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Abstract

In 2014, Hu introduced the concept of three-way decision spaces and axiomatic definition of
decision evaluation functions. In three-way decision spaces, decision evaluation function
satisfies minimum element axiom, monotonicity axiom and complement axiom. Since then,
the research on construction method of decision evaluation functions from commonly used
binary aggregation functions becomes a research hotspot. Meanwhile, uninorms, as one
class of binary aggregation functions, have been successfully applied in various application
problems, such as in decision making, image processing, data mining, etc. This paper
continues to consider this research topic and mainly explores the new construction methods
of decision evaluation functions based on uninorms. Firstly, we show two novel transfor-
mation methods from semi-decision evaluation functions to decision evaluation functions
based on uninorms. Secondly, using known semi-decision evaluation functions, we give
some new construction methods of semi-decision evaluation functions. Thirdly, we give
some novel construction methods of decision evaluation functions and semi-decision
evaluation functions related to fuzzy sets, interval-valued fuzzy sets, fuzzy relations and
hesitant fuzzy sets. Based on them, decision maker can obtain more useful decision eval-
uation functions, thereby more choices can be used for realistic decision-making problems.
Finally, we consider two real evaluation problems to illustrate the results obtained in this
paper. The three-way decisions results of evaluation problem show that the construction
method proposed in this paper is superior to some existing construction methods under
some conditions.
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1 Introduction
1.1 A short review of three-way decisions

The theory of three-way decisions, as an exploration of thinking in three (Yao 2012), was
proposed by Yao (2009). The basic idea of three-way decisions arises from Pawlak’s rough
sets (Pawlak 1982; Pawlak 1991) and decision-theoretic rough sets (Yao 2003, 2007, 2008).
In three-way decisions, there are three sorts of decision rules, that is, acceptance rules,
uncertainty rules and rejection rules. According to these decision rules, for each object in a
universe, it can be divided into positive region by acceptance rules, boundary region by
uncertainty rules, and negative region by rejection rules. It is worth noting that three-way
decisions is an extension of classical two-way decisions (Yao 2009, 2010, 2011). Under
some conditions, three-way decisions is superior to the classical two-way decisions (Yao
2011). During the last 10 or more years, three-way decisions has met a fast development
both in real application and theory. The researches on three-way decisions mainly focus on
three aspects as follows.

The first aspect is the background researches on three-way decisions. These researches
mainly focus on the generalization of Pawlak’s rough sets, such as decision-theoretic rough
sets (Yao 2003, 2007, 2008), game-theoretic rough sets (Azam and Yao 2014), fuzzy rough
sets/rough fuzzy sets (Dubois et al. 1990), variable precision rough sets (Ziarko 1993), fuzzy
covering-based rough sets (Yang and Hu 2016; Yang and Hu 2017), multi-granulation rough
sets (Lin et al. 2013; Sun et al. 2021), and so on.

The second aspect involves the theoretical framework researches on three-way decisions.
These studies mainly focus on construction and interpretation of decision evaluation
functions (Yao 2010, 2011, 2012), value domain of decision evaluation functions (Yao
2012), the mode of three-way decisions (Yao 2012), three-way decision spaces (Hu 2014;
Hu 2016; Hu et al. 2016; Hu 2017; Hu et al. 2017, Jia and Qiao 2020; Qiao and Hu 2018;
Qiao and Hu 2020), trisecting-and-acting framework of three-way decisions (Yao 2015),
and so on.

The third aspect refers to real application studies of three-way decisions. In real appli-
cation, three-way decisions plays a key role in decision making (Jiang and Hu 2021; Li et al.
2020; Liang et al. 2015; Liang et al. 2016; Yao and Azam 2015), image processing (Yue
et al. 2021), neural networks (Cheng et al. 2021), investment (Jiang and Hu 2021),
incomplete fuzzy decision system(Zhan et al. 2021; Ye et al. 2021), clustering (Chu et al.
2020; Yu et al. 2021), classification (Subhashini et al. 2022), conflict analysis (Li et al. 2021;
Lang et al. 2020; Lang and Yao 2021), active learning (Min et al. 2020), and so on.

1.2 A brief introduction of uninorms

Triangular norms (t-norms, for short) and triangular conorms (t-conorms, for short) (Kle-
ment et al. 2000) are extensions of conjunctions and disjunctions. T-norms and t-conorms
play a vital role in fuzzy logic. Uninorms, as a generalization of t-norms and t-conorms, was
introduced by Yager and Rybalov (1996). Unlike t-norms with neutral element 1 and t-
conorms with neutral element 0, the neutral element of uninorms can be taken each value of
unit interval [0, 1]. Thus, t-norms and t-conorms are two special cases of uninorms. During
the last 20 or more years, both theory and real application of uninorms were developing
rapidly.
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To be more specific, in theory, there are a lot of literatures which relate to various
respects of uninorms, such as the structure of uninorms (Fodor et al. 1997; Li and Shi 2000),
migrativity properties (Zhou and Yan 2021), conditional distributive equations (Zhang and
Qin 2022), construction methods (Zong et al. 2020), and so on. In real application, uninorms
plays an important role in decision making (Campanella and Ribeiro 2011; Yager and
Rybalov 2011), image processing (Bustince et al. 2007; Gonzalez-Hidalgo et al. 2015), data
mining (Yan and Chen 2005), classification (Roy et al. 2020), neural networks (de Campos
Souza and Lughofer 2021; de Campos Souza and Lughofer 2022a; de Campos Souza and
Lughofer 2022b), and so on.

1.3 Motivation of this research

In 2014, after systemically researching on three-way decisions, Hu (2014) introduced the
axiomatic definitions for decision condition, decision measurement and decision evaluation
function and established three-way decision space on fuzzy lattice, i.e., a complete dis-
tributive lattice with a strong negation. Since then, in order to generalize the application
range of three-way decision space, Hu (2016) extended the decision measurement domain of
three-way decision space from fuzzy lattice to partially ordered set. Therefore, the existing
three-way decisions become the special cases of three-way decision space, for instance,
three-way decisions based on fuzzy sets (Hu 2014; Zadeh 1965), interval-valued fuzzy sets
(Hu 2014), fuzzy relations (Qiao and Hu 2018; Jia and Qiao 2020), hesitant fuzzy sets (Hu
2016), shadowed sets (Jiang et al. 2022; Pedrycz 1998; Yao and Yang 2022), and so on.
Therefore, three-way decision space is a useful tool to research three-way decisions.

In order to better illustrate our motivation, we review the concept of decision evaluation
function as follows. Let X and Y be two universes. In this paper, Map(X, Y) denotes the
family of all mappings from X to Y. Let U and ¥ be two nonempty universes. If we make
decisions on universe U, then U is said to be a decision universe. If we define condition
functions on universe ¥, then V is said to be a condition universe. Let
(Pc, <poyNp.,0p., 1p.) and (Pp, <p,,Np,,0p,,1p,) be two partially ordered sets with
strong negations Pc and Pp.

Definition 1.1 (Hu 2016) Let 7 be a condition universe and U be a decision universe. Then
a mapping E : Map(V,Pc) — Map(U, Pp) is said to be a decision evaluation function of
U, if it satisfies the axioms as follows:

(E1) Minimum element axiom

E((OP(_‘)V) = (OPD)U'

(E2) Monotonicity axiom
A gpc B= E(A) QPD E(B)

for each 4,B € Map(V, P¢).
(E3) Complement axiom

Np, (E(4)) = E(Np.(4))

for each 4 € Map(V, P¢).
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On the one hand, decision evaluation function plays a key role in three-way decisions
(Cabitza et al. 2017; Liu et al. 2016; Yao and Azam 2015). On the other hand, decision
maker will obtain different decision results through different decision evaluation functions
(Qiao and Hu 2018; Qiao and Hu 2020). Thus, in order to obtain reasonable decision results,
there must be enough decision evaluation functions for decision maker to select. However,
Hu found that a lot of useful functions only satisfy minimum element axiom and mono-
tonicity axiom (Hu 2014; Hu 2016). Meanwhile, it has been pointed out that the comple-
ment axiom is necessary and important for decision evaluation functions in various previous
researches (Liang and Liu 2014; Liang et al. 2015; Liang et al. 2016; Yao 2010, 2011; Zhao
and Hu 2016). Therefore, it arises the following question.

