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Abstract
Circular intuitionistic fuzzy (C-IF) sets are an up-and-coming tool for enforcing indistinct and 
imprecise information in variable and convoluted decision-making situations. C-IF sets, as 
opposed to typical intuitionistic fuzzy sets, are better suited for identifying the evaluation data 
with uncertainty in intricate realistic decision situations. The architecture of the technique for 
order preference by similarity to ideal solutions (TOPSIS) provides powerful evaluation tools 
to aid decision-making in intuitionistic fuzzy conditions. To address appraisal issues associ-
ated with decision analysis involving extremely convoluted information, this paper propounds 
a novel C-IF TOPSIS approach in the context of C-IF uncertainty. This research makes three 
significant contributions. First, based on the three- and four-term operating rules, this research 
introduces C-IF Minkowski distance measures, which are new generalized representations of 
distance metrics applicable to C-IF values and C-IF sets. Such general C-IF distance metrics can 
alleviate the constraints of established C-IF distance measures, provide usage resiliency through 
parameter settings, and broaden the applicability of metric analysis. Second, unlike existing 
C-IF TOPSIS methods, this research fully utilizes C-IF information characteristics and extends 
the core structure of the classic TOPSIS to C-IF contexts. With the newly developed C-IF 
Minkowski metrics, this study faithfully demonstrates the trade-off evaluation and compromise 
decision rules in the TOPSIS framework. Third, this research builds on the core strengths of the 
pioneered C-IF Minkowski distance measures to create innovative C-IF TOPSIS techniques uti-
lizing four different combinations, including displaced and fixed anchoring frameworks, as well 
as three- and four-term representations. Such a refined C-IF TOPSIS methodology can assist 
decision-makers in proactively addressing increasingly sophisticated decision-making problems 
in practical settings. Finally, this research employs two innovative prioritization algorithms to 
address a site selection issue of large-scale epidemic hospitals to illustrate the superior capabili-
ties of the C-IF TOPSIS methodology over some current related approaches.
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1  Introduction

Multiple criteria decision analysis (MCDA) is generally delineated as an analytical process 
for making the most suitable choice with the highest relative dominance out of a group 
of candidate alternatives characterized by multiple performance criteria (Jaini 2023; Kaya 
et al. 2022; Shen et al. 2022). To tackle and manage real-world decision issues, numerous 
MCDA models, approaches, and techniques have been created and applied in a variety of 
application domains (Garg and Rani 2022; Rani and Garg 2022; Reig-Mullor et al. 2022; 
Tiwari and Gupta 2022). Many MCDA systems employ a step-by-step evaluation process 
that entails gathering pertinent information, identifying potential alternatives, and assess-
ing workable solutions to aid decision-makers in making more deliberate and meaning-
ful decisions (Chen 2022a, b; Tsao and Chen 2022). In particular, the technique for order 
preference by similarity to ideal solutions (TOPSIS), which originated from Hwang and 
Yoon (1981), is a useful prioritization method in important fields of management analy-
sis and decision theory (Alshammari et  al. 2022; Yang et  al. 2022). TOPSIS exploits a 
compensatory aggregation approach that is predicated on the geometric distances between 
performance ratings associated with candidate alternatives and ideal/anti-ideal alternatives 
(composed of the best/worst performance ratings in terms of each criterion) to assess the 
relative merits of candidate alternatives (Guan 2022; Yang et al. 2022; Zhang et al. 2022).

The theory of circular intuitionistic fuzzy (C-IF) sets, propounded by Atanassov (2020), 
is a forward-looking generalization of the intuitionistic fuzzy (IF) theory. In contrast to 
the IF conformation, an element in the C-IF set is represented by an adjustable circle with 
a radius parameter, with the center of the circle consisting of membership (i.e., validity) 
and nonmembership (i.e., non-validity) (Atanassov and Marinov 2021; Çakır et al. 2021). 
As an illustration in a two-dimensional space, the C-IF conformation is delineated as a 
high-order uncertain set in which elements in a given finite universe of discourse enjoy 
the degrees of membership and nonmembership, surrounded by a circle of radius param-
eter in such a manner that the degrees of membership plus nonmembership do not exceed 
1 within this circle (Boltürk and Kahraman 2022; Kahraman and Alkan 2021; Otay and 
Kahraman 2021). C-IF sets can be efficaciously utilized in MCDA domains because their 
distinct characteristics can significantly manipulate convolutedly ambiguous information 
and assist existing MCDA models in obtaining more accurate outcomes, such as a C-IF 
vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) to treat a waste disposal 
location selection issue (Kahraman and Otay 2022), an integrated C-IF analytic hierarchy 
process (AHP) with VIKOR for a multiple expert supplier evaluation problem (Otay and 
Kahraman 2021), a C-IF decision-making approach through the medium of new defuzzi-
fication functions for selecting a health tourism center (Çakır and Taş 2021), a defuzzi-
fication and score function-based C-IF decision method for a landfill site selection issue 
(Çakır et al. 2021), an assessment technique predicated on IF and C-IF sets for evaluating 
human capital and research indices (Imanov and Aliyev 2021), a present-worth-analysis 
method grounded in interval-valued IF and C-IF sets for analyzing a water treatment device 
task (Boltürk and Kahraman 2022), an integrated C-IF AHP approach for assessing remote 
work adaptation in the midst of the Coronavirus Disease-2019 (COVID-19) pandemic 
(Çakır and Taş 2022), and an assessment procedure involving C-IF information for select-
ing industrial symbiotic enterprises (Çakır et al. 2022).

The TOPSIS methodology can serve as a powerful prioritization technique to aid deci-
sion support for MCDA matters in the context of C-IF sets. With this in mind, Kahra-
man and Alkan (2021) devised a new C-IF TOPSIS approach based on vague membership 
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functions and utilized it to a supplier selection problem. In the same vein, Alkan and Kah-
raman (2022b) developed an akin C-IF TOPSIS framework and delivered an implemen-
tation procedure to address epidemiological hospital site selection using pessimistic and 
optimistic decision matrices. Even though Kahraman and Alkan (2021) and Alkan and 
Kahraman (2022b) proffered the latest C-IF TOPSIS methods, the application of the core 
TOPSIS framework to C-IF scenarios still has some limitations and research gaps. First, 
apart from the two studies mentioned above, there is currently little research that extends 
the classic TOPSIS architecture within the C-IF decision environment for developing a 
compromising MCDA method involving C-IF uncertainty. Furthermore, the two current 
studies deviated significantly from the core architecture of the classic TOPSIS because of 
many modifications. As a result, how to extend the classic TOPSIS into C-IF backgrounds 
so that the development can faithfully demonstrate the TOPSIS compromise decision-mak-
ing spirit has become a significant area of study, which constructs the first motivation.

Furthermore, in the C-IF TOPSIS methods proffered by Kahraman and Alkan (2021) 
and Alkan and Kahraman (2022b), the C-IF information (including criterion weights and 
performance ratings of alternatives judged against the criterion) was converted into IF val-
ues for use in the calculations of their developed C-IF TOPSIS procedures. By way of illus-
tration, Kahraman and Alkan (2021) and Alkan and Kahraman (2022b) built individual IF 
decision matrices and IF criterion weights to generate an aggregated IF decision matrix 
and aggregated IF weights, respectively. The C-IF decision matrix and C-IF weights were 
then generated using the maximum radius lengths. However, after putting in a lot of time 
and effort to create the C-IF decision matrix, it was immediately transformed into two IF 
decision matrices, pessimistic and optimistic. The C-IF decision matrix was specifically 
transformed into pessimistic and optimistic decision matrices, with the data in these two 
decision matrices being ordinary IF values. The relative closeness coefficients based on 
the pessimistic and optimistic matrices were then calculated to generate composite ratio 
scores for ranking the alternatives. The C-IF data were constructed in terms of IF linguistic 
information by Kahraman and Alkan (2021) and Alkan and Kahraman (2022b), but they 
were in turn converted to IF values. Membership and nonmembership, plus or minus the 
radius parameter of C-IF values, constitute the IF values embedded in the pessimistic and 
optimistic decision matrices. The C-IF set containing higher-order fuzzy information is 
transformed into a general IF set using this simplified pessimistic and optimistic estimation 
procedure. However, the original goal of using C-IF sets to clarify complex uncertainties is 
lost in this process. The manipulation process reduces the specificity of C-IF information, 
reducing flexibility and adaptability when dealing with C-IF uncertainty. Conflicting data 
processing procedures in the two existing C-IF TOPSIS methods create another research 
limitation and gap, which serves as the foundation for the second motivation.

Aside from that, the distances between target alternatives and ideal/anti-ideal choices 
are the core concept of TOPSIS, as this is the primary measure of relative closeness coef-
ficients (Alkan and Kahraman 2022a; Han et al. 2022; Sadabadi et al. 2022). Because of 
this, in C-IF uncertain circumstances, distance measurement is the most important key ele-
ment in the development of extended TOPSIS. Distance is critical in almost all applica-
tion problems related to discriminating decision information and comparing performance 
(Alkan and Kahraman 2022a; Deng and Chen 2022; Szmidt 2014), especially in uncertain 
circumstances such as the center of gravity distance for fuzzy numbers (Das et al. 2019), 
the distance and similarity measures for IF sets (Garg and Kumar 2018; Garg and Rani 
2021), the exponential distance for interval-valued IF sets (Garg and Kumar 2020), and the 
distance measures for type 2 IF sets (Garg and Singh 2020; Singh and Garg 2017). Dis-
tance metrics, in particular, are not only widely used in decision theory and analysis, but 
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are also crucial in a variety of important domains such as database management, machine 
learning, knowledge discovery and data mining, information theory, logistics, computer-
aided manufacturing, and control theory (Szmidt 2014; Talukdar and Dutta 2021; Tiwari 
and Gupta 2022). However, the distance measures defined in IF or type-2 IF sets cannot 
be applied or extended to C-IF environments. The main reason for this is that previous 
distance measures did not consider intuitionistic ambiguity data for circular structures, nor 
did they consider the radius of the circular ambiguity range. Accordingly, establishing a 
metric space is an essential and critical issue in C-IF contexts. Metric space is a fundamen-
tal concept in mathematics; its metric is a distance function that can delineate the measure 
of separation between any two C-IF information within the C-IF environments. As a result, 
Atanassov and Marinov (2021) propounded four new distance functions for C-IF sets con-
sisting of the three-term based Hamming distance derived from IF Hamming distance, the 
four-term based Hamming distance stemmed from Szmidt and Kacprzyk’s (2000) form of 
IF Hamming distance, the three-term based Euclidean distance derived from IF Euclidean 
metric, and the four-term based Euclidean distance stemmed from Szmidt and Kacprzyk’s 
(2000) form of IF Euclidean distance. The four new C-IF distance metrics are easy to use, 
but they have some limitations. To begin with, Atanassov and Marinov’s C-IF distance for-
mulas are only applicable when the radii of the C-IF values in a single C-IF set must be the 
same length. The advantages of applying the C-IF theory to non-homogeneous uncertainty 
are diminished by this supposition. Moreover, this supposition restricts the generality and 
flexibility of C-IF decision information and reduces the effectiveness of applying C-IF 
theory to real-world issues. The applicability of the C-IF distance formula proposed by 
Atanassov and Marinov (2021) is therefore severely constrained under such an assumption. 
Second, the Manhattan metric model and the Euclidean metric model serve as the founda-
tion for the four new distance formulas. However, the Chebyshev metric model, which is 
commonly used in practical problems, is not covered in the existing literature. Further-
more, generalized forms of C-IF distance measures, such as Minkowski distance (which 
can be thought of as a generalization of Manhattan distance and Euclidean distance), are 
not studied in the current C-IF literature. The aforementioned constraints have resulted in 
research gaps that must be filled as soon as possible, forming the third motivation.

Given the research gaps and motivations, the overall goal of this study is to develop 
advanced C-IF Minkowski distance measures and to deliver an evolved C-IF TOPSIS 
methodology to manage the MCDA problem in the presence of C-IF uncertainty. Measur-
ing the distance between C-IF values or C-IF sets is critical for quantifying the separation 
between C-IF uncertain data and distinguishing C-IF information. To manipulate indis-
tinct and imperfect information in the C-IF TOPSIS procedure, decision-makers would 
have to employ appropriate C-IF distance metrics to clarify the information content and 
take befitting measurements to process and differentiate the performance information. The 
C-IF distance formulas proposed by Atanassov and Marinov (2021) do not account for the 
fact that elements in the C-IF set may have different radii. These assumptions restrict the 
applicability of their C-IF distance formulations. Further to that, Atanassov and Marinov’s 
distance formulas only exploited the Manhattan and Euclidean distance models; the Che-
byshev distance model, which is commonly used in practical problems, was not discussed. 
This research establishes two general C-IF distance metrics that cover the existing four 
C-IF distance metrics, to address the limitations of the existing C-IF distance metrics and 
increment their flexibility. Based on three- and four-term approaches, this research illus-
trates generalized representations of two types of C-IF distance measures, dubbed C-IF 
Minkowski distance measures. The four-term representation takes into account the C-IF 
set’s radius, membership, nonmembership, and hesitation components; additionally, the 
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three-term representation indicates that the radius, membership, and nonmembership com-
ponents are considered. Moreover, this study explores certain significant properties of 
these two evolved C-IF Minkowski distance measures. This study constructs an easy-to-
operate C-IF TOPSIS technique based on four basic architectures, including four combina-
tions of displaced and fixed anchoring frameworks and using three- and four-term-based 
C-IF Minkowski metrics, to advance a C-IF TOPSIS methodology for treating the MCDA 
issue by incorporating the C-IF Minkowski distance measures. The anchoring mechanism 
includes displaced (or fixed) ideal and anti-ideal C-IF characteristics that can be employed 
as anchor points in the C-IF TOPSIS process to formulate subsequent compromise indica-
tors. The displaced (or fixed) anchoring mechanism consists of identifying displaced (or 
fixed) ideal ratings and displaced (or fixed) anti-ideal ratings, constructing displaced (or 
fixed) ideal and anti-ideal C-IF characteristics, and determining relative closeness coeffi-
cients using C-IF Minkowski distance measures with the three- or four-term representation 
frame. By comparing the relative closeness coefficients, the best compromise solution to 
support intelligent decision analysis in complex and uncertain environments can be deter-
mined. Finally, this study employs the evolved C-IF TOPSIS methodology to investigate 
the assessment and selection of appropriate sites for large-scale epidemic hospitals. This 
research conducts a comparative analysis and explores the applied results in comparison to 
other approaches to validate the applicability, robustness, and flexibility of the current C-IF 
TOPSIS technique.

The remainder of this paper is structured as follows. Section 2 characterizes some fun-
damental expressions of C-IF sets. Section 3 presents two evolved C-IF Minkowski dis-
tance measures based on three- and four-term approaches to differentiating C-IF infor-
mation. Section  4 devotes an efficacious C-IF TOPSIS methodology to multiple criteria 
analysis for decision support. Section 5 explores a realistic application for epidemic hospi-
tal siting to illustrate the proposed executive procedure, and comparative research and dis-
cussions are conducted to substantiate the strengths of the initiated methodology. Section 6 
presents conclusive outcomes as well as promising future research questions.

2 � Elementary definitions of C‑IF sets

The C-IF set concept generalizes the IF set, which uses a circle to express the object’s 
uncertainty, with the center of the circle consisting of membership and nonmembership 
degrees. Preliminary definitions of IF sets and C-IFS are presented briefly in this section.

Definition 1  (Atanassov 1986) Let Θ be a symbol for a finite universe of discourse. An IF 
set ϑ is defined in Θ and explained in the following format:

where the degree of membership (i.e., validity) m�(�) ∶ Θ → [0, 1] , the degree of non-
membership (i.e., non-validity) n�(�) ∶ Θ → [0, 1] , and m�(�) + n�(�) ≤ 1 for each element 
� ∈ Θ associated with ϑ. The degree of hesitancy (i.e., indeterminacy) corresponding to 
the IF value (m�(�), n�(�)) is generated as h�(�) = 1 − m�(�) − n�(�).

(1)� =
�⟨�,m�(�), n�(�)⟩�� ∈ Θ

�
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Definition 2  (Atanassov 2020; Atanassov and Marinov 2021) Allow 
L∗ =

�
⟨� , � �⟩���� , �

�

∈ [0, 1]and� + � � ≤ 1

�
 to be an indication of an L-fuzzy set. A C-IF 

set  C that has the following format in a given finite universe of discourse Θ:

where the degree of membership (i.e., validity) mC(�) ∶ Θ → [0, 1] , the degree of non-
membership (i.e., non-validity) nC(�) ∶ Θ → [0, 1] , and mC(�) + nC(�) ≤ 1 for each 
� ∈ Θ belonging to C . Moreover, the function Or externalizes a circle, whose radius is 
rC(�) ∶ Θ → [0,

√
2] and whose center is (mC(�), nC(�)) ; the expression is as follows:

The degree of hesitancy (i.e., indeterminacy) for the pair (mC(�), nC(�)) is produced in 
this fashion:

Definition 3  (Atanassov 2020; Boltürk and Kahraman 2022) Let 
�� = (mC�

(�), nC� (�);rC� (�)) and ��� = (mC��
(�), nC�� (�);rC�� (�)) signify two C-IF values embed-

ded in the C-IF sets C� and C�′ , respectively. Fundamental operational laws of intersection, 
union, addition, and multiplication involving the min and max types, as well as multiplica-
tion by and power of a scalar � ≥ 0 , are stated in this order:

(2)C =
�⟨�,mC(�), nC(�);rC(�)⟩�� ∈ Θ

�
=
�⟨�,Or

�
mC(�), nC(�)

�⟩�� ∈ Θ
�

(3)

Or

(
mC (�), nC (�)

)
=

{
� , � �

|||||
� , � � ∈ [0, 1] and

√(
mC (�) − �

)2
+
(
nC (�) − � �

)2
≤ rC (�)

}
∩ L

∗

=

{
� , � �

|||||
� , � � ∈ [0, 1],

√(
mC (�) − �

)2
+
(
nC (�) − � �

)2
≤ rC (�), and � + � � ≤ 1

}

(4)hC(�) = 1 − mC(�) − nC(�).

