of objects under 
consideration. Its applications demand a precise inspection of technically sound ideas, 
like those related to connectivity. For example, suppose that we have various routers in a 
network, then the maximum possible value of the strength of connectedness between two 
routers is essential to keep its reliability and effectiveness. Also, the only way to confirm 
the stability of a flow in a piece of the network, or in the entire network, is to measure the 
average flow in that area. But uncertain relationships abound and they are better captured 
by fuzzy models. For this reason Kaufmann  (1973) set forth the fundamentals of fuzzy 
graphs. Whereas the strength of connectedness between any two vertices is either 0 or 1 
in a graph, it is allowed to be in the range [0, 1] in a fuzzy graph. Connectivity became 
a decisive concept in fuzzy graph theory too. An issue that demonstrates the importance 
of connectivity in fuzzy graphs is the fact that total flow disconnection occurs less fre-
quently in physical problems (such as network problems) than flow reduction between pairs 
of vertices.

Many authors were quick to expand the new theory further. Rosenfeld  (1975) inves-
tigated fuzzy relations. He studied fuzzy analogues of several basic graph-theoretical 
notions like cycles and paths, connectedness, bridges and trees. In fact, it was Rosen-
feld  (1975) who first developed a comprehensive theory of fuzzy graphs, although Yeh 
and Bang (1975) had independently proposed fuzzy graphs. In addition, they introduced 
several parameters to assess connectivity in a fuzzy graph, and investigated their applica-
tions. Early contributions to the theoretical basis of fuzzy graph theory abound. For exam-
ple, Mordeson and Nair (2000) presented other operations on fuzzy graphs. Bhattacharya 
(1987) defined certain concepts of connectivity concerning fuzzy bridges and fuzzy cut-
vertices. Bhattacharya and Suraweera (1991) established procedures for the computation of 
connectivity between pairs of vertices in fuzzy graphs. Banerjee (1991) studied an optimal 
algorithm for calculating the strength of connectedness in fuzzy graphs, and also Tong and 
Zheng (1996) developed an algorithm for the calculation of the connectivity matrix of a 
fuzzy graph. In their analysis of fuzzy graphs, Bhutani and Rosenfeld (2003) established 
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the notions of strong paths and arcs. Mathew and Sunitha (2009) classified distinct types of 
arcs in fuzzy graphs and developed an arc identification algorithm. A sufficient condition 
for a node to be a fuzzy cut-node was given in Mathew and Sunitha (2009). Applications 
and extensions soon appeared as well. Xu  (1997) utilized fuzzy graph connectivity param-
eters to problems involving chemical structures. Binu et al. (2019) examined the connec-
tivity index of fuzzy graphs with application to human trafficking. In the analysis of bipo-
lar fuzzy graphs (Akram 2011), Poulik and Ghorai (2020) introduced certain indices and 
produced related applications. Recently, Gong et al. (2021) studied domination of bipolar 
fuzzy graphs. Akram and Waseem (2016) established the concept of m-PF graphs in order 
to study network models with multi-polar, multi-attribute information. Various authors pre-
sented additional notions, inclusive of various types of edge m-PF graphs (Akram et  al. 
2017), m-PF graph structures (Akram et al. 2016), faces and dual of m-PF graphs (Ghorai 
and Pal 2016a), m-PF labeling graphs (Akram and Adeel 2016), fuzzy coloring of m-PF 
graphs (Mahapatra and Pal 2018), and applications of m-PF graphs in decision support 
systems (Akram and Sarwar 2017). The strength of connectedness between vertices has 
been recently studied in an m-PF graph (Mandal et  al. 2018; Akram et  al. 2021). Man-
dal et al. (2018) have discussed other fundamental concepts like strong and strongest m-
PF path, m-PF bridge, and m-PF forests. Other types of edges in m-PF graphs were intro-
duced in Akram et al. (2021). For other concepts, the readers are suggested to Chen (1997), 
Mahapatra and Pal (2022), Mahapatra et  al. (2021), Samanta and Pal (2015), Gao et  al. 
(2022a, b), Habib et  al. (2022), and  Akram and Nawaz (2022). To summarize, Table 1 
presents a brief comparison of works that have used different strategies to develop novel 
algorithms related to connectivity of graphs.

1.1 � Motivation and contributions

Connectivity is the most intuitive attribute to relate with a network. For example, when 
we have numerous routers on the internet, the maximum possible value of the strength of 
connectedness between two routers is an essential proxy to guarantee that the network is 
reliable and effective. Also, the only way to confirm the stability of a flow in a piece of the 
network or in the entire network is to measure the average flow in that area. The proposed 
formulation is motivated by the following interests:

–	 Our main motivation is the lack of a systematic investigation of connectivity in the 
graph theory generated from multi-polar uncertain information. This is a critical issue 
that characterizes many real-world decision-making situations.

–	 Fuzzy and bipolar fuzzy graph models have been successfully employed to manage 
uncertain information. However both models require further adjustments of member-
ship functions and a great deal of background knowledge.

–	 Achieving our goal will enable us to enhance the methods described in Binu et  al. 
(2019) and Poulik and Ghorai (2020) which, through their examination of the fuzzy and 
bipolar fuzzy graph models, have paved the way for decision analysis based on connec-
tivity with fuzzy information.

–	 In practical applications, the uncertainties in network parameters derived from multi-
polar information are far from obvious. Consider for example the case of governments 
that must decide to implement a smart lockdown during the COVID-19 pandemic. 
There are many aspects to consider, including the availability of health facilities, test-
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ing facilities, public awareness, local rates of transmission, the local community’s reac-
tion to the pandemic, etc. Most of these factors are uncertain in nature. This type of 
multi-polar uncertain information cannot be correctly handled with the help of fuzzy or 
bipolar fuzzy graph models. It is thus convenient to pay more attention to connectivity 
analysis of graphs in the context of m-PF graphs.

Motivated by the factors above, our work is devoted to present an extended version of 
connectivity indices of fuzzy graphs that perform well under multi-polar human assess-
ments. In the current study, we reformulate this method for m-PF graphs. The following 
bullet points encapsulate the innovative contributions of our research work:

–	 To help studying real-world multi-polar uncertain problems, our research produces 
two measures of connectedness (connectivity and average connectivity index) for m-
PF graphs.

–	 Our study investigates the effects on both connectivity indices of the elimination of a 
vertex or an edge from an m-PF graph.

–	 We establish bounds of the connectivity index in complete m-PF graphs, complete 
bipartite m-PF graphs, wheel m-PF graphs. Also, we introduce some special types of 
vertices, namely, m-PF connectivity reducing vertices, m-PF connectivity enhancing 
vertices, and m-PF connectivity neutral vertices.

–	 These new tools are applied to a problem of selection of optimal products to be man-
ufactured by a multinational enterprise.

–	 A comparison among the fuzzy, bipolar fuzzy, and m-PF graph models (through the 
problem of finding the set of representatives for a youth development council in a 
university) is also given to prove the flexibility and validity of our new technical 
contribution.

1.2 � Outline of the paper

The content of this paper is organized as follows. Section 2 deals with some basic ter-
minologies and results related to this research work. In Section 3, we define the connec-
tivity index of an m-PF graph and use it to prove several theorems on m-PF subgraphs. 
Section 4 deals with bounds for the connectivity index of certain m-PF graphs, includ-
ing complete m-PF graphs, complete bipartite m-PF graphs and wheel m-PF graphs. In 
Section 5, we discuss the connectivity index of edge-deleted m-PF subgraphs of m-PF 
graphs. In Section  6, we define the average connectivity index of an m-PF graph and 
introduce some special types of vertices of m-PF graphs using this concept. Section 7 
deals with the application of connectivity and average connectivity index of m-PF 
graphs for the selection of products to be manufactured by a company. This section also 
includes an algorithm to clearly understand the general procedure supporting our appli-
cation. In Section 8, a comparison of our technique with existing techniques is shown to 
exhibit the practicality and generality of the method suggested in this paper. Section 9 
summarizes the findings, benefits and limitations of our research. The last section  10 
concerns conclusions and future directions for research.
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2 � Preliminaries

The concept of m-PF set on W, a non-empty set, was defined in Chen et al. (2014) as a 
function � ∶ W → [0, 1]m . The collection of all m-PF sets on W is represented by m(W). 
Observe that the set [0, 1]m can be endowed with a partially ordered set (or poset) struc-
ture if we resort to the point-wise order defined by the expression w ≤ z ↔ Pq(w) ≤ Pq(z) , 
where w, z ∈ [0, 1]m . Here, Pq ∶ [0, 1]m → [0, 1] represents the standard q-th projection 
mapping for every 1 ≤ q ≤ m.

Definition 1  (Akram and Waseem 2016) Suppose that � is an m-PF set on W. Then 
an m-PF relation � on � is � ∶ � ⟶ � , a mapping satisfying that if we write down 
� = (P1◦�,P2◦�,… ,Pm◦�) , then for each w, z ∈ W,

for each 1 ≤ q ≤ m , where Pq◦� (w) and Pq◦�(wz) represent the q-th membership 
value of vertex w and edge wz, respectively. We say that � on W is symmetric when 
Pq◦�(wz) = Pq◦�(zw) for each 1 ≤ q ≤ m , where w, z ∈ W.

Definition 2  (Akram and Waseem 2016) An m-PF graph on W consists of an ordered 
pair of mappings � = (� , �) , where � ∶ W ⟶ [0, 1]m is an m-PF set on W and 
� ∶ W ×W ⟶ [0, 1]m is an m-PF relation on W, in a such way that for each wz ∈ E,

for each 1 ≤ q ≤ m and for all wz ∈ W ×W ⧵ E , �(wz) = � . Note that � = (1, 1,… , 1) 
and � = (0, 0,… , 0) are the largest and smallest element of the partial order in [0, 1]m , 
respectively.

Definition 3  (Mandal et  al. 2018) Consider an m-PF graph � = (� , �) . An m-PF graph 
�̃ = (�̃ , �̃) is a partial m-PF subgraph of � when for each 1 ≤ q ≤ m , it is the case that 
Pq◦�̃ (w) ≤ Pq◦� (w) for all w ∈ W̃ and Pq◦�̃(wz) ≤ Pq◦�(wz) for all wz ∈ Ẽ . Particu-
larly, a partial m-PF subgraph �̃ = (�̃ , �̃) an m-PF subgraph of � = (� , �) if for each 
1 ≤ q ≤ m , Pq◦�̃ (w) = Pq◦� (w) for all w ∈ W̃ and Pq◦�̃(wz) = Pq◦�(wz) for all wz ∈ Ẽ . 
An m-PF subgraph �̃ = (�̃ , �̃) spans the m-PF graph � = (� , �) if for each 1 ≤ q ≤ m , 
Pq◦�̃ (w) = Pq◦� (w) for all w ∈ W , i.e., W = W̃ and � (w) = �̃ (w) for all w ∈ W = W̃.

Definition 4  (Akram and Waseem 2016) Consider an m-PF graph � = (� , �) . An m-PF 
path P in � consists of a sequence of different vertices w = w1,w2,w3,… ,wn = z such that 
there exists at least one 1 ≤ q ≤ m for each 1 ≤ i ≤ n − 1 satisfying Pq◦𝜎(wiwi+1) > 0 . An 
m-PF path between two vertices wi and wk is said to be an m-PF cycle C (Akram et  al. 
2021) if wi = wk and n ≥ 3 . The strength of an m-PF path P is described as 
S(P) = ( inf

1≤i<k≤n
P1◦𝜎(wiwk), inf

1≤i<k≤n
P2◦𝜎(wiwk),… , inf

1≤i<k≤n
Pm◦𝜎(wiwk)) . The strength of 

connectedness between two vertices wi and wk ( CONN
�
(wi,wk) ) is the maximum of the 

strengths of all m-PF paths between wi and wk . Mathematically, it is defined as 
CONN

�
(wi,wk) = ((P1◦�(wiwk))

∞, (P2◦�(wiwk))
∞,… , (Pm◦�(wiwk))

∞) , where 
(Pq◦𝜎(wiwk))

∞ = max{ inf
1≤i<k≤n

Pq◦𝜎(wiwk)} . An m-PF path is defined to be a strongest m-
PF path if S(P) = CONN

�
(wi,wk) . An m-PF graph � = (� , �) is connected if there exists an 

m-PF path between each pair of vertices, i.e., (Pq◦𝜎(wiwk))
∞ > 0 for at least one q.

Pq◦�(wz) ≤ inf{Pq◦� (w),Pq◦� (z)},

Pq◦�(wz) ≤ inf{Pq◦� (w),Pq◦� (z)},
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In the rest of this paper, we suppose that the m-PF graph � is connected.

Definition 5  (Mandal et al. 2018) A connected m-PF graph � = (� , �) is an m-PF tree if 
it has an m-PF spanning subgraph �̃ = (�̃ , �̃) which is a tree and for each edge wz not in �̃ 
there exists an m-PF path from w to z in �̃ whose strength is greater than the membership 
value of edge wz in � , i.e., Pq◦CONN��

(w, z) > Pq◦𝜎(wz) for each 1 ≤ q ≤ m.

Note that �̃ is a tree such that it contains all the vertices of � , therefore, it is in fact a 
spanning tree of � . Yet more, � has no other maximum spanning tree.

Definition 6  (Akram and Waseem 2016) An m-PF graph � = (� , �) is a strong 
m-PF graph when for all wz ∈ E , Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 
1 ≤ q ≤ m . We say that the m-PF graph � = (� , �) is complete when for all w, z ∈ W , 
Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 1 ≤ q ≤ m.