Question 1: How to construct decision evaluation function as much as possible?

In order to response this problem, Hu (2017) introduced the concept of semi-decision
evaluation function, i.e., decision evaluation function without complement axiom (see
Fig. 1). By the transformation methods from semi-decision evaluation functions to decision
evaluation functions proposed by Hu (2017), some useful semi-decision evaluation func-
tions can be transformed to decision evaluation functions.

After that, since the special properties and practicability of aggregation functions, the
research on construction methods of decision evaluation functions on the basis of some
particular binary aggregation functions becomes a research hotspot. In 2018, Qiao and Hu
(2018) studied the construction methods of semi-decision evaluation functions and decision
evaluation functions based on t-norms and t-conorms. And then, in 2020, on the basis of
overlap and grouping functions, Jia and Qiao (2020) researched the transformation methods
from semi-decision evaluation functions to decision evaluation functions and the con-
struction methods of semi-decision evaluation functions. Therefore, it is an effective way to
construct decision evaluation functions by aggregation functions. However, in Hu (2017);
Jia and Qiao (2020); Qiao and Hu (2018), the transformation methods from semi-decision
evaluation functions to decision evaluation functions always assume that the strong negation
Np,(x) =1 —xforall x € [0, 1]. It limits the research on decision evaluation functions both
in theory and application. Thus, it arises the following question.

Question 2: Whether there exists a construction method of decision evaluation func-
tions such that the strong negation Np, of partially ordered set Pp is different from
Np,(x) =1 —xfor all x € [0, 1]?

Therefore, in this paper, we mainly consider Questions 1 and 2. Firstly, in Sect. 1.2, it has
been pointed that t-norms and t-conorms are two special cases of uninorms. Thus, in order to
response Question 1, we mainly study how to construct semi-decision evaluation functions
and decision evaluation functions based on uninorms. Representable uninorms, as a special

Semi-decision

( [l\/linimum element axiomJ

evaluation — Decisi
function — , ecision
Monotonicity axiom — evaluation
- function

[ Complement axiom ]

Fig. 1 The relationship between decision evaluation functions and semi-decision evaluation functions (Hu
2017)
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class of uninorms (see Definition 2.8), is self-dual with respect to (w.r.t., for short) the strong
negation derived from its additive generator (see Lemma 2.2). Therefore, in order to
response Question 2, we study the construction methods of decision evaluation functions
based on representable uninorms in this paper.

The main contributions of this paper are listed as follows.

(1) We propose a transformation method from semi-decision evaluation functions to
decision evaluation functions based on uninorms. We also propose some novel
construction methods of semi-decision evaluation functions based on uninorms.
These methods provide some novel ways to construct decision evaluation functions
and unify some t-norms and t-conorms-based methods proposed in previous works
(Hu 2017; Qiao and Hu 2018).

(2) We propose a transformation method from semi-decision evaluation functions to
decision evaluation functions and some construction methods of decision evaluation
functions based on representable uninorms. These methods not only provide some
novel ways to construct decision evaluation functions, but also extend the strong
negation Np, from Np,(x) = 1 —x for all x € [0, 1] to the strong negation derived
from the additive generator of representable uninorms.

(3) We research the relationship among different decision evaluation functions.

(4) We analyse two real evaluation problems to illustrate the results obtained in this
paper. Moreover, by a real evaluation problem of credit card applicants, we compare
the uninorms-based transformation method with overlap and grouping functions-
based transformation method. The comparison results show that uninorms-based
transformation method is superior to overlap and grouping functions-based transfor-
mation method under some conditions.

From theoretical viewpoint, on the one hand, this paper is supplement of three-way deci-
sions. On the other hand, the existing t-norms and t-conorms-based transformation methods
and construction methods become the special cases of uniorms-based methods proposed in
this paper. From applied viewpoint, these contributions of this paper can enlarge the
potentiality of three-way decisions in solving some actual application problems, especially
in areas where both uninorms and three-way decisions work together, such as decision
making (Campanella and Ribeiro 2011; Jiang and Hu 2021; Li et al. 2020; Liang et al. 2015;
Liang et al. 2016; Yager 2002; Yager and Rybalov 2011; Yao and Azam 2015), image
processing (Bustince et al. 2007; Gonzalez-Hidalgo et al. 2015; Yue et al. 2021), neural
networks (Cheng et al. 2021; de Campos Souza and Lughofer 2021; de Campos Souza and
Lughofer 2022a; de Campos Souza and Lughofer 2022b), and so on.

The paper is organized as follows. In Sect. 2, we review some basic notations and
concepts. In Sect. 3, we give two transformation methods from semi-decision evaluation
functions to decision evaluation functions derived from uninorms and representable uni-
norms, respectively. In Sect. 4, on the basis of uninorms, we give some new construction
methods of semi-decision evaluation functions and decision evaluation functions related to
known semi-decision evaluation functions, fuzzy sets, fuzzy relations, interval-valued fuzzy
sets and hesitant fuzzy sets. In Sect. 5, we use two real examples to illustrate our results. In
the last section, we summarize our work and show some future research directions.
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2 Preliminaries
In this section, we recall some basic concepts and notations used in this paper.

Definition 2.1 (Hu 2016) Let (P, <) be a partially ordered set with the maximum element
1p and minimum element Op. A non-increasing mapping N : P — P is said to be a negation
if N(0p)=1p and N(lp) =O0p. In particular, it is called involutive or strong, if
NoN = idp.

In this paper, (P, <p) denotes a partially ordered set with a strong negation Np, the
maximum element 1p and minimum element 0p. We always write it as (P, < p, Np,Op, 1p).
In addition, we will use the following partially ordered sets and corresponding operations on
them from Qiao and Hu (2018, 2020):

(1) Let Y =[0,1]. Then, for each 4 € Map(X,[0,1]), 4 is said to be a fuzzy set of X
(Zadeh 1965). For each A € [0,1], Ay denotes a fuzzy set of X with membership
function )X( )= A

(2) Let Y =I1?® where I® denotes the family of interval numbers over [0, 1], i
1% = {[/1 A } :0< A" < A" <1}. Then, foreach 4 € Map(X,]( )),A is said to be
an interval-valued fuzzy set of X (Hu 2014). Meanwhile, we always write an interval-
valued fuzzy set 4 with membership function 4(x) = [47(x), 4" (x)] as 4 = [4~,4T].
For each interval-valued fuzzy set 4 = [4~,4"], A" denotes a fuzzy set of X with

membership function 4" (x) = w A" is said to be the center of interval-
valued fuzzy set 4. The order relatlon on 1) is defined as [A~, A7) < [u~, ut] iff
2T <ptand A~ <. Moreover, for all o € [0, 1], the notation % = [o, o] is used. Let
N be a strong negation on [0, 1]. Then the operations on I®) are defined as:
N7, 2 ) =INGT) NG, 2TV et =27 v, AT vpt] and
A AT A e wf = [0 A 2T At

(3) Let Y =201 — (. Then, for each H € Map(X,2[%!) — (), H is said to be a hesitant
fuzzy set of X (Hu 2016). Let N be a strong negation on [0, 1]. For each A, B €
2[01) — ¢ define the operations on 2[%!) — ( as: N(A) = {N(r) : r € A}, ANIB =
{anb:aec Abe B} and AUB={aVb:ae A bec B} The order relation on

—(Qis definedas A< Biff AUB=Band ANB=A.