(5)��∩min��� =
(
min

{
mC�

(�),mC��
(�)

}
,max

{
nC� (�), nC�� (�)

}
;min

{
rC� (�), rC�� (�)

})

(6)��∩max��� =
(
min

{
mC�

(�),mC��
(�)

}
,max

{
nC� (�), nC�� (�)

}
;max

{
rC� (�), rC�� (�)

})

(7)��∪min��� =
(
max

{
mC�

(�),mC��
(�)

}
,min

{
nC� (�), nC�� (�)

}
;min

{
rC� (�), rC�� (�)

})

(8)��∪max��� =
(
max

{
mC�

(�),mC��
(�)

}
,min

{
nC� (�), nC�� (�)

}
;max

{
rC� (�), rC�� (�)

})

(9)
𝜍𝜄⊕min𝜍𝜄� =

(
mC𝜄

(𝜃) + mC𝜄�
(𝜃) − mC𝜄

(𝜃) ⋅ mC𝜄�
(𝜃), nC𝜄 (𝜃) ⋅ nC𝜄� (𝜃);min

{
rC𝜄 (𝜃), rC𝜄� (𝜃)

})

(10)
𝜍𝜄⊕max𝜍𝜄� =

(
mC𝜄

(𝜃) + mC𝜄�
(𝜃) − mC𝜄

(𝜃) ⋅ mC𝜄�
(𝜃), nC𝜄 (𝜃) ⋅ nC𝜄� (𝜃);max

{
rC𝜄 (𝜃), rC𝜄� (𝜃)

})

(11)
𝜍𝜄⊗min𝜍𝜄� =

(
mC𝜄

(𝜃) ⋅ mC𝜄�
(𝜃), nC𝜄 (𝜃) + nC𝜄� (𝜃) − nC𝜄 (𝜃) ⋅ nC𝜄� (𝜃);min

{
rC𝜄 (𝜃), rC𝜄� (𝜃)

})

(12)
𝜍𝜄⊗max𝜍𝜄� =

(
mC𝜄

(𝜃) ⋅ mC𝜄�
(𝜃), nC𝜄 (𝜃) + nC𝜄� (𝜃) − nC𝜄 (𝜃) ⋅ nC𝜄� (𝜃);max

{
rC𝜄 (𝜃), rC𝜄� (𝜃)

})
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The C-IF set serves as a comprehensive framework for the IF set, the geometric represen-
tation of which is sketched in Fig. 1. The graph depicts the distribution space of IF and 
C-IF values for a triangle in the first quadrant with vertices (0, 0), (1, 0), and (0, 1). The 
IF value is explained by the point in the triangle with coordinates (m�(�), n�(�)) , while 
the C-IF value is explained by the circle Or with center (mC(�), nC(�)) and radius rC(�) . 
As defined in Eq.  (3), Or(mC(�), nC(�)) must satisfy the constraints in L∗ , so the circle 
Or can take five different forms, as portrayed in the graph. In the event that rC(�) = 0 for 
all � ∈ Θ , the C-IF set C composed of C-IF values will degenerate into an IF set; that is, 
C =

�⟨�,O0(mC(�), nC(�))⟩�� ∈ Θ
�
=
�⟨�,m�(�), n�(�)⟩�� ∈ Θ

�
= �.

Definition 4  (Atanassov and Marinov 2021) Let card(Θ) signify the cardinality of 
a given finite universe of discourse Θ . Consider two C-IF sets defined in Θ , and assume 
that rC� (�) = rC� and rC�� (�) = rC�� for all � ∈ Θ , i.e., C� =

�⟨�,mC�
(�), nC� (�);rC�⟩�� ∈ Θ

�
 

and C�� =
�⟨�,mC��

(�), nC�� (�);rC�� ⟩�� ∈ Θ
�
 . The Manhattan (so-called Hamming) distance 

measures between two C-IF sets C� and C�′ based on the three- and four-term approaches are 
defined in the following order:

(13)𝜛 ⊙ 𝜍𝜄 =
(
1 − (1 − mC𝜄

(𝜃))𝜛 , (nC𝜄 (𝜃))
𝜛
;rC𝜄 (𝜃)

)

(14)(��)
� =

(
(mC�

(�))� , 1 − (1 − nC� (�))
�
;rC� (�)

)

(15)

�M
(3)

�
C �, C ��

�
=

1

2

⎛⎜⎜⎝

���rC �
− rC ��

���√
2

+
1

2 ⋅ card(Θ)

�
�∈Θ

����mC �
(�) − mC ��

(�)
��� +

���nC �
(�) − nC ��

(�)
���
�⎞⎟⎟⎠

(16)

�M

(4)
(C�, C�� ) =

1

2

⎛⎜⎜⎝

���rC� − rC��
���√

2

+
1

2 ⋅ card(Θ)

�
�∈Θ

����mC�
(�) − mC��

(�)
��� +

���nC� (�) − nC��
(�)

��� +
���hC� (�) − hC

�
�
(�)

���
��

Fig. 1   Geometrical representa-
tion of a C-IF set
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Furthermore, the Euclidean distance measures between C� and C�′ based on the three- and 
four-term approaches are described in the following order:

3 � Evolved C‑IF Minkowski distance measures

This section will look into new generalized representations of distance metrics that are 
suitable to the context of C-IF sets. A metric (topological) space is treated as a fundamen-
tal space satisfying certain axioms (Das et al. 2019; Garg and Singh 2020; Singh and Garg 
2017). Measuring the distance between C-IF uncertain sets is crucial for quantifying the 
degree of separation between C-IF sets and differentiating C-IF information. Furthermore, 
the C-IF distance metric can furnish establish more structure than the general topological 
space. To successfully manage imperfect or uncertain information, decision-makers need 
to exploit a suitable model to elucidate the information content, and appropriate measures 
to process and distinguish the information. Among these measures, the notion of distance 
metric epitomizes a leading role (Garg and Kumar 2018, 2020; Garg and Rani 2021). Atan-
assov and Marinov (2021) established four fresh distance measures applicable to the C-IF 
environment; however, they assumed that the radii associated with the two C-IF sets used 
to calculate the distance are the same. Specifically, Atanassov and Marinov established the 
special assumption that all elements within a specific C-IF set have the same radius, a nar-
row assumption that limits the applicability of the four new distance measures. In addition, 
their distance formulas do not take into account an all-encompassing distance measure-
ment of the general type. This section will propose two general C-IF distance metrics, cov-
ering Atanassov and Marinov’s four C-IF distance measures, to loosen the restrictions on 
the current C-IF distance measures and increase their resilience.

This study considers two types of generalized representations of C-IF distance meas-
ures (see Fig. 2), based on the three- and four-term approaches, known as C-IF Minkowski 
distance measures. To be more specific, the four-term representation takes into account 
the radius, membership, nonmembership, and hesitation components that characterize C-IF 
sets. The three-term representation takes into account only the radius, membership, and 
nonmembership components. This study also discusses the key properties of these two new 
Minkowski metrics.

As previously stated, Atanassov and Marinov (2021) unfolded four new distance met-
rics for quantifying the degree of separation between C-IF sets. The four new C-IF distance 
metrics are very useful and easy to operate, but they do have some limitations. For start-
ers, Atanassov and Marinov’s C-IF distance formulas ignore the fact that elements in a 
C-IF set may have different radii. As shown in the formulas of Definition 4, the radius of 
all elements in the C-IF set C� is equal to rC� (i.e., rC� (�) = rC� for each � ∈ Θ ); similarly, the 
radius of all elements in the C-IF set C�′ is equal to rC�′ (i.e., rC�� (�) = rC�� for each � ∈ Θ ). 
Such assumptions are so strong that the applicability of Definition 4 is severely limited. 
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Second, the four distance formulas are the Manhattan distance measures using the three- 
and four-term approaches, and the Euclidean distance measures using the three- and four-
term approaches. The Chebyshev distance metrics, which are commonly used in practical 
problems, are, however, not discussed in the existing literature. To relax the constraints of 
the current C-IF distance measures and extend their resiliency, this study will put forward 
two general C-IF distance metrics, covering the foregoing four C-IF distance measures 
in Definition 4, to provide the metric resiliency and broaden the applicability of decision 
analysis. In the following, this study exploits the three- and four-term representations to 
present the two C-IF Minkowski metrics for C-IF values, revealed in the first subsection 
below. Following this, the second subsection delineates the two C-IF Minkowski metrics 
for C-IF sets based on the three- and four-term representations.

3.1 � C‑IF Minkowski metrics for C‑IF values

Definition 5  Let a positive integer � indicate the metric parameter in C-IF set-
tings, where � ∈ Z+ . Consider any two C-IF values �� = (mC�

(�), nC� (�);rC� (�)) and 
��� = (mC��

(�), nC�� (�);rC�� (�)) . The C-IF Minkowski distance measures separating �� and ��′ 
based on the three- and four-term approaches are elucidated in this order:

(19)
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�
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�
�
(�)

���
�

+
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�
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Fig. 2   Proposed generalized representations of C-IF distance measures
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Remark 1  In most cases, the C-IF Minkowski distance measures D�

(3)
(��, ��� ) and D�

(4)
(��, ��� ) 

can be utilized with a metric parameter � of 1 or 2, which are equivalent to the C-IF Man-
hattan and C-IF Euclidean distances between the two C-IF values �� and ��′ , respectively. 
Using the three- and four-term representations, the C-IF Manhattan distance measures are 
portrayed this wise:

Moreover, the C-IF Euclidean distance measures are exhibited in this fashion:

In the limiting situation of � reaching infinity, the C-IF Minkowski distance measures 
correspond to the C-IF Chebyshev distance measures between �� and ��′ , as demonstrated:

where D∞
(3)

 and D∞
(4)

 indicate lim�→∞D
�

(3)
 and lim�→∞D

�

(4)
 , respectively.D�

(3)
(��, ��� )

Example 1  Consider two C-IF values �� =(0.37, 0.13; 1) and ��� =(0.51, 0.24; 
√
2 ). Fol-

lowing the three-term approach, the C-IF Manhattan distance D1

(3)
(��, ��� ) , C-IF Euclid-

ean distance D2

(3)
(��, ��� ) , and C-IF Chebyshev distance D∞

(3)
(��, ��� ) can be determined 

using Eqs. (21), (23), and (25), respectively. Based on the four-term approach, the three 
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C-IF distances D1

(4)
(��, ��� ) , D

2

(4)
(��, ��� ) , and D∞

(4)
(��, ��� ) are derived using Eqs. (22), 

(24), and (26), respectively. The relevant calculation process and results are depicted in 
Table 1. As revealed in the table, the C-IF distances determined by the three- and four-
term approaches fulfill the relationships D∞

(3)
(𝜍𝜄, 𝜍𝜄� ) > D2

(3)
(𝜍𝜄, 𝜍𝜄� ) > D1

(3)
(𝜍𝜄, 𝜍𝜄� ) and 

D∞
(4)
(𝜍𝜄, 𝜍𝜄� ) = D1

(4)
(𝜍𝜄, 𝜍𝜄� ) > D2

(4)
(𝜍𝜄, 𝜍𝜄� ) , respectively. Regardless of �=1, �=2, or � → ∞ , 

the C-IF distances generated by the four-term approach are greater than those yielded by 
the three-term approach, specifically, D1

(4)
(𝜍𝜄, 𝜍𝜄� ) > D1

(3)
(𝜍𝜄, 𝜍𝜄� ) , D

2

(4)
(𝜍𝜄, 𝜍𝜄� ) > D2

(3)
(𝜍𝜄, 𝜍𝜄� ) , 

and D∞
(4)
(𝜍𝜄, 𝜍𝜄� ) > D∞

(3)
(𝜍𝜄, 𝜍𝜄� ) . More exploration of the relationship between these distances 

will be discussed systematically in the following theorems.

Theorem 1  Based on the three-term representation, the C-IF Minkowski distance meas-
ure D�

(3)
 for any three C-IF values ��, ��′ , and ��ε fulfills the following properties:

(T1.1) Non-negativity	� D�

(3)
(��, ��� ) ≥ 0 for all � ∈ Z+;

(T1.2) Boundedness	� D�

(3)
(��, ��� ) ≤ 1 for all � ∈ Z+;

(T1.3) Reflexivity	� D�

(3)
(��, ��) = 0 for all � ∈ Z+;

(T1.4) Symmetry	� D�

(3)
(��, ��� ) = D�

(3)
(��� , ��) for all � ∈ Z+;

(T1.5) Separability	� D�

(3)
(��, ��� ) = 0 for all � ∈ Z+ if and only if �� = ���;

(T1.6) Triangle inequality	� D�

(3)
(��, ��� ) ≤ D�

(3)
(��, ��ε) +D�

(3)
(��ε, ��� ) when � = 1 and 

� → ∞.

Proof  (T1.1) Because of the absolute value properties, the non-negative property can be 
deduced immediately.

(T1.2) As stated in Definition 2, rC(�) ∶ Θ → [0,
√
2] and mC(�), nC(�) ∶ Θ → [0, 1] are 

known. These axiomatic conditions lead to the conclusion that �rC� (�) − rC
�
�
(�)� ≤

√
2 , 

|mC�
(�) − mC

�
�
(�)| ≤ 1 , and |nC� (�) − nC

�
�
(�)| ≤ 1 . It is a direct result of the inequality 

|mC�
(�) − mC

�
�
(�)|� + |nC� (�) − nC

�
�
(�)|� ≤ 2 . As a result, it concludes that 

D�

(3)
(��, ��� ) ≤ (1∕2){(1∕

√
2) ⋅

√
2 + [(1∕2) ⋅ 2](1∕�)} = 1 for all � ∈ Z+.

(T1.3) and (T1.4) are trivially correct.
(T1.5) If �� = ��� , one can obtain mC�

(�) = mC
�
�
(�),nC� (�) = nC

�
�
(�) , and rC� (�) = rC

�
�
(�) , 

and therefore,D�

(3)
(��, ��� ) = 0 for all � ∈ Z+ . Conversely, if D�

(3)
(��, ��� ) = 0 for all � ∈ Z+ , 

the three equations |mC�
(�) − mC

�
�
(�)| = 0 , |nC� (�) − nC

�
�
(�)| = 0 , and |rC� (�) − rC

�
�
(�)| = 0 

should be satisfied. As a result, one can directly conclude that 
(mC�

(�), nC� (�);rC� (�)) = (mC��
(�), nC�� (�);rC�� (�)) . The sufficiency and necessity for separabil-

ity are confirmed, confirming the validity of (T1.5).
(T1.6) Concerning the three radii rC� (�) , rC�� (�) , and rC�ε (�) associated with the C-IF val-

ues ��, ��′ , and ��ε , respectively, the following inequality can be generated:

|||rC� (�) − rC
�
�
(�)

||| =
|||rC� (�) − rC�ε (�) + rC�ε (�) − rC

�
�
(�)

||| ≤
|||rC� (�) − rC�ε (�)

||| +
|||rC�ε (�) − rC

�
�
(�)

|||
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It immediately follows that 
(1∕

√
2) ⋅ �rC� (�) − rC

�
�
(�)� ≤ (1∕

√
2) ⋅ �rC� (�) − rC�ε (�)� + (1∕

√
2) ⋅ �rC�ε (�) − rC

�
�
(�)� . Simi-

larly, the following two inequalities emerge:

The following outcomes can be yielded by fusing both sides of the inequalities in Eqs. 
(27) and (28):

Based on the aforementioned outcomes, the validity of the triangle inequality when 
� = 1 , i.e., D1

(3)
(��, ��� ) ≤ D1

(3)
(��, ��ε) +D1

(3)
(��ε, ��� ) , can be confirmed. Following that, by 

taking the maximum operation of both sides of the inequalities in Eqs. (27) and (28), it 
gives substance to:

Based on this, the authenticity of the triangle inequality when � → ∞ , i.e., 
D∞

(3)
(��, ��� ) ≤ D∞

(3)
(��, ��ε) +D∞

(3)
(��ε, ��� ) , can be confirmed, completing the proof.

Theorem 2  Based on the four-term representation, the C-IF Minkowski distance measure 
D�

(4)
 for any three C-IF values ��, ��′ , and ��ε fulfills the following properties:

(T2.1) Non-negativity	� D�

(4)
(��, ��� ) ≥ 0 for all � ∈ Z+;

(T2.2) Boundedness	� D�

(4)
(��, ��� ) ≤ 1 for all � ∈ Z+;

(T2.3) Reflexivity	� D�

(4)
(��, ��) = 0 for all � ∈ Z+;

(T2.4) Symmetry	� D�

(4)
(��, ��� ) = D�

(4)
(��� , ��) for all � ∈ Z+;

(T2.5) Separability	� D�

(4)
(��, ��� ) = 0 for all � ∈ Z+ if and only if �� = ���;

(T2.6) Triangle inequality	� D�

(4)
(��, ��� ) ≤ D�

(4)
(��, ��ε) +D�

(4)
(��ε, ��� ) when � = 1 and 

� → ∞.

Proof  The proofs of (T2.1)−(T2.6) resemble those of (T1.1)−(T1.6), respectively.

(27)

|||mC�
(�) − mC

�
�
(�)

||| =
|||mC�

(�) − mC�ε
(�) + mC�ε

(�) − mC
�
�
(�)

||| ≤
|||mC�

(�) − mC�ε
(�)

||| +
|||mC�ε

(�) − mC
�
�
(�)

|||

(28)

|||nC� (�) − nC
�
�
(�)

||| =
|||nC� (�) − nC�ε (�) + nC�ε (�) − nC

�
�
(�)

||| ≤
|||nC� (�) − nC�ε (�)

||| +
|||nC�ε (�) − nC

�
�
(�)

|||

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
|||
)

≤
1

2

(|||mC �
(�) − mC ���

(�)
||| +

|||nC �
(�) − nC ���

(�)
|||
)

+
1

2

(|||mC ���
(�) − mC ��

(�)
||| +

|||nC ���
(�) − nC ��

(�)
|||
)

max

{|||mC �
(�) − mC ��

(�)
|||,
|||nC �

(�) − nC ��
(�)

|||
}

≤ max

{|||mC �
(�) − mC ���

(�)
|||,
|||nC �

(�) − nC ���
(�)

|||
}

+max

{|||mC ���
(�) − mC ��

(�)
|||,
|||nC ���

(�) − nC ��
(�)

|||
}
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Following Theorems 1 and 2, the C-IF Minkowski distance measures D�

(3)
 and D�

(4)
 are 

semi-metrics for C-IF values because they fulfill the essential conditions of reflexivity 
revealed in (T1.3) and (T2.3), symmetry in (T1.4) and (T2.4), and separability in (T1.5) 
and (T2.5). Furthermore, the C-IF Manhattan distance measures D1

(3)
 and D1

(4)
 , as well as 

the C-IF Chebyshev distance measures D∞
(3)

 and D∞
(4)

 , are well-defined metrics for C-IF 
information because they satisfy the essential conditions of reflexivity exhibited in (T1.3) 
and (T2.3), symmetry in (T1.4) and (T2.4), separability in (T1.5) and (T2.5), and triangle 
inequalities in (T1.6) and (T2.6).

Theorem 3  The following properties are valid for any two C-IF values �� and ��′:

(T3.1)	� D�

(3)
(��, ��� ) ≤ D�

(4)
(��, ��� ) for all � ∈ Z+;

(T3.2) 	� D�

(3)

(
��, ���

)
= D�

(4)
(��, ��� ) if hC� (�) = hC�� (�);

(T3.3)	� D�

(3)
(��, ��� ) ≤ D∞

(3)
(��, ��� ) for all � ∈ Z+;

(T3.4)	� D�

(4)
(��, ��� ) ≤ D∞

(4)
(��, ��� ) for all � ∈ Z+.

Proof  (T3.1) and (T3.2) are trivially correct.