Definition 7  (Akram et al. 2021) An m-PF graph � = (� , �) is a bipartite m-PF graph if 
W = W1 ∪W2 ( W1 ∩W2 = � ) such that (i). Pq◦�(wz) = 0 for each 1 ≤ q ≤ m , if w, z ∈ W1 
or w, z ∈ W2 , (ii). Pq◦𝜎(wz) > 0 for at least one q, if w ∈ W1 and z ∈ W2 or w ∈ W2 and 
z ∈ W1.

Definition 8  (Akram et  al. 2021) We say that the m-PF graph � = (� , �) is a complete 
bipartite m-PF graph when W = W1 ∪W2 ( W1 ∩W2 = � ) such that (i). Pq◦�(wz) = 0 for 
each 1 ≤ q ≤ m , if w, z ∈ W1 or w, z ∈ W2 , (ii). Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 
1 ≤ q ≤ m , if w ∈ W1 and z ∈ W2 or w ∈ W2 and z ∈ W1.

Definition 9  (Akram et al. 2021) Suppose that � = (� , �) is an m-PF graph. We say that 
the edge wz ∈ E is a strong m-PF edge of � when Pq◦�(wz) ≥ Pq◦CONN�⧵{wz}(w, z) , for 
each 1 ≤ q ≤ m . The vertices w and z, incident to a strong m-PF edge, are strong m-PF 
neighbors when Pq◦𝜎(wz) > 0 for each 1 ≤ q ≤ m . An m-PF path P between w and z is 
strong when all edges contributing to the path are strong.

A strong m-PF edge wz ∈ E is called an �-strong m-PF edge ( �-edge) if for each 
1 ≤ q ≤ m , Pq◦𝜎(wz) > Pq◦CONN�⧵{wz}(w, z) . A strong m-PF edge wz ∈ E is called a �
-strong m-PF edge ( �-edge) if for each 1 ≤ q ≤ m , Pq◦�(wz) = Pq◦CONN�⧵{wz}(w, z) . An 
edge wz ∈ E is a weak m-PF edge of � if it is not strong m-PF edge of � . A weak m-PF 
edge wz is �-weak (or a �-edge) if for each 1 ≤ q ≤ m , Pq◦𝜎(wz) < Pq◦CONN�⧵{wz}(w, z) . 
Otherwise, we say that it is a mixed m-PF edge ( M-edge) of �.

Definition 10  (Akram et al. 2021) Let � = (� , �) be an m-PF graph. We say that the edge 
wz ∈ E is an m-PF bridge of � when we get a partial m-PF subgraph �̃ = � ⧵ {wz} by 
replacing �(wz) = � = �̃(wz) in which for each 1 ≤ q ≤ m , either Pq◦CONN�⧵{wz}(u, v) = 0 
or Pq◦CONN�⧵{wz}(u, v) < Pq◦CONN�

(u, v) for some pair of vertices u and v of � ⧵ {wz}.

Definition 11  (Akram et  al. 2021) Suppose that � = (� , �) is an m-PF graph. We 
say that the edge ab ∈ E is a weakest m-PF edge of � , when for each 1 ≤ q ≤ m , 
Pq◦𝜎(ab) < Pq◦𝜎(wz) for any edge wz ∈ E other than ab. And the edge cd ∈ E is a strong-
est m-PF edge of � , when for each 1 ≤ q ≤ m , Pq◦𝜎(cd) > Pq◦𝜎(wz) for any edge wz ∈ E 
other than cd.
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Definition 12  (Ghorai and Pal 2016b) Let �1 = (�1, �1) and �2 = (�2, �2) be two m-PF 
graphs of the crisp graphs �⋆

1
= (W1,E1) and �⋆

2
= (W2,E2) , respectively. 

1.	 If there exists a mapping � ∶ W1 ⟶ W2 such that for each 1 ≤ q ≤ m , 
Pq◦�1(w) ≤ Pq◦�2(�(w)) for all w ∈ W1 and Pq◦�1(wz) ≤ Pq◦�2(�(w)�(z)) for all wz ∈ E1 , 
then the mapping � ∶ W1 ⟶ W2 is called a homomorphism between �1 and �2.

2.	 If there is a bijective map � ∶ W1 ⟶ W2 with the property that for each 1 ≤ q ≤ m , 
Pq◦�1(w) = Pq◦�2(�(w)) for all w ∈ W1 and Pq◦�1(wz) = Pq◦�2(�(w)�(z)) for all wz ∈ E1 , 
then the mapping � ∶ W1 ⟶ W2 is called an isomorphism between �1 and �2.

3 � Connectivity index of an m‑PF graph

Connectivity is the most intuitive attribute to relate with a network. For instance, when we 
have many routers in a network, the maximum possible value of the strength of connected-
ness between two routers is essential to keep the network more reliable and effective. In 
this section, we first define the connectivity index of an m-PF graph � = (� , �) , we then 
prove several theorems on m-PF subgraphs using the connectivity index of � . The defini-
tion of connectivity index of an m-PF graph � = (� , �) is given below:

Definition 13  Let � = (� , �) be an m-PF graph. The connectivity index of � is denoted 
by CI(�) and is defined as CI(�) = (P1◦CI(�),P2◦CI(�),… ,Pm◦CI(�)) , where 
Pq◦CI(�) =

∑
w,z∈W Pq◦� (w)Pq◦� (z)Pq◦CONNG(w, z) for each 1 ≤ q ≤ m.

Note that, unless otherwise mentioned, the considered examples of m-PF graphs in the 
following sections will have for each 1 ≤ q ≤ m , Pq◦� (w) = 1 for all w ∈ W.

Example 1  Let W = {w1,w2,w3,w4,w5} be a vertex set and 
E = {w1w2,w1w3,w1w4,w1w5,w2w5,w3w4} be the set of edges. The corresponding 3-PF 
graph � = (� , �) is given in Fig. 1 with � (wi) = (1, 1, 1) for all i = 1, 2,… , 5 . Consider two 
vertices w2 and w4 . The 3-PF paths from w2 to w4 with their corresponding strengths are 
given below: 

▶	� P1 : w2 − w1 − w4 S(P1) = (0.5, 0.3, 0.1),
▶	� P2 : w2 − w1 − w3 − w4 S(P2) = (0.2, 0.3, 0.1),
▶	� P3 : w2 − w5 − w1 − w4 S(P3) = (0.2, 0.3, 0.5),

Fig. 1   3-PF graph
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▶	� P4 : w2 − w5 − w1 − w3 − w4 S(P4) = (0.2, 0.3, 0.3).

 The strength of connectedness between w2 and w4 is CONN
�
(w2,w4) = (0.5, 0.3, 0.5) . 

Similarly, the strength of connectedness between all pairs of vertices of � are calculated 
in the following connectivity matrix (1). Since, � (wi) = (1, 1, 1) for all i = 1, 2,… , 5 and 
connectivity matrix of � is symmetric, therefore, the CI(�) can be obtained by taking 
the summation of all entries in the lower or upper triangular entries of this connectivity 
matrix. After calculations, we have CI(�) = (4.6, 3.3, 4.8).

In general, m-PF subgraphs will have fewer connections than the m-PF graph and 
their connectivity indices will never be higher. As a result, we arrive to the following 
proposition.

Proposition 1  Let � = (� , �) be an m-PF graph and �̃ = (�̃ , �̃) be a partial m-PF subgraph 
of � . Then for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≤ Pq◦CI(�) , that is, CI(�̃) will be less than or 
equal to CI(�).

Proof  Let � = (� , �) be an m-PF graph and �̃ = (�̃ , �̃) be a partial m-PF sub-
graph of � . Then it is clear that for each 1 ≤ q ≤ m , Pq◦�̃ (w) ≤ Pq◦� (w) and 
Pq◦�̃(wz) ≤ Pq◦�(wz) for all w ∈ W̃ and wz ∈ Ẽ . This implies that for each 
1 ≤ q ≤ m , Pq◦CONN�̃

(w, z) ≤ Pq◦CONN�
(wz) for all w, z ∈ W̃ . Since, for 

each 1 ≤ q ≤ m , Pq◦�̃ (a) ≥ 0 and Pq◦� (b) ≥ 0 for all a ∈ W̃ and for all b ∈ W , 
respectively. Therefore, for each 1 ≤ q ≤ m , Pq◦�̃ (w)Pq◦�̃ (z)Pq◦CONN�̃

(w, z)

≤ Pq◦� (w)Pq◦� (z)Pq◦CONN�
(w, z) . This means that for each 1 ≤ q ≤ m , 

∑

w,z∈W̃ Pq◦�̃ (w)Pq◦�̃ (z)Pq◦CONN�̃(w, z) ≤
∑

w,z∈W Pq◦� (w)Pq◦� (z)Pq◦ CONN�(w, z)   . 
Thus, for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≤ Pq◦CI(�) . This shows that CI(�̃) can never exceed 
CI(�) . 	�  ◻

Note that Proposition 1 holds true for m-PF subgraphs of an m-PF graph � as every 
m-PF subgraph of � is a partial m-PF subgraph. Consider the following example.

(1)

⎡⎢⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.6, 0.3, 0.5) (0.3, 0.6, 0.3) (0.5, 0.4, 0.7) (0.6, 0.5, 0.7)

(0.6, 0.3, 0.5) (0.0, 0.0, 0.0) (0.3, 0.3, 0.3) (0.5, 0.3, 0.5) (0.7, 0.3, 0.5)

(0.3, 0.6, 0.3) (0.3, 0.3, 0.3) (0.0, 0.0, 0.0) (0.3, 0.4, 0.3) (0.3, 0.3, 0.3)

(0.5, 0.4, 0.7) (0.5, 0.3, 0.5) (0.3, 0.4, 0.3) (0.0, 0.0, 0.0) (0.5, 0.3, 0.7)

(0.6, 0.5, 0.7) (0.7, 0.3, 0.5) (0.3, 0.3, 0.3) (0.5, 0.3, 0.7) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎥⎦

Fig. 2   3-PF graph
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Example 2  Let W̃ = {w1,w2,w3,w4,w5} be a vertex set and Ẽ = {w1w4,w1w5,w2w5,w3w4} 
be the set of edges. The 3-PF graph �̃ = (�̃ , �̃) associated with this data is shown in Fig. 2 
with �̃ (wi) = (1, 1, 1) for all i = 1, 2,… , 5 . Clearly, it is a 3-PF subgraph of the 3-PF 
graph � = (� , �) in Example 1 (Fig. 1). The strength of connectedness between all pairs 
of vertices of �̃ are calculated in the connectivity matrix (2). After calculations, we have 
CI(�̃) = (3.0, 3.3, 4.8).

Proposition 2  Let � = (� , �) be an m-PF graph and �̃ = (�̃ , �̃) be an m-PF subgraph of � . 
Then for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≤ Pq◦CI(�) , that is, CI(�̃) will be less than or equal 
to CI(�).

We now discuss several particular cases of Proposition 1.
1 Let � = (� , �) be an m-PF graph, and let �̃ = (�̃ , �̃) be a partial m-PF subgraph of 

� that stems from the elimination of a vertex (say w) from � , i.e., �̃ = � ⧵ {w} . Then 
for each 1 ≤ q ≤ m , Pq◦CI(��) < Pq◦CI(�) , that is, CI(�̃) will be strictly less than CI(�) . 
Consider the following example.

Example 3  Let W = {w1,w2,w3,w4} be a vertex set and E = {w1w2,w1w3,w1w4,w2w3,w3w4} 
be the set of edges. The corresponding 3-PF graph � = (� , �) is given in Fig.  3a with 
� (wi) = (1, 1, 1) for all i = 1, 2,… , 4 . The strength of connectedness between all pairs of 
vertices of � are calculated in the following connectivity matrix (3). After calculations, 
we have CI(�) = (2.1, 3.1, 3.6) . Now, consider a partial 3-PF subgraph �̃ = (�̃ , �̃) (given 
in Fig. 3b) of � such that it is obtained after deleting vertex w2 from � , i.e., �̃ = � ⧵ {w2} . 
The strength of connectedness between all pairs of vertices of �̃ are calculated in the con-
nectivity matrix (4). Some computations produce CI(�̃) = (1.5, 1.9, 2.1) . Clearly, for each 
1 ≤ q ≤ 3 , Pq◦CI(��) < Pq◦CI(�) , that is to say, CI(�̃) is strictly smaller than CI(�).

(2)

⎡
⎢⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.2, 0.3, 0.5) (0.3, 0.3, 0.3) (0.5, 0.3, 0.7) (0.2, 0.5, 0.7)

(0.2, 0.3, 0.5) (0.0, 0.0, 0.0) (0.20.3, 0.3) (0.2, 0.3, 0.5) (0.7, 0.3, 0.5)

(0.3, 0.3, 0.3) (0.20.3, 0.3) (0.0, 0.0, 0.0) (0.3, 0.4, 0.3) (0.2, 0.3, 0.3)

(0.5, 0.3, 0.7) (0.2, 0.3, 0.5) (0.3, 0.4, 0.3) (0.0, 0.0, 0.0) (0.2, 0.3, 0.7)

(0.2, 0.5, 0.7) (0.7, 0.3, 0.5) (0.2, 0.3, 0.3) (0.2, 0.3, 0.7) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎥⎦

Fig. 3   3-PF graph � and partial 
3-PF subgraph �̃ of �
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2 Let � = (� , �) be an m-PF graph whose crisp underlying graph �⋆ = (W,E) is a 
cycle with wz as a weakest m-PF of � and �̃ = (�̃ , �̃) be a partial m-PF subgraph of � 
such that it is obtained by deleting edge wz from � , i.e., �̃ = � ⧵ {wz} . Then for each 
1 ≤ q ≤ m , Pq◦CI(�̃) = Pq◦CI(�) , that is, CI(�̃) will be equal to CI(�) . Consider the 
following example.