Let (P, <p,Np,0p,1p) be a partially ordered set and U be a universe. Then, for each
A € Map(U, P) and x € U, we denote Np(4)(x) = Np(A(x)). In addition, for P = [0, 1], we
denote A€ (x) = 1 — A(x) for all x € [0, 1].

Further, for each 4, B € Map(U,P), A Cp B is defined as A(x) < pB(x) forallx € U. It
is distinct that (Map(U, P),Cp) is a partially ordered set with a strong negation Np, the
maximum element (1p),, and minimum element (0p),, where (0p),, and (1p),, are defined

s (0p),(x) =0p and (1p),(x) = 1p for each x € U. If P = [0, 1], for convenience, the
notations Cp, Np, (0p),; and (1p), are always written as C, N, Oy and 1y, respectively.

Definition 2.2 (Hu 2017) Let 7 be a condition universe and U be a decision universe. Then

amapping E : Map(V,Pc) — Map(U, Pp) is said to be a semi-decision evaluation function
of U, if it satisfies the axioms as follows:
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(E1) Minimum element axiom
E((OPC)V) = (OP[))U'
(E2) Monotonicity axiom
A Cp. B= E(4) Cp, E(B)
for each 4,B € Map(V, P¢).

For each semi-decision evaluation function E : Map(V, Pc) — Map(U, [0, 1]), the notation
ly — E((1p.)y) denotes 1 — E((1p.),)(x) for each x € U.

Definition 2.3 (Hu 2016) Let (U,Map(V,Pc),Pp,E) be a three-way decision space,
VW, € Pp, 1p, > > w>0p, and A € Map(V, Pc). Then three-way decisions are defined
as follows.

(1) Acceptance region: ACPy ., (E,4) = {x € U : E(4)(x) > }.
(2) Rejection region: REJy, ) (E,A) = {x € U : E(4)(x) < w}.
(3) Uncertain region: UNCy, ., (E, A) = (REJ(y ) (E, A) UACPy (E,A))C.

In the following, we review the concepts of t-norms, t-conorms, overlap functions, grouping
functions and uninorms, respectively.

Definition 2.4 (Klement etal. 2000) A mapping 7T:[0,1]* —[0,1] (resp.
$:10,1]* — [0, 1)) is said to be a t-norm (resp. t-conorm) if it is commutative, associative,
increasing and having 1 (resp. 0) as neutral element.

Moreover, a t-norm T is said to be positive if 7(u,v) = 0, then either u = 0 or v =0 and
continuous if it is continuous in both arguments at the same time. If we take into account a t-
norm 7 and a t-conorm S in the meantime, then they are always considered as a dual pair,
that is, 7(x,y) =1 —S(1 —x,1 —y) for each x,y € [0, 1]. We list some commonly used
t-norms (see Fig. 2) from Klement et al (2000) as follows.

Example 2.1
(1) The minimum t-norm Ty : [0, 1]* — [0, 1] is given, for any u,v € [0,1], by
T (u,v) = min{u, v}.
(2) The product t-norm Tp : [0, 1]* — [0, 1] is given, for any u,v € [0, 1], by
Tp(u,v) = uv.
(3) The Lukasiewicz t-norm 7} : [0, 1]* — [0,1] is given, for any u,v € [0, 1], by
Tp(u,v) = max(u+v —1,0).
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Fig. 2 3D plots of four t-norms
given in Example 2.1 1
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(4) The drastic product t-norm Tp, : [0,1]* — [0, 1] is given, for any u,v € [0, 1], by

Tp(u,v) = { 0

; (u,v) € 0,17,

min(u, v), otherwise.

Definition 2.5 (Bustince etal. 2010) A binary function O : [0,1]* — [0,1] is called an
overlap function if, for each u,v € [0, 1], the following conditions hold:

(1) O is commutative;

2) O(u,v) =0 iffuv = 0;
3) O(u,v)=1iffuv=1;
(4) O is increasing;

(5) O is continuous.

In the following, we list some commonly used overlap functions (see Fig. 3) from Bedregal

et al (2013).

Example 2.2

(1) Any positive and continuous t-norm is an overlap function.

(2) For any p > 0, the function O, : [0, 1}2 — [0, 1] given, for any u,v € [0, 1], by

Op(u,v) = v’

is an overlap function.

(3) The function O,y : [0,1]* — [0, 1] given, for any u,v € [0, 1], by

Oyt (1, v) = min{x, y} max{x*,)}

is an overlap function.
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Fig. 3 3D plots of the overlap ‘
functions given in Example 2.2 1
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Definition 2.6 (Bustince etal. 2012) A binary function G :[0,1]> — [0,1] is called a
grouping function if, for each u, v € [0, 1], the following conditions hold:

(1) G is commutative;

2) G(u,v)=0iffu=v=0;

3) Gu,v)=1iffu=1lorv=1;
(4) G is increasing;

(5) G is continuous.

In the sequel, if we consider an overlap function O and a grouping function G at the same
time, then they always represent a dual pair, that is, O(x,y) = 1 — G(1 — x,1 —y) for all
x,y €[0,1].

Definition 2.7 (Yager and Rybalov 1996) A mapping U : [0, 1]2 — [0, 1] is said to be a
uninorm if it is commutative, associative, increasing and having e € [0, 1] as neutral
element.

In Definition 2.7, if we take the neutral element of uninorm U/ as e = 1 (resp. e = 0), then U
becomes a t-norm (resp. t-conorm). It is worth noting that Li and Shi (2000) have verified
that 2/(1,0) € {0, 1} for all uninorms /. In addition, a uninorm { is said to be disjunctive if
U(1,0) =1 and conjunctive if U(1,0) = 0.

Lemma 2.1 (Fodor etal. 1997) Let U be a uninorm with neutral element e €)0, 1[. Then
there exists a t-norm Ty and a t-conorm Sy such that

e eTuC.2), (v.y) € 0.,
XY) = X —e —e
e+ (l=eSuf—a—), (ry) €le1].

In addition, for each (x,y) € [0, e[X]e, 1]U]e, 1] X [0, e[, one has that
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Fig. 4 The structure of uninorms 1
between
. t-conorm
min and max
e
. between
t-norm .
min and max
0 € 1

min(x,y) <U(x,y) < max(x, ).

Lemma 2.1 demonstrates the structure of uninorms U (see Fig. 4). For each (x,y) € [0, e]z,

the function of a uninorm likes a t-norm. For each (x,y) € [e, 1]27 the function of a uninorm
likes a t-conorm.

Definition 2.8 (Fodor etal. 1997) Let I be a uninorm with neutral element e €]0, 1], if there
exists a continuous strictly increasing function /% : [0, 1] — [—o0, +oo] with £(0) =
—00, h(e) = 0,h(1) = 400 such that

Ux,y) = h™' (h(x) + h(y))

for all (x,y) € [0, 1] x [0,1]\ {(0, 1), (1,0)}, then U is representable. The function / is said
to be the additive generator of representable uninorm .

In this paper, the class of the representable uninorms are written as U,

Lemma 2.2 (Fodor etal. 1997) Let U be a representable uninorm with neutral element
e €]0,1[. Then, for each x € [0,1], there exists a strong negation N given by N(x) =
h='(—h(x)) with N(e) = e such that

Ulx,y) = N(UN(x), N()))
for each (x,y) € [0,1] x [0, 1]\ {(0,1),(1,0)}.