(T3.3) First, consider the case where � = 1 . It is apparent that |mC�
(�) − mC

�
�
(�)| ≤ max

{|mC�
(�) − mC

�
�
(�)|, |nC� (�) − nC

�
�
(�)|} and 

|nC� (�) − nC
�
�
(�)| ≤ max{|mC�

(�) − mC
�
�
(�)|, |nC� (�) − nC

�
�
(�)|} . By aggregating both sides 

of the two inequalities, it can be generated that 
|mC�

(�) − mC
�
�
(�)| + |nC� (�) − nC

�
�
(�)| ≤ 2 ⋅max{|mC�

(�) − mC
�
�
(�)|, |nC� (�) − nC

�
�
(�)|} . As a 

consequence, one can obtain 
(1∕2) ⋅ (|mC�

(�) − mC
�
�
(�)| + |nC� (�) − nC

�
�
(�)|) ≤ max{|mC�

(�) − mC
�
�
(�)|, |nC� (�) − nC

�
�
(�)|} . 

Accordingly, it draws the inference that D1

(3)
(��, ��� ) ≤ D∞

(3)
(��, ��� ) . Furthermore, as a result 

of the following outcome:

which leads to the conclusion D�

(3)
(��, ��� ) ≤ D∞

(3)
(��, ��� ).

(T3.4) Remember, mC�
(�) + nC� (�) + hC� (�) = 1 , and mC��

(�) + nC�� (�) + hC�� (�) = 1 . Con-
cerning the comparisons between mC�

(�) and mC
�
�
(�) , nC� (�) and nC

�
�
(�) , and hC� (�) and hC

�
�
(�) , 

the contrast outcomes have six situations, consisting of (i) 
mC�

(�) ≥ mC
�
�
(�), nC� (�) ≥ nC

�
�
(�), hC� (�) ≤ hC

�
�
(�) , (ii) 

mC�
(�) ≥ mC

�
�
(�), nC� (�) ≤ nC

�
�
(�), hC� (�) ≥ hC

�
�
(�) , (iii) 

[
1

2

(|||mC �
(�) − mC ��

(�)
|||
�

+
|||nC �

(�) − nC ��
(�)

|||
�
)]

≤

[(
1

2

|||mC �
(�) − mC ��

(�)
||| +

1

2

|||nC �
(�) − nC ��

(�)
|||
)�

] 1

�

=
1

2

|||mC �
(�) − mC ��

(�)
||| +

1

2

|||nC �
(�) − nC ��

(�)
|||

≤ max

{|||mC �
(�) − mC ��

(�)
|||,
|||nC �

(�) − nC ��
(�)

|||
}
,
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mC�
(�) ≤ mC

�
�
(�), nC� (�) ≥ nC

�
�
(�), hC� (�) ≥ hC

�
�
(�) , (iv) 

mC�
(�) ≥ mC

�
�
(�), nC� (�) ≤ nC

�
�
(�), hC� (�) ≤ hC

�
�
(�) , (v) 

mC�
(�) ≤ mC

�
�
(�), nC� (�) ≥ nC

�
�
(�), hC� (�) ≤ hC

�
�
(�) , and (vi) 

mC�
(�) ≤ mC

�
�
(�), nC� (�) ≤ nC

�
�
(�), hC� (�) ≥ hC

�
�
(�) . In Case (i), the presuppositions of 

mC�
(�) ≥ mC

�
�
(�) , nC� (�) ≥ nC

�
�
(�) , and hC� (�) ≤ hC

�
�
(�) give substance to the following results:

In Case (ii), the presuppositions of mC�
(�) ≥ mC

�
�
(�) , nC� (�) ≤ nC

�
�
(�) , and hC� (�) ≥ hC

�
�
(�) 

demonstrate the truth of the following outcomes:

In Case (iii), the presuppositions of mC�
(�) ≤ mC

�
�
(�) , nC� (�) ≥ nC

�
�
(�) , and 

hC� (�) ≥ hC
�
�
(�) produce the following outcomes:

In Case (iv), the presuppositions of mC�
(�) ≥ mC

�
�
(�) , nC� (�) ≤ nC

�
�
(�) , and 

hC� (�) ≤ hC
�
�
(�) generate the following outcomes:

In Case (v), the presuppositions of mC�
(�) ≤ mC

�
�
(�) , nC� (�) ≥ nC

�
�
(�) , and hC� (�) ≤ hC

�
�
(�) 

yield the following outcomes:

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

=
1

2

(
mC �

(�) − mC ��
(�) + nC �

(�) − nC ��
(�) − hC �

(�) + hC ��
(�)

)

=
1

2

[
mC �

(�) − mC ��
(�) + nC �

(�) − nC ��
(�) −

(
1 − mC �

(�) − nC �
(�)

)
+
(
1 − mC ��

(�) − nC ��
(�)

)]

=
1

2

(
2 ⋅ mC �

(�) − 2 ⋅ mC ��
(�) + 2 ⋅ nC �

(�) − 2 ⋅ nC ��
(�)

)

= mC �
(�) − mC ��

(�) + nC �
(�) − nC ��

(�) = −hC �
(�) + hC ��

(�) =
|||hC �

(�) − hC ��
(�)

|||.

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

=
1

2

[
mC �

(�) − mC ��
(�) − nC �

(�) + nC ��
(�) +

(
1 − mC �

(�) − nC �
(�)

)
−
(
1 − mC ��

(�) − nC ��
(�)

)]

=
1

2

(
−2 ⋅ nC �

(�) + 2 ⋅ nC ��
(�)

)
= −nC �

(�) + nC ��
(�) =

|||nC �
(�) − nC ��

(�)
|||.

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

=
1

2

[
−mC �

(�) + mC ��
(�) + nC �

(�) − nC ��
(�) +

(
1 − mC �

(�) − nC �
(�)

)
−
(
1 − mC ��

(�) − nC ��
(�)

)]

=
1

2

(
−2 ⋅ mC �

(�) + 2 ⋅ mC ��
(�)

)
= −mC �

(�) + mC ��
(�) =

|||mC �
(�) − mC ��

(�)
|||.

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

=
1

2

[
mC �

(�) − mC ��
(�) − nC �

(�) + nC ��
(�) −

(
1 − mC �

(�) − nC �
(�)

)
+
(
1 − mC ��

(�) − nC ��
(�)

)]

=
1

2

(
2 ⋅ mC �

(�) − 2 ⋅ mC ��
(�)

)
= mC �

(�) − mC ��
(�) =

|||mC �
(�) − mC ��

(�)
|||.
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In Case (vi), the presuppositions of mC�
(�) ≤ mC

�
�
(�) , nC� (�) ≤ nC

�
�
(�) , and 

hC� (�) ≥ hC
�
�
(�) the produce following outcomes:

The following inequality can be deduced by summarizing the results obtained under the 
above presuppositions in in Cases (i) − (vi):

As a result, D1

(4)
(��, ��� ) ≤ D∞

(4)
(��, ��� ) . Furthermore, the following outcome is received:

As a result, it confirms the truth of D�

(4)
(��, ��� ) ≤ D∞

(4)
(��, ��� ) . This concludes the proof.

3.2 � C‑IF Minkowski metrics for C‑IF sets

In addition to the C-IF Minkowski distance measures between C-IF values described in the 
previous subsection, this subsection further introduces new distance metrics for C-IF sets 
based on the above distance measures.

Definition 6  Given a finite universe of discourse Θ (with the cardinality card(Θ) ) 
and a metric parameter � ∈ Z+ , the C-IF Minkowski distance measures separating 
the C-IF sets C� =

�⟨�,mC�
(�), nC� (�);rC� (�)⟩�� ∈ Θ

�
 (involving hesitancy hC� (�) ) and 

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

=
1

2

[
−mC �

(�) + mC ��
(�) + nC �

(�) − nC ��
(�) −

(
1 − mC �

(�) − nC �
(�)

)
+
(
1 − mC ��

(�) − nC ��
(�)

)]

=
1

2

(
2 ⋅ nC �

(�) − 2 ⋅ nC ��
(�)

)
= nC �

(�) − nC ��
(�) =

|||nC �
(�) − nC ��

(�)
|||.

1

2

(|||mC�
(�) − mC��

(�)
||| +

|||nC� (�) − nC��
(�)

||| +
|||hC� (�) − hC��

(�)
|||
)

=
1

2

[
−mC�

(�) + mC��
(�) − nC�

(�) + nC��
(�) +

(
1 − mC�

(�) − nC�
(�)

)
−
(
1 − mC��

(�) − nC��
(�)

)]

=
1

2

(
−2 ⋅ mC�

(�) + 2 ⋅ mC��
(�) − 2 ⋅ nC�

(�) + 2 ⋅ nC��
(�)

)

= −mC�
(�) + mC��

(�) − nC�
(�) + nC��

(�) =
|||hC� (�) − hC��

(�)
|||.

1

2

(|||mC �
(�) − mC ��

(�)
||| +

|||nC �
(�) − nC ��

(�)
||| +

|||hC �
(�) − hC ��

(�)
|||
)

≤ max

{|||mC �
(�) − mC ��

(�)
|||,
|||nC �

(�) − nC ��
(�)

|||,
|||hC �

(�) − hC ��
(�)

|||
}

[
1

2

(|||mC �
(�) − mC ��

(�)
|||
�

+
|||nC �

(�) − nC ��
(�)

|||
�

+
|||hC �

(�) − hC ��
(�)

|||
�
)] 1

�

≤

[(
1

2

|||mC �
(�) − mC ��

(�)
||| +

1

2

|||nC �
(�) − nC ��

(�)
||| +

1

2

|||hC �
(�) − hC ��

(�)
|||
)�

] 1

�

=
1

2

|||mC �
(�) − mC ��

(�)
||| +

1

2

|||nC �
(�) − nC ��

(�)
||| +

1

2

|||hC �
(�) − hC ��

(�)
|||

≤ max

{|||mC �
(�) − mC ��

(�)
|||,
|||nC �

(�) − nC ��
(�)

|||,
|||hC �

(�) − hC ��
(�)

|||
}
.
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C�� =
�⟨�,mC��

(�), nC�� (�); rC�� (�)⟩�� ∈ Θ
�
 (involving hesitancy hC�� (�) ) based on the three- 

and four-term approaches are expounded in this order:xx

Remark 2  The C-IF Manhattan distance measures between two C-IF sets C� and C�′ are 
depicted as follows using the three- and four-term representations:

The C-IF Euclidean distance measures between C� and C�′ are drawn as follows:

The C-IF Chebyshev distance measures between C� and C�′ are depicted like this:

(29)

�
�

(3)

�
C�, C��

�
=

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC
�
�
(�)

���

+

�
1

2 ⋅ card(Θ)

�
�∈Θ

����mC�
(�) − mC

�
�
(�)

���
�

+
���nC� (�) − nC

�
�
(�)

���
�
�� 1

�

�

(30)

�
�

(4)
(C�, C�� ) =

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC��
(�)

���

+

�
1

2 ⋅ card(Θ)

�
�∈Θ

�����mC�
(�) − mC

�
�
(�)

����
�

+
���nC� (�) − nC��

(�)
���
�
+
���hC� (�) − hC��

(�)
���
�
�� 1

�

⎫⎪⎬⎪⎭
.

(31)
�1

(3)
(C�, C�� ) =

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC��
(�)

���

+
1

2 ⋅ card(Θ)

�
�∈Θ

�����mC�
(�) − mC

�
�
(�)

���� +
����nC� (�) − nC

�
�
(�)

����
��

(32)

�1

(4)
(C�, C�� ) =

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC��
(�)

���

+
1

2 ⋅ card(Θ)

�
�∈Θ

����mC�
(�) − mC

�
�
(�)

��� +
���nC� (�) − nC

�
�
(�)

��� +
���hC� (�) − hC

�
�
(�)

���
��

(33)

�2

(3)
(C�, C�� ) =

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC��
(�)

���

+

�
1

2 ⋅ card(Θ)

�
�∈Θ

�
(mC�

(�) − mC
�
�
(�))2 +(nC� (�) − nC

�
�
(�))2

�� 1

2

�

(34)

�2

(4)
(C�, C�� ) =

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC��
(�)

���

+

�
1

2 ⋅ card(Θ)

�
�∈Θ

�
(mC�

(�) − mC
�
�
(�))2 +(nC� (�) − nC

�
�
(�))2 + (hC� (�) − hC

�
�
(�))2

�� 1

2

�
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(35)
�∞

(3)

�
C�, C��

�
=

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC
�
�
(�)

���
+

1

card(Θ)

�
�∈Θ

max
����mC�

(�) − mC
�
�
(�)

��� ,
���nC� (�) − nC

�
�
(�)

���
��

(36)

�∞
(4)

�
C�, C��

�
=

1

2

�
1√

2 ⋅ card(Θ)

�
�∈Θ

����rC� (�) − rC
�
�
(�)

����

+
1

card(Θ)

�
�∈Θ

max

�����mC�
(�) − mC

�
�
(�)

���� ,
����nC� (�) − nC

�
�
(�)

����,
����hC� (�) − hC

�
�
(�)

����
��

Table 2   Data and computation results of the C-IF distances in Example 2

�� Data embedded in the C-IF set C� Data embedded in the C-IF set C�′

mC�

(
��
)

nC�

(
��
)

rC�

(
��
)

hC�

(
��
)

mC�′

(
��
)

nC�′
(
��
)

rC�′
(
��
)

hC�′
(
��
)

�1 0.16 0.12 0.07 0.72 0.13 0.23 0.08 0.64
�2 0.28 0.60 0.06 0.12 0.28 0.48 0.10 0.24
�3 0.56 0.26 0.09 0.18 0.52 0.13 0.11 0.35

C-IF distance based on the three-term approach C-IF distance based on the four-term 
approach

�1

(3)
(C�, C�� ) �2

(3)
(C�, C�� ) �∞

(3)
(C�, C�� ) �1

(4)
(C�, C�� ) �2

(4)
(C�, C�� ) �∞

(4)

(
C�, C��

)

0.0441 0.0520 0.0682 0.0749 0.0714 0.0749

Fig. 3   Geometrical representa-
tion of the C-IF sets C� and C�′
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where �∞
(3)

 and �∞
(4)

 indicate lim�→∞�
�

(3)
 and lim�→∞�

�

(4)
 , respectively.

Example 2  Given a finite universe of discourse Θ = {�1, �2, �3} , consider two C-IF sets 
C� =

�⟨��,mC�

�
��
�
, nC�

�
��
�
;rC�

�
��
�⟩���� ∈ Θ

�
 (involving the degree of hesitancy hC�

(
��
)
 for 

�� ∈ Θ ) and C�� =
�⟨��,mC��

�
��
�
, nC��

�
��
�
;rC��

�
��
�⟩���� ∈ Θ

�
 (involving the degree of hesi-

tancy hC�′
(
��
)
 for �� ∈ Θ ). The detailed data embedded in C� and C�′ are shown in the upper 

part of Table 2. More precisely, the geometrical representation of C� and C�′ is portrayed in 
Fig. 3.

The cardinality of Θ is given as card(Θ) = 3 in this example. The C-IF Manhattan, 
Euclidean, and Chebyshev distances between C� and C�′ are derived using the three-term 
approach as follows:

Similarly, using the four-term approach, the C-IF Manhattan, Euclidean, and Chebyshev 
distances between C� and C�′ are as follows: �1

(4)
(C�, C�� ) = 0.0749 , �2

(4)
(C�, C�� ) = 0.0714 , and 

�∞
(4)

(
C�, C��

)
= 0.0749 . The C-IF distances calculated above are listed in the lower part of 

Table 2. As shown in the table, the C-IF Manhattan, Euclidean, and Chebyshev distances pro-
duced by the three-term approach are smaller than those rendered by the four-term approach, 
i.e., ��

(3)
(C�, C�� ) ≤ �

�

(4)
(C�, C�� ) for �=1, �=2, and � → ∞ . Additionally, it can be observed that 

�1

(3)

(
C𝜄, C𝜄�

)
< �2

(3)

(
C𝜄, C𝜄�

)
< �∞

(3)
(C𝜄, C𝜄� ) and �2

(4)

(
C𝜄, C𝜄�

)
< �1

(4)

(
C𝜄, C𝜄�

)
= �∞

(4)

(
C𝜄, C𝜄�

)
 

in this example. The following three theorems will systematically investigate the essential 
properties of these C-IF distances and their relationship.

Theorem 4  The C-IF Minkowski distance measure ��

(3)
 for any three C-IF sets C� , C�′ , and 

C�ε fulfills the following properties based on the three-term representation:

�1

(3)

�
C �, C ��

�
=

1

2

�
1√
2 ⋅ 3

(�0.07 − 0.08� + �0.06 − 0.10� + �0.09 − 0.11�) + 1

2 ⋅ 3
(�0.16 − 0.13�

+�0.12 − 0.23� + �0.28 − 0.28� + �0.60 − 0.48� + �0.56 − 0.52� + �0.26 − 0.13�)]
= 0.0441

�2

(3)

�
C �, C ��

�
=

1

2

��
1√
2 ⋅ 3

(�0.07 − 0.08� + �0.06 − 0.10� + �0.09 − 0.11�)

+
�

1

2 ⋅ 3

�
(0.16 − 0.13)2 + (0.12 − 0.23)2 + (0.28 − 0.28)2

+(0.60 − 0.48)2 + (0.56 − 0.52)2 + (0.26 − 0.13)2
1

2
= 0.0520

�∞
(3)

�
C �, C ��

�
=

1

2

�
1√
2 ⋅ 3

(�0.07 − 0.08� + �0.06 − 0.10� + �0.09 − 0.11�)

+
1

3
(max{�0.16 − 0.13�, �0.12 − 0.23�} +max {�0.28 − 0.28�,

�0.60 − 0.48�} �+max{�0.56 − 0.52�, 0.26 − 0.13�})] = 0.0682
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(T4.1) Non-negativity	� ��

(3)
(C�, C�� ) ≥ 0 for all � ∈ Z+;

(T4.2) Boundedness	� ��

(3)
(C�, C�� ) ≤ 1 for all � ∈ Z+;

(T4.3) Reflexivity	� ��

(3)
(C�, C�) = 0 for all � ∈ Z+;

(T4.4) Symmetry	� ��

(3)
(C�, C�� ) = �

�

(3)
(C�� , C�) for all � ∈ Z+;

(T4.5) Separability	� ��

(3)
(C�, C�� ) = 0 for all � ∈ Z+ if and only if C� = C��;

(T4.6) Triangle inequality	� ��

(3)
(C�, C�� ) ≤ �

�

(3)
(C�, C�ε) +�

�

(3)
(C�ε, C�� ) when � = 1 and 

� → ∞.

Proof  (T4.1) The non-negative property is demonstrated by a non-negative cardinality, i.e., 
card(Θ) ≥ 0 , and the non-negative property in (T1.1).