Example 4  Let W = {w1,w2,w3,w4} be a vertex set and E = {w1w2,w2w3,w3w4,w4w1} 
be the set of edges. The corresponding 3-PF graph � = (� , �) is given in Fig.  4a with 
� (wi) = (1, 1, 1) for all i = 1, 2,… , 4 . The strength of connectedness between all pairs of 
vertices of � are calculated in the following connectivity matrix (5). After calculations, we 
have CI(�) = (2.6, 2.5, 2.9) . Now, consider a partial 3-PF subgraph �̃ = (�̃ , �̃) (given in 
Fig. 4b) of � such that it is obtained after deleting edge w2w3 from � , i.e., �̃ = � ⧵ {w2w3} 
( w2w3 is the weakest 3-PF of � ). The strength of connectedness between all pairs of verti-
ces of �̃ are calculated in the following connectivity matrix (6). After calculations, we have 
CI(�̃) = (2.6, 2.5, 2.9) . Clearly, for each 1 ≤ q ≤ 3 , Pq◦CI(�̃) = Pq◦CI(�) , that is, CI(�̃) is 
equal to CI(�).

(3)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.4, 0.5) (0.4, 0.7, 0.7) (0.4, 0.6, 0.7)

(0.3, 0.4, 0.5) (0.0, 0.0, 0.0) (0.30.4, 0.5) (0.3, 0.4, 0.5)

(0.4, 0.7, 0.7) (0.30.4, 0.5) (0.0, 0.0, 0.0) (0.7, 0.6, 0.7)

(0.4, 0.6, 0.7) (0.3, 0.4, 0.5) (0.7, 0.6, 0.7) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎦

(4)
⎡
⎢⎢⎣

(0.0, 0.0, 0.0) (0.4, 0.7, 0.7) (0.4, 0.6, 0.7)

(0.4, 0.7, 0.7) (0.0, 0.0, 0.0) (0.70.6, 0.7)

(0.4, 0.6, 0.7) (0.70.6, 0.7) (0.0, 0.0, 0.0)

⎤
⎥⎥⎦

(5)

⎡⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.5, 0.3, 0.4) (0.3, 0.5, 0.5) (0.7, 0.6, 0.5)

(0.5, 0.3, 0.4) (0.0, 0.0, 0.0) (0.30.3, 0.4) (0.5, 0.3, 0.4)

(0.3, 0.5, 0.5) (0.30.3, 0.4) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7)

(0.7, 0.6, 0.5) (0.5, 0.3, 0.4) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎦

(6)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.5, 0.3, 0.4) (0.3, 0.5, 0.5) (0.7, 0.6, 0.5)

(0.5, 0.3, 0.4) (0.0, 0.0, 0.0) (0.30.3, 0.4) (0.5, 0.3, 0.4)

(0.3, 0.5, 0.5) (0.30.3, 0.4) (0.0, 0.0, 0.0) (0.3, 0.5, 0.7)

(0.7, 0.6, 0.5) (0.5, 0.3, 0.4) (0.3, 0.5, 0.7) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎦

Fig. 4   3-PF graph � and partial 
3-PF subgraph �̃ of �
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Theorem 1  Let �1 = (�1, �1) and �2 = (�2, �2) be two homomorphic m-PF graphs. Then 
for each 1 ≤ q ≤ m , Pq◦CI(�1) ≤ Pq◦CI(�2) , that is, CI(�1) will be less than or equal to 
CI(�2).

Proof  Let �1 = (�1, �1) and �2 = (�2, �2) be two homomorphic m-PF graphs. Then there 
exists a mapping � ∶ W1 ⟶ W2 such that for each 1 ≤ q ≤ m , Pq◦�1(w) ≤ Pq◦�2(�(w)) for 
all w ∈ W1 and Pq◦�1(wz) ≤ Pq◦�2(�(w)�(z)) for all wz ∈ E1 . Also, the homomorphism 
between �1 and �2 implies that the strength of any strongest path between any two vertices 
w and z in �1 is less than or equal to that between �(w) and �(z) in �2 . Therefore, we have for 
each 1 ≤ q ≤ m , Pq◦CONN�1

(w, z) ≤ Pq◦CONN�2
(�(w), �(z)) for all w, z ∈ W1 . This implies 

that for each 1 ≤ q ≤ m , 
∑

w,z∈W1
Pq◦�1(w)Pq◦�1(z)Pq◦CONN�1

(w, z) ≤
∑

�(w),�(z)∈W2
Pq

◦�2(�(w))Pq◦�2(�(z))Pq◦CONN�2
(�(w), �(z)) . This implies that for each 1 ≤ q ≤ m , 

Pq◦CI(�1) ≤ Pq◦CI(�2) . Thus, CI(�1) is less than or equal to CI(�1) . 	�  ◻

If �1 and �2 are isomorphic to each other, the equality between CI(�1) and CI(�2) 
holds. The connectivity indices of two isomorphic m-PF graphs are described by the fol-
lowing theorem.

Theorem 2  Let �1 = (�1, �1) and �2 = (�2, �2) be two isomorphic m-PF graphs. Then for 
each 1 ≤ q ≤ m , Pq◦CI(�1) = Pq◦CI(�2) , that is, CI(�1) will be equal to CI(�2).

Proof  Let �1 = (�1, �1) and �2 = (�2, �2) be two isomorphic m-PF graphs. Then there exists 
a bijective mapping � ∶ W1 ⟶ W2 such that for each 1 ≤ q ≤ m , Pq◦�1(w) = Pq◦�2(�(w)) 
for all w ∈ W1 and Pq◦�1(wz) = Pq◦�2(�(w)�(z)) for all wz ∈ E1 . Also, the isomorphism 
between �1 and �2 implies that the strength of any strongest path between any two verti-
ces w and z in �1 is equal to that between �(w) and �(z) in �2 . Therefore, we have for each 
1 ≤ q ≤ m , Pq◦CONN�1

(w, z) = Pq◦CONN�2
(�(w), �(z)) for all w, z ∈ W1 . This implies 

that for each 1 ≤ q ≤ m , 
∑

w,z∈W1
Pq◦�1(w)Pq◦�1(z)Pq◦CONN�1

(w, z) =
∑

�(w),�(z)∈W2
Pq∑

w,z∈W1
Pq◦�1(w)Pq◦�1(z)Pq◦CONN�1

(w, z) =
∑

�(w),�(z)∈W2
Pq◦�2(�(w))Pq◦�2(�(z))Pq◦CONN�2

(�(w), �(z)) . This 
implies that for each 1 ≤ q ≤ m , Pq◦CI(�1) = Pq◦CI(�2) . Thus, CI(�1) equals CI(�1) . 	
� ◻

4 � Bounds for the connectivity index of m‑PF graphs

We now describe several bounds for the connectivity index of m-PF graphs in this section. 
Also, we examine the connectivity index of a complete m-PF graph by various theorems. 
The complete m-PF graph will have the maximum connectivity among all m-PF graphs on 
a fixed support (having the same vertex set), as shown in the next result.

Theorem 3  Let � = (� , �) be an m-PF graph with |W| = n . If �́ = (𝜁 , 𝜎́) is the completion 
of � spanned by its vertex set, then for each 1 ≤ q ≤ m , 0 ≤ Pq◦CI(�) ≤ Pq◦CI(�́).

Proof  Let � = (� , �) be an m-PF graph with |W| = n and �́ = (𝜁 , 𝜎́) be the completion of � 
spanned by its vertex set, i.e., |W| = |Ẃ| and Pq◦𝜁 (w) = Pq◦𝜁 (w) for each 1 ≤ q ≤ m . We 
have three cases as follows:

Case 1 If � is a trivial m-PF graph ( |E| = 0 ) with |W| = n and n = 1 . Then its completion 
�́ is also a trivial m-PF graph. Obviously, for each 1 ≤ q ≤ m , Pq◦CI(�) = 0 = Pq◦CI(�́).
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Case 2 If � is a trivial m-PF graph ( |E| = 0 ) with |W| = n and n > 1 . Then for each 
1 ≤ q ≤ m , Pq◦CONN�

(w, z) = 0 for all pairs of vertices of � . This means that for each 
1 ≤ q ≤ m , Pq◦CI(�) = 0 . Since, �́ is the completion of � spanned by its vertex set, there-
fore, for each 1 ≤ q ≤ m , Pq◦CONN�́

(w, z) ≥ 0 for all pairs of vertices of �́ . This shows 
that for each 1 ≤ q ≤ m , Pq◦CI(�́) ≥ 0 . Thus, for each 1 ≤ q ≤ m , Pq◦CI(�) ≤ Pq◦CI(�́).

Case 3 If � is a non-trivial m-PF graph ( |E| > 0 ) with |W| = n . Then for each 
1 ≤ q ≤ m , Pq◦�(wz) ≥ 0 for all w, z ∈ W . This implies that for each 1 ≤ q ≤ m , 
Pq◦CONN�

(w, z) ≥ 0 . Since, �́ = (𝜁 , 𝜎́) is the completion of � spanned by its ver-
tex set, therefore, for each 1 ≤ q ≤ m , Pq◦CONN�

(w, z) ≤ Pq◦CONN�́
(w, z) 

for all w, z ∈ W . This implies that for each 1 ≤ q ≤ m , ∑
w,z∈W Pq◦𝜁 (w)Pq◦𝜁 (z)Pq◦CONN�

(w, z) ≤
∑

w,z∈Ẃ Pq◦𝜁 (w)Pq◦𝜁 (z)Pq◦CONN�́
(w, z) for 

all w, z ∈ Ẃ . Hence, for each 1 ≤ q ≤ m , Pq◦CI(�) ≤ Pq◦CI(�́).
Thus, in all cases for each 1 ≤ q ≤ m , 0 ≤ Pq◦CI(�) ≤ Pq◦CI(�́) holds true. 	�  ◻

Theorem  4  Let � = (� , �) be a complete m-PF graph with |W| = n 
such that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n 
and Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . Then 
Pq◦CI(�) =

∑n−1

i=1
(Pq◦� (wi))

2
∑n

k=i+1
Pq◦� (wk) for each 1 ≤ q ≤ m.

Proof  Let � = (� , �) be a complete m-PF graph with |W| = n such 
that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . It is obvi-
ous that w1 is the vertex of � such that Pq◦� (w1) ≤ Pq◦� (wi) for i = 2, 3,… , n 
and for each 1 ≤ q ≤ m , i.e., w1 is of least membership value. Also, in com-
plete m-PF graph Pq◦CONN�

(w, z) = Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for all 
w, z ∈ W and for each 1 ≤ q ≤ m . This implies that Pq◦�(w1wi) = Pq◦� (w1) and 
Pq◦CONN�

(w1,wi) = Pq◦� (w1) for i = 2, 3,… , n and for each 1 ≤ q ≤ m . Now, con-
sider Pq◦CI(�) =

∑
wi,wk∈Wwi≠wk

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for each 

1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for i = 1 and k = 2, 3,… , n . 

Since, w1 is of least membership value and � is complete m-PF graph. Therefore, 
Pq◦� (w1)Pq◦� (wk)Pq◦CONN�

(w1,wk) = Pq◦� (w1)Pq◦� (wk)Pq◦� (w1) for each 1 ≤ q ≤ m . 
Taking summation over k, we have

for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for i = 2, 3,… , n 

and k = i + 1 ( k = 3, 4,… , n ). Since, i < k and � is complete m-PF graph. Therefore, 
Pq◦� (wi)Pq◦� (wk)Pq◦CONN�

(wi,wk) = Pq◦� (wi)Pq◦� (wk)Pq◦� (wi) for each 1 ≤ q ≤ m . 
Taking summation over i and k, we have

(7)

n∑
k=2

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk)

= (Pq◦� (w1))
2

n∑
k=2

Pq◦� (wk),

(8)

n∑
i=2

n∑
k=i+1

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk)

=

n∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),
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for each 1 ≤ q ≤ m . Adding Eqs. 7 and 8, we have

for each 1 ≤ q ≤ m . By combining both terms on R.H.S. of above equation, we have

for each 1 ≤ q ≤ m . This completes the proof. 	�  ◻

Example 5  Let W = {w1,w2,w3,w4} be a vertex set and 
E = {w1w2,w1w3,w1w4,w2w3,w2w4,w3w4} be the set of edges. The corre-
sponding 3-PF graph � = (� , �) is given in Fig.  5 with � (w1) = (0.1, 0.3, 0.4) , 
� (w2) = (0.1, 0.5, 0.6) , � (w3) = (0.3, 0.5, 0.6) , and � (w4) = (0.5, 0.7, 0.8) . Clearly, � is 
a complete 3-PF graph satisfying P1◦� (wi) ≤ P2◦� (wi) ≤ P3◦� (wi) for i = 1, 2, 3, 4 and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ Pq◦� (w3) ≤ Pq◦� (w4) for each 1 ≤ q ≤ 3.

Therefore, we can calculate CI(�) by using Theorem 4 as

Here,

∑
wi,wk∈W

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk)

= (Pq◦� (w1))
2

n∑
k=2

Pq◦� (wk)

+

n∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),

Pq◦CI(�) =
1∑
i=1

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),

CI(�) =(P1◦CI(�),P2◦CI(�),P3◦CI(�))

=

(
n−1∑
i=1

(P1◦� (wi))
2

n∑
k=i+1

P1◦� (wk),

n−1∑
i=1

(P2◦� (wi))
2

n∑
k=i+1

P2◦� (wk),

n−1∑
i=1

(P3◦� (wi))
2

n∑
k=i+1

P3◦� (wk)

)
.