For each U € U,,, the strong negation N on [0, 1] derived from the additive generator of U/
is always written as N”. We list some commonly used uninorms (see Fig. 5) from Yager and
Rybalov (1996) and Fodor et al (1997) as follows.

Example 2.3

(1) The uninorm U : [0, 1]2 — [0, 1] with neutral element e € [0, 1] is given, for any
u,v € [0,1], by
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Fig. 5 3D plots of four uninorms
given in Example 2.3
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U (, v) = min{u,v}, (u,v) € [0, e]z,
e max{u, v}, otherwise.

The uninorm U¢ : [0, 1]* — [0, 1] with neutral element e € [0, 1] is given, for any
u,v € [0, 1], by

U (u,v) = {max{u, vy, (u,v) € [e, 1]%,

min{u, v}, otherwise.
Take the additive generator as A(x) = In (I"Tx), it follows that

0, (x,y) € {(1,0),(0,1)},
Ue(x,y) = Xy
(I=x)(1-y) +xp’
Then U, is a representable uninorm with neutral element e = 0.5 and strong negation
N"(x) =1 — x for each x € [0, 1].
For each § > 0, take the additive generator as /g(x) = 1n<— % “In(1 — x)), it follows
that

otherwise.

L, (6,») € {(1,0), (0, 1)},

U/i(an’) = 1 — exp (_% . ln(l _x) . h](l —y))’ otherwise.

Then Upg is a representable uninorm with neutral element e = 1 — exp(—f) and

strong negation N"(x) = 1 — exp (%) for each x € [0, 1].
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3 Transformation methods from semi-decision evaluation functions
to decision evaluation functions on the basis of uninorms

In this section, we give two novel transformation methods from semi-decision evaluation
functions to decision evaluation functions on the basis of uninorms and representable uni-
norms, respectively.

3.1 Transformation method on the basis of uninorms

In this subsection, if partially ordered set P = [0, 1], then the corresponding strong negation
N is given by N(x) = 1 — x for each x € [0, 1].

Lemma 3.1 (Yager and Rybalov 1996) Let U be a uninorm with neutral element e € [0, 1],
then U, defined such that

Z;l(xvy) =1 _u(l ) 1 _.y>7

is a uninorm with neutral element ¢ = 1 — e.

In this paper, if we consider a uninorm U/ with neutral element e € [0, 1] and a uninorm u
with neutral element ¢ € [0, 1] in the meantime, then they always denote a dual pair, that is,

é=1—eand U(x,y) =1 —U(1 —x,1—y) for each x,y € [0, 1].

Theorem 3.1 Let V be a condition universe, U be a decision universe, E : Map(V,Pc) —
Map(U, [0,1]) be a semi-decision evaluation function of U, U and U be two uninorms with
neutral element e and é such that 1y — E((1p.),) C (ev Néy). For each A € Map(V, P¢)
and x € U, take

(1 — E(Np(4)) (), E(4)(2)

By () = M
n U(1 = E(Np(4)) (x), E(4) (x))
5 .

Then E,, , is a decision evaluation function of U.
(UUNp)

Proof

(1) Minimum element axiom
(i) Lete,éc[0,1] with e <é. Then, it follows that
ly = E((1pc)y) € (ev Néy) = 1u(x) = E((1p:) ) (x) < (ev Néy)(x)

14
= 1= E((1p.)y)(x) Z
x)

<ey(x) Aéy(x)
= 1=E((1p)y)(x) <e,
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for each x € U. Therefore, it follows that

E(M,d,NPC)((OPc)V)(x) :Z/{(l — E(NPF((OPF)I;))(X)7E((OPC)V)(X))

L U = EWpc((Or) ) (), E((Orc) ) ()
2

U0~ E((1p)) (), 00 (x))
2
LU0 = E((12)) (), 00(x))

for each x € U.
(ii) Let e, é € [0,1] with e>é. Then, it can be verified similarly to above that
E(u,zZﬁNpc,)((OPc)V)(x) =0 foreach x € U.

Therefore, one obtains that E(M,L?,NPC)((OPc)V) = 0y.

(2) Monotonicity axiom
Let A,B € Map(V, Pc) with A Cp. B. Then, one gets that

_ U = E(Npc(4))(x), E(4)(x))

E(uﬁzf{‘NpC)(A)(x) = >
+?f7(1 — E(Npc(4))(x), E(4)(x))
2
< U(l = EWNp. (B)) (x), E(B)(x))
- 2
n U(1 — E(Np.(B))(x), E(B)(x))
2
:E(u,z,?,NPC)(B)(x)a

for each x € U. Therefore, one concludes that E(U,L?,NPC)(A) - E(M,IJI,NPC)(B)‘

(3) Complement axiom
For each 4 € Map(V,Pc¢) and x € U, it follows that
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N(E g5 (A) (6) =1 = <”<1 - E<NPc~<§>>(x>,E(A><x>>

Lua- E(NPC%))(x),E(A)(x)))
_ LU~ E(Np (4)) (), E(4) ()
|0 BN ()0, B )
_UEWN(A) @)1 " b
(BN (). 1~ B
~Etig,) Nre e

Therefore, one obtains that N (E(U,L?,NPC)(A)) = E(uﬂ’NPC)(NpC (4)).

+

O

Remark 3.1 In Theorem 3.1, if we take the neutral element of uninorm U{ as e = 1, then one
concludes that ¢ = 1 — e = 0. Therefore, for each x € U, it follows that

ly = E((1p.)y) € (ev Néy) = lu(x) = E((1p.)y)(x) < (ev Néu)(x)
= 1= E((1pc))(x) < (1y(x) A Oy (x))
= E((1p.))(x)>1—=(1A0)
= E((lpc)y)x) = 1.
Thus, one obtains that E((1p.),) = 1y. Then

TI_ENPCA x),E(A)(x
Euging, ) (A) ) = (1 - £( (2>)() (4)(x))

S0 = E(WNp:(4)) (%), E(4) (%))
2

becomes the transformation method given in Theorem 3.5 of Hu (2017). Therefore, The-
orem 3.5 of Hu (2017) is a special case of Theorem 3.1. Theorem 3.1 generalizes Theo-
rem 3.5 of Hu (2017) and includes more cases. In addition, Theorem 3.1 has the looser
constraint conditions of semi-decision evaluation functions than Theorem 3.5 of Hu (2017).

Lemma 3.2 (Jia and Qiao 2020) Let O be an overlap function, G be a grouping function,
E: Map(V,Pc) — Map(U,[0,1]) be a semi-decision evaluation function of U and
E((1p.)y) = ly. For each x € U and A € Map(V,P¢), take

O(E(4)(x), 1 = E(Np.(4))(x))
2
4 GEADX), 1~ E(Np(4)) ()
> :

E(0,GNp.) (4)(x) =
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Then E oG v,,) 1s a decision evaluation function of U.

Remark 3.2 From Remark 3.1 and item (1) of Example 2.1, if we take uninorm U/ as a
positive and continuous t-norm 7, then the transformation method given in Theorem 3.1
becomes the transformation method given in Lemma 3.2. In addition, Theorem 3.1 has the
looser constraint conditions of semi-decision evaluation functions than Lemma 3.2.

3.2 Transformation method on the basis of representable uninorms

Theorem 3.2 Let V be a condition universe, U be a decision universe and E :
Map(V,Pc) — Map(U, [0, 1)) be a semi-decision evaluation function of U satisfying the
following conditions:

(1) E(A4)(x) > 0if 4 # (0p.), for each x € U;
(2) E(A)(x)<1 for each x € U and 4 € Map(V, Pc).