(T4.2) The cardinality card(Θ) is a measure of the number of elements contained in Θ . 
By reason of �rC� (�) − rC

�
�
(�)� ≤

√
2 and |mC�

(�) − mC
�
�
(�)|� + |nC� (�) − nC

�
�
(�)|� ≤ 2 (for 

� ∈ Z+ ), it is recognized that ∑
�∈Θ

���rC� (�) − rC�� (�)
��� ≤

√
2 ⋅ card(Θ) and ∑

�∈Θ �mC�
(�) − mC

�
�
(�)��

+|nC� (�) − nC
�
�
(�)|� ≤ 2 ⋅ card(Θ) . Consequently, for all � ∈ Z+ , it is acquired that 

�
�

(3)
(C�, C�� ) ≤ (1∕2){[1∕(

√
2 ⋅ card(Θ))] ⋅ (

√
2 ⋅ card(Θ)) + [(1∕(2 ⋅ card(Θ))) ⋅ (2 ⋅ card(Θ))](1∕�)} = 1.

(T4.3) and (T4.4) are trivially correct.
(T4.5) In accordance with Definition 2, C� = {⟨�,mC�

(�), nC� (�);rC� (�)⟩�� ∈ Θ} and 
C�� = {⟨�,mC

�
�
(�), nC

�
�
(�);rC

�
�
(�)⟩�� ∈ Θ} . The given condition C� = C�� gives substance to 

mC�
(�) = mC

�
�
(�),nC� (�) = nC

�
�
(�) , and rC� (�) = rC

�
�
(�) for all � ∈ Θ , thereby ��

(3)
(C�, C�� ) = 0 

for all � ∈ Z+ . By contrast, the condition ��

(3)
(C�, C�� ) = 0 for all � ∈ Z+ establishes evi-

dence of |mC�
(�) − mC

�
�
(�)| = 0 , |nC� (�) − nC

�
�
(�)| = 0 , and |rC� (�) − rC

�
�
(�)| = 0 for each 

� ∈ Θ . As a result, the correctness of 
{⟨�,mC�

(�), nC� (�);rC� (�)⟩�� ∈ Θ} = {⟨�,mC
�
�
(�), nC

�
�
(�);rC

�
�
(�)⟩�� ∈ Θ} can be supported, 

corroborating the sufficiency and necessity for the separability property.
(T4.6) The following inequalities are fulfilled for each � ∈ Θ , as attested by the property 

in (T1.6): |rC� (�) − rC
�
�
(�)| ≤ |rC� (�) − rC�ε (�)| + |rC�ε (�) − rC

�
�
(�)| , 

|mC�
(�) − mC

�
�
(�)| ≤ |mC�

(�) − mC�ε
(�)| + |mC�ε

(�) − mC
�
�
(�)| , and 

|nC� (�) − nC
�
�
(�)| ≤ |nC� (�) − nC�ε (�)| + |nC�ε (�) − nC

�
�
(�)| . It is the direct result of the follow-

ing inequalities:
∑
�∈Θ

|||rC� (�) − rC
�
�
(�)

||| ≤
∑
�∈Θ

|||rC� (�) − rC�ε (�)
||| +

∑
�∈Θ

|||rC�ε (�) − rC
�
�
(�)

|||,

∑
�∈Θ

(|||mC�
(�) − mC

�
�
(�)

||| +
|||nC� (�) − nC

�
�
(�)

|||
)
≤

∑
�∈Θ

(|||mC�
(�) − mC�ε

(�)
||| +

|||nC� (�) − nC�ε
(�)

|||
)

+
∑
�∈Θ

(|||mC�ε
(�) − mC

�
�
(�)

||| +
|||nC�ε (�) − nC

�
�
(�)

|||
)
,



7367Evolved distance measures for circular intuitionistic fuzzy…

1 3

In light of the previously obtained results and the formulas in Remark 2, the cor-
rectness of the triangle inequalities �1

(3)
(C�, C�� ) ≤ �1

(3)
(C�, C�ε) +�1

(3)
(C�ε, C�� ) and 

�∞
(3)
(C�, C�� ) ≤ �∞

(3)
(C�, C�ε) +�∞

(3)
(C�ε, C�� ) when � = 1 and � → ∞ , respectively, can be cor-

roborated, completing the proof.

Theorem 5  The C-IF Minkowski distance measure ��

(4)
 for any three C-IF sets C� , C�′ , and 

C�ε fulfills the following properties based on the four-term representation:

(T5.1) Non-negativity	� ��

(4)
(C�, C�� ) ≥ 0 for all � ∈ Z+;

(T5.2) Boundedness:	� ��

(4)
(C�, C�� ) ≤ 1 for all � ∈ Z+;

(T5.3) Reflexivity	� ��

(4)
(C�, C�) = 0 for all � ∈ Z+;

(T5.4) Symmetry	� ��

(4)
(C�, C�� ) = �

�

(4)
(C�� , C�) for all � ∈ Z+;

(T5.5) Separability	� ��

(4)
(C�, C�� ) = 0 for all � ∈ Z+ if and only if C� = C��;

(T5.6) Triangle inequality	� ��

(4)
(C�, C�� ) ≤ �

�

(4)
(C�, C�ε) +�

�

(4)
(C�ε, C�� ) when � = 1 and 

� → ∞.

Proof  The proving processes of (T5.1) − (T5.6) are akin to those of (T4.1) − (T4.6), 
respectively.

According to Theorems 4 and 5, the C-IF Minkowski distance measures ��

(3)
 and ��

(4)
 

are semi-metrics of the C-IF sets because they satisfy the reflexivity in (T4.3) and (T5.3), 
symmetry in (T4.4) and (T5.4), and separability in (T4.5) and (T5.5). Furthermore, the 
C-IF Manhattan distance measures �1

(3)
 and �1

(4)
 , as well as the C-IF Chebyshev distance 

measures �∞
(3)

 and �∞
(4)

 , are well-defined measures of C-IF sets because they satisfy the 
reflexivity in (T4.3) and (T5.3), symmetry in (T4.4) and (T5.4), separability in (T4.5) and 
(T5.5), and triangle inequalities in (T4.6) and (T5.6).

Theorem 6  The following properties are valid for any two C-IF sets C� and C�′:

(T6.1) ��

(3)
(C�, C�� ) ≤ �

�

(4)
(C�, C�� ) for all � ∈ Z+;

(T6.2) ��

(3)
(C�, C�� ) = �

�

(4)
(C�, C�� ) if hC� (�) = hC�� (�) for all � ∈ Θ;

(T6.3)��

(3)
(C�, C�� ) ≤ �∞

(3)
(C�, C�� ) for all � ∈ Z+;

(T6.4)��

(4)
(C�, C�� ) ≤ �∞

(4)
(C�, C�� ) for all � ∈ Z+.

Proof  (T6.1) and (T6.2) are trivially correct.

∑
�∈Θ

max
{|||mC�

(�) − mC
�
�
(�)

|||,
|||nC� (�) − nC

�
�
(�)

|||
}
≤

∑
�∈Θ

max
{|||mC�

(�) − mC�ε
(�)

|||,
|||nC� (�) − nC�ε

(�)
|||
}

+
∑
�∈Θ

max
{|||mC�ε

(�) − mC
�
�
(�)

|||,
|||nC�ε (�) − nC

�
�
(�)

|||
}
.
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(T6.3) Based on the proving process in (T3.3), the following inequality holds true for 
� ∈ Θ:

When both sides of the inequality are averaged across all � ∈ Θ , the following result can 
be deduced:

It directly draws the inference of ��

(3)
(C�, C�� ) ≤ �∞

(3)
(C�, C�� ) for all � ∈ Z+.

(T6.4) The following inequality holds true for � ∈ Θ , as supported by the proving pro-
cess in (T3.4):

When both sides of the inequality are averaged across all � ∈ Θ , the following result can 
be deduced:

It comes to the conclusion of ��

(4)
(C�, C�� ) ≤ �∞

(4)
(C�, C�� ) for all � ∈ Z+.

As previously stated, Atanassov and Marinov (2021) constructed four new C-IF distance 
metrics. These four new distance measures, however, have significant limitations. Atan-
assov and Marinov’s C-IF distance formulas, as shown in Definition 4, do not account for 
the fact that the elements in a C-IF set have different radii. The distance measures advanced 
by Atanassov and Marinov (2021) are special cases of the evolved C-IF Minkowski met-
rics, according to the C-IF Minkowski metrics established in this study, if the radius of 
all elements in each C-IF set C� is assumed to be equal to rC� (�) . Specifically, assume that 
rC� (�) = rC� and rC�� (�) = rC�� for all � ∈ Θ . One has:

[
1

2

(|||mC�
(�) − mC

�
�
(�)

|||
�

+
|||nC� (�) − nC

�
�
(�)

|||
�
)] 1

�

≤ max
{|||mC�

(�) − mC
�
�
(�)

|||,
|||nC� (�) − nC

�
�
(�)

|||
}
.

[
1

2 ⋅ card(Θ)

∑
�∈Θ

(|||mC�
(�) − mC

�
�
(�)

|||
�

+
|||nC� (�) − nC�� (�)

|||
�
)] 1

�

≤
1

card(Θ)

∑
�∈Θ

max
{|||mC�

(�) − mC
�
�
(�)

|||,
|||nC� (�) − nC

�
�
(�)

|||
}
.

[
1

2

(|||mC�
(�) − mC

�
�
(�)

|||
�

+
|||nC� (�) − nC�� (�)

|||
�

+
|||hC� (�) − hC�� (�)

|||
�
)] 1

�

≤ max
{|||mC�

(�) − mC
�
�
(�)

|||,
|||nC� (�) − nC

�
�
(�)

|||,
|||hC� (�) − hC

�
�
(�)

|||
}
.

[
1

2 ⋅ card(Θ)

∑
�∈Θ

(|||mC�
(�) − mC

�
�
(�)

|||
�

+
|||nC� (�) − nC�� (�)

|||
�

+
|||hC� (�) − hC�� (�)

|||
�
)] 1

�

≤
1

card(Θ)

∑
�∈Θ

max
{|||mC�

(�) − mC
�
�
(�)

|||,
|||nC� (�) − nC

�
�
(�)

|||,
|||hC� (�) − hC

�
�
(�)

|||
}
.
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Therefore, �M
(3)

(
C�, C��

)
= �

1

(3)
(C�, C�� ) , �M

(4)

(
C�, C��

)
= �

1

(4)
(C�, C�� ) , 

�E
(3)

(
C�, C��

)
= �

2

(3)
(C�, C�� ) , and �E

(4)

(
C�, C��

)
= �

2

(4)
(C�, C�� ) . The C-IF Manhattan and 

Euclidean distance measures for C-IF sets revealed in Remark 2 can cover the four C-IF 
distance metrics in Definition 4. More importantly, two evolved general distance metrics 
based on three- and four-term representations, namely the C-IF Minkowski metrics for 
C-IF values in Definition 5 and the C-IF Minkowski metrics for C-IF sets in Definition 6, 
can improve the limitations of existing C-IF distance metrics and expand their flexibility 
and applicability.

4 � Evolved C‑IF TOPSIS methodology

This section is dedicated to the development of an evolved C-IF TOPSIS methodology 
predicated on the C-IF Minkowski metrics to tackle MCDA problems with complex and 
uncertain decision information as a reference for intelligent decision assistance. As previ-
ously stated, Alkan and Kahraman (2022b) and Kahraman and Alkan (2021) developed the 
C-IF TOPSIS methods. However, they did not fully follow the core architecture of classic 
TOPSIS but made substantial modifications. Moreover, they converted C-IF information 
(i.e., criteria weights and performance ratings of alternatives judging by criteria) into IF 
information for processing in the calculation process of their C-IF TOPSIS procedures. 
Specifically, the C-IF decision matrix was transformed into pessimistic and optimistic deci-
sion matrices, and the data in these two decision matrices are ordinary IF values. This 
operating procedure may lose the specificity of C-IF information and reduce its flexibility 
to deal with uncertainty. The question of how to extend the classic TOPSIS architecture 
to the C-IF environment in such a way that the development can faithfully demonstrate 
the spirit of TOPSIS’s compromise approach has become critical. As a result, this section 
is dedicated to creating a new C-IF TOPSIS methodology based on the C-IF Minkowski 
metric within the TOPSIS core architecture. The C-IF TOPSIS technique proposed in this 
section is based on four fundamental structures, each of which contains four combinations 
of the displaced and fixed anchoring frames, as well as the C-IF Minkowski metrics using 
three- and four-term approaches. Through such a methodological evolution, the theoreti-
cal framework of the prestigious TOPSIS can be extended to intricate C-IF environments, 
thereby expanding the application scope of TOPSIS.

4.1 � Proposed C‑IF TOPSIS approaches

In this study, the MCDA issue is investigated by evaluating a limited number of candi-
date alternatives across multiple performance criteria in C-IF uncertain circumstances. Let 
A =

{
a1, a2,⋯ , a�

}
 signify a collection of the �(≥ 2) candidate alternatives; similarly, let 

P =
{
p1, p2,⋯ , p�

}
 signify a collection of the �(≥ 2) performance criteria, wherein � and 

ℭ are positive integers. Furthermore, the collection P is split into two sub-collections, one 
for the collection PI of beneficial criteria (to be maximized) and the other for the collection 
PII of non-beneficial criteria (to be minimized), where PI∩PII = ∅ and PI∪PII = P.

1√
2 ⋅ card(Θ)

�
�∈Θ

���rC� (�) − rC�� (�)
��� =

∑
�∈Θ

���rC� − rC��
���√

2 ⋅ card(Θ)
=

card(Θ) ⋅
���rC� − rC��

���√
2 ⋅ card(Θ)

=

���rC� − rC
�
�

���√
2

.
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The C-IF performance rating of a candidate alternative ai ( i = 1, 2,⋯ ,� ) judging by 
a performance criterion pj ( j = 1, 2,⋯ ,� ) is expressed as �ij = (mij, nij;rij) , in which the 
degree of hesitancy is derived as hij = 1 − mij − nij . The C-IF characteristic Ci and its 
embedded function Or are expounded for each candidate alternative ai ∈ A as follows:

and Or(mij, nij) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(mij − � )2 + (nij − � �)2 ≤ rij, and� + � � ≤ 1} . 

The C-IF importance weight of a performance criterion pj ( j = 1, 2,⋯ ,� ) is explicated as 
�j = (wj,�j;�j) , in which the degree of hesitancy is produced as 〈ij = 1 − wj − �j.

Remember that the intersection, union, addition, and multiplication operations described 
in Definition 3 involve the min types (i.e., ∩min , ∪min , ⊕min , and ⊗min ) as well as the max 
types (i.e., ∩max , ∪max , ⊕max , and ⊗max ). Herein, these operations using the min and max 
types are determined by the minimum radius and maximum radius, respectively. In con-
formity with Kahraman and Alkan (2021), the operations with the min and max types will 
deliver the outcomes involving minimum and maximum uncertainty levels, respectively. 
To be more specific, a smaller radius indicates less ambiguity for the operation result of 
the C-IF paired information, while a larger radius indicates greater ambiguity. This study 
intends to exploit the multiplication operation with the max type to generate weighted per-
formance ratings in this regard.

The weighted performance rating ��
ij

 of ai judging by pj is generated using the multipli-
cation operation ⊗max in Definition 3, i.e., 𝜍�

ij
= �j⊗max𝜍ij , as demonstrated below:

where the degree of hesitancy is derived as h�
ij
= 1 − m�

ij
− n�

ij
 . By collecting the weighted 

performance rating ��
ij

 over the � criteria, the C-IF characteristic C�
i

 for each ai is eluci-
dated as:

in which 
Or(m

�

ij
, n�

ij
) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(m�

ij
− � )2 + (n�

ij
− � �)2 ≤ r�

ij
, and� + � � ≤ 1}.

The C-IF TOPSIS methodology, which is scheduled to be developed in this study, is 
based on the aforementioned C-IF Minkowski metrics using three- and four-term 
approaches, as well as the displaced and fixed anchoring frameworks. The anchoring mech-
anism consists of displaced and fixed ideal and anti-ideal C-IF characteristics that can 
serve as anchoring points in the C-IF TOPSIS procedure to formulate the subsequent com-
promise indices. The displaced anchoring framework, in particular, can be elicited from the 
intersection and union operations using the min and max types. To capture the most uncer-
tainty, the operators ∩max and ∪max are utilized to identify the displaced ideal and anti-ideal 
ratings, as well as C-IF characteristics. The displaced ideal rating ��

∗j
 can be yielded by 

performing the union operation �𝓌
1j
∪max�

𝓌

2j
∪max ⋯∪max�

𝓌

�j
 and the intersection operation 

�𝓌
1j
∩max�

𝓌

2j
∩max ⋯∩max�

𝓌

�j
 if pj ∈ PI and pj ∈ PII , respectively. The displaced anti-ideal 

rating ��
¬j

 , on the other hand, can be produced by performing the intersection operation 
��
1j
∩max�

�

2j
 ∩max ⋯∩max�

𝓌

�j
 and the union operation �𝓌

1j
∪max�

𝓌

2j
∪max ⋯∪max�

𝓌

�j
 if pj ∈ PI 

(37)Ci =
�
⟨pj,mij, nij;rij⟩���pj ∈ P

�
=
�
⟨pj,Or

�
mij, nij

�⟩���pj ∈ P
�

(38)�𝓌
ij

=
(
m𝓌

ij
, n𝓌

ij
;r𝓌
ij

)
=
(
wj ⋅ mij,�j + nij − �j ⋅ nij;max

{
�j, rij

})

(39)C�
i
=
�
⟨pj,m�

ij
, n�

ij
;r�
ij
⟩���pj ∈ P

�
=
�
⟨pj,Or

�
m�

ij
, n�

ij

�
⟩���pj ∈ P

�
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and pj ∈ PII , respectively. More specifically, the displaced ideal and anti-ideal ratings are 
derived as follows:

where h�
∗j
= 1 − m�

∗j
− n�

∗j
 and h�

¬j
= 1 − m�

¬j
− n�

¬j
 are the degrees of hesitancy. Further-

more, the displaced ideal and anti-ideal C-IF characteristics are delineated in this wise:

where Or(m
�

∗j
, n�

∗j
) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(m�

∗j
− � )2 + (n�

∗j
− � �)2 ≤ r�

∗j
, and� + � � ≤ 1} 

and Or(m
�

¬j
, n�

¬j
) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(m�

¬j
− � )2 + (n�

¬j
− � �)2 ≤ r�

¬j
, and� + � � ≤ 1}.

The relative closeness of the C-IF characteristic C�
i

 to the ideal and anti-ideal C-IF 
characteristics C�

∗
 and C�

¬
 can be delineated in the displaced anchoring framework along 

these lines: one is derived from the C-IF Minkowski distance measure using the three-term 
approach, and the other is established using the four-term approach. The relative closeness 
coefficients ℜ�∗

(3)
(ai) and ℜ�∗

(4)
(ai) are derived as:

Remark 3  The relative closeness coefficients ℜ�∗

(3)
(ai) and ℜ�∗

(4)
(ai) have the following 

characteristics:

(R3.1) 0 ≤ ℜ
�∗

(3)

(
ai
)
≤ 1 and 0 ≤ ℜ

�∗

(4)

(
ai
)
≤ 1 for all � ∈ Z+;

(R3.2) ℜ�∗

(3)

(
ai
)
= 0 and ℜ�∗

(4)

(
ai
)
= 0 for all � ∈ Z+ if and only if C�

i
= C�

¬
;

(R3.3) ℜ�∗

(3)

(
ai
)
= 1 and ℜ�∗

(4)

(
ai
)
= 1 for all � ∈ Z+ if and only if C�

i
= C�

∗
.