Fig. 5   Complete 3-PF graph �
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Similarly, we obtain P2◦CI(�) = 0.628 and P3◦CI(�) = 1.112 . After calculations, we have

Note that Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m implies 
P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n . Therefore, if a complete m-PF 
graph � = (� , �) does not satisfy the condition Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) 
for each 1 ≤ q ≤ m , then Theorem 4 need not be true.

Theorem  5  Let � = (� , �) be a complete bipartite m-PF graph with 
|W| = |W1 ∪W2| = n . Also, let w1 = {w1,w2,… ,wm} and w2 = {wm+1,wm+2,… ,wn} 
such that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n 
and Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . Then 
Pq◦CI(�) =

∑m

i=1
(Pq◦�(wi))

2
∑n

k=i+1
Pq◦�(wk) + Pq◦�(wm)

∑n−1

i=m+1
Pq◦�(wi)

∑n

k=i+1
Pq◦�(wk) for 

each 1 ≤ q ≤ m.

Proof  Let � = (� , �) be a complete bipartite m-PF graph with |W| = |W1 ∪W2| = n . 
Also, let w1 = {w1,w2,… ,wm} and w2 = {wm+1,wm+2,… ,wn} such 
that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . It is obvious that w1 
is the vertex of � such that Pq◦� (w1) ≤ Pq◦� (wi) for i = 2, 3,… , n and for each 
1 ≤ q ≤ m , i.e., w1 is of least membership value. Since, � is a complete m-PF graph. 
This implies that Pq◦�(wz) = 0 for each 1 ≤ q ≤ m , if w, z ∈ W1 or w, z ∈ W2 , and 
Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 1 ≤ q ≤ m , if w ∈ W1 and z ∈ W2 or w ∈ W2 
and z ∈ W1 . Now, consider Pq◦CI(�) =

∑
wi,wk∈W

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) 

for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for i = 1 and 

k = 2, 3,… , n . Since, w1 is of least membership value and � is complete bipartite m-PF 
graph. Therefore, Pq◦� (w1)Pq◦� (wk)Pq◦CONN�

(w1,wk) = Pq◦� (w1)Pq◦� (wk)Pq◦� (w1) 
for each 1 ≤ q ≤ m . Taking summation over k, we have

for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for i = 2, 3,… ,m 

and k = i + 1 ( k = 3, 4,… , n ). Since, i < k and � is complete bipartite m-PFG. Therefore, 

P1◦CI(�) =
3∑
i=1

(P1◦� (wi))
2

4∑
k=i+1

P1◦� (wk)

=(P1◦� (w1))
2P1◦� (w2) + (P1◦� (w1))

2P1◦� (w3)

+ (P1◦� (w1))
2P1◦� (w4) + (P1◦� (w2))

2P1◦� (w3)

+ (P1◦� (w2))
2P1◦� (w4) + (P1◦� (w3))

2P1◦� (w4)

=(0.1)20.1 + (0.1)20.3 + (0.1)20.5

+ (0.1)20.3 + (0.1)20.5 + (0.3)20.5

=0.062.

CI(�) =(0.062, 0.628, 1.112).

(9)
n∑

k=2

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk) = (Pq◦� (w1))

2

n∑
k=2

Pq◦� (wk),
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Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) = Pq◦� (wi)Pq◦� (wk)Pq◦� (wi) for each 1 ≤ q ≤ m . 

Taking summation over i and k, we have

for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for 

m < i < n ( i = m + 1,m + 2,… , n − 1 ) and k = i + 1 ( k = m + 2,m + 3,… , n ). 
Since, m < k and � is complete bipartite m-PF graph. Therefore, 
Pq◦� (wi)Pq◦� (wk)Pq◦CONN�

(wi,wk) = Pq◦� (wi)Pq◦� (wk)Pq◦� (wm) . Taking summation 
over i and k, we have

for each 1 ≤ q ≤ m . Adding Eqs. 9, 10 and 11, we have

for each 1 ≤ q ≤ m . By combining first two terms on R.H.S. of above equation, we have

for each 1 ≤ q ≤ m . This completes the proof. 	�  ◻

Example 6  Let W = {w1,w2,w3,w4,w5} be a vertex set and 
E = {w1w4,w1w5,w2w4,w2w5,w3w4,w3w5} be the set of edges. The corresponding 3-PF 
graph � = (� , �) is given in Fig.  6 with � (w1) = (0.1, 0.1, 0.3) , � (w2) = (0.1, 0.3, 0.3) , 
� (w3) = (0.2, 0.3, 0.3) , � (w4) = (0.2, 0.3, 0.4) , and w5 = (0.3, 0.3, 0.5) . Clearly, � 

(10)

m∑
i=2

n∑
k=i+1

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) =

m∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),

(11)

n−1∑
i=m+1

n∑
k=i+1

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk)

= Pq◦� (wm)

n−1∑
i=m+1

Pq◦� (wi)

n∑
k=i+1

Pq◦� (wk),

∑
wi,wk∈W

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk)

= (Pq◦� (w1))
2

n∑
k=2

Pq◦� (wk)

+

m∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk)

+ Pq◦� (wm)

n−1∑
i=m+1

Pq◦� (wi)

n∑
k=i+1

Pq◦� (wk),

Pq◦CI(�) =
m∑
i=1

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk) + Pq◦� (wm)

n−1∑
i=m+1

Pq◦� (wi)

n∑
k=i+1

Pq◦� (wk),
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is a complete bipartite 3-PF graph satisfying P1◦� (wi) ≤ P2◦� (wi) ≤ P3◦� (wi) for 
i = 1, 2,… , 5 and Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (w5) for each 1 ≤ q ≤ 3.

Therefore, we can calculate CI(�) by using Theorem 5 as

Here,

CI(�) =(P1◦CI(�),P2◦CI(�),P3◦CI(�))

=

(
m∑
i=1

(P1◦� (wi))
2

n∑
k=i+1

P1◦� (wk) + P1◦� (wm)

n−1∑
i=m+1

P1◦� (wi)

n∑
k=i+1

P1◦� (wk),

m∑
i=1

(P2◦� (wi))
2

n∑
k=i+1

P2◦� (wk) + P2◦� (wm)

n−1∑
i=m+1

P2◦� (wi)

n∑
k=i+1

P2◦� (wk),

m∑
i=1

(P3◦� (wi))
2

n∑
k=i+1

P3◦� (wk) + P3◦� (wm)

n−1∑
i=m+1

P3◦� (wi)

n∑
k=i+1

P3◦� (wk)

)
.

Fig. 6   Complete bipartite 3-PF 
graph �
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Similarly, we obtain P2◦CI(�) = 0.174 and P3◦CI(�) = 0.384 . After calculations, we have

Theorem  6  Let � = (� , �) be a wheel m-PF graph with |W| = n such 
that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . Also, let w1 be the center ver-
tex of � and for any edge wz ∈ E , Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 1 ≤ q ≤ m . 
Then Pq◦CI(�) =

∑n−1

i=1
(Pq◦� (wi))

2
∑n

k=i+1
Pq◦� (wk) for each 1 ≤ q ≤ m.

Proof  Let � = (� , �) be a wheel m-PF graph with |W| = n such 
that P1◦� (wi) ≤ P2◦� (wi) ≤ … ≤ Pm◦� (wi) for i = 1, 2,… , n and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (wn) for each 1 ≤ q ≤ m . Also, let w1 be the 
center vertex of � and for any edge wz ∈ E , Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for 
each 1 ≤ q ≤ m . It is obvious that w1 is the vertex of � such that Pq◦� (w1) ≤ Pq◦� (wi) 
for i = 2, 3,… , n and for each 1 ≤ q ≤ m , i.e., w1 is of least membership value. 
Now, consider Pq◦CI(�) =

∑
wi,wk∈Wwi≠wk

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) 

P1◦CI(�) =
3∑
i=1

(P1◦� (wi))
2

5∑
k=i+1

P1◦� (wk) + P1◦� (w3)

5−1∑
i=3+1

P1◦� (wi)

5∑
k=i+1

P1◦� (wk)

=(P1◦� (w1))
2

5∑
k=2

P1◦� (wk) + P1◦� (w2))
2

5∑
k=3

P1◦� (wk)

+ P1◦� (w3))
2

5∑
k=4

P1◦� (wk)

+ P1◦� (w3)P1◦� (w4)P1◦� (w5)

=(P1◦� (w1))
2P1◦� (w2) + (P1◦� (w1))

2P1◦� (w3)

+ (P1◦� (w1))
2P1◦� (w4)

+ (P1◦� (w1))
2P1◦� (w5) + (P1◦� (w2))

2P1◦� (w3)

+ (P1◦� (w2))
2P1◦� (w4)

+ (P1◦� (w2))
2P1◦� (w5) + (P1◦� (w3))

2P1◦� (w4)

+ (P1◦� (w3))
2P1◦� (w5)

+ P1◦� (w3)P1◦� (w4)P1◦� (w5)

=(0.1)20.1 + (0.1)20.2 + (0.1)20.2 + (0.1)20.3 + (0.1)20.2

+ (0.1)20.2 + (0.1)20.3 + (0.2)20.2 + (0.2)20.3 + (0.2)(0.2)(0.3)

=0.008 + 0.007 + 0.02 + 0.012

=0.047.

CI(�) =(0.047, 0.174, 0.384).
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for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for i = 1 

and k = 2, 3,… , n . Since, w1 is of least membership value and for any edge 
wz ∈ E , Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 1 ≤ q ≤ m . Therefore, 
Pq◦� (w1)Pq◦� (wk)Pq◦CONN�

(w1,wk) = Pq◦� (w1)Pq◦� (wk)Pq◦� (w1) for each 1 ≤ q ≤ m . 
Taking summation over k, we have

for each 1 ≤ q ≤ m . Consider Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk) for 

i = 2, 3,… , n and k = i + 1 ( k = 3, 4,… , n ). Since, i < k and for any edge 
wz ∈ E , Pq◦�(wz) = inf{Pq◦� (w),Pq◦� (z)} for each 1 ≤ q ≤ m . Therefore, 
Pq◦� (wi)Pq◦� (wk)Pq◦CONN�

(wi,wk) = Pq◦� (wi)Pq◦� (wk)Pq◦� (wi) for each 1 ≤ q ≤ m . 
Taking summation over i and k, we have

for each 1 ≤ q ≤ m . Adding Eqs. (12) and (13) together, we have

for each 1 ≤ q ≤ m . By combining both terms on R.H.S. of above equation, we have

for each 1 ≤ q ≤ m . This completes the proof. 	�  ◻

Example 7  Let W = {w1,w2,w3,w4,w5,w6} be a vertex set and 
E = {w1w2,w1w3,w1w4,w1w5,w1w6,w2w3,w3 w4,w4w5,w5w6,w6w2} be 
the set of edges. The corresponding 3-PF graph � = (� , �) is given in Fig.  7 
with � (w1) = (0.1, 0.2, 0.1) , � (w2) = (0.1, 0.2, 0.2) , � (w3) = (0.1, 0.3, 0.2) , 

(12)

n∑
k=2

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk)

= (Pq◦� (w1))
2

n∑
k=2

Pq◦� (wk),

(13)

n∑
i=2

n∑
k=i+1

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk)

=

n∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),

∑
wi,wk∈W

Pq◦� (w1)Pq◦� (wk)Pq◦CONN�
(w1,wk)

= (Pq◦� (w1))
2

n∑
k=2

Pq◦� (wk)

+

n∑
i=2

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),

Pq◦CI(�) =
1∑
i=1

(Pq◦� (wi))
2

n∑
k=i+1

Pq◦� (wk),
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� (w4) = (0.2, 0.3, 0.2) , �(w5) = (0.3, 0.3, 0.2) and �(w6) = (0.3, 0.3, 0.3) . Clearly, � is 
a wheel 3-PF graph satisfying P1◦� (wi) ≤ P2◦� (wi) ≤ P3◦� (wi) for i = 1, 2,… , 6 and 
Pq◦� (w1) ≤ Pq◦� (w2) ≤ … ≤ Pq◦� (w6) for each 1 ≤ q ≤ 3.

Therefore, we can calculate CI(�) by using Theorem 6 as

Here,

CI(�) =(P1◦CI(�),P2◦CI(�),P3◦CI(�))

=

(
n∑
i=1

(P1◦� (wi))
2

n∑
k=i+1

P1◦� (wk),

n∑
i=1

(P2◦� (wi))
2

n∑
k=i+1

P2◦� (wk),

n∑
i=1

(P3◦� (wi))
2

n∑
k=i+1

P3◦� (wk)

)
.