Moreover, let U be a representable uninorm with neutral element e €0, 1] and strong
negation N” such that N"(E((1p.),)) C ey. For each 4 € Map(V,P¢) and x € U, take

EyyNpe) (A) () = UN"(E(Np(4))(x)), E(4) (x))-

Then E,, ) is a decision evaluation function of U.

Proof

(1) Minimum element axiom
Since N"(E((1p.)y)) C eu, it follows that

E(Z/Im,uNPC) ((OP(‘)V) (x) = u(Nr (E(NPC ((OP(‘)V))(x))7E((0PC)V) (x))
=UN"(E((1rc)y) (%)), 0u(x))
<U(ey(x),0)
=0,

for each x € U. Therefore, one obtains that £, n,.)((0pc)y) = Ou.

(2) Monotonicity axiom
Let A4,B € Map(V, Pc) with A Cp. B. Then, one gets that

E,, Np) (A)(x) = UN"(E(Np.(4))(x)), E(4)(x))
<UN"(E(Np.(B))(x)), E(B)(x))
= Et,,, Ny, (B) (%),

for each x € U. Therefore, one concludes that Ey,, v,.)(4) € Eq,,, ny,)(B).

(3) Complement axiom
Firstly, for each x € U and 4 € Map(V, P¢), consider the following four cases.
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(i) Let E(4)(x) = 0. Then one has that 4 = (0p,.),,. Thus it follows that

N"(E(Np(4))(x)) =N"(E(Ne.((0r.))) (x))
=N"(E((1p.)y)(x))
<ey(x)
<1.
Thus, one obtains that N"(E(Np.(4))(x)) # 1.
(i) Let N"(E(Np.(A))(x)) = 0. Then one has that E(Np.(4))(x) =1 which
conflicts with the assumption.

(ili) Let E(Np.(4))(x) = 0. Then one has that Np.(4) = (0p.),. Thus it follows
that 4 = (1p.),. Thus, one gets that

N(E(A4)(x)) = N"(E((1pc) ) (x)) < eu(x) <1.

Thus, one obtains that N"(E(4)(x)) # 1.
(iv) Let N"(E(4)(x)) = 0. Then one has that E(4)(x) = 1 which conflicts with
the assumption.

According to above discussions, one concludes that
{(N"(E(Npc(4))(x)), E(4)(x)), (E(Npc(4))(x),  N"(E(4)(x)))} € [0,1] x [0, 1]\
{(0,1),(1,0)}. Then, it follows that

N(E@ty ) (4)) (x) = N (UN"(E(Np(4))(x)), E(4)(x)))
= U(E(Np:(4))(x), N"(E(4)(x)))
= E,,, Np.) (Npc(4)) (x).
Therefore, one obtains that N"(Ey,, vy, ) (4)) = Eth,y, Np.) (Nec(4)).-

~

4 Construction methods of semi-decision evaluation functions
and decision evaluation functions based on uninorms

On the basis of the transformation methods from semi-decision evaluation functions to
decision evaluation functions given in previous works (Hu 2017; Jia and Qiao 2020; Qiao
and Hu 2018) and Sect. 3, a decision evaluation function can be obtained from known semi-
decision evaluation functions. Therefore, in this section, in order to get more decision
evaluation functions, we give some novel construction methods of semi-decision evaluation
function related to known semi-decision evaluation functions, fuzzy sets, fuzzy relations,
interval-valued fuzzy sets and hesitant fuzzy sets, respectively. At the same time, we give
some novel construction methods of decision evaluation function based on repre-
sentable uninorms. We also research the relationship between t-norms and t-conorms-based
construction methods of semi-decision evaluation functions given in Qiao and Hu (2018)
with uninorms-based construction methods of semi-decision evaluation functions proposed
in this section.
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4.1 Construction methods related to known semi-decision evaluation functions

Proposition 4.1 Let V be a condition universe, U be a decision universe, E|,FE, :
Map(V,Pc) — Map(U, [0, 1]) be two semi-decision evaluation functions of U and U be a
uninorm with neutral element e € [0, 1]. For each A € Map(V,P¢) and x € U, take

Ey(A4)(x) = U(E\ (4)(x), Ex(4)(x)).
Then Ey, is a semi-decision evaluation function of U.

Proof It can be checked in a similar way as that of Proposition 3.1 of Qiao and Hu (2018).
O

Remark 4.1

(1) In Proposition 4.1, take the neutral element of uninorm &/ as e = 1. Then
Ey(4)(x) = T(E1(4)(x), E2(4) (x))

becomes the construction method given in Proposition 3.1 of Qiao and Hu (2018).
(2) In Proposition 4.1, take the neutral element of uninorm & as e = 0. Then

Ey(4)(x) = S(E1(4)(x), E2(4)(x))

becomes the construction method given in Proposition 3.2 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 3.1 and 3.2 of Qiao and Hu (2018) are

special cases of Proposition 4.1 and unified by Proposition 4.1. In addition, more

novel semi-decision evaluation functions can be obtained from Proposition 4.1.

Proposition 4.2 Let V be a condition universe, U be a decision universe, E|,FE, :
Map(V,Pc) — Map(U,[0,1]) be two semi-decision evaluation functions of U, U, be a
uninorm with neutral element e; € [0, 1] fori =1,2,--- ,nand J; € [0,1] fori=1,2,---,n
with Y ', A = 1. For each A € Map(V,Pc) and x € U, take

Ep(A) ) = Y AUi(E(4)(x), E2(4) (x)).
=1
Then E, ;) is a semi-decision evaluation function of U.
Proof 1t can be immediately derived from Proposition 4.1 . (I

Remark 4.2 1n Proposition 4.2, take n = 2 and the neutral element of uninorm &/ and U, as
e; = 1 and e; = 0, respectively. Then

Euy(A)(x) = L T(E(4)(x), E2(4)(x)) + 228 (E1(4)(x), E2(4) (x))

becomes the construction method given in Proposition 3.3 of Qiao and Hu (2018).
Therefore, Proposition 3.3 of Qiao and Hu (2018) is a special case of Proposition 4.2. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.2.
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Proposition 4.3 Let V be a condition universe, U be a decision universe, E :
Map(V,Pc) — Map(U,[0,1]) be a semi-decision evaluation functions of U, N* be a
negation on [0, 1] and U be a uninorm with neutral element e € [0,1] such that
N*(E((1p.)y)) C ey. For each A € Map(V,Pc) and x € U, take

ENp) (4) (x) = UN* (E(Np (4))(x)), E(A) (x)).

Then E(L{,NPF) is a semi-decision evaluation function of U.

Proof

(1) Minimum element axiom
Since N*(E((1p.)y)) C ey, it follows that

Enpe) (0pe) ) (x) = UNX(E(Np ((0r.) ) (x)) E((Ope ) ) (x))

= UN*(E((1p.);)()); (0p, )y (x)
<U(eu(x),0)
=0,

for each x € U. Therefore, one obtains that £y, )((0pc)y) = Ou.

(2) Monotonicity axiom
Let 4,B € Map(V, P¢) with 4 Cp,. B. Then, one gets that

Eun,) (A)(x) = UN*(E(Np(4)) (x)), E(4)(x))
SU(N*(E(Np(B))(x)), E(B)(x))
= Eun,.)(B)x),

for each x € U. Therefore, one concludes that Eqy, )(4) € Eqn,,)(B).