Proof  (R3.1) For all � ∈ Z+ , it is recognized that 0 ≤ ℜ
�∗

(3)

(
ai
)
≤ 1 

and 0 ≤ ℜ
�∗

(4)

(
ai
)
≤ 1 as a consequence of the non-negativity 

(40)��
∗j

=
�
m�

∗j
, n�

∗j
;r�
∗j

�
=

⎧
⎪⎨⎪⎩

�
max�

i=1
m�

ij
,min�

i=1
n�
ij
;max�

i=1
r�
ij

�
ifpj ∈ PI,�

min�
i=1

m�

ij
,max�

i=1
n�
ij
;max�

i=1
r�
ij

�
ifpj ∈ PII;

(41)��
¬j

=
�
m�

¬j
, n�

¬j
;r�
¬j

�
=

⎧⎪⎨⎪⎩

�
min�

i=1
m�

ij
,max�

i=1
n�
ij
;max�

i=1
r�
ij

�
ifpj ∈ PI,�

max�
i=1

m�

ij
,min�

i=1
n�
ij
;max�

i=1
r�
ij

�
ifpj ∈ PII,

(42)C�
∗
=
�
⟨pj,m�

∗j
, n�

∗j
;r�
∗j
⟩���pj ∈ P

�
=
�
⟨pj,Or

�
m�

∗j
, n�

∗j

�
⟩���pj ∈ P

�

(43)C�
¬
=
�
⟨pj,m�

¬j
, n�

¬j
;r�
¬j
⟩���pj ∈ P

�
=
�
⟨pj,Or

�
m�

¬j
, n�

¬j

�
⟩���pj ∈ P

�

(44)ℜ
�∗

(3)

(
ai
)
=

𝔇
�

(3)

(
C�
i
, C�

¬

)

𝔇
�

(3)

(
C�
i
, C�

∗

)
+𝔇

�

(3)

(
C�
i
, C�

¬

)

(45)ℜ
�∗

(4)

(
ai
)
=

𝔇
�

(4)

(
C�
i
, C�

¬

)

𝔇
�

(4)

(
C�
i
, C�

∗

)
+𝔇

�

(4)

(
C�
i
, C�

¬

) .
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properties in (T4.1) and (T5.1) and the boundedness properties in (T4.2) and (T5.2) (i.e., 
0 ≤ �

�

(3)

(
C�
i
, C�

∗

)
,�

�

(3)

(
C�
i
, C�

¬

)
,�

�

(4)

(
C�
i
, C�

∗

)
,�

�

(4)

(
C�
i
, C�

¬

)
≤ 1).

(R3.2) The preconditions ℜ�∗

(3)

(
ai
)
= 0 and ℜ�∗

(4)

(
ai
)
= 0 draw the inferences of 

zero numerators in Eqs. (44) and (45), respectively; that is, ��

(3)

(
C�
i
, C�

¬

)
= 0 and 

�
�

(4)

(
C�
i
, C�

¬

)
= 0 . As attested by the separability property in (T4.5) and (T5.5), it 

is received that ��

(3)

(
C�
i
, C�

¬

)
= 0 and ��

(4)

(
C�
i
, C�

¬

)
= 0 , respectively, if and only if 

C�
i
= C�

¬
 . From these explicit discussions, it deduces that ℜ�∗

(3)

(
ai
)
= ℜ

�∗

(4)

(
ai
)
= 0 for all 

� ∈ Z+ if and only if C�
i
= C�

¬
.

(R3.3) Concerning all � ∈ Z+ , the given conditions ℜ
�∗

(3)

(
ai
)
= 1 and 

ℜ
�∗

(4)

(
ai
)
= 1 indicate that �

�

(3)

(
C�
i
, C�

¬

)
= �

�

(3)

(
C�
i
, C�

∗

)
+�

�

(3)

(
C�
i
, C�

¬

)
 and 

�
�

(4)

(
C�
i
, C�

¬

)
= �

�

(4)

(
C�
i
, C�

∗

)
+�

�

(4)

(
C�
i
, C�

¬

)
 , respectively. Accordingly, the two equali-

ties give rise to ��

(3)

(
C�
i
, C�

∗

)
= 0 and ��

(4)

(
C�
i
, C�

∗

)
= 0 . Based on the separability prop-

erty in (T4.5) and (T5.5), the sufficient and necessary condition of ��

(3)

(
C�
i
, C�

∗

)
= 0 

and ��

(4)

(
C�
i
, C�

∗

)
= 0 , respectively, is C�

i
= C�

∗
 . It concludes that ℜ�∗

(3)

(
ai
)
= 1 and 

ℜ
�∗

(4)

(
ai
)
= 1 for all � ∈ Z+ if and only if C�

i
= C�

∗
.

In the displaced anchoring framework, all of the � candidate alternatives are sorted in 
diminishing order of their relative closeness coefficients ℜ�∗

(3)
(ai) or ℜ�∗

(4)
(ai) . This method 

yields the best compromise collections containing the candidates with the highest relative 
closeness coefficients:

On the flip side, the fixed anchoring framework can be established on the fixed ideal and 
anti-ideal ratings as well as C-IF characteristics. Concerning a beneficial criterion pj ∈ PI , 
the fixed ideal rating ��

+j
 is rendered by multiplying the C-IF importance weight �j by the 

highest performance (1, 0;0) . Furthermore, the fixed anti-ideal rating ��
−j

 can be yielded by 
multiplying �j by the lowest performance (0, 1;0) . In the case of a non-beneficial criterion 
pj ∈ PII , the fixed ideal rating ��

+j
 is obtained by multiplying �j by the highest performance 

(0, 1;0) ; additionally, the fixed anti-ideal rating ��
−j

 is derived by multiplying �j by the low-
est performance (1, 0;0) . To be more specific, the fixed ideal and anti-ideal ratings are iden-
tified in this fashion:

(46)A�∗

(3)
=
{
ai
|||max𝔄

i=1
ℜ

�∗

(3)
(ai), ai ∈ A

}
,

(47)A�∗

(4)
=
{
ai
|||max𝔄

i=1
ℜ

�∗

(4)
(ai), ai ∈ A

}

(48)𝜍�
+j

=
(
m�

+j
, n�

+j
;r�
+j

)
=

{
(wj,𝜔j;𝛾j)⊗max(1, 0;0) =

(
wj,𝜔j;𝛾j

)
ifpj ∈ PI,

(wj,𝜔j;𝛾j)⊗max(0, 1;0) =
(
0, 1;𝛾j

)
ifpj ∈ PII;

(49)𝜍�
−j

=
(
m�

−j
, n�

−j
;r�
−j

)
=

{
(wj,𝜔j;𝛾j)⊗max(0, 1;0) =

(
0, 1;𝛾j

)
ifpj ∈ PI,

(wj,𝜔j;𝛾j)⊗max(1, 0;0) =
(
wj,𝜔j;𝛾j

)
ifpj ∈ PII;
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where h�
+j

= 1 − m�

+j
− n�

+j
 and h�

−j
= 1 − m�

−j
− n�

−j
 are the degrees of hesitancy. The fixed 

ideal and anti-ideal C-IF characteristics are portrayed in the following manner:

in which Or(m
�

+j
, n�

+j
) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(m�

+j
− � )2 + (n�

+j
− � �)2 ≤ r�

+j
, and� + � � ≤ 1} 

and Or(m
�

−j
, n�

−j
) = {⟨� , � �⟩�� , � � ∈ [0, 1],

�
(m�

−j
− � )2 + (n�

−j
− � �)2 ≤ r�

−j
, and� + � � ≤ 1}.

In the fixed anchoring framework, the relative closeness of the C-IF characteristic C�
i

 to 
the ideal and anti-ideal C-IF characteristics C�

+
 and C�

−
 can be generated predicated on the 

C-IF Minkowski distance measures using the three- and four-term approaches. The relative 
closeness coefficients ℜ�+

(3)
(ai) and ℜ�+

(4)
(ai) are rendered in this fashion:

Remark 4  The relative closeness coefficients ℜ�+

(3)

(
ai
)
 and ℜ�+

(4)

(
ai
)
 have the following 

characteristics:

(R4.1) 0 ≤ ℜ
�+

(3)

(
ai
)
≤ 1 and 0 ≤ ℜ

�+

(4)

(
ai
)
≤ 1 for all � ∈ Z+;

(R4.2) ℜ�+

(3)

(
ai
)
= 0 and ℜ�+

(4)

(
ai
)
= 0 for all � ∈ Z+ if and only if C�

i
= C�

−
;

(R4.3) ℜ�+

(3)

(
ai
)
= 1 and ℜ�+

(4)

(
ai
)
= 1 for all � ∈ Z+ if and only if C�

i
= C�

+
.

Proof  The proofs of (R4.1)−(R4.3) are as analogous to those of (R3.1)−(R3.3), 
respectively.

Finally, all of the � candidate alternatives are sorted in decreasing order of their relative 
closeness coefficients ℜ�+

(3)
(ai) or ℜ�+

(4)
(ai) . The best compromise collections with the high-

est relative closeness coefficients in the fixed anchoring framework can be generated by

(50)C�
+
=
�
⟨pj,m�

+j
, n�

+j
;r�
+j
⟩���pj ∈ P

�
=
�
⟨pj,Or

�
m�

+j
, n�

+j

�
⟩���pj ∈ P

�

(51)C�
−
=
�
⟨pj,m�

−j
, n�

−j
;r�
−j
⟩���pj ∈ P

�
=
�
⟨pj,Or

�
m�

−j
, n�

−j

�
⟩���pj ∈ P

�

(52)ℜ
�+

(3)

(
ai
)
=

𝔇
�

(3)

(
C�
i
, C�

−

)

𝔇
�

(3)

(
C�
i
, C�

+

)
+𝔇

�

(3)

(
C�
i
, C�

−

)

(53)ℜ
�+

(4)

(
ai
)
=

𝔇
�

(4)

(
C�
i
, C�

−

)

𝔇
�

(4)

(
C�
i
, C�

+

)
+𝔇

�

(4)

(
C�
i
, C�

−

)

(54)A�+

(3)
=
{
ai
|||max𝔄

i=1
ℜ

�+

(3)
(ai), ai ∈ A

}

(55)A�+

(4)
=
{
ai
|||max𝔄

i=1
ℜ

�+

(4)
(ai), ai ∈ A

}
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4.2 � Proposed C‑IF TOPSIS algorithms

The evolved C-IF TOPSIS methodology employs four fundamental architectures to tackle 
MCDA issues in complex and uncertain situations. As stated in the C-IF TOPSIS tech-
nique in the previous subsection, the four basic architectures are: (1) a displaced anchor-
ing frame based on the three-term representation, (2) a displaced anchoring frame based 
on the four-term representation, (3) a fixed anchoring frame based on the three-term rep-
resentation, and (4) a fixed anchoring frame based on the four-term representation. The 
schematic representation of the C-IF TOPSIS methodology is depicted in Fig. 4. The C-IF 
TOPSIS procedure is divided into two phases: the foundation phase and the critical core 
technology phase. The foundation phase consists of two tasks: problem statement and data 
establishment. The problem statement, for example, includes two collections of candidate 
alternatives and performance criteria (divided into beneficial and non-beneficial criteria). 
The data establishment includes the ascertainment of C-IF performance ratings and C-IF 
importance weights in order to calculate weighted C-IF performance ratings and their cor-
responding C-IF characteristics. Following that, the critical core technology phase involves 

Fig. 4   Schematic representation of the C-IF TOPSIS methodology
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either a displaced anchoring mechanism or a fixed anchoring mechanism. The displaced 
anchoring mechanism encompasses the recognition of displaced ideal and displaced anti-
ideal ratings, the construction of displaced ideal/anti-ideal C-IF characteristics, and the 
ascertainment of relative closeness coefficients using the C-IF Minkowski distance meas-
ures with a three- or four-term representation frame. Similarly, the fixed anchoring mecha-
nism encompasses the recognition of fixed ideal and anti-ideal ratings, the construction of 
fixed ideal/anti-ideal C-IF characteristics, and the ascertainment of relative closeness coef-
ficients using a three- or four-term approach. The best compromise collection containing 
the most suitable solutions can be determined by comparing relative closeness coefficients 
to support intelligent decision analysis under complicated uncertain scenarios.

The evolved C-IF TOPSIS methodology is implemented using the subsequent algorith-
mic steps:

Step 1	� Compile a collection of candidate alternatives A =
{
a1, a2,⋯ , a�

}
 . Make a 

collection of performance criteria P =
{
p1, p2,⋯ , p�

}
 and divide it into two 

sub-collections: PI , which contains beneficial criteria, and PII , which contains 
non-beneficial criteria.

Step 2	� Utilize data collection tools such as semantic assessments to construct the 
C-IF importance weight �j = (wj,�j;�j) for all pj ∈ P and the C-IF perfor-
mance rating �ij = (mij, nij;rij) of ai ∈ A judging by each pj.

Step 3	� Combine �ij with �j to calculate the weighted performance rating 
��
ij

=
(
m�

ij
, n�

ij
;r�
ij

)
 using Eq. (38), which yields the corresponding hesitancy 

h�
ij

 . Employ Eq. (39) to form the C-IF characteristic C�
i

 for each ai ∈ A
Steps 4−7	� Take either a displaced anchoring mechanism or a fixed anchoring 

mechanism.

Prioritization algorithm based on the displaced anchoring mechanism:

Step 4	� Identify the displaced ideal rating ��
∗j

=
(
m�

∗j
, n�

∗j
;r�
∗j

)
 (involving hesitancy h�

∗j
 ) 

using Eq. (40). Establish the displaced ideal C-IF characteristic C�
∗

 using Eq. (42).
Step 5	� Produce the displaced anti-ideal rating ��

¬j
=
(
m�

¬j
, n�

¬j
;r�
¬j

)
 (involving hesitancy 

h�
¬j

 ) using Eq.  (41). Build the displaced anti-ideal C-IF characteristic C�
¬

 using 
Eq. (43).

Step 6	� Assign a metric parameter � ∈ Z+ . Calculate the C-IF Minkowski distances 
�

�

(3)

(
C�
i
, C�

∗

)
 and ��

(3)

(
C�
i
, C�

¬

)
 using Eq.  (29), or alternately ��

(4)

(
C�
i
, C�

∗

)
 and 

�
�

(4)

(
C�
i
, C�

¬

)
 using Eq. (30).

Step 7	� Derive the relative closeness coefficient ℜ�∗

(3)
(ai) (or ℜ�∗

(4)
(ai) ) using Eq.  (44) (or 

Eq. (45)) for each ai ∈ A . Compose the best compromise collection A�∗

(3)
 (or A�∗

(4)
 ) 

using Eq. (46) (or Eq. (47)) to obtain the most suitable solution(s).

Prioritization algorithm based on the fixed anchoring mechanism:

Step 4ʹ	� Identify the fixed ideal rating ��
+j

=
(
m�

+j
, n�

+j
;r�
+j

)
 (involving hesitancy h�

+j
 ) using 

Eq. (48). Establish the fixed ideal C-IF characteristic C�
+

 using Eq. (50).
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Step 5ʹ	� Produce the fixed anti-ideal rating ��
−j

=
(
m�

−j
, n�

−j
;r�
−j

)
 (involving hesitancy h�

−j
 ) 

using Eq. (49). Build the fixed anti-ideal C-IF characteristic C�
−

 using Eq. (51).
Step 6ʹ	� Assign a metric parameter � ∈ Z+ . Calculate the C-IF Minkowski distances 

�
�

(3)

(
C�
i
, C�

+

)
 and ��

(3)

(
C�
i
, C�

−

)
 using Eq.  (29), or alternately ��

(4)

(
C�
i
, C�

+

)
 and 

�
�

(4)

(
C�
i
, C�

−

)
 using Eq. (30).

Step 7ʹ	� Derive the relative closeness coefficient ℜ�+

(3)

(
ai
)
 (or ℜ�+

(4)

(
ai
)
 ) using Eq. (52) (or 

Eq. (53)) for each ai ∈ A . Compose the best compromise collection A�+

(3)
 (or A�+

(4)
 ) 

using Eq. (54) (or Eq. (55)) to obtain the most suitable solution(s).

5 � Model application and comparative study

This section applies the evolved C-IF TOPSIS methodology to investigate a site selection 
issue at an epidemic hospital in Istanbul, Turkey. This question was first posed by Alkan 
and Kahraman (2022b), who examined a real-world MCDA task to assess and select suit-
able sites for large-scale epidemic hospitals for Istanbul authorities in the post-COVID-19 
era. Furthermore, this section will perform sensitivity analyses and comparative studies 
with other relevant fuzzy TOPSIS methods to confirm the robustness, adaptability, and 
utility of the current C-IF TOPSIS techniques.