P1◦CI(�) =
6∑
i=1

(P1◦� (wi))
2

6∑
k=i+1

P1◦� (wk)

=(P1◦� (w1))
2

6∑
k=2

P1◦� (wk) + P1◦� (w2))
2

6∑
k=3

P1◦� (wk)

+ P1◦� (w3))
2

6∑
k=4

P1◦� (wk)

+ P1◦� (w4))
2

6∑
k=5

P1◦� (wk) + P1◦� (w5))
2P1◦� (w6)

=(P1◦� (w1))
2P1◦� (w2) + (P1◦� (w1))

2P1◦� (w3)

+ (P1◦� (w1))
2P1◦� (w4)

+ (P1◦� (w1))
2P1◦� (w5) + (P1◦� (w1))

2P1◦� (w6)

+ (P1◦� (w2))
2P1◦� (w3)

+ (P1◦� (w2))
2P1◦� (w4) + (P1◦� (w2))

2P1◦� (w5)

+ (P1◦� (w2))
2P1◦� (w6)

+ (P1◦� (w3))
2P1◦� (w4) + (P1◦� (w3))

2P1◦� (w5)

+ (P1◦� (w3))
2P1◦� (w6)

+ (P1◦� (w4))
2P1◦� (w5) + (P1◦� (w4))

2P1◦� (w6)

+ (P1◦� (w5))
2P1◦� (w6)

=(0.1)20.1 + (0.1)20.1 + (0.1)20.2 + (0.1)20.3 + (0.1)20.3

+ (0.1)20.1 + (0.1)20.2 + (0.1)20.3 + (0.1)20.3 + (0.1)20.2

+ (0.1)20.3 + (0.1)20.3 + (0.2)20.3 + (0.2)20.3 + (0.3)20.3

=0.01 + 0.009 + 0.008 + 0.024 + 0.027

=0.078.
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Similarly, we obtain P2◦CI(�) = 0.266 and P3◦CI(�) = 0.107 . After calculations, we have

5 � Connectivity index of edge‑deleted m‑PF subgraphs

We observed that the elimination of a vertex w from an m-PF graph � produces a new m-
PF subgraph �̃ = � ⧵ {w} whose connectivity index is smaller. This was presented as the 
particular case 1 of Proposition 1. However, the connectivity index of edge-deleted m-PF 
subgraphs of an m-PF graph � depends on the nature the deleted edge. It may remain same 
or reduce. In this section, we examine the connectivity index of edge-deleted m-PF sub-
graphs of an m-PF graph. Consider the following examples.

Example 8  Let W = {w1,w2,w3,w4,w5} be a vertex set and 
E = {w1w3,w1w5,w2w3,w2w4,w3w4,w3w5,w4w5} be the set of edges. The corresponding 
3-PF graph � = (� , �) is given in Fig. 8a with � (wi) = (1, 1, 1) for all i = 1, 2,… , 5 . The 
strength of connectedness between all pairs of vertices of � are calculated in the following 
connectivity matrix (14). After calculations, we have CI(�) = (4.1, 3.0, 1.4) . Now, consider 
edge-deleted 3-PF subgraphs �̃1 = � ⧵ {w1w3} (given in Fig.  8b) and �̃2 = � ⧵ {w3w4} 
(given in Fig. 8c) of � . The strength of connectedness between all pairs of vertices of �̃1 
and �̃2 are calculated in the connectivity matrices respectively shown by Eqs. (15) and 
(16). Some computations produce CI(�̃1) = (3.8, 2.6, 1.1) and CI(�̃2) = (4.1, 3.0, 1.4).

CI(�) =(0.078, 0.266, 0.107).

(14)

⎡⎢⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.7, 0.5, 0.3) (0.4, 0.3, 0.1) (0.5, 0.4, 0.2)

(0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1)

(0.7, 0.5, 0.3) (0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1) (0.5, 0.4, 0.2)

(0.4, 0.3, 0.1) (0.3, 0.2, 0.1) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1)

(0.5, 0.4, 0.2) (0.3, 0.2, 0.1) (0.5, 0.4, 0.2) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎥⎦

Fig. 7   Wheel 3-PF graph �
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Example 9  Let W = {w1,w2,w3,w4} be a vertex set and 
E = {w1w2,w1w3,w2w3,w2w4,w3w4} be the set of edges. The corresponding 3-PF graph 
� = (� , �) is given in Fig. 9a with � (wi) = (1, 1, 1) for all i = 1, 2,… , 4 . The strength of 
connectedness between all pairs of vertices of � are calculated in the following connectiv-
ity matrix (17). After calculations, we have CI(�) = (3.1, 3.4, 3.4) . Now, consider edge-
deleted 3-PF subgraphs �̃1 = � ⧵ {w2w4} (given in Fig. 9b) and �̃2 = � ⧵ {w1w2} (given 
in Fig. 9c) of � . The strength of connectedness between all pairs of vertices of �̃1 and �̃2 
are calculated in the connectivity matrices respectively shown in Eqs. (18) and (19). After 
calculations, we have CI(�̃1) = (2.5, 2.2, 2.8) and CI(�̃2) = (3.1, 3.4, 3.4).

(15)

⎡
⎢⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.5, 0.3, 0.1) (0.4, 0.3, 0.1) (0.5, 0.4, 0.2)

(0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1)

(0.5, 0.3, 0.1) (0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.5, 0.3, 0.1)

(0.4, 0.3, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1)

(0.5, 0.4, 0.2) (0.3, 0.2, 0.1) (0.5, 0.3, 0.1) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎥⎦

(16)

⎡
⎢⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.7, 0.5, 0.3) (0.4, 0.3, 0.1) (0.5, 0.4, 0.2)

(0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.1)

(0.7, 0.5, 0.3) (0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1) (0.5, 0.4, 0.2)

(0.4, 0.3, 0.1) (0.3, 0.2, 0.1) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1)

(0.5, 0.4, 0.2) (0.3, 0.2, 0.1) (0.5, 0.4, 0.2) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎥⎦

Fig. 8   3-PF graph � , edge-deleted 3-PF subgraphs �̃1 = � ⧵ {w1w3} and �̃2 = � ⧵ {w3w4} of �



7817Connectivity indices of m‑polar fuzzy network model, with…

1 3

Example 10  Let W = {w1,w2,w3,w4} be a vertex set and E = {w1w2,w1w3,w2w3,w3w4} 
be the set of edges. The corresponding 3-PF graph � = (� , �) is given in Fig.  10a with 
� (wi) = (1, 1, 1) for all i = 1, 2,… , 4 . The strength of connectedness between all pairs 
of vertices of � are calculated in the connectivity matrix shown in Eq. (20). After cal-
culations, we have CI(�) = (2.3, 1.8, 2.4) . Now, consider edge-deleted 3-PF subgraphs 
�̃1 = � ⧵ {w1w2} (given in Fig. 10b) and �̃2 = � ⧵ {w2w3} (given in Fig. 10c) of � . The 
strength of connectedness between all pairs of vertices of �̃1 and �̃2 are calculated in the 
connectivity matrices respectively shown in Eqs. (21) and (22), respectively. After calcula-
tions, we have CI(�̃1) = (2.3, 1.4, 2.4) and CI(�̃2) = (2.3, 1.8, 2.4).

(17)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.3) (0.3, 0.2, 0.3) (0.3, 0.2, 0.3)

(0.3, 0.2, 0.3) (0.0, 0.0, 0.0) (0.7, 0.9, 0.8) (0.7, 0.9, 0.8)

(0.3, 0.2, 0.3) (0.7, 0.9, 0.8) (0.0, 0.0, 0.0) (0.8, 1.0, 0.9)

(0.3, 0.2, 0.3) (0.7, 0.9, 0.8) (0.8, 1.0, 0.9) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎦

(18)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.1) (0.7, 0.5, 0.3) (0.4, 0.3, 0.1)

(0.3, 0.2, 0.1) (0.0, 0.0, 0.0) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)

(0.7, 0.5, 0.3) (0.4, 0.3, 0.5) (0.0, 0.0, 0.0) (0.4, 0.3, 0.1)

(0.4, 0.3, 0.1) (0.4, 0.3, 0.5) (0.4, 0.3, 0.1) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎦

(19)

⎡⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.2, 0.3) (0.3, 0.2, 0.3) (0.3, 0.2, 0.3)

(0.3, 0.2, 0.3) (0.0, 0.0, 0.0) (0.7, 0.9, 0.8) (0.7, 0.9, 0.8)

(0.3, 0.2, 0.3) (0.7, 0.9, 0.8) (0.0, 0.0, 0.0) (0.8, 1.0, 0.9)

(0.3, 0.2, 0.3) (0.7, 0.9, 0.8) (0.8, 1.0, 0.9) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎦

Fig. 9   3-PF graph � , edge-deleted 3-PF subgraphs �̃1 = � ⧵ {w2w4} and �̃2 = � ⧵ {w1w2} of �
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We observed in Example 8, Example 9, and Example 10 that the removal of distinct 
edges effects the connectivity index of an m-PF graph � differently. Therefore, we have 
several results for characterizing the connectivity index of � as a consequence of this.

Theorem  7  Let � = (� , �) be an m-PF graph and �̃ = � ⧵ {wz} be the m-PF sub-
graph of � obtained after deleting an edge wz ∈ E from � . Then for each 1 ≤ q ≤ m , 
Pq◦CI(��) < Pq◦CI(�) if and only if wz is an m-PF bridge of �.

Proof  Let � = (� , �) be an m-PF graph and �̃ = � ⧵ {wz} be the m-PF subgraph 
of � obtained after deleting an edge wz ∈ E from � . First, suppose that edge wz be an 

(20)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.5, 0.3, 0.3) (0.7, 0.2, 0.3) (0.2, 0.2, 0.3)

(0.5, 0.3, 0.3) (0.0, 0.0, 0.0) (0.5, 0.2, 0.7) (0.2, 0.2, 0.4)

(0.7, 0.2, 0.3) (0.5, 0.2, 0.7) (0.0, 0.0, 0.0) (0.2, 0.7, 0.4)

(0.2, 0.2, 0.3) (0.2, 0.2, 0.4) (0.2, 0.7, 0.4) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎦

(21)

⎡
⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.5, 0.1, 0.3) (0.7, 0.1, 0.3) (0.2, 0.1, 0.3)

(0.5, 0.1, 0.3) (0.0, 0.0, 0.0) (0.5, 0.2, 0.7) (0.2, 0.2, 0.4)

(0.7, 0.1, 0.3) (0.5, 0.2, 0.7) (0.0, 0.0, 0.0) (0.2, 0.7, 0.4)

(0.2, 0.1, 0.3) (0.2, 0.2, 0.4) (0.2, 0.7, 0.4) (0.0, 0.0, 0.0)

⎤
⎥⎥⎥⎦

(22)

⎡⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.1, 0.3, 0.2) (0.7, 0.1, 0.3) (0.2, 0.1, 0.3)

(0.1, 0.3, 0.2) (0.0, 0.0, 0.0) (0.1, 0.1, 0.2) (0.1, 0.1, 0.2)

(0.7, 0.1, 0.3) (0.1, 0.1, 0.2) (0.0, 0.0, 0.0) (0.2, 0.7, 0.4)

(0.2, 0.1, 0.3) (0.1, 0.1, 0.2) (0.2, 0.7, 0.4) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎦

Fig. 10   3-PF graph � , edge-deleted 3-PF subgraphs �̃1 = � ⧵ {w1w2} and �̃2 = � ⧵ {w2w3} of �
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m-PF bridge of � . This implies that for each 1 ≤ q ≤ m , either Pq◦CONN�̃
(u, v) = 0 or 

Pq◦CONN��
(u, v) < Pq◦CONN�

(u, v) for some pair of vertices u and v of �̃ . This implies that 
for each 1 ≤ q ≤ m , Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN��

(u, v) < Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN�
(u, v) . 

Taking summation on both sides implies that for each 1 ≤ q ≤ m , ∑
u,v∈��

Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN��
(u, v) <

∑
u,v∈G Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN�

(u, v) . This 
implies that for each 1 ≤ q ≤ m , Pq◦CI(��) < Pq◦CI(�) . Conversely, suppose that for each 
1 ≤ q ≤ m , Pq◦CI(��) < Pq◦CI(�) . To prove that edge yz is an m-PF bridge of � , consider 
the following three cases:

Case 1 Let wz be a �-edge. This means that for each 1 ≤ q ≤ m , 
Pq◦CONN�̃

(u, v) = Pq◦CONN�
(u, v) for all pairs of vertices u and v of �̃ . This implies that 

for each 1 ≤ q ≤ m , Pq◦� (u)Pq◦� (v)Pq◦CONN�̃
(u, v) = Pq◦� (u)Pq◦� (v)Pq◦CONN�

(u, v) . 
Taking summation on both sides implies that for each 1 ≤ q ≤ m , ∑

u,v∈�̃ Pq◦� (u)Pq◦� (v)Pq◦CONN�̃
(u, v) =

∑
u,v∈G Pq◦� (u)Pq◦� (v)Pq◦CONN�

(u, v)   . 
This implies that for each 1 ≤ q ≤ m , Pq◦CI(�̃) = Pq◦CI(�) . This contradicts to our 
supposition.

Case 2 Let wz be a �-edge. This means that for each 1 ≤ q ≤ m , 
Pq◦�(w, z) = Pq◦CONN�̃

(w, z) . This implies that there exists an alternate strong-
est m-PF path between vertices w and z in � other than the edge wz in � . This means 
that the deletion of edge wz does not effect the strength of connectedness between 
any pair of vertices of �̃ (since, �̃ is a connected m-PF graph). This implies that 
for each 1 ≤ q ≤ m , Pq◦CONN�̃

(u, v) = Pq◦CONN�
(u, v) . This shows that for each 

1 ≤ q ≤ m , Pq◦� (u)Pq◦� (v)Pq◦CONN�̃
(u, v) = Pq◦� (u)Pq◦� (v)Pq◦CONN�

(u, v) . 
Taking summation on both sides implies that for each 1 ≤ q ≤ m , ∑

u,v∈�̃ Pq◦� (u)Pq◦� (v)Pq◦CONN�̃
(u, v) =

∑
u,v∈G Pq◦� (u)Pq◦� (v)Pq◦CONN�

(u, v) . This 
implies that for each 1 ≤ q ≤ m , Pq◦CI(�̃) = Pq◦CI(�) . This again contradicts to our 
supposition.