Remark 4.3
(1) In Proposition 4.3, take the neutral element of uninorm U as e = 1 and the negation
N* as N*(x) = 1 —x for all x € [0, 1]. Then
Eny)(4)(x) = T(1 = E(Np(4))(x), E(4)(x))

becomes the construction method given in Proposition 3.4 of Qiao and Hu (2018).
(2) In Proposition 4.3, take the neutral element of uninorm U as e = 0 and the negation
N* as N*¥(x) = 1 —x for all x € [0, 1]. Then, one gets that

1= 10(0) = 00(x) = 1u) — e (x) S E((1p0) ) < 1,
for each x € U. Therefore, one obtains that E((1p.),,) = 1y. Then
Ewnp) (A)(x) = S(1 = E(Np. (4)) (x), E(4)(x))

becomes the construction method given in Proposition 3.5 of Qiao and Hu (2018).
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(3) According to items (1) and (2), Propositions 3.4 and 3.5 of Qiao and Hu (2018) are
special cases of Proposition 4.3 and unified by Proposition 4.3. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.3.

4.2 Construction methods related to fuzzy sets

Let X = {x1,x2,....,xn} and Y = {y1,»2, ..., ¥, } be two nonempty finite sets. In the fol-
lowing, we always denote (m x n)-dimensional fuzzy matrix R = (r;) given by ry =
R(x;,y:) as the fuzzy relation R under the X x Y (Fan 2000).

Proposition 4.4 Let U be a condition universe and also be a decision universe, U be a
uninorm with neutral element e € [0,1] and Pc = Pp = [0, 1]. For each A € Map(U, [0, 1])
and x € U, take Ey py : Map(U, [0, 1]) — Map(U, [0, 1]) as:

Eq.p(4)(x) = U(A(x), A(x)).

Then E, ) is a semi-decision evaluation function of U.

Proof
(1) Minimum element axiom
Since U(0,0) = 0, it follows that
E(00)(x) = U0y (x), 0u(x)) =0,

for each x € U. Therefore, one obtains that E¢, ;) (0y) = Oy.
(2) Monotonicity axiom
Let 4, B € Map(U, [0, 1]) with A C B. Then, one gets that

Ep(4)(x) = U(A(x), A(x)) SUB(x), B(x)) = Equ.i)(B)(x),

for each x € U. Therefore, one concludes that £, ;) (4) C Eq;)(B).

Remark 4.4

(1) In Proposition 4.4, take the neutral element of uninorm &/ as e = 1. Then

Eqn(4)(x) = T(4(x), 4(x))

becomes the construction method given in Sect. 3 of Qiao and Hu (2018).
(2) In Proposition 4.4, take the neutral element of uninorm &/ as e = 0. Then

Eq.p(4)(x) = $(4(x), 4(x))

becomes the construction method given in Sect. 3 of Qiao and Hu (2018).

(3) The construction methods given in items (1) and (2) are special cases of Proposition
4.4 and unified by Proposition 4.4. In addition, more novel semi-decision evaluation
functions can be obtained from Proposition 4.4.
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Fig. 6 Decision evaluation 1
function £, 1)(4) and fuzzy set
A
0.8 [ q
0.2 q
0 1/3 213 1

Theorem 4.1 Let U be a condition universe and also be a decision universe, U be a
representable uninorm with neutral element e €]0, 1] and Pc = Pp = [0,1]. For each A €
Map(U, [0,1]) and x € U, take E,,,, 1) : Map(U, [0,1]) — Map(U, [0, 1]) as

E,,n(4)(x) = U(A(x), A(x)).

Then Ey,,, 1) is a decision evaluation function of U.

Proof TItems (E1) and (E2) of Definition 1.1 can be immediately verified from Proposition
4.4. We only verify item (E3) of Definition 1.1 as follows.
For each x € U and 4 € Map(U, [0, 1]), it follows that

N (E,,.1)(4)) (x) = N"(U(A(x), A(x)))
=UN"(4(x)), N"(4(x)))
= Et,,,.1y(N"(4)) (x).

Therefore, one obtains that N"(E,,, 1(4)) = Ew,,,..)(N"(4)). O

Example 4.1 Let U = [0, 1] and 4 be a fuzzy set of U with membership function 4(x) = x
If we consider the additive generator /4(x) = In(;%;), from the construction method dis-
cussed in Theorem 4.1, then we obtain a decision evaluation function E,,, )(4) of U (see
Fig. 6) as follows:

2

X
Ey1) (A)(x) = 22 —2x+1°

If we take y = 0.8 and w = 0.2, then three-way decision is given as follows.

(1) Acceptance region: ACPog0.2)(Ew,,.14) = {x]3 <x<1}
(2) Rejection region: REJ(0.8,0.2)(E,,,.1)»4) = {x[0 <x < .
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(3)  Uncertain region: UNC(o0.2)(E,,.1)4) = {x|3 <x<3}.
Lemma 4.1 Let U be a uninorm with neutral element e € [0,1], X be a universe and
A €[0,1]. For each A € Map(X,[0,e]) and x € X, one has that

U(A(x), 1) < A.

Proof Since A € Map(X,[0,¢]), it follows that

U(A(x),A) <U(e, A) = 4,
for each x € X. Therefore, one concludes that 2/(A(x), 1) < 4. O
Proposition 4.5 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e €)0,1], Pc =[0,e], Pp =1[0,1] and R € Map(U %

V,[0,€]) such that .., R(x,y) # 0 for each x € U. For each A € Map(V,[0,¢]) and
x € U, take Eq gy : Map(V,[0,e]) — Map(U, [0,1]) as:

_ 2yer URX,),40)
ZerR(X,y) .

Then E ) is a semi-decision evaluation function of U.

Er)(4)(x)

Proof  Firstly, from Lemma 4.1, one obtains that £,z is well defined.

(1) Minimum element axiom
Since R € Map(U x V,[0,¢]), it follows that

2 UR(x,), (Op )y ()
a ZerR(an/)
2 _yer U(e,0)

erR(va’)

Eqr) ((0p:)y)(x)

=0,

for each x € U. Therefore, one obtains that E z)((0p.);) = Oy.
(2) Monotonicity axiom
Let A,B € Map(V,[0,¢]) with 4 Cp. B. Then, one gets that

U(R(x,y), A
Eun)(A)(x) = Zyevz ( <R &) )
< 2oer U(R(x,3), B(Y))
- > yer R(x, )
= Eup)(B) (%),

for each x € U. Therefore, one concludes that Eq g)(4) € Eq ) (B).
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Remark 4.5 In Proposition 4.5, take the neutral element of uninorm &/ as e = 1. Thus, one
has that Pc = [0, 1] and R € Map(U x V0, 1]). Then

> yer TR(x,3),4())
2 yer R(x, )

becomes the construction method given in Proposition 4.2 of Qiao and Hu (2018).
Therefore, Proposition 4.2 of Qiao and Hu (2018) is a special case of Proposition 4.5. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.5.

Eur) (4)(x) =

Proposition 4.6 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e € [0, 1], Pc = Pp = [0, 1] and R € Map(U x V[0, ¢l). For
each A € Map(V,[0,1]) and x € U, take E’(MR> : Map(V,[0,1]) — Map(U, [0, 1]) as:

, <y UR(x, ),
Epy(A)(x) = 2 (1|€I(1| ».A0) .

Then E;u ®) is a semi-decision evaluation function of U.

Proof 1t can be checked in a similar way as that of Proposition 4.5. O

Proposition 4.7 Let V be a finite condition universe, U be a finite decision universe, Uy ,U>
be two uninorms with neutral element ey, e; € [0,1], e = e Aey, Pc = Pp =10,1] and
R € Map(U x V,[0,¢]). For each A€ Map(V,[0,1]) and x€ U, take Ey, y,p) :
Map(V,[0,1]) — Map(U, [0,1]) as:

2yer Ui Uh(R(x,3),4()), 4))

Eu, 4,1)(A) (x) = 7]

Then E, 14, r) is @ semi-decision evaluation function of U.