Fig. 5   Candidate locations for the Istanbul Epidemic Hospital
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Fig. 6   Brief description of epidemic hospital location issues

Table 3   Data on C-IF performance ratings and C-IF importance weights

ai �i1 = (mi1, ni1;ri1) �i2 = (mi2, ni2;ri2) �i3 = (mi3, ni3;ri3) �i4 = (mi4, ni4;ri4)

a1 (0.667, 0.283; 0.094) (0.567, 0.383; 0.094) (0.333, 0.617; 0.094) (0.800, 0.167; 0.130)
a2 (0.333, 0.617; 0.094) (0.767, 0.183; 0.094) (0.533, 0.417; 0.094) (0.500, 0.450; 0.000)
a3 (0.533, 0.417; 0.094) (0.733, 0.217; 0.094) (0.367, 0.583; 0.094) (0.633, 0.317; 0.094)
a4 (0.267, 0.683; 0.094) (0.833, 0.133; 0.075) (0.267, 0.683; 0.094) (0.433, 0.517; 0.094)
a5 (0.433, 0.517; 0.094) (0.333, 0.617; 0.094) (0.667, 0.283; 0.094) (0.367, 0.583; 0.094)
a6 (0.500, 0.450; 0.000) (0.567, 0.383; 0.094) (0.467, 0.483; 0.094) (0.367, 0.583; 0.094)
a7 (0.667, 0.283; 0.094) (0.733, 0.217; 0.094) (0.467, 0.483; 0.094) (0.633, 0.317; 0.094)

�i5 = (mi5, ni5;ri5) �i6 = (mi6, ni6;ri6) �i7 = (mi7, ni7;ri7) pj �j = (wj,�j;�j)

a1 (0.633, 0.317; 0.094) (0.367, 0.583; 0.094) (0.767, 0.183; 0.094) p1 (0.533, 0.417; 0.094)
a2 (0.467, 0.483; 0.094) (0.600, 0.350; 0.141) (0.667, 0.283; 0.094) p2 (0.767, 0.183; 0.094)
a3 (0.633, 0.317; 0.094) (0.633, 0.317; 0.094) (0.667, 0.283; 0.094) p3 (0.667, 0.283; 0.094)
a4 (0.533, 0.417; 0.094) (0.133, 0.850; 0.120) (0.867, 0.117; 0.075) p4 (0.733, 0.217; 0.094)
a5 (0.400, 0.550; 0.141) (0.867, 0.117; 0.075) (0.167, 0.800; 0.120) p5 (0.367, 0.583; 0.094)
a6 (0.400, 0.550; 0.141) (0.567, 0.383; 0.094) (0.333, 0.617; 0.094) p6 (0.267, 0.683; 0.094)
a7 (0.433, 0.517; 0.094) (0.267, 0.683; 0.094) (0.733, 0.217; 0.094) p7 (0.833, 0.133; 0.075)
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5.1 � Application to epidemic hospital site selection

Emerging infectious diseases have spread rapidly in humans in recent years. COVID-19, 
for example, which appeared in December 2019, is caused by a new type of coronavirus. 
The COVID-19 outbreak is rapidly spreading worldwide. The majority of infected patients 
can recover and regain their health. However, a small number of infected patients may 
develop respiratory distress syndrome, severe pneumonia, shock, multiple organ failure, or 
even death in severe cases. Various emerging infectious diseases adhere to their transmis-
sion pathways and protection principles. However, there are still differences in the charac-
teristics of various pathogens. As a result, in the face of emerging major infectious diseases 
with unknown causes, health authorities and epidemic prevention experts in various coun-
tries must review and revise countermeasures by collecting epidemic development and rel-
evant latest information on a continuous basis. In the post-COVID-19 era, many countries 
are focusing on establishing a comprehensive medical network for epidemic prevention and 
control, as well as establishing dedicated epidemic hospitals. The establishment of large-
scale epidemic hospitals can improve the grading and treatment of mild and severe cases, 
patient triage, care subdivision, visitor control, and environmental management. Setting up 

Table 4   Outcomes of weighted performance ratings and their corresponding degrees of hesitancy

ai ��
i1

=
(
m�

i1
, n�

i1
;r�
i1

)
h�
i1 ��

i2
=
(
m�

i2
, n�

i2
;r�
i2

)
h�
i2 ��

i3
=
(
m�

i3
, n�

i3
;r�
i3

)
h�
i3

a1 (0.3555, 0.5820; 0.094) 0.0625 (0.4349, 0.4959; 0.094) 0.0692 (0.2221, 0.7254; 0.094) 0.0525
a2 (0.1775, 0.7767; 0.094) 0.0458 (0.5883, 0.3325; 0.094) 0.0792 (0.3555, 0.5820; 0.094) 0.0625
a3 (0.2841, 0.6601; 0.094) 0.0558 (0.5622, 0.3603; 0.094) 0.0775 (0.2448, 0.7010; 0.094) 0.0542
a4 (0.1423, 0.8152; 0.094) 0.0425 (0.6389, 0.2917; 0.094) 0.0694 (0.1781, 0.7727; 0.094) 0.0492
a5 (0.2308, 0.7184; 0.094) 0.0508 (0.2554, 0.6871; 0.094) 0.0575 (0.4449, 0.4859; 0.094) 0.0692
a6 (0.2665, 0.6794; 0.094) 0.0542 (0.4349, 0.4959; 0.094) 0.0692 (0.3115, 0.6293; 0.094) 0.0592
a7 (0.3555, 0.5820; 0.094) 0.0625 (0.5622, 0.3603; 0.094) 0.0775 (0.3115, 0.6293; 0.094) 0.0592

��
i4

=
(
m�

i4
, n�

i4
;r�
i41

)
h�
i4 ��

i5
=
(
m�

i5
, n�

i5
;r�
i5

)
h�
i5 ��

i6
=
(
m�

i6
, n�

i6
;r�
i6

)
h�
i6

a1 (0.5864, 0.3478; 0.130) 0.0658 (0.2323, 0.7152; 0.094) 0.0525 (0.0980, 0.8678; 0.094) 0.0342
a2 (0.3665, 0.5694; 0.094) 0.0641 (0.1714, 0.7844; 0.094) 0.0442 (0.1602, 0.7940; 0.141) 0.0459
a3 (0.4640, 0.4652; 0.094) 0.0708 (0.2323, 0.7152; 0.094) 0.0525 (0.1690, 0.7835; 0.094) 0.0475
a4 (0.3174, 0.6218; 0.094) 0.0608 (0.1956, 0.7569; 0.094) 0.0475 (0.0355, 0.9525; 0.120) 0.0120
a5 (0.2690, 0.6735; 0.094) 0.0575 (0.1468, 0.8124; 0.141) 0.0408 (0.2315, 0.7201; 0.094) 0.0484
a6 (0.2690, 0.6735; 0.094) 0.0575 (0.1468, 0.8124; 0.141) 0.0408 (0.1514, 0.8044; 0.094) 0.0442
a7 (0.4640, 0.4652; 0.094) 0.0708 (0.1589, 0.7986; 0.094) 0.0425 (0.0713, 0.8995; 0.094) 0.0292

��
i7

=
(
m�

i7
, n�

i7
;r�
i7

)
h�
i7 The C-IF characteristic C�

i
=
�
⟨pj,m�

ij
, n�

ij
;r�
ij
⟩���pj ∈ P

�

a1 (0.6389, 0.2917; 0.094) 0.0694 C
𝓌

1
=
�⟨p1,m𝓌

11
, n𝓌

11
;r𝓌
11
⟩, ⟨p2,m𝓌

12
, n𝓌

12
;r𝓌
12
⟩,⋯ , ⟨p7,m𝓌

17
, n𝓌

17
;r𝓌
17
⟩�

a2 (0.5556, 0.3784; 0.094) 0.0660 C
𝓌

2
=
�⟨p1,m𝓌

21
, n𝓌

21
;r𝓌
21
⟩, ⟨p2,m𝓌

22
, n𝓌

22
;r𝓌
22
⟩,⋯ , ⟨p7,m𝓌

27
, n𝓌

27
;r𝓌
27
⟩�

a3 (0.5556, 0.3784; 0.094) 0.0660 C
𝓌

3
=
�⟨p1,m𝓌

31
, n𝓌

31
;r𝓌
31
⟩, ⟨p2,m𝓌

32
, n𝓌

32
;r𝓌
32
⟩,⋯ , ⟨p7,m𝓌

37
, n𝓌

37
;r𝓌
37
⟩�

a4 (0.7222, 0.2344; 0.075) 0.0434 C
𝓌

4
=
�⟨p1,m𝓌

41
, n𝓌

41
;r𝓌
41
⟩, ⟨p2,m𝓌

42
, n𝓌

42
;r𝓌
42
⟩,⋯ , ⟨p7,m𝓌

47
, n𝓌

47
;r𝓌
47
⟩�

a5 (0.1391, 0.8266; 0.120) 0.0343 C
𝓌

5
=
�⟨p1,m𝓌

51
, n𝓌

51
;r𝓌
51
⟩, ⟨p2,m𝓌

52
, n𝓌

52
;r𝓌
52
⟩,⋯ , ⟨p7,m𝓌

57
, n𝓌

57
;r𝓌
57
⟩�

a6 (0.2774, 0.6679; 0.094) 0.0547 C
𝓌

6
=
�⟨p1,m𝓌

61
, n𝓌

61
;r𝓌
61
⟩, ⟨p2,m𝓌

62
, n𝓌

62
;r𝓌
62
⟩,⋯ , ⟨p7,m𝓌

67
, n𝓌

67
;r𝓌
67
⟩�

a7 (0.6106, 0.3211; 0.094) 0.0683 C
𝓌

7
=
�⟨p1,m𝓌

71
, n𝓌

71
;r𝓌
71
⟩, ⟨p2,m𝓌

72
, n𝓌

72
;r𝓌
72
⟩,⋯ , ⟨p7,m𝓌

77
, n𝓌

77
;r𝓌
77
⟩�
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epidemic hospitals allows infected people to be treated while keeping the health care sys-
tem running normally.

According to Alkan and Kahraman (2022b), the COVID-19 outbreak spread quickly 
during the pandemic in several cities in Turkey, particularly Istanbul, where large numbers 
of infected patients accumulated. The Istanbul authorities have decided to establish a large-
scale epidemic hospital in seven candidate locations, consisting of Bakırköy ( a1 ), Sancak-
tepe ( a2 ), Eyüp ( a3 ), Esenyurt ( a4 ), Çatalca ( a5 ), Tuzla ( a6 ), and Ataşehir ( a7 ), to prevent 
the spread of COVID-19 or other infectious diseases in the future and to allow infected 
patients to receive proper treatment. Figure 5 depicts a Google map of the seven candidate 
locations in Istanbul.

Authorities anticipate that the epidemic hospital will prioritize and treat patients with 
infectious diseases. Aside from housing COVID-19 patients, the epidemic hospital also 
prevents other epidemics from spreading to other patients or visitors within the hospital. 
Furthermore, the epidemic hospital will actively and fully cooperate with the policy of the 
infectious disease prevention and treatment network, as well as the inspection of facilities, 
equipment, protective equipment, and work quality in isolation wards, as determined by 
the competent authority. The Istanbul authorities used seven criteria to evaluate the opti-
mal location of the Istanbul Epidemic Hospital in the problem described by Alkan and 
Kahraman (2022b), consisting of cost ( p1 ), demographics ( p2 ), environmental factors ( p3 ), 
transportation opportunities ( p4 ), healthcare and medical practices ( p5 ), infrastructure ( p6 ), 
and spread of the virus ( p7 ). Only p1 is a non-beneficial criterion among the above, while 
the other six (i.e., p2−p7 ) are beneficial. Figure 6 depicts a high-level overview of the site 
selection problem for the Istanbul Epidemic Hospital under consideration.

This study attempts to employ the C-IF TOPSIS algorithm to deal with the site selection 
issue of the Istanbul Epidemic Hospital to scrutinize the workableness and suitability of the 
initiated methodology in realistic problems. In Step 1, the collections of candidate alterna-
tives (i.e., seven locations) and performance criteria are represented as A =

{
a1, a2,⋯ , a7

}
 

( � = 7 ) and P =
{
p1, p2,⋯ , p7

}
 ( � = 7 ), respectively, based on Fig. 6. Furthermore, P is 

divided into two sub-collections: PI =
{
p2, p3,⋯ , p7

}
 , which contains beneficial criteria, 

and PII =
{
p1
}
 , which contains non-beneficial criteria.

In Step 2, as pointed out in the research by Alkan and Kahraman (2022b), the expert 
group has given semantic assessments of the significance or importance of criteria and the 
performance of a candidate location judging by each criterion, based on individual profes-
sional experience and judgment. After pooling the opinions offered by the expert group, 
Alkan and Kahraman transformed these semantic assessments into the C-IF values. The 

Table 5   Displaced ideal and anti-ideal ratings and their corresponding degrees of hesitancy

pj ��
∗j

=
(
m�

∗j
, n�

∗j
;r�
∗j

)
h�
∗j ��

¬j
=
(
m�

¬j
, n�

¬j
;r�
¬j

)
h�
¬j

p1 (0.1423, 0.8152; 0.0940) 0.0425 (0.3555, 0.5820; 0.0940) 0.0625
p2 (0.6389, 0.2917; 0.0940) 0.0694 (0.2554, 0.6871; 0.0940) 0.0575
p3 (0.4449, 0.4859; 0.0940) 0.0692 (0.1781, 0.7727; 0.0940) 0.0492
p4 (0.5864, 0.3478; 0.1300) 0.0658 (0.2690, 0.6735; 0.1300) 0.0575
p5 (0.2323, 0.7152; 0.1410) 0.0525 (0.1468, 0.8124; 0.1410) 0.0408
p6 (0.2315, 0.7201; 0.1410) 0.0484 (0.0355, 0.9525; 0.1410) 0.0120
p7 (0.7222, 0.2344; 0.1200) 0.0434 (0.1391, 0.8266; 0.1200) 0.0343
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data of the C-IF performance rating �ij and the C-IF importance weight �j are revealed in 
Table 3.

In Step 3, the weighted performance rating ��
ij

 and its corresponding degree of hesitancy 
h�
ij

 were calculated by combining �ij with �j . Furthermore, the C-IF characteristic C�
i

 can 
be constituted by collecting the obtained ��

ij
 across the seven performance criteria. Table 4 

displays the results of the related ascertainment.
Following that, the prioritization algorithm of the C-IF TOPSIS methodology is run. 

Steps 4−7 of the displaced anchoring mechanism or Steps 4ʹ − 7ʹ of the fixed anchoring 
mechanism can be employed by decision-makers or analysts. This study first demonstrates 
the implementation process of Steps 4 − 7. In Step 4, this study produced the displaced 
ideal rating ��

∗j
 using Eq. (40) and the corresponding degree of hesitancy h�

∗j
 , and the out-

comes are listed in the left section of Table 5. Taking p1 ∈ PII and p7 ∈ PI as examples, 
the ratings ��

∗1
 and ��

∗7
 were calculated as follows:

Furthermore, their respective hesitancy degrees were calculated as 
h�
∗1

= 1 − 0.1423 − 0.8152 = 0.0425 and h�
∗7

= 1 − 0.7222 − 0.2344 = 0.0434 . In a similar 
vein, based on Step 5, this study generated the displaced anti-ideal rating ��

¬j
 using Eq. (41) 

and its corresponding degree of hesitancy h�
¬j

 ; the outcomes are sketched in the right sec-
tion of Table 5. The displaced ideal C-IF characteristic C�

∗
 and the displaced anti-ideal C-IF 

characteristic C�
¬

 can be formed by gathering the obtained ��
∗j

 and ��
¬j

 , respectively, across 
all pj ∈ P . Specifically, C�

∗
=
�⟨p1,m�

∗1
, n�

∗1
;r�
∗1
⟩, ⟨p2,m�

∗2
, n�

∗2
;r�
∗2
⟩, ⋯ , ⟨p7,m𝓌

∗7
, n𝓌

∗7
;r𝓌
∗7
⟩� 

and C𝓌
¬
= {⟨p1,m𝓌

¬1
, n𝓌

¬1
;r𝓌
¬1
⟩, ⟨p2,m𝓌

¬2
, n𝓌

¬2
;r𝓌
¬2
⟩,⋯ , ⟨p7,m𝓌

¬7
, n𝓌

¬7
;r𝓌
¬7
⟩}.

The conventional TOPSIS method measures the degrees of separation between 
candidate alternatives and ideal/anti-ideal solutions using geometric distances in the 
Euclidean plane. As a result, in the demonstrative case, this study assumes � = 2 . The 
C-IF Euclidean distance will be exploited to measure the degree of separation between 
the C-IF characteristic C�

i
 and the displaced ideal C-IF characteristic C�

∗
 , as well as the 

degree of separation between C�
i

 and the displaced anti-ideal C-IF characteristic C�
¬

 . 

��
∗1

=
(
m�

∗1
, n�

∗1
;r�
∗1

)
=
(
min7

i=1
m�

i1
,max7

i=1
n�
i1
;max7

i=1
r�
i1

)

= (min{0.3555, 0.1775, 0.2841, 0.1423, 0.2308, 0.2665, 0.3555},max{0.5820, 0.7767, 0.6601,

0.8152, 0.7184, 0.6794, 0.5820};max{0.094, 0.094, 0.094, 0.094, 0.094, 0.094, 0.094})

= (0.1423, 0.8152, 0.094),

��
∗7

=
(
m�

∗7
, n�

∗7
;r�
∗7

)
=
(
max7

i=1
m�

i7
,min7

i=1
n�
i7
;max7

i=1
r�
i7

)

= (max{0.6389, 0.5556, 0.5556, 0.7222, 0.1391, 0.2774, 0.6106},min{0.2917, 0.3784, 0.3784,

0.2344, 0.8266, 0.6679, 0.3211};max{0.094, 0.094, 0.094, 0.075, 0.120, 0.094, 0.094})

= (0.7222, 0.2344, 0.120).
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It is worth noting that the cardinality of the collection P is given as card(P) = 7. In 
Step 6, based on the three-term representation in Eq.  (33), the following C-IF Euclid-
ean distances were rendered, including �2

(3)

(
C�
1
, C�

∗

)
= 0.0840, �2

(3)

(
C�
2
, C�

∗

)
= 0.0636, 

�2

(3)

(
C�
3
, C�

∗

)
= 0.0714, �2

(3)

(
C�
4
, C�

∗

)
= 0.0917, �2

(3)

(
C�
5
, C�

∗

)
= 0.1527, �2

(3)

(
C�
6
, C�

∗

)
= 

0.1234, and �2

(3)

(
C�
7
, C�

∗

)
= 0.0770 with relevance to the displaced ideal C-IF char-

acteristic C�
∗

 ; and �2

(3)

(
C�
1
, C�

¬

)
= 0.1288, �2

(3)

(
C�
2
, C�

¬

)
= 0.1258, �2

(3)

(
C�
3
, C�

¬

)
= 

0.1229, �2

(3)

(
C�
4
, C�

¬

)
= 0.1480, �2

(3)

(
C�
5
, C�

¬

)
= 0.0749, �2

(3)

(
C�
6
, C�

¬

)
= 0.0659, and 

�2

(3)

(
C�
7
, C�

¬

)
= 0.1276 in relation to the displaced anti-ideal C-IF characteristic C�

¬
 . Fur-

thermore, based on the four-term representation in Eq. (34), the following C-IF Euclid-
ean distances were generated, including �2

(4)

(
C�
1
, C�

∗

)
= 0.0842, �2

(4)

(
C�
2
, C�

∗

)
= 0.0637, 

�2

(4)

(
C�
3
, C�

∗

)
= 0.0716, �2

(4)

(
C�
4
, C�

∗

)
= 0.0918, �2

(4)

(
C�
5
, C�

∗

)
= 0.1527, �2

(4)

(
C�
6
, C�

∗

)
= 

0.1235, and �2

(4)

(
C�
7
, C�

∗

)
= 0.0772 with relevance to C�

∗
 ; and �2

(4)

(
C�
1
, C�

¬

)
= 0.1289, 

�2

(4)

(
C�
2
, C�

¬

)
= 0.1261, �2

(4)

(
C�
3
, C�

¬

)
= 0.1231, �2

(4)

(
C�
4
, C�

¬

)
= 0.1480, �2

(4)

(
C�
5
, C�

¬

)
= 

0.0751, �2

(4)

(
C�
6
, C�

¬

)
= 0.0661, and �2

(4)

(
C�
7
, C�

¬

)
= 0.1278 in connection with C�

¬
 . Con-

sidering the measure �2

(4)
 between C�

4
 and C�

¬
 , one has:

�2

(4)