Case 3 Let wz be an �-edge. This means that for each 1 ≤ q ≤ m , 
Pq◦𝜎(w, z) > Pq◦CONN��

(w, z) . This implies that edge wz is the unique strong-
est m-PF path between vertices w and z in � . This means that for each 1 ≤ q ≤ m , 
Pq◦CONN��

(w, z) < Pq◦CONN�
(w, z) . This implies that for each 1 ≤ q ≤ m , 

Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN��
(u, v) < Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN�

(u, v)   . 
Taking summation on both sides implies that for each 1 ≤ q ≤ m , ∑

u,v∈��
Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN��

(u, v) <
∑

u,v∈G Pq◦𝜁 (u)Pq◦𝜁 (v)Pq◦CONN�
(u, v) . This 

implies that for each 1 ≤ q ≤ m , Pq◦CI(��) < Pq◦CI(�) . Since, �-edges are m-PF bridges 
of � . Therefore, wz is an m-PF bridge of � . Thus, it is proved that for each 1 ≤ q ≤ m , 
Pq◦CI(��) < Pq◦CI(�) if and only if wz is an m-PF bridge of � . 	�  ◻

Corollary 1  Let � = (� , �) be an m-PF graph and �̃ = � ⧵ {wz} be the m-PF subgraph of 
� . Then for each 1 ≤ q ≤ m , Pq◦CI(��) < Pq◦CI(�) if and only if wz is either �-edge or �
-edge.

For illustration of Corollary 1, consider Example 8. Since, edge w3w4 is a �
-edge of � , therefore its deletion does not effect the connectivity index of � , i.e., 
CI(�̃2 = � ⧵ {w3w4}) = (4.1, 3.0, 1.4) = CI(�) . Now, consider Example 9. Since, edge 
w1w2 is a �-edge of � , therefore its deletion does not effect the connectivity index of � , i.e., 
CI(�̃2 = � ⧵ {w1w2}) = (3.1, 3.4, 3.4) = CI(�).
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Remark 1  A complete m-PF graph � = (� , �) has at most one m-PF bridge.

Example 11  Consider the complete 3-PF graph in Fig. 5 of Example 5. Here, edge w3w4 is 
the only �-edge of � . This means that � has only one 3-PF bridge, namely w3w4 . The rest 
of the edges are �-edges.

Theorem 8  Let � = (� , �) be an m-PF graph and �̃ = � ⧵ {wz} be the m-PF subgraph of 
� . Then for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≠ Pq◦CI(�) if and only if wz is the unique m-PF 
bridge of �.

Proof  Let � = (� , �) be an m-PF graph and �̃ = � ⧵ {wz} be the m-PF subgraph of � . 
First, suppose that for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≠ Pq◦CI(�) . Since, � is a complete m-
PF graph, therefore by Remark 1, wz is the unique m-PF bridge of � . Conversely, sup-
pose that wz is the unique m-PF bridge of � . Then by Theorem  7, for each 1 ≤ q ≤ m , 
Pq◦CI(��) < Pq◦CI(�) . This implies that for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≠ Pq◦CI(�) . 
Thus, it is proved that for each 1 ≤ q ≤ m , Pq◦CI(�̃) ≠ Pq◦CI(�) if and only if wz is the 
unique m-PF bridge of � . 	�  ◻

6 � Average connectivity index of an m‑PF graph

The only way to assure the stability of a flow in a piece of the network or in the whole net-
work is to measure the average flow in that area. In order to achieve this goal, we present 
the average connectivity index of m-PF graphs in this section. The definition of average 
connectivity index of an m-PF graph � = (� , �) is as follows.

Definition 14  Let � = (� , �) be an m-PF graph. The average connectivity index of � is 
denoted by ACI(�) and is defined as ACI(�) = (P1◦ACI(�),P2◦ACI(�),… ,Pm◦ACI(�)) , 
where P1◦ACI(�) =

1

nC2

∑
w,z∈W P1◦� (w)P1◦� (z)P1◦CONN�

(w, z) for each 1 ≤ q ≤ m . 
Simply, we can say that an ACI(�) is obtained by dividing the CI(�) by total number of 
pairs of vertices ( nC2

 ) of � , that is, ACI(�) = 1

nC2

[CI(�)] . Also, for each 1 ≤ q ≤ m , 
0 ≤ Pq◦ACI(�) ≤ 1.

Example 12  Consider the 3-PF graph � = (� , �) in Fig.  1 of Example 1. Here, 
CI(�) = (4.6, 3.3, 4.8) and nC2

= 5C2
= 10 . After dividing CI(�) by 10, we have 

ACI(�) = (0.46, 0.33, 0.48).

We observed in case 1 of Proposition 1 that the deletion of a vertex from an m-PF 
graph � reduces the CI(�) . But how does deleting a vertex from a m-PF graph � effect 
the ACI(�) ? To observe the effect look at the following example.

Example 13  Let W = {w1,w2,w3,w4} be a vertex set and 
E = {w1w2,w1w3,w1w4,w2w4,w3w4} be the set of edges. The corresponding 3-PF graph 
� = (� , �) is given in Fig. 11 with � (wi) = (1, 1, 1) for all i = 1, 2,… , 4 . The strength of 
connectedness between all pairs of vertices of � are calculated in the following connectivity 



7821Connectivity indices of m‑polar fuzzy network model, with…

1 3

matrix (23). Here, nC2
= 4C2

= 6 . After calculations, we have CI(�) = (2.1, 3.1, 3.6) and 
ACI(�) = (0.283, 0.467, 0.667) . ACI(� ⧵ {w1}) = (0.233, 0.433, 0.633) , 
ACI(� ⧵ {w2}) = (0.300, 0.467, 0.667) , ACI(� ⧵ {w3}) = (0.367, 0.533, 0.733) , 
ACI(� ⧵ {w4}) = (0.233, 0.333, 0.533) . Clearly, the deletion of vertices w1 and w4 reduces 
the ACI(�) whereas the deletion of vertices w2 and w3 enhances the ACI(�) . The effect of 
deletion of different vertices on ACI(�) is shown in Table 2.

We observed in Example 13 that the deletion of some vertices reduces the aver-
age connectivity index of m-PF graph, while the deletion of some vertices enhances 
the average connectivity index of m-PF graph. There may be some vertices in m-PF 
graph whose deletion does not effect the its average connectivity index. As a result, we 
have the following definition for characterizing the vertices of an m-PF graph � = (� , �) 
using the ACI(�).

Definition 15  Let � = (� , �) be an m-PF graph and w ∈ W . Then w is called an m-PF 
connectivity reducing vertex (m-PFCRV) or an m-PF connectivity enhancing ver-
tex (m-PFCEV) or an m-PF connectivity neutral vertex (m-PFCNV) if for each 
1 ≤ q ≤ m , either Pq◦ACI(� ⧵ {w}) < Pq◦ACI(�) or Pq◦ACI(� ⧵ {w}) > Pq◦ACI(�) or 
Pq◦ACI(� ⧵ {w}) = Pq◦ACI(�) , respectively. Otherwise, it is said to be an m-PF connec-
tivity mixed vertex (m-PFCMV).

(23)

⎡⎢⎢⎢⎣

(0.0, 0.0, 0.0) (0.3, 0.5, 0.7) (0.2, 0.4, 0.6) (0.5, 0.6, 0.8)

(0.3, 0.5, 0.7) (0.0, 0.0, 0.0) (0.20.4, 0.6) (0.3, 0.5, 0.7)

(0.2, 0.4, 0.6) (0.20.4, 0.6) (0.0, 0.0, 0.0) (0.2, 0.4, 0.6)

(0.5, 0.6, 0.8) (0.3, 0.5, 0.7) (0.2, 0.4, 0.6) (0.0, 0.0, 0.0)

⎤⎥⎥⎥⎦

Fig. 11   3-PF graph �

Table 2   Effect on ACI(�) after deleting a vertex from �

� ⧵ {wi} CI(� ⧵ {wi}) ACI(� ⧵ {wi}) Effect

� ⧵ {w1} (0.7, 1.3, 1.9) (0.233, 0.433, 0.633) ACI(� ⧵ {w1}) < ACI(�)

� ⧵ {w2} (0.9, 1.4, 2.0) (0.300, 0.467, 0.67) ACI(� ⧵ {w2}) > ACI(�)

� ⧵ {w3} (1.1, 1.6, 2.2) (0.367, 0.533, 0.733) ACI(� ⧵ {w3}) > ACI(�)

� ⧵ {w4} (0.7, 1.0, 1.6) (0.233, 0.333, 0.533) ACI(� ⧵ {w4}) < ACI(�)
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Consider the 3-PF graph � = (� , �) in Fig.  11 of Example 13, here w1,w4 are 
m-PFCRVs and w2,w3 are m-PFCEVs. We now characterize these vertices based on 
connectivity index of m-PFG in the following theorem.

Theorem 9  Let � = (� , �) be an m-PF graph with |W| = n ≥ 3 . Also, let Pq◦CI(�)

Pq◦CI(�⧵{w})
= rq 

for each 1 ≤ q ≤ m and w ∈ W . Then w is said to be an 

	 (i)	 m-PFCRV if and only if rq >
n

n−2
 for each 1 ≤ q ≤ m.

	 (ii)	 m-PFCEV if and only if rq <
n

n−2
 for each 1 ≤ q ≤ m.

	 (iii)	 m-PFCNV if and only if rq =
n

n−2
 for each 1 ≤ q ≤ m.

Proof  Let � = (� , �) be an m-PF graph with |W| = n ≥ 3 . Suppose that Pq◦CI(�)

Pq◦CI(�⧵{w})
= rq for 

each 1 ≤ q ≤ m and w ∈ W . (i). Let w be an m-PFCRV. By Definition 15, 
Pq◦ACI(� ⧵ {w}) < Pq◦ACI(�) for each 1 ≤ q ≤ m . 
⇔

1

(n−1)C2

Pq◦CI(� ⧵ {w}) <
1

nC2

Pq◦CI(�) for each 1 ≤ q ≤ m . ⇔ Pq◦CI(�)

Pq◦CI(�⧵{w})
<

nC2

(n−1)C2

 for 
each 1 ≤ q ≤ m . ⇔ rq <

n

n−2
 for each 1 ≤ q ≤ m . Similarly, (ii) and (iii) can be proved. 	

� ◻

Definition 16  Let � = (� , �) be an m-PF graph. Then � is said to be a connectivity reducing m-
PF graph if it contains at least one m-PFCRV. � is said to be a connectivity enhancing m-PF graph 
if it contains at least one m-PFCEV. � is said to be a connectivity neutral m-PF graph if it contains 
at least one m-PFCNV. Otherwise, it is said to be a connectivity mixed m-PF graph.

Example 14  Consider the 3-PF graph � = (� , �) in Fig. 11 of Example 13. Here, � contains two 
m-PFCRVs, namely w1 and w4 , therefore it is a connectivity reducing m-PF graph. Also, � con-
tains two m-PFCEVs, namely w2 and w3 , therefore it is a connectivity enhancing m-PF graph. 
However, � contains no m-PFCNV, therefore it is not a connectivity neutral m-PF graph.

Theorem  10  Let � = (� , �) be an m-PF graph with |W| = n ≥ 3 . Also, let ∑
z∈W⧵{w} Pq◦� (w)Pq◦� (z)Pq◦CONN�

(w, z) = kq for each 1 ≤ q ≤ m and w is an end vertex 
of � . Then w is said to be an 

	 (i).	 m-PFCRV if and only if kq >
2

n−2
 for each 1 ≤ q ≤ m.

	 (ii).	 m-PFCEV if and only if kq <
2

n−2
 for each 1 ≤ q ≤ m.

	(iii).	 m-PFCNV if and only if kq =
2

n−2
 for each 1 ≤ q ≤ m.

Proof  Let � = (� , �) be an m-PF graph with |W| = n ≥ 3 . Also, let ∑
z∈W⧵{w} Pq◦� (w)Pq◦� (z)Pq◦CONN�

(w, z) = kq for each 1 ≤ q ≤ m and w is an end vertex 
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of � . (i). First, suppose that w be an m-PFCRV. Note that 
Pq◦CI(�) = Pq◦CI(� ⧵ {w}) +

∑
z∈W⧵{w} Pq◦� (w)Pq◦� (z)Pq◦CONN�

(w, z) for each 
1 ≤ q ≤ m . ⇒ Pq◦CI(�) = Pq◦CI(� ⧵ {w}) + kq for each 1 ≤ q ≤ m . 
⇒ kq =

Pq◦CI(�)

Pq◦CI(�⧵{w})
− 1 for each 1 ≤ q ≤ m . Since, w is an m-PFCRV, therefore by Theo-

rem 9, kq >
n

n−2
− 1 for each 1 ≤ q ≤ m . ⇒ kq >

2

n−2
 for each 1 ≤ q ≤ m . Conversely, sup-

pose that kq >
2

n−2
 for each 1 ≤ q ≤ m . Note that 

Pq◦CI(�) = Pq◦CI(� ⧵ {w}) +
∑

z∈W⧵{w} Pq◦� (w)Pq◦� (z)Pq◦CONN�
(w, z) for each 

1 ≤ q ≤ m . ⇒ Pq◦CI(�) = Pq◦CI(� ⧵ {w}) + kq for each 1 ≤ q ≤ m . 
⇒

1

nC2

Pq◦CI(�) =
1

nC2

Pq◦CI(� ⧵ {w}) +
1

nC2

kq for each 1 ≤ q ≤ m . 
⇒

1

nC2

Pq◦CI(�) >
1

nC2

Pq◦CI(� ⧵ {w}) +
1

nC2

(
2

n−2
) for each 1 ≤ q ≤ m . By Definition 14, 

Pq◦ACI(�) > Pq◦ACI(� ⧵ {w})
n−2

n
+

1

nC2

(
2

n−2
) for each 1 ≤ q ≤ m . 