Proof

(1) Minimum element axiom

(i) Let ej,e; €]0,1] with e; <e,, then one obtains that e = e; A e; = e; and
R(x,y) <e<e, for each (x,y) € U x V. Thus, it follows that

U (U (R(x, ), Op.. , (Op,
E(U]J/z,R)((OP(;)V)(x) :ZyEV ( ( ( y)[(/| )V(y)) ( )V(y))
> yer Un(Uz(e2,0),0)

<
- 14
-0,

for each x € U.
(ii) Leter,e; € [0,1] with e; <es, then it can be verified similarly to above that
E, 1,8 ((0p.) ;) (x) = 0 for each x € U.

Therefore, one obtains that E, 1, #)((0p.)y) = Og.
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(2) Monotonicity axiom
Let A,B € Map(V,[0,1]) with 4 C B. Then, one gets that

_ 2yer Ui (U (R(x,), A)), A7)
14

< 2y Ui(U2(R(x.3), B(Y)), BOY))

- 14

= E(Ul Ua,R) (B) (x)7

for each x € U. Therefore, one concludes that Eq, 1, #)(4) € Ew, u,.0)(B)-

E, 14,7 (4) (x)

O

Remark 4.6 In Propositions 4.5-4.7, if we take each uninorm I/ as a conjunctive uninorm,
then the condition R € Map(U x V[0, ¢]) can be relaxed to R € Map(U x V[0, 1]).

4.3 Construction methods related to interval-valued fuzzy sets

Proposition 4.8 Let U be a condition universe and also be a decision universe, U be a
uninorm with neutral element e € [0,1], Pc =1% and Pp=10,1]. Take Eq o) :
Map(U,1%)) — Map(U, [0, 1]) as:

Eo)(4)(x) = UA" (x),47 (x))

for each x € U and 4 € Map(U, I (2)), then E( ) is a semi-decision evaluation function of
U.

Proof Tt can be checked in a similar way as that of Proposition 4.3 of Qiao and Hu (2018).
O

Remark 4.7

(1) In Proposition 4.8, take the neutral element of uninorm &/ as e = 1. Then
Eo)(A)(x) = T(4"(x), 4" (x))

becomes the construction method given in Proposition 4.3 of Qiao and Hu (2018).
(2) In Proposition 4.8, take the neutral element of uninorm &/ as e = 0. Then

E0)(4)(x) = S(4" (x), 4" (x))

becomes the construction method given in Proposition 4.4 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 4.3 and 4.4 of Qiao and Hu (2018) are

special cases of Proposition 4.8 and unified by Proposition 4.8. In addition, more

novel semi-decision evaluation functions can be obtained from Proposition 4.8.

Theorem 4.2 Let U be a condition universe and also be a decision universe, U be a

representable uninorm with neutral element e €]0, 1], Pc = I?\ {[0,1]} and Pp = [0,1].
Take E,,, ) : Map(U, Pc) — Map(U, [0, 1]) as:
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E,,,0)(4)(x) = UA"(x),4” (x))

for each x € U and 4 € Map(U, Pc), then E,,, v) is a decision evaluation function of U.

Proof Ttems (E1) and (E2) of Definition 1.1 can be immediately verified from Proposition
4.8. We only verify item (E3) of Definition 1.1 as follows.
For any 4 € Pc, it follows that

0=1[0,0]<4A<[1,1]=1.

Therefore, 0 is the minimum element of Pc and 1 is the maximum element of Pc. Let
B = [0, 1], then one has that

N'(B) = [N"(1), N"(0)] = [0, 1].

Therefore, N"(4) = [N"(A"),N"(47)] is strong negation on Pc.
For each 4 € Map(V,Pc) and x € U, consider the following two cases.
(1) Let N"(A4~(x)) = 0. Then one has that 4~ (x) = 1. Therefore, one concludes that
At (x) = 1. Then one obtains that N" (4" (x)) = 0 # 1.
(2) LetN"(A*(x)) = 0. Then one has that 4" (x) = 1. Since [0, 1] € Pc, one obtains that
N"(47(x)) # N"(0) = 1.
According to above discussions, one concludes that
{(A¥ (), A4 (), (V7 (A7), N (A ()} € [0,1] % [0, 1]\ {(0, 1), (0, 1)}. Then, it fol-
lows that
N'(E,,,0)(4))(x) = N"(UA" (x), 4" (x)))
= UN"(4"(x)),N"(4"(x)))
= Et4,,,0)(N"(4)) (x).
Therefore, one obtains that N"(E,,, v)(4)) = Eq,,,.o)(N"(4)). O

Example 4.2 Let U =10,1], 4 be a interval-valued fuzzy set of U with membership
function A(x) = [0.1 4 0.8x, 0.9]. If we consider the additive generator /; (x) = In(— In(1 —
x)), from the construction method discussed in Theorem 4.2, we obtain a decision evalu-
ation function E, v)(4) of U (see Fig. 7) as follows:

Ew,,o)(4)(x) =1 —exp(—1In(0.1) - In(0.9 — 0.8x)).

If we take y = 0.6 and w = 0.4, then three-way decision is given as follows.

(1) Acceptance region: ACP9604)(Ew,,v),4) = {x]2 - —exp( In Eg 1;) <x<1}.

(2) Rejection region: REJ(9.6,0.4)(Eq,,.0),4) = {x[0<x< g — Jex ( )
(3) Uncertain region:
UNC o604 (Eu,,0),4) = {x|3 — Zexp( :228?;) <x<g-— Zexp( )
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Fig. 7 Decision evaluation 1 T T
function £, v)(4) and interval-
valued fuzzy set 4

— 0 )

Let X be a universe and u € [0, 1]. In the following, we define u(>) as the family of interval

numbers over [0,4], ie, u® ={[A7,2"]:0<A” <2"<u}. Then, for each 4 ¢

Map(X, 1), 4 is also a interval-valued fuzzy set. For each 4 € Map(X, u')), there exists
A - - _ A

a fuzzy set A™ € Map(X, [0, u]) with membership function 4™ (x) = =2 for each

xeX.

Proposition 4.9 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e €]0,1], Pc = e?, Pp = [0,1] and R € Map(U x V[0, €])
such that 3, R(x,y) # 0 for each x € U. Take E ) : Map(V, e?)) — Map(U, [0, 1])
as:

Zer U(R(xvy)vA(m) 0}))
2er R(x,)

for each x € U and 4 € Map(V,e?), then E(y,¢) is a semi-decision evaluation function of
U.

Eqe)(4)(x) =

Proof Firstly, from Lemma 4.1, one obtains that £ ) is well defined.

(1) Minimum element axiom
Since R € Map(U x V[0, ¢]), it follows that

_ ) Vu R(x, ’O(m)
E.0)(0r)(x) s Z(EERXJ)V 5
ZerR(x’y)

07

IN

for each x € U. Therefore, one obtains that E ) (0y) = 0y.
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(2) Monotonicity axiom
Let 4, B € Map(V,e®) with 4 Cp, B. Then, one gets that
D UREY) AT W)
a Zyel/ R(x,y)
_ Ler URK.y), B™ ()
B Zer R(x’ y)
= E)(B)(x),
for each x € U. Therefore, one concludes that E ¢y(4) C Eqy,0)(B).

E,)(4)(x)

O

Remark 4.8 In Proposition 4.9, take the neutral element of uninorm ¢/ as e = 1. Then one
obtains that Pc = I® and R € Map(U x V[0, 1]). Then

e T(R(x,), 4" (1))
Zye |4 R(x’ y)
becomes construction method given by Proposition 4.5 of Qiao and Hu (2018). Therefore,

Proposition 4.5 of Qiao and Hu (2018) is a special case of Proposition 4.9. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.9.