�
C
𝓌

4
, C

𝓌

¬

�
=

1

2

�
1√
2 ⋅ 7

(�0.094 − 0.094� + �0.094 − 0.094� + �0.094 − 0.094� + �0.094 − 0.130�

+�0.094 − 0.141� + �0.120 − 0.141� + �0.075 − 0.120�)

+
[

1

2 ⋅ 3

(|0.1423 − 0.3555|2 + |0.6389 − 0.2554|2 + |0.1781 − 0.1781|2 + |0.3174 − 0.2690|2

+|0.1956 − 0.1468|2 + |0.0355 − 0.0355|2 + |0.7222 − 0.1391|2 + |0.8152 − 0.5820|2

+|0.2917 − 0.6871|2 + |0.7727 − 0.7727|2 + |0.6218 − 0.6735|2 + |0.7569 − 0.8124|2

+|0.9525 − 0.9525|2 + |0.2344 − 0.8266|2 + |0.0425 − 0.0625|2 + |0.0694 − 0.0575|2

Table 6   Fixed ideal and anti-ideal ratings and their corresponding degrees of hesitancy

pj ��
+j

=
(
m�

+j
, n�

+j
;r�
+j

)
h�
+j ��

−j
=
(
m�

−j
, n�

−j
;r�
−j

)
h�
−j

p1 (0.0000, 1.0000; 0.0940) 0.0000 (0.5330, 0.4170; 0.0940) 0.0500
p2 (0.7670, 0.1830; 0.0940) 0.0500 (0.0000, 1.0000; 0.0940) 0.0000
p3 (0.6670, 0.2830; 0.0940) 0.0500 (0.0000, 1.0000; 0.0940) 0.0000
p4 (0.7330, 0.2170; 0.0940) 0.0500 (0.0000, 1.0000; 0.0940) 0.0000
p5 (0.3670, 0.5830; 0.0940) 0.0500 (0.0000, 1.0000; 0.0940) 0.0000
p6 (0.2670, 0.6830; 0.0940) 0.0500 (0.0000, 1.0000; 0.0940) 0.0000
p7 (0.8330, 0.1330; 0.0750) 0.0340 (0.0000, 1.0000; 0.0750) 0.0000
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Continue using � = 2 as an example to show how the relative closeness coefficients 
ℜ2∗

(3)
(ai) and ℜ2∗

(4)
(ai) are calculated in Step 7. Using the three-term approach, Eq.  (44) 

yields the following: ℜ2∗
(3)

(
a1
)
= 𝔇2

(3)

(
C�
1
, C�

¬

)
∕
(
𝔇2

(3)

(
C�
1
, C�

∗

)
+𝔇2

(3)

(
C�
1
, C�

¬

))
= 

0.1288/(0.0840 + 0.1288) = 0.6053, ℜ2∗
(3)

(
a2
)
= 0.6642, ℜ2∗

(3)

(
a3
)
= 0.6324, ℜ2∗

(3)

(
a4
)
= 

0.6175, ℜ2∗
(3)

(
a5
)
= 0.3291, ℜ2∗

(3)

(
a6
)
= 0.3481, and ℜ2∗

(3)

(
a7
)
= 0.6236. Since 

ℜ2∗
(3)

(
a2
)
> ℜ2∗

(3)

(
a3
)
> ℜ2∗

(3)

(
a7
)
> ℜ2∗

(3)

(
a4
)
> ℜ2∗

(3)

(
a1
)
> ℜ2∗

(3)

(
a6
)
> ℜ2∗

(3)

(
a5
)
 , the pri-

ority order of the seven candidate locations is a2 ≻ a3 ≻ a7 ≻ a4 ≻ a1 ≻ a6 ≻ a5 , which is 
consistent with the sorting result solved by Alkan and Kahraman (2022b). Based on 
Eq.  (46), the best compromise collection is A2∗

(3)
=
{
ai
|||max7

i=1
ℜ2∗

(3)
(ai), ai ∈ A

}
= {a2} . 

Besides this, based on Eq. (45) using the four-term approach, one has ℜ2∗
(4)

(
a1
)
= 0.6051, 

ℜ2∗
(4)

(
a2
)
= 0.6642, ℜ2∗

(4)

(
a3
)
= 0.6324, ℜ2∗

(4)

(
a4
)
= 0.6171, ℜ2∗

(4)

(
a5
)
= 0.3298, ℜ2∗

(4)

(
a6
)
= 

0.3489, and ℜ2∗
(4)

(
a7
)
= 0.6232. In view of 

ℜ2∗
(4)

(
a2
)
> ℜ2∗

(4)

(
a3
)
> ℜ2∗

(4)

(
a7
)
> ℜ2∗

(4)

(
a4
)
> ℜ2∗

(4)

(
a1
)
> ℜ2∗

(4)

(
a6
)
> ℜ2∗

(4)

(
a5
)
 , the pri-

ority order of the candidate locations is a2 ≻ a3 ≻ a7 ≻ a4 ≻ a1 ≻ a6 ≻ a5 , which is also 
concordant with the outcome in Alkan and Kahraman (2022b). The best compromise col-
lection, according to Eq.  (47), is A2∗

(4)
=
{
ai
|||max7

i=1
ℜ2∗

(4)
(ai), ai ∈ A

}
= {a2} . Using the 

three- and four-term approaches in the displaced anchoring mechanism, the C-IF TOPSIS 
ranking results based on the C-IF Euclidean distance measure, as well as the best compro-
mise collection and the most suitable solution, are the same. In other words, 
A2∗

(3)
= A2∗

(4)
= {a2} , and the candidate location Sancaktepe ( a2 ) is the most suitable 

solution.
Next, this study explicates the calculation process of Steps 4ʹ − 7ʹ using the fixed anchor-

ing mechanism. In Step 4ʹ, this study produced the fixed ideal rating ��
+j

 using Eq. (48) and 
the corresponding degree of hesitancy h�

+j
 , and the outcomes are manifested in the left sec-

tion of Table 6. Using p1 and p7 as an illustration again, the ratings ��
+1

 and ��
+7

 were rendered 
in this fashion: 𝜍�

+1
=
(
m�

+1
, n�

+1
;r�
+1

)
= (0.533, 0.417;0.094)⊗max(0, 1;0) = (0, 1;0.094) , 

and ��
+7

= (m�

+7
, n�

+7
; r�

+7
) = (0.833, 0.133;0.075)⊗max(1, 0;0) = (0.833, 0.133;0.075) . 

Additionally, the corresponding hesitancy degrees were derived as h�
+1

= 1 − 0 − 1 = 0 
and h�

+7
= 1 − 0.833 − 0.133 = 0.034 . In Step 5ʹ, this study identified the fixed 

anti-ideal rating ��
−j

 using Eq.  (49) and its corresponding degree of hesitancy 
h�
−j

 ; the outcomes are portrayed in the right section of Table  6. The fixed ideal 
C-IF characteristic C�

+
 and the fixed anti-ideal C-IF characteristic C�

−
 can be con-

structed by C𝓌
+
=
�⟨p1,m𝓌

+1
, n𝓌

+1
;r𝓌
+1
⟩, ⟨p2,m𝓌

+2
, n𝓌

+2
;r𝓌
+2
⟩,⋯ , ⟨p7,m𝓌

+7
, n𝓌

+7
;r𝓌
+7
⟩� and 

C�
−
= {⟨p1,m�

−1
, n�

−1
;r�
−1
⟩, ⟨p2,m𝓌

−2
, n𝓌

−2
;r𝓌
−2
⟩,⋯ , ⟨p7,m𝓌

−7
, n𝓌

−7
;r𝓌
−7
⟩} , respectively.

This study still requires � = 2 (i.e., C-IF Euclidean distance measure) to pro-
vide an example of the execution procedure under the fixed anchoring mecha-
nism. In Step 6ʹ, the following C-IF Euclidean distances were calculated using the 

+|0.0492 − 0.0492|2 + |0.0608 − 0.0575|2 + |0.0475 − 0.0408|2 + |0.0120 − 0.0120|2

+|0.0434 − 0.0343|2)]
1

2

}
= 0.1480.
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three-term representation in Eq.  (33): �2

(3)

(
C�
1
, C�

+

)
= 0.1431, �2

(3)

(
C�
2
, C�

+

)
= 0.1244, 

�2

(3)

(
C�
3
, C�

+

)
= 0.1311, �2

(3)

(
C�
4
, C�

+

)
= 0.1419, �2

(3)

(
C�
5
, C�

+

)
= 0.2041, �2

(3)

(
C�
6
, C�

+

)
= 

0.1814, and �2

(3)

(
C�
7
, C�

+

)
= 0.1356 relating to the fixed ideal C-IF characteristic C�

+
 ; and 

�2

(3)

(
C�
1
, C�

−

)
= 0.2127, �2

(3)

(
C�
2
, C�

−

)
= 0.2149, �2

(3)

(
C�
3
, C�

−

)
= 0.2081, �2

(3)

(
C�
4
, C�

−

)
= 

0.2232, �2

(3)

(
C�
5
, C�

−

)
= 0.1525, �2

(3)

(
C�
6
, C�

−

)
= 0.1558, and �2

(3)

(
C�
7
, C�

−

)
= 0.2095 with 

respect to the fixed anti-ideal C-IF characteristic C�
−

 . On the other hand, using the four-
term representation in Eq.  (34), the following C-IF Euclidean distances were calculated: 
�2

(4)

(
C�
1
, C�

+

)
= 0.1435, �2

(4)

(
C�
2
, C�

+

)
= 0.1247, �2

(4)

(
C�
3
, C�

+

)
 = 0.1315, �2

(4)

(
C�
4
, C�

+

)
= 

0.1421, �2

(4)

(
C�
5
, C�

+

)
= 0.2043, �2

(4)

(
C�
6
, C�

+

)
= 0.1816, and �2

(4)

(
C�
7
, C�

+

)
= 0.1360 

in relation to C�
+

 ; and �2

(4)

(
C�
1
, C�

−

)
= 0.2136, �2

(4)

(
C�
2
, C�

−

)
= 0.2159, �2

(4)

(
C�
3
, C�

−

)
= 

0.2091, �2

(4)

(
C�
4
, C�

−

)
= 0.2238, �2

(4)

(
C�
5
, C�

−

)
= 0.1535, �2

(4)

(
C�
6
, C�

−

)
 = 0.1569, and 

�2

(4)

(
C�
7
, C�

−

)
= 0.2104 with relevance to C�

−
.

In Step 7ʹ, using the three-term approach and Eq.  (52), one can calculate the relative 
closeness coefficients in this fashion: 
ℜ2+

(3)

(
a1
)
= 𝔇2

(3)

(
C�
1
, C�

−

)
∕(𝔇2

(3)

(
C�
1
, C�

+

)
+𝔇2

(3)

(
C�
1
, C�

−

)
) = 0.2127/

(0.1431 + 0.2127) = 0.5978, ℜ2+
(3)

(
a2
)
= 0.6335, ℜ2+

(3)

(
a3
)
= 0.6134, ℜ2+

(3)

(
a4
)
= 0.6114, 

ℜ2+
(3)

(
a5
)
= 0.4276, ℜ2+

(3)

(
a6
)
= 0.4620, and ℜ2+

(3)

(
a7
)
= 0.6071. Since 

ℜ2+
(3)

(
a2
)
> ℜ2+

(3)

(
a3
)
> ℜ2+

(3)

(
a4
)
> ℜ2+

(3)

(
a7
)
> ℜ2+

(3)

(
a1
)
> ℜ2+

(3)

(
a6
)
> ℜ2+

(3)

(
a5
)
 , the pri-

ority order of the candidate locations is a2 ≻ a3 ≻ a4 ≻ a7 ≻ a1 ≻ a6 ≻ a5 . In line with 
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Fig. 7   The juxtaposition of relative closeness coefficients in various scenarios
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Eq.  (54), the best compromise collection is A2+
(3)

=
{
ai
|||max7

i=1
ℜ2+

(3)
(ai), ai ∈ A

}
= {a2} . 

On the flip side, based on Eq.  (53) using the four-term approach, the following relative 
closeness coefficients were derived: ℜ2+

(4)

(
a1
)
= 0.5982, ℜ2+

(4)

(
a2
)
= 0.6339, ℜ2+

(4)

(
a3
)
= 

0.6139, ℜ2+
(4)

(
a4
)
= 0.6116, ℜ2+

(4)

(
a5
)
= 0.4291, ℜ2+

(4)

(
a6
)
= 0.4634, and ℜ2+

(4)

(
a7
)
= 0.6074, 

which follows that 
ℜ2+

(4)

(
a2
)
> ℜ2+

(4)

(
a3
)
> ℜ2+

(4)

(
a4
)
> ℜ2+

(4)

(
a7
)
> ℜ2+

(4)

(
a1
)
> ℜ2+

(4)

(
a6
)
> ℜ2+

(4)

(
a5
)
 . As a 

result, the candidate locations are prioritized as a2 ≻ a3 ≻ a4 ≻ a7 ≻ a1 ≻ a6 ≻ a5 ; addi-
tionally, the best compromise collection is identified as 
A2+

(4)
=
{
ai
|||max7

i=1
ℜ2+

(4)
(ai), ai ∈ A

}
= {a2} using Eq.  (55). The C-IF TOPSIS ranking 

results, as well as the best compromise collection and the most suitable solution, are the 
same using the three- and four-term approaches in the fixed anchoring mechanism based on 
the C-IF Euclidean distance model. The priority ranking a2 ≻ a3 ≻ a4 ≻ a7 ≻ a1 ≻ a6 ≻ a5 
obtained from the C-IF TOPSIS prioritization procedure in the fixed anchoring mechanism 
is comparable to the sorting result obtained by Alkan and Kahraman (2022b). The only dif-
ference is the outranking relationship between a4 and a7 . Even so, a2 is still the most suita-
ble solution because A2+

(3)
= A2+

(4)
= {a2}.

The application of the epidemic hospital site selection case demonstrates that the 
evolved C-IF TOPSIS methodology propounded in this work is both practicable and effec-
tive. The operability and ease of execution of the computational process are also very high, 
as demonstrated by its operation. Furthermore, by utilizing the C-IF Minkowski distances, 
the current techniques provide flexible and diverse options, such as a displaced anchoring 
mechanism based on a three-term approach, a displaced anchoring mechanism based on a 
four-term approach, a fixed anchoring mechanism based on a three-term approach, and a 
fixed anchoring mechanism based on a four-term approach.

5.2 � Comparative research and discussions

This subsection performs four comparative studies to examine the validity and explore 
the merits of the evolved C-IF TOPSIS methodology. First, this subsection compares and 
thoroughly investigates the comparative evaluation of relative closeness coefficients under 
displaced and fixed anchoring mechanisms. Following that, this subsection discusses and 
focuses on how the relative closeness coefficient varies at each candidate position level 
under different anchoring mechanisms and parameter settings. Concerning the Manhattan, 
Euclidean, and Chebyshev distance models, which are frequently used in practice, this sub-
section investigates additional comparisons of the applied results yielded by the C-IF Man-
hattan, Euclidean, and Chebyshev distance measures based on three- and four-term repre-
sentations. Finally, intending to address the epidemic hospital site selection case within IF 
or other relevant fuzzy environments, this subsection compares and analyzes the applica-
tion outcomes of the evolved methodology with other TOPSIS-related methods (such as 
other C-IF TOPSIS or IF TOPSIS approaches) and has reviewed the strengths of the cur-
rent C-IF TOPSIS technique in this study.

To begin, the C-IF Minkowski distances and relative closeness coefficients were calcu-
lated under different metric parameter settings for the first and second comparative studies. 
The metric parameter was set using � = 1, 2,⋯ , 10 and � → ∞ . The main comparison out-
comes of the C-IF Minkowski distances and relative closeness coefficients are documented 
in the Appendix, including the detailed results based on the displaced and fixed anchor-
ing mechanisms in Tables 10 and 11, respectively, for reference herein. Table 11 reveals 
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the results of ��

(3)

(
C�
i
, C�

∗

)
 , ��

(3)

(
C�
i
, C�

¬

)
 , and ℜ�∗

(3)
(ai) using the three-term approach, as 

well as ��

(4)

(
C�
i
, C�

∗

)
 , ��

(4)

(
C�
i
, C�

¬

)
 , and ℜ�∗

(4)
(ai) using the four-term approach. Moreover, 

Table 11 displays the results of ��

(3)

(
C�
i
, C�

+

)
 , ��

(3)

(
C�
i
, C�

−

)
 , and ℜ�+

(3)

(
ai
)
 using the three-

term approach, as well as ��

(4)

(
C�
i
, C�

+

)
 , ��

(4)

(
C�
i
, C�

−

)
 , and ℜ�+

(4)

(
ai
)
 using the four-term 

approach.