⇒ Pq◦ACI(�) > Pq◦ACI(� ⧵ {w}) −
2

n
(Pq◦ACI(� ⧵ {w}) −

2

(n−1)(n−2)
) for each 1 ≤ q ≤ m . 

⇒ Pq◦ACI(�) > Pq◦ACI(� ⧵ {w}) for each 1 ≤ q ≤ m . Hence, w is an m-PFCRV. Thus, 
we proved that w is an m-PFCRV if and only if kq >

2

n−2
 for each 1 ≤ q ≤ m . Similarly, (ii) 

and (iii) can be proved. 	�  ◻

Below is a general description of the algorithm for calculating different connectivity 
indices of m-PF networks. Its pseudocode presentation is provided in Algorithm 1.
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Description and Complexity of the Algorithm At the initial stage, the algorithm calcu-
lates the strength of connectedness between all pair of nodes, therefore, the time complex-
ity of these nested ‘for’ loops is O(n2m), where n is the total number of nodes in �. The 
next set of nested loops computes connectivity index of m-PF graphs. Its time complexity 
is O(mn2). The next stage involves the evaluation of the average connectivity index of m-PF 
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graphs. The running time of these nested loops is the same as previous one. The next for 
loop runs m times, therefore its complexity is O(m). The comparison of different connec-
tivity indices for m-PF graphs is then calculated. The running time of all these ‘if’ condi-
tionals is O(m). This comparison helps to choose more preferable connectivity index. As 
soon as the connectivity index for a given m-PF graph is evaluated, the algorithm will halt. 
Thus the total time complexity of the algorithm is O(n3).

7 � Application

One of the most rapidly expanding branches of advanced mathematics is graph theory. It 
has grown tremendously due to a vast range of applications in optimization problems, com-
binatorial problems, linguistics, chemistry, physics, biology etc. Connectivity is among the 
highest priority notions utilized in graph theory applications. In this section, we describe a 
decision-making process through an application of m-PF graphs.

7.1 � m‑PF graphs in product manufacturing problem

Some products may increase the profit of a company if they are offered in multiple places. 
Before manufacturing a product, every company considers the following important factors.

–	 Does the product follow the mass market demands?
–	 Is the product fast or time consuming to manufacture?
–	 Is the product sold at a high or low cost?
–	 Does the product appeal the people at global level?

Commonly, graphical models are utilized to solve this type of decision-making issues. m-
PF graphs are usually adopted in decision-making issues when it is needed to collect a set 
of individuals. Consider a multinational enterprize (MNE) take a decision to manufacture 
as few products as possible having more demand, consuming minimum time, attracting a 
wide range of all classes of people, minimizing cost and giving more profit to the company 
as compared to the other products. Let MNE consider seven products Prod-I, Prod-II, Prod-
II, Prod-IV, Prod-V, Prod-VI and Prod-VII to market them in different countries for earning 
profit, lowering cost etc. Let the set of products is W = {w1 ∶ Prod-I, w2 ∶ Prod-II, w3 ∶ 
Prod-II, w4 ∶ Prod-IV, w5 ∶ Prod-V, w6 ∶ Prod-VI, w7 ∶ Prod-VII } . This procedure can be 
described by a 4-PF graph, taking W as a vertex set. The membership value of each product 
illustrates the degree of demand, sale price, time consumption and attraction to people at a 
global level. The description of the products can be expressed as in the following set:

{Demand, Time, Cost, Appealing}.
Let � (w1) = (0.3, 0.2, 0.5, 0.6) . This means that Prod-I follows 30% of the mass market, 

consumes 20% time to manufacture, 50% costly or it sales at 50% high cost and attracts 
60% people at the global level. Similarly, the membership values of the other products 
are � (w2) = (0.3, 0.4, 0.5, 0.7) , � (w3) = (0.5, 0.4, 0.6, 0.7) , � (w4) = (0.1, 0.1, 0.3, 0.4) , 
� (w5) = (0.1, 0.2, 0.3, 0.5) , � (w6) = (0.2, 0.2, 0.5, 0.6) and � (w7) = (0.3, 0.3, 0.5, 0.7) . The 
edge between two products represents the degree of using common materials, power equip-
ments, engineer employs and agencies involved for both of the products. The description of 
the pairs of products can be expressed as in the following set:

{Equipments, Materials, Engineer employs, Agencies}.
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Let �(w1w6) = (0.2, 0.2, 0.5, 0.6) . This means that Prod-I and Prod-VI use 20% com-
mon equipments, 20% same materials, 50% common trained engineers and 60% same 
agencies. Similarly, the membership values of the other pairs of products are shown in 
Fig. 12. It can be easily verified that � = (� , �) is a 4-PF graph as shown in Fig. 12. The 
strength of connectivity between pairs of vertices of � are calculated in Table 3.

Here, nC2
= 7C2

= 21 . After calculations, we have CI(�) = (0.205, 0.373, 1.605, 3.910) 
and ACI(�) = (0.010, 0.018, 0.076, 0.186) . Removal of certain vertices from � have cer-
tain effects on ACI(�) . Consider � ⧵ {w3} (see Fig.  13). The strength of connectivity 
between pairs of vertices of � ⧵ {w3} are calculated in Table 4.

After calculations, we have CI(� ⧵ {w3}) = (0.140, 0.265, 1.137, 2.713) and 
ACI(� ⧵ {w3}) = (0.009, 0.018, 0.076, 0.181). This means that ACI(� ⧵ {w3}) < ACI(�) . 

Fig. 12   4-PF graph �

Table 3   Strength of connectivity between pairs of vertices of �

Pairs of vertices CONN
�
(w, z) Pairs of vertices CONN

�
(w, z)

w, z ∈ W w, z ∈ W

w1,w2 (0.3, 0.2, 0.5, 0.6) w3,w4 (0.1, 0.1, 0.3, 0.4)
w1,w3 (0.1, 0.2, 0.3, 0.5) w3,w5 (0.1, 0.2, 0.3, 0.5)
w1,w4 (0.1, 0.1, 0.3, 0.4) w3,w6 (0.1, 0.2, 0.3, 0.5)
w1,w5 (0.1, 0.2, 0.3, 0.5) w3,w7 (0.1, 0.2, 0.3, 0.5)
w1,w6 (0.2, 0.2, 0.5, 0.6) w4,w5 (0.1, 0.1, 0.3, 0.4)
w1,w7 (0.3, 0.2, 0.5, 0.6) w4,w6 (0.1, 0.1, 0.3, 0.4)
w2,w3 (0.1, 0.2, 0.3, 0.5) w4,w7 (0.1, 0.1, 0.3, 0.4)
w2,w4 (0.1, 0.1, 0.3, 0.4) w5,w6 (0.1, 0.2, 0.3, 0.5)
w2,w5 (0.1, 0.2, 0.3, 0.5) w5,w7 (0.1, 0.2, 0.3, 0.5)
w2,w6 (0.2, 0.2, 0.5, 0.6) w6,w7 (0.2, 0.2, 0.5, 0.6)
w2,w7 (0.3, 0.3, 0.5, 0.7)
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Now, consider � ⧵ {w4} (see Fig. 14). The strength of connectivity between pairs of ver-
tices of � ⧵ {w4} are calculated in Table 5.

After calculations, we have CI(� ⧵ {w4}) = (0.188, 0.356, 1.344, 3.302) and 
ACI(� ⧵ {w4}) = (0.013, 0.024, 0.090, 0.220). This means that ACI(� ⧵ {w4}) > ACI(�) . 
Similarly, the effects of deletion of different vertices on ACI(�) are shown in Table 6.

Clearly, the vertices w2 , w3 , w7 are 4-PFCRVs, vertex w4 is 4-PFCEV and vertices w1 , 
w5 , w6 are 4-PFCMVs. Note that if company do not manufacture any one of the products 
w2 , w3 and w7 then its profit will decrease, if company do not manufacture product w4 then 
its profit will increase and if company do not manufacture any one of the products w1 , w5 , 
w6 then there will be mixed change in its profit. Thus, it is sufficient to manufacture the 
products Prod-II, Prod-III and Prod-VII for minimizing time consumption, earning more 
profit, attracting a wide range of all classes of people and minimizing cost. The comparison 
between ACI(�) and ACI(� ⧵ {wi}) for i = 1, 2,… , 7 is analyzed using the bar charts in 
Fig. 15.

We now describe the general procedure adopted in our application. 

	Step 1.	 Input the set of vertices (products) w1,w2,… ,wn.

Fig. 13   4-PF graph � ⧵ {w3}

Table 4   Strength of connectivity between pairs of vertices of � ⧵ {w3}

Pairs of vertices CONN
�
(w, z) Pairs of vertices CONN

�
(w, z)

w, z ∈ W ⧵ {w3} w, z ∈ W ⧵ {w3}

w1,w2 (0.3, 0.2, 0.5, 0.6) w2,w7 (0.3, 0.3, 0.5, 0.7)
w1,w4 (0.1, 0.1, 0.3, 0.4) w4,w5 (0.1, 0.1, 0.3, 0.4)
w1,w5 (0.1, 0.2, 0.3, 0.5) w4,w6 (0.1, 0.1, 0.3, 0.4)
w1,w6 (0.2, 0.2, 0.5, 0.6) w4,w7 (0.1, 0.1, 0.3, 0.4)
w1,w7 (0.3, 0.2, 0.5, 0.6) w5,w6 (0.1, 0.2, 0.3, 0.5)
w2,w4 (0.1, 0.1, 0.3, 0.4) w5,w7 (0.1, 0.2, 0.3, 0.5)
w2,w5 (0.1, 0.2, 0.3, 0.5) w6,w7 (0.2, 0.2, 0.5, 0.6)
w2,w6 (0.2, 0.2, 0.5, 0.6)
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Fig. 14   4-PF graph � ⧵ {w4}

Table 5   Strength of connectivity between pairs of vertices of � ⧵ {w4}

Pairs of vertices CONN
�
(w, z) Pairs of vertices CONN

�
(w, z)

w, z ∈ W ⧵ {w4} w, z ∈ W ⧵ {w4}

w1,w2 (0.3, 0.2, 0.5, 0.6) w2,w7 (0.3, 0.3, 0.5, 0.7)
w1,w3 (0.1, 0.2, 0.3, 0.5) w3,w5 (0.1, 0.2, 0.3, 0.5)
w1,w5 (0.1, 0.2, 0.3, 0.5) w3,w6 (0.1, 0.2, 0.3, 0.5)
w1,w6 (0.2, 0.2, 0.5, 0.6) w3,w7 (0.1, 0.2, 0.3, 0.5)
w1,w7 (0.3, 0.2, 0.5, 0.6) w5,w6 (0.1, 0.2, 0.3, 0.5)
w2,w3 (0.1, 0.2, 0.3, 0.5) w5,w7 (0.1, 0.2, 0.3, 0.5)
w2,w5 (0.1, 0.2, 0.3, 0.5) w6,w7 (0.2, 0.2, 0.5, 0.6)
w2,w6 (0.2, 0.2, 0.5, 0.6)

Table 6   Effect on ACI(�) after deleting a vertex from �

� ⧵ {wi} CI(� ⧵ {wi}) ACI(� ⧵ {wi}) Effect

� ⧵ {w1} (0.118, 0.311, 1.050, 2.734) (0.008, 0.021, 0.070, 0.182) Mixed
� ⧵ {w2} (0.118, 0.253, 1.050, 2.531) (0.008, 0.017, 0.070, 0.169) ACI(� ⧵ {w2}) < ACI(�)

� ⧵ {w3} (0.140, 0.265, 1.137, 2.713) (0.009, 0.018, 0.076, 0.181) ACI(� ⧵ {w3}) < ACI(�)

� ⧵ {w4} (0.188, 0.356, 1.344, 3.302) (0.013, 0.024, 0.090, 0.220) ACI(� ⧵ {w4}) > ACI(�)

� ⧵ {w5} (0.118, 0.244, 1.344, 2.823) (0.013, 0.016, 0.090, 0.188) Mixed
� ⧵ {w6} (0.154, 0.307, 1.050, 2.709) (0.010, 0.020, 0.070, 0.181) Mixed
� ⧵ {w7} (0.109, 0.118, 1.050, 2.303) (0.007, 0.008, 0.070, 0.154) ACI(� ⧵ {w7}) < ACI(�)
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	Step 2.	 Input the m-PF set � of vertices such that � (wi) = (P1◦� (wi),P2◦� (wi),… ,Pm◦� (wi))

	Step 3.	 Input the set of edges (relationship between products) wiwk for i, k = 1, 2,… , n ; 
i ≠ k.