(a) Contrast outcome for (b) Contrast outcome for (the most suitable solution)
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(e) Contrast outcome for (f) Contrast outcome for 
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Fig. 8   Variation of relative closeness coefficients for individual candidate location levels
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The first comparative study’s goal is to thoroughly examine the juxtaposition situations 
of relative closeness coefficients under the displaced and fixed anchoring mechanisms. Fig-
ure 7 shows the comparison outcomes based on the three- and four-term representations 
for the same site selection case of the Istanbul Epidemic Hospital; additionally, these fig-
ures sketch the relative closeness coefficients being placed close together to see the con-
trasting effects in various settings of the metric parameter � . When � = 1, 2,⋯ , 10 and 
� → ∞ , the comparison and distribution of relative closeness coefficients are exhibited in 
this figure, which includes the juxtaposition of ℜ�∗

(3)
(ai) based on the three-term approach 

under the displaced anchoring mechanism in Fig. 7a, the juxtaposition of ℜ�+

(3)
(ai) based on 

the three-term approach under the fixed anchoring mechanism in Fig. 7b, the juxtaposition 
of ℜ�∗

(4)
(ai) based on the four-term approach under the displaced anchoring mechanism in 

Fig. 7c, and the juxtaposition of ℜ�+

(4)
(ai) based on the four-term approach under the fixed 

anchoring mechanism in Fig. 7d.
Overall, the relative closeness coefficients of the candidate locations a1 , a2 , a3 , a4 , and a7 

are greater than those of a5 and a6 in all discussed scenarios. This means that a1 , a2 , a3 , a4 , 
and a7 are far superior to a5 and a6 . Furthermore, in Fig. 7a and c, the comparative advan-
tages of the five better candidate locations and the two worst locations are clearly visible, 
but such gaps are narrowed in Fig. 7b and d. It is recognized from Fig. 7b and d that the 
relative closeness coefficients ℜ�+

(3)
(ai) and ℜ�+

(4)
(ai) do not vary much depending on the met-

ric parameter setting values. This demonstrates that, with the fixed anchoring mechanism, 
the relative closeness coefficients yielded by the C-IF TOPSIS procedure are relatively sta-
ble across a range of � values. In contrast, as displayed in Fig. 7a and c, the relative close-
ness coefficients ℜ�∗

(3)
(ai) and ℜ�∗

(4)
(ai) vary relatively greatly in different metric parameter 

Table 8   Prioritization results based on the C-IF Manhattan, Euclidean, and Chebyshev distances

ai Displaced anchoring mechanism (three-term 
approach)

Fixed anchoring mechanism (three-term 
approach)

ℜ1∗
(3)
(ai)(Rank) ℜ2∗

(3)
(ai)(Rank) ℜ∞∗

(3)
(ai)(Rank) ℜ1+

(3)
(ai)(Rank) ℜ2+

(3)
(ai)(Rank) ℜ∞+

(3)
(ai)(Rank)

a1 0.5804 (4th) 0.6053 (5th) 0.5791 (4th) 0.5881 (4th) 0.5978 (5th) 0.5941 (4th)
a2 0.6608 (1st) 0.6642 (1st) 0.6622 (1st) 0.6285 (1st) 0.6335 (1st) 0.6334 (1st)
a3 0.6227 (2nd) 0.6324 (2nd) 0.6240 (2nd) 0.6126 (2nd) 0.6134 (2nd) 0.6187 (2nd)
a4 0.6082 (3rd) 0.6175 (4th) 0.6039 (3rd) 0.6044 (3rd) 0.6114 (3rd) 0.6088 (3rd)
a5 0.3062 (7th) 0.3291 (7th) 0.3132 (7th) 0.4497 (7th) 0.4276 (7th) 0.4633 (7th)
a6 0.3429 (6th) 0.3481 (6th) 0.3503 (6th) 0.4664 (6th) 0.4620 (6th) 0.4790 (6th)
a7 0.5647 (5th) 0.6236 (3rd) 0.5620 (5th) 0.5817 (5th) 0.6071 (4th) 0.5865 (5th)

Displaced anchoring mechanism (four-term 
approach)

Fixed anchoring mechanism (four-term approach)

ℜ1∗
(4)
(ai)(Rank) ℜ2∗

(4)
(ai)(Rank) ℜ∞∗

(4)
(ai)(Rank) ℜ1+

(4)
(ai)(Rank) ℜ2+

(4)
(ai)(Rank) ℜ∞+

(4)
(ai)(Rank)

a1 0.5791 (4th) 0.6051 (5th) 0.5791 (4th) 0.5941 (4th) 0.5982 (5th) 0.5941 (4th)
a2 0.6622 (1st) 0.6642 (1st) 0.6622 (1st) 0.6334 (1st) 0.6339 (1st) 0.6334 (1st)
a3 0.6240 (2nd) 0.6324 (2nd) 0.6240 (2nd) 0.6187 (2nd) 0.6139 (2nd) 0.6187 (2nd)
a4 0.6039 (3rd) 0.6171 (4th) 0.6039 (3rd) 0.6088 (3rd) 0.6116 (3rd) 0.6088 (3rd)
a5 0.3132 (7th) 0.3298 (7th) 0.3132 (7th) 0.4633 (7th) 0.4291 (7th) 0.4633 (7th)
a6 0.3503 (6th) 0.3489 (6th) 0.3503 (6th) 0.4790 (6th) 0.4634 (6th) 0.4790 (6th)
a7 0.5620 (5th) 0.6232 (3rd) 0.5620 (5th) 0.5865 (5th) 0.6074 (4th) 0.5865 (5th)
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settings, particularly in Fig. 7c. This indicates that the relative closeness coefficients gener-
ated by the C-IF TOPSIS procedure are moderately affected by different � values under the 
displaced anchoring mechanism. In a nutshell, the relative closeness coefficients based on 
the C-IF Minkowski distance measure vary slightly under different � values and the dis-
placed anchoring mechanism but are more stable under the fixed anchoring mechanism.

The second comparative study focuses on the variation of relative closeness coefficients 
for each candidate location level under different anchoring mechanisms based on the C-IF 
Minkowski distance measures in the epidemic hospital site selection case using three- and 
four-term approaches. Figure 8 depicts the relative comparison results in different scenar-
ios concerning individual candidate location levels; that is, the outcomes corresponding 
to the candidate locations a1, a2,⋯ , a7 are portrayed in Fig. 8a–g, respectively. The cases 
of � = 1 , � = 2 , and � → ∞ represent commonly used distance models, namely the C-IF 
Manhattan, Euclidean, and Chebyshev metrics, and are highlighted as line graphs in the 
figure. Group histograms are used to represent other �-value cases.

(a) Comparison of line graphs when (b) Comparison of stacked bar charts when

(c)  Comparison of line graphs when (d) Comparison of stacked bar charts when

(e)  Comparison of line graphs when (f) Comparison of stacked bar charts when
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Fig. 9   Contrast results based on the C-IF Manhattan, Euclidean, and Chebyshev distances
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The priority ranking outcomes of the seven candidate locations are displayed in Table 7 
following the decreasing order of the relative closeness coefficients produced by the two 
C-IF TOPSIS prioritization algorithms. This table compares the priority ranks of each can-
didate location sequentially under various metric parameter settings, containing the prior-
ity ranks using the three- and four-term approaches with displaced and fixed anchoring 
mechanisms.

Based on the previous juxtaposition and contrasting effects in Fig.  8 and Table  7, it 
is clear that under the fixed anchoring mechanism, the candidate location a2 enjoys the 
highest relative closeness coefficients among all the settings of the metric parameter � , 
implying that a2 is a stable and consistent most suitable solution. In contrast, the can-
didate locations a2 and a7 have the highest relative closeness coefficients under the dis-
placed anchoring mechanism in the settings of � = 1, 2, 3, 4 as well as � → ∞ and 
� = 5, 6,⋯ , 10 , respectively, so a2 and a7 are tied as the most suitable solutions with 
relative stability. More specifically, based on the three-term approach under the displaced 
anchoring mechanism, the following priority rankings of the seven candidate locations 
were generated from Table 7: a2 ≻ a3 ≻ a4 ≻ a1 ≻ a7 ≻ a6 ≻ a5 when � = 1 and � → ∞ , 
a2 ≻ a3 ≻ a7 ≻ a4 ≻ a1 ≻ a6 ≻ a5 when � = 2, a2 ≻ a7 ≻ a3 ≻ a4 ≻ a1 ≻ a6 ≻ a5 when � = 
3, a2 ≻ a7 ≻ a3 ≻ a1 ≻ a4 ≻ a5 ≻ a6 when � = 4,a7 ≻ a2 ≻ a3 ≻ a1 ≻ a4 ≻ a5 ≻ a6 when 
� = 5,a7 ≻ a3 ≻ a2 ≻ a1 ≻ a4 ≻ a5 ≻ a6 when � = 6,a7 ≻ a3 ≻ a1 ≻ a2 ≻ a4 ≻ a5 ≻ a6 
when � = 7,a7 ≻ a1 ≻ a3 ≻ a2 ≻ a4 ≻ a5 ≻ a6 when � = 8 and � = 9 , and 
a7 ≻ a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5 ≻ a6 when � = 10 . Except in the case of � → ∞ , the relative 
advantage of a2 decreases gradually as the metric parameter � increases. When � = 10 , 
the priority of a2 has dropped to fifth. In contrast, the priority of a7 is slightly more pro-
nounced, as it ranks 1st, 2nd, and 3rd when � = 5, 6,⋯ , 10 , � = 3, 4 , and � = 2 , respec-
tively. The same observation can be found in the C-IF TOPSIS solution results using the 
four-term approach with the displaced anchoring mechanism.

On the flip side, based on the three-term approach under the fixed anchor-
ing mechanism, the following priority rankings of candidate locations were ren-
dered from Table  7: a2 ≻ a3 ≻ a4 ≻ a1 ≻ a7 ≻ a6 ≻ a5 when � = 1 and � → ∞ , 
a2 ≻ a3 ≻ a4 ≻ a7 ≻ a1 ≻ a6 ≻ a5 when � = 2, a2 ≻ a7 ≻ a3 ≻ a4 ≻ a1 ≻ a6 ≻ a5 when 
� = 3, 4,⋯ , 8 , and a2 ≻ a7 ≻ a4 ≻ a3 ≻ a1 ≻ a6 ≻ a5 when � = 9 and � = 10 . The same 
ranking outcomes can be found in the C-IF TOPSIS solutions based on the four-term 
approach with the fixed anchoring mechanism. As a result, the candidate position a7 is the 
most stable and suitable solution in the fixed anchoring mechanism, with the highest rela-
tive closeness coefficients of all � settings. The preceding comparative discussions indicate 
that when decision-makers require a stable consequence of the most suitable solution, it 
is best to exploit the fixed anchoring mechanism in the evolved C-IF TOPSIS prioritiza-
tion algorithm. When decision-makers prefer elastic and changing solution results as refer-
ences, the displaced anchoring mechanism in the prioritization algorithm is recommended.

Given the generality and utility of the Manhattan, Euclidean, and Chebyshev metrics, 
the third comparative study expands on the application outcomes produced by the C-IF 
Manhattan, Euclidean, and Chebyshev distance measures (i.e., � = 1, 2 , and � → ∞ , 
respectively, in ��

(3)
 and ��

(4)
 ) using three- and four-term approaches under different anchor-

ing mechanisms. The prioritization results are revealed in Table 8, including the relative 
closeness coefficients ℜ�∗

(3)
(ai) , ℜ

�+

(3)

(
ai
)
 , ℜ�∗

(4)
(ai) , and ℜ�+

(4)

(
ai
)
 , as well as their correspond-

ing priority orders. The outcomes of the relative closeness coefficients calculated using the 
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C-IF Manhattan and Chebyshev distances are similar; additionally, their priority rankings 
are the same, and both are a2 ≻ a3 ≻ a4 ≻ a1 ≻ a7 ≻ a6 ≻ a5 . Based on the C-IF Euclidean 
distance, the priority rankings judging by the relative closeness coefficients ℜ2∗

(3)
(ai) (as 

well as ℜ2∗
(4)
(ai) ) and ℜ2+

(3)

(
ai
)
 (as well as ℜ2+

(4)

(
ai
)
 ) are a2 ≻ a3 ≻ a7 ≻ a4 ≻ a1 ≻ a6 ≻ a5 

and a2 ≻ a3 ≻ a4 ≻ a7 ≻ a1 ≻ a6 ≻ a5 , respectively, which are slightly different from the 
cases of � = 1 and � → ∞ . The priority orders in the three candidate locations a1 , a4 , and 
a7 differ from the prioritization results in the displaced anchoring mechanism. When � = 1 
and � → ∞ , the priority orders of a1 , a4 , and a7 are 4th, 3rd, and 5th, respectively. When 
� = 2 , however, the priority orders of a1 , a4 , and a7 are 5th, 4th, and 3rd, respectively. Tak-
ing into account the prioritization results in the fixed anchoring mechanism, the priority 
orders in the two candidate locations a1 and a7 differ. When � = 1 and � → ∞ , the priority 
orders of a1 and a7 are 4th and 5th, respectively, whereas the priority orders of a1 and a7 are 
5th and 4th, respectively, when � = 2.

For further observation, this study plots the comparison results based on the C-IF Man-
hattan, Euclidean, and Chebyshev distances, as exhibited in Fig. 9, involving the compari-
son of line graphs in Fig. 9a, c, e and the comparison of stacked bar charts in Fig. 9b, d, 
f. As can be confirmed from Fig. 9a, c, e, whether based on the C-IF Manhattan distance, 
Euclidean distance, or Chebyshev distance, the relative closeness coefficient of a2 performs 
the best in all four scenarios. On the contrary, the relative closeness coefficients of a5 and 
a6 are always the worst two in the four scenarios, with significant numerical differences 
with the other five candidate locations. Figure 9c shows that the relative closeness coef-
ficients enjoyed by a1 , a3 , a4 , and a7 based on the C-IF Euclidean distance metric are very 
close. The relative benefits of the four candidate locations are fairly close. Although the 
relative closeness coefficients of a1 , a3 , a4 , and a7 are very close in Fig.  9a and e, there 
is still a slight difference in their relative advantages. The stacked bar charts in Fig.  9b, 
d, f, on the other hand, can display part-to-whole relationships. These 100% stacked bar 
charts, in particular, can display the relative percentages of the relative closeness coeffi-
cients of the seven locations a1 − a7 in the stacked bar, where the cumulative sum of the 
stacked bars invariably equals 100%. These stacked bar charts manifest how the proportion 
changes with different anchoring mechanisms and three- and four-term representations, 
such as the displaced anchoring mechanism with a three-term representation, the fixed 
anchoring mechanism with a three-term representation, the displaced anchoring mecha-
nism with a four-term representation, and the fixed anchoring mechanism with a four-term 
representation.

In the case of the Istanbul Epidemic Hospital site selection, the fourth compara-
tive research examines the rationality, usefulness, and adaptation of the evolved 
C-IF TOPSIS methodology by performing an overall comparison of the application 
outcomes generated by the current approach and other TOPSIS-related methods. It 
should be noted that Alkan and Kahraman (2022b) converted the C-IF performance 
ratings and C-IF importance weights into IF, picture fuzzy, and Pythagorean fuzzy 
information for ease of comparison. Furthermore, Alkan and Kahraman (2022b) com-
pared their propounded C-IF TOPSIS method to the IF, picture fuzzy, and Pythago-
rean fuzzy TOPSIS approaches originally established by Boran et al. (2009), Ashraf 
et al. (2019), and Akram et al. (2019), respectively. The bases for judging the pros and 
cons of the candidate locations in this fourth comparative study include the composite 
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ratio scores used in Alkan and Kahraman’s C-IF TOPSIS method, the closeness coef-
ficients used in the IF, picture fuzzy, and Pythagorean fuzzy TOPSIS approaches, and 
the relative closeness coefficients used in the evolved C-IF TOPSIS methodology. 
Table  9 reveals the comparison outcomes between the evolved C-IF TOPSIS tech-
niques proposed in this study and the preceding fuzzy TOPSIS-related methods.

Based on the comparison outcomes in Table 9, it is concluded that a5 and a6 are the two 
alternatives with the worst overall performance. Among the prioritization results obtained 
by the four fuzzy TOPSIS-related methods (i.e., Alkan and Kahraman’s C-IF TOPSIS 
method, as well as the IF, picture fuzzy, and Pythagorean fuzzy TOPSIS approaches) and 
the evolved C-IF TOPSIS methodology (under the displaced anchoring mechanism in the 
situations of � = 1, 2, 3, 4 and � → ∞ , and the fixed anchoring mechanism in the situations 
of � = 1, 2,⋯ , 10 and � → ∞ ), a2 has the best overall performance. In particular, when 
applying the evolved C-IF TOPSIS methodology to the site selection case of the Istanbul 
Epidemic Hospital, a7 emerges as the most suitable solution under the displaced anchoring 
mechanism in the cases of � = 5, 6,⋯ , 10 . The priority ranking outcomes produced by the 
four fuzzy TOPSIS-related methods were found to be highly similar. The main distinction 
occurs only in the outranking relationship between a5 and a6 . Using Alkan and Kahraman’s 
C-IF TOPSIS and the IF TOPSIS approaches, we obtained a6 ≻ a5 ; however, using the pic-
ture fuzzy and Pythagorean fuzzy TOPSIS approaches, we obtained a5 ≻ a6 . Aside from 
that, the outcomes of the four fuzzy TOPSIS-related methods are nearly identical. Further-
more, their execution procedures were incapable of producing tunable or elastic results in 
response to changing circumstances. It implies that these methods did not provide a sim-
ple and straightforward mechanism for obtaining adaptive outcomes in various scenarios 
for decision-making purposes. On the contrary, the evolved C-IF TOPSIS methodology 
can easily and effectively adapt to different scenarios, including the setting of the metric 
parameter and the designation of the anchoring mechanism. The evolved C-IF TOPSIS 
methodology can generate flexible prioritization results by adjusting the metric parameter 
and setting the displaced or fixed anchoring mechanism. In conclusion, the current C-IF 
TOPSIS techniques can produce stable but still resilient results.

6 � Conclusion and future scope

The circumstances confronting the MCDA problem are becoming increasingly com-
plex, and there is much incomplete, indistinct, and inconsistent information in some 
unpredictable emergencies or the ever-changing social environment. The evolved C-IF 
TOPSIS methodology can provide decision-makers with recommendations for mak-
ing the most appropriate choices within complex realistic environments. Specifically, 
this study makes the following main contributions to address the limitations of the 
existing literature and overcome the challenges of research gaps: (1) Based on three- 
and four-term approaches, this study constructed new C-IF Minkowski distance meas-
ures, and such general-purpose metrics can relax the constraints of the current C-IF 
distance metrics, provide flexibility of use through parameter settings, and broaden 
the applicability of quantitative analysis. (2) This study applied our newly developed 
C-IF Minkowski distance measures to the development process of the C-IF TOPSIS 
methodology, which can better determine the separation of incomplete, uncertain, and 
inconsistent information and delineate trade-off evaluations and compromise decision 
rules. (3) This study built displaced and fixed anchoring frameworks with three- and 
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four-term representations in order to create an evolved C-IF TOPSIS methodology 
for dealing with increasingly complex MCDA problems in real-world settings. (4) 
This study developed two new effective prioritization algorithms that were practi-
cally applied to the site selection issue of large epidemic hospitals, demonstrating the 
applicability of the new techniques and their superior ability when compared to exist-
ing approaches through comparative analysis.

However, there may be some limitations to this study. As previously indicated, the 
C-IF decision matrix was converted into pessimistic and optimistic decision matrices 
expressed in terms of IF values by Kahraman and Alkan (2021) and Alkan and Kahra-
man (2022b). They transformed the higher-order fuzzy information included in the 
C-IF set into a standard IF set with streamlined pessimistic and optimistic estimate 
processes. While their method may lose sight of the original goal of dealing with 
complex uncertainties using the C-IF set, the pessimistic and optimistic estimates 
associated with the C-IF decision setting are indeed issues that are not addressed in 
the approach presented in this study. If the decision-maker has a particularly pessi-
mistic or optimistic view of the decision-making environment, the results obtained 
using the suggested C-IF TOPSIS technique must be interpreted with caution. This is 
the main limitation faced by this study.

Other implementation limitations may exist for the proposed C-IF TOPSIS 
approach. To be specific, possible constraints include the mechanism for setting the 
metric parameter, and how to specify appropriate parameter values in various MCDA 
application libraries. Furthermore, a more thorough analysis of case applicability is 
necessary since the displaced or fixed anchoring frameworks with three- and four-
term representations are relevant to various MCDA case bases. This opens up the 
possibility of conducting a future study in two directions. The relationship between 
the metric parameter and the optimal solution outcomes should be taken into con-
sideration when building additional C-IF MCDA models using the suggested C-IF 
Minkowski distance measures. Moreover, an optimal setting mechanism for the metric 
parameter should be established to enhance the effectiveness and performance of the 
C-IF MCDA model. Furthermore, how to apply the evolved C-IF TOPSIS methodol-
ogy to various practical cases, as well as the correctness and validity analysis of the 
consequences, warrant further investigation.

Appendix

See Tables 10 and 11 
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