	Step 4.	 I n p u t  t h e  m - P F  r e l a t i o n  �  o f  v e r t i c e s  s u c h  t h a t 
�(wiwk) = (P1◦�(wiwk),P2◦�(wiwk),… ,Pm◦�(wiwk)) , where 

 for each 1 ≤ q ≤ m and for i, k = 1, 2,… , n ; i ≠ k.
	Step 5.	 Construct the m-PF graph � = (� , �).
	Step 6.	 Find the strength of connectedness between all pairs of vertices wi and wk of � such 

that CONN
�
(wi,wk) = ((P1◦�(wiwk))

∞, (P2◦�(wiwk))
∞,… , (Pm◦�(wiwk))

∞) , where 

 for each 1 ≤ q ≤ m.
	Step 7.	 Compute the CI(�) = (P1◦CI(�),P2◦CI(�),… ,Pm◦CI(�)) such that 

 for each 1 ≤ q ≤ m.
	Step 8.	 Compute the ACI(�) = (P1◦ACI(�),P2◦ACI(�),… ,Pm◦ACI(�)) such that 

 for each 1 ≤ q ≤ m.
	Step 9.	 Consider the m-PF subgraph � ⧵ {wi} of � by deleting a vertex wi from �.
	Step 10.	 Compute the CI(� ⧵ {wi}) and ACI(� ⧵ {wi}).
	Step 11.	 Compare the ACI(�) and ACI(� ⧵ {wi}).

Pq◦�(wiwk) ≤ inf{Pq◦� (wi),Pq◦� (wk)},

(Pq◦𝜎(wi,wk))
∞ = max{ inf

1≤i<k≤n
Pq◦𝜎(wiwk)},

Pq◦CI(�) =
∑

wi,wk∈W

Pq◦� (wi)Pq◦� (wk)Pq◦CONN�
(wi,wk),

Pq◦ACI(�) =
1

nC2

[Pq◦CI(�)],

Fig. 15   Comparison of ACI(�) and ACI(� ⧵ {wi}) for i = 1, 2,… , 7.
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	Step 12.	 Output : 

(a)	 If Pq◦ACI(� ⧵ {wi}) < Pq◦ACI(�) for each 1 ≤ q ≤ m then wi is m-PFCRV.
(b)	 If Pq◦ACI(� ⧵ {wi}) > Pq◦ACI(�) for each 1 ≤ q ≤ m then wi is m-PFCEV.
(c)	 If Pq◦ACI(� ⧵ {wi}) = Pq◦ACI(�) for each 1 ≤ q ≤ m then wi is m-PFCNV.

		     If there is no such comparison as mentioned above between Pq◦ACI(�) and 
Pq◦ACI(�) for each 1 ≤ q ≤ m then wi is m-PFCMV.

	Step 13.	 Repeat steps 9-12 for all vertices w1,w2,… ,wn.
	Step 14.	 m-PFCRVs are preferable here to manufacture by ignoring the other vertices.

8 � Comparative analysis

m-PF graphs have numerous applications in decision-making issues when it is compulsory 
to make decisions with a group of individuals or agreements. The membership value of an 
element in an m-PF set belongs to [0, 1]m , which exhibits all the m different qualities of the 
object. This is better suited to a variety of real-world uncertain issues when data originates 
from several agents, resulting in multi-polar information that fuzzy sets and bipolar fuzzy 
sets cannot accurately express. In this section, we discuss the problem of selecting the set 
of representatives for a youth development council (YDC) in a university using the fuzzy 
graph model, bipolar fuzzy graph model and m-PF graph model to demonstrate the flexibil-
ity and validity of our suggested approach.

8.1 � Finding the set of representatives through fuzzy graph

We consider a set of students W = {w1 ∶ Hamza, w2 ∶ Suleman, w3 ∶ Waris, w4 ∶ Uzaifa} 
who want to become a member of YDC. We wish to form a YDC with the fewest possible 
members. We want to build a YDC in which every member who is not in the council has 
something in common with those who are. Each student has some good leadership quali-
ties such as approachable, good communicator, good listener, honest and fair. All these 
qualities are uncertain in nature. Therefore, fuzziness can be added to represent this prob-
lem. A fuzzy graph model of this problem is given in Fig. 16, taking W as the set of ver-
tices. The membership value of each student represents the degree of having good leader-
ship qualities. For example, � (Hamza) = 0.7 means that Hamza has 70% good leadership 

Fig. 16   Fuzzy graph � = (� , �)
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qualities. The edge between two students represents the degree of having common good 
leadership qualities. For example, �(Hamza, Waris) = 0.6 means that Hamza and Waris 
have 60% good leadership qualities in common.

The strength of connectivity between pairs of vertices of fuzzy graph � = (� , �) are cal-
culated in Table 7.

After calculations, we have CI(�) = 1.314 and ACI(�) = 0.219 . The CI(� ⧵ {wi}) and 
ACI(� ⧵ {wi}) for i = 1, 2, 3, 4 are calculated in Table 8. The effects of elimination of dif-
ferent vertices on ACI(�) are shown in Fig. 17.

Therefore, w1 and w3 should be the members of YDC.

8.2 � Finding the set of representatives through bipolar fuzzy graph

Each student has some bad leadership qualities such as lack of enthusiasm, incompetency, 
poor decision-making and inflexibility. All these qualities are also uncertain in nature. 
Therefore, fuzziness can be added. A fuzzy graph model fails to illustrate bad leadership 
qualities along with good leadership qualities. A bipolar fuzzy graph model (Akram 2011) 
of this problem is given in Fig. 18, taking W as the set of vertices. The membership value 

Table 7   Strength of connectivity 
between pairs of vertices of �

Pairs of vertices CONN
�
(w, z)

w, z ∈ W

w1,w2 0.5
w1,w3 0.6
w1,w4 0.5
w2,w3 0.5
w2,w4 0.5
w3,w4 0.5

Table 8   ACI(�) after deleting a 
vertex from �

� ⧵ {wi} CI(� ⧵ {wi}) ACI(� ⧵ {wi})

� ⧵ {w1} 0.600 0.200
� ⧵ {w2} 0.714 0.238
� ⧵ {w3} 0.480 0.160
� ⧵ {w4} 0.714 0.238

Fig. 17   Comparison of 
ACI(�) and ACI(� ⧵ {wi}) for 
i = 1, 2, 3, 4
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of each student represents the degree of having good leadership qualities and having bad 
leadership qualities. For example, � (Hamza) = (0.7,−0.3) means that Hamza has 70% good 
leadership qualities and 30% bad leadership qualities. The edge between two students rep-
resents the degree of having common good leadership qualities and having common bad 
leadership qualities. For example, �(Hamza, Waris) = (0.6,−0.2) means that Hamza and 
Waris have 60% good leadership qualities in common and 20% bad leadership qualities in 
common.

The strength of connectivity between pairs of vertices of bipolar fuzzy graph � = (� , �) 
are calculated in Table 9.

After calculations, we have CI(�) = (1.314,−0.279) and ACI(�) = (0.219,−0.047) . 
The CI(� ⧵ {wi}) and ACI(� ⧵ {wi}) for i = 1, 2, 3, 4 are calculated in Table 10. The effects 
of deletion of different vertices on ACI(�) is shown in Fig. 19.

Therefore, w3 should be the member of YDC.

8.3 � Finding the set of representatives through m‑PF graph

Note that fuzzy graph model just illustrate the overall good leadership qualities of the 
students. On the other hand, bipolar fuzzy graph model can illustrate the overall good 
leadership qualities along with the overall bad leadership qualities of the students. But, 
both these graph models are unable to deal with leadership qualities one by one as good 

Fig. 18   Bipolar fuzzy graph 
� = (� , �)

Table 9   Strength of connectivity 
between pairs of vertices of �

Pairs of vertices CONN
�
(w, z)

w, z ∈ W

w1,w2 (0.5,−0.2)

w1,w3 (0.6,−0.2)

w1,w4 (0.5,−0.2)

w2,w3 (0.5,−0.3)

w2,w4 (0.5,−0.3)

w3,w4 (0.5,−0.3)

Table 10   ACI(�) after deleting a 
vertex from �

� ⧵ {wi} CI(� ⧵ {wi}) ACI(� ⧵ {wi})

� ⧵ {w1} (0.600,−0.195) (0.200,−0.065)

� ⧵ {w2} (0.714,−0.114) (0.238,−0.038)

� ⧵ {w3} (0.480,−0.110) (0.160,−0.037)

� ⧵ {w4} (0.714,−0.087) (0.238,−0.029)
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leadership qualities are characterized by good communicator, approachable etc while 
bad leadership qualities are characterized by lack of enthusiasm, incompetency etc. 
Since, all these qualities are uncertain in nature. Therefore, we can associate the degree 
of membership value according to each single leadership quality. Fuzzy graph model 
and bipolar fuzzy graph model fail to handle this situation. To handle such type of prob-
lem, m-PF graph model is given in Fig. 20, taking W as the set of vertices. The mem-
bership value of each student represents the degree of communication skills, honesty, 
decision-making and incompetency. The description of the students can be expressed as 
in the following set:

{Communicator, Honest, Decision-maker, Incompetent}.
For example, � (Hamza) = (0.8, 0.7, 0.3, 0.2) means that Hamza is 80% good commu-

nicator, 70% honest, 30% good decision-maker and 20% incompetent. The edge between 
two students represents the degree of common good communication skills, honesty, good 
decision-making and incompetency. For example, �(Hamza, Waris) = (0.7, 0.7, 0.3, 0.2) 
means that Hamza and Waris have 70% common good communicating skills, 70% com-
mon honesty, 30% common good decision-making and 20% common incompetency.

The strength of connectivity between pairs of vertices of m-PF graph � = (� , �) are 
calculated in Table 11.

After calculations, we have CI(�) = (1.806, 1.367, 0.249, 0.120) and 
ACI(�) = (0.301, 0.228, 0.042, 0.020) . The CI(� ⧵ {wi}) and ACI(� ⧵ {wi}) for 
i = 1, 2, 3, 4 are calculated in Table 12. The effects of deletion of different vertices on 
ACI(�) is shown in Fig. 21.

Therefore, both w1 and w3 should be the members of YDC. The feasibility and appli-
cability of our proposed model is shown in Table 13.

Fig. 19   Comparison of 
ACI(�) and ACI(� ⧵ {wi}) for 
i = 1, 2, 3, 4

Fig. 20   m-PF graph � = (� , �)
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9 � Benefits and limitations of the proposed method

The investigations above lead us to believe that the proposed connectivity analysis for 
m-PF networks may be employed efficiently to give accurate assessments of certain 
aspects of uncertain information. Let us summarize some of the advantages of the pro-
posed research work:

Table 11   Strength of 
connectivity between pairs of 
vertices of �

Pairs of vertices CONN
�
(w, z)

w, z ∈ W

w1,w2 (0.6, 0.5, 0.3, 0.2)
w1,w3 (0.7, 0.7, 0.3, 0.2)
w1,w4 (0.5, 0.5, 0.3, 0.2)
w2,w3 (0.6, 0.5, 0.3, 0.2)
w2,w4 (0.5, 0.5, 0.3, 0.2)
w3,w4 (0.5, 0.5, 0.3, 0.2)

Table 12   ACI(�) after deleting a 
vertex from �

� ⧵ {wi} CI(� ⧵ {wi}) ACI(� ⧵ {wi})

� ⧵ {w1} (0.774, 0.590, 0.106, 0.076) (0.258, 0.197, 0.035, 0.025)
� ⧵ {w2} (1.014, 0.842, 0.117, 0.040) (0.338, 0.281, 0.039, 0.013)
� ⧵ {w3} (0.576, 0.405, 0.077, 0.076) (0.192, 0.135, 0.026, 0.025)
� ⧵ {w4} (1.890, 1.357, 0.240, 0.124) (0.630, 0.452, 0.080, 0.041)

Fig. 21   Comparison of ACI(�) and ACI(� ⧵ {wi}) for i = 1, 2, 3, 4
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Connectivity analysis of m-PF networks enables us to apply connectivity and average 
connectivity indices in multi-polar uncertain real-world issues, resulting in precise solu-
tions for more flexible graph-theoretical problems.
The cornerstone of our model is a multi-component membership assessment. It gives us 
a unified expression for the adequacy of each alternative in relation with a fixed list of 
characteristics.
Because various qualities of objects are captured by one proxy, more accurate informa-
tion is available to perform operations conducive to well grounded decisions.

Besides these advantages, we should be aware of the limitations of proposed method.

Although the connectivity index and average connectivity index can be used to deter-
mine the stability of an m-PF graph, the simultaneous comparison of numerous attrib-
utes can make it tough to achieve fully convincing selections.
The proposed model delivers flexible outcomes, however it is difficult to manage multi-
components of membership values in the case of large datasets, as they impose a com-
putational burden and increase complexity.

10 � Conclusion and future directions

One of the key factors affecting a network is connectivity. In this article, two distinct 
network parameters, namely, the connectivity index and average connectivity index, are 
described for m-PF graphs. These indices permit to evaluate the stability of a m-PF net-
work. Characterizations for various kinds of m-PF graphs are obtained. Specifically, the 
effects of deleting a vertex or an edge in m-PF graphs, and the bounds in the case of spe-
cific m-PF graphs, are analyzed. Algorithms related to these concepts are given. The results 
that have been obtained can be helpful in the quantitative inspection of human trafficking, 
Internet routing, etc. In order to demonstrate and validate the proposed algorithm, our work 
has provided useful tools for a more efficient application of m-PF graphs in practice. We 
have applied them in a particular product manufacturing problem, and explained it with 
reference to a general algorithm designed to easily understand the method. Finally, we have 
provided a comparative analysis to prove the feasibility and validity of proposed method. 
Thus, our approach may offer flexible solutions to several graph-theoretical multi-polar 
uncertain real-world scenarios by managing multi-components of the membership values 
for large datasets.

This research work can be further extended to include the analysis of (1) Operators and 
algorithms to efficiently handle multi-polarity; (2) Connectivity indices of m-PF rough 
graphs; (3) Cyclic connectivity index of m-PF graphs; (4) Average cyclic connectivity 
index of m-PF graphs; (5) Wiener index of m-PF graphs.
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