Eye)(4)(x) =

Proposition 4.10 Let V be a finite condition universe, U be a finite decision universe, U be
a uninorm  with neutral —element ec[0,1], Pc=1%, Pp=10,1] and
R € Map(U x V,[0,¢]). Take E &) : Map(V, 1)) — Map(U, [0, 1]) as:

_ e UA™ ), R(x,)
V]

E.a)(4)(x)

for each x € U and 4 € Map(V,1?)), then E( ) is a semi-decision evaluation function of
U.

Proof It can be checked in a similar way as that of Proposition 4.9. (I

Proposition 4.11 Let V be a finite condition universe, U be a finite decision universe, U be
a uninorm with neutral element e €)0,1], Pc = e?, Pp = I1'¥ and R € Map(U x V[0, €])
such that 3., R(x,y) # 0 for each x € U. Take ng : Map(V,e®) — Map(U,1%)) as:

ZerU(R(x,yLA*Q/)) ZyEVu(R(xvy):A+(y))

E AV (x) =
B4 SRy S Ry

for each x € U and 4 € Map(V,e?)), then Ei, is a semi-decision evaluation function of U.

Proof Firstly, from Lemma 4.1, one obtains that Ezul, is well defined.

(1) Minimum element axiom
Since R € Map(U x V[0, ¢]), it follows that
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. ey UR,Y),0,(0) ep URR, ), 0,()
ki (OV)( ) |: erR(xvy) ’ ZyEVR(xvy) :|

|: yEV ZveVu(e 0)
=0,

IN

yGVR(x y ZyEV ()C,y)

for each x € U. Therefore, one obtains that E,(0y) = 0.
(2) Monotonicity axiom
Let A4,B € Map(V, e<2>) with 4 Cp. B. Then, one gets that

2y URMX), A1) Dyer U(R(XJ),A*(y))]

%ww—[

ZerR(x’y) ’ ZerR(xvy)
< | X URE.Y),B™()) 3ser URMX,Y), BT ()
- ZyEVR(x7y) ’ Zy€VR(x?y)
= Ej/(B)(x),

for each x € U. Therefore, one concludes that Eg{ (4) Cp, Ezul, (B).
]

Remark 4.9 In Proposition 4.11, take the neutral element of uninorm U as e = 1. Then, one
concludes that Pc = I® and R € Map(U x V,[0,1]). Then

2er TR(x,3),47(0) Xyer T(R(x,3), 47 ()
ZerR(xay) ' ZerR(xJ)

becomes the construction method given by Proposition 4.6 of Qiao and Hu (2018).
Therefore, Proposition 4.6 of Qiao and Hu (2018) is a special case of Proposition 4.11. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.11.

Ej(A)(x) =

Remark 4.10 In Propositions 4.9 and 4.11, if take each uninorm U as a conjunctive uni-
norm, then the condition R € Map(U x V0, e]) can be relaxed to R € Map(U x V[0, 1]).

Proposition 4.12 Let V be a finite condition universe, U be a finite decision universe,
Uy, Uy be two uninorms with neutral elements ey, e, € [0,1], e = e; Aey, Pc = Pp = 1@
and R € Map(U x V[0, ¢]). Take E?Ml AR Map(V,1%) — Map(U,1?) as:

2yer Un(Ua(R(x,y), 47 (), 4~ (v))
V] ’
2oy U Uz (R(x,), 47 (), 47 ()
14

Efy iy (A)(x) =
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for each x € U and 4 € Map(V,1?)), then E?u, W) is a semi-decision evaluation function of
U.

Proof 1t can be immediately derived from Propositions 4.7 and 4.11. O

4.4 Construction methods related to fuzzy relations

Proposition 4.13 Let U be a nonempty finite universe, U x U be a condition universe and
also be a decision universe, U be a uninorm with neutral element e € [0, 1] and Pc =
Pp =10,1]. For each R € Map(U x U, [0,1]) and (x,y) € U x U, take Egy : Map(U x
U,[0,1]) — Map(U x U, [0, 1]) as:

E(R,L{)(R)(xay) = U(R(x:y)7 R(yax))'
Then E(zy is a semi-decision evaluation function of U x U.

Proof 1t can be checked in a similar way as that of Proposition 4.7 of Qiao and Hu (2018).
O

Remark 4.11

(1) In Proposition 4.13, take the neutral element of uninorm ¢/ as e = 1. Then

E(R,l/{) (R)(xvy) = T(R(xvy)vR(yvx))

becomes the construction method given in Proposition 4.7 of Qiao and Hu (2018).
(2) In Proposition 4.13, take the neutral element of uninorm ¢/ as e = 0. Then

Eru (R)(x,y) = S(R(x,y), R(y, x))

becomes the construction method given in Proposition 4.8 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 4.7 and 4.8 of Qiao and Hu (2018) are

special cases of Proposition 4.13 and unified by Proposition 4.13. In addition, more

novel semi-decision evaluation functions can be obtained from Proposition 4.13.

Theorem 4.3 Let U be a nonempty finite universe, U x U be a condition universe and also
be a decision universe, Pc = Pp = [0,1], U be a representable uninorms with element

e €]0,1[. For each (x,y) € U x U and R € Map(U x U, [0,1]), take E(ry,,) : Map(U x
U,[0,1]) — Map(U x U, [0, 1]) as:
Eru,,) (R)(x,y) = U(R(x,y), R(x,y)).
Then Ezy,,) is a decision evaluation function of U x U.
Proof Tt can be checked in a similar way as that of Theorem 4.1. O

Proposition 4.14 Let U be a finite decision universe, U x U be a condition universe, U be
a uninorm with neutral element e € [0,1] and Pc = Pp = [0,1]. For each x € U and
R € Map(U x U, [0,1]), take Egy.¢) : Map(U x U, [0,1]) — Map(U, [0, 1]) as:
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ZyeUu(R(xﬂy)aR(ya X))
Ul '

Eruo)(R)(x) =

Then Ez y ) is a semi-decision evaluation function of U.

Proof
(1) Minimum element axiom
Since U(0,0) = 0, it follows that

. Z}'EU U(OUXU(xay)aoUXU(y?x)) —0
- U] o

Eru.)(0uxu)(x)

for each x € U. Therefore, one obtains that Ez ;7 ¢)(0uxv) = Oy.
(2) Monotonicity axiom

Let Ry, Ry € Map(U x U, [0, 1]) with Ry C R,. Then, one gets that
~ 2yev UR(x,3), Ri(y, X))
B U]
< 2yerUR(x)), Ray, x))
- |U|
= Eru.o)(R2)(x),

for each x € U. Therefore, one concludes that E(g y o)(R1) € Ery o) (R2)-

Eru.o)(R1)(x)

4.5 Construction methods related to hesitant fuzzy sets

Proposition 4.15 Let U be a condition universe and also be a decision universe, Pc =
201 — ¢ Pp =1[0,1] and U be a uninorm with neutral element of e € [0, 1]. For each
H € Map(U,200 —0), xcU and 2,u€cl0,1], take Enu : Map(U, 2001 — ) —
Map(U,[0,1]) as:

E 00 (H)(x) = U(Asup H(x), winf H(x)).

Then E () is a semi-decision evaluation function of U.

Proof 1Tt can be checked in a similar way as that of Proposition 4.9 of Qiao and Hu (2018).
O

Remark 4.12

(1) In Proposition 4.15, take the neutral element of uninorm ¢/ as e = 1. Then
Bty (H)(x) = T(.sup H (x). pinf H(x))

becomes the construction method given in Proposition 4.9 of Qiao and Hu (2018).
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(2) In Proposition 4.15, take the neutral element of uninorm U/ as e = 0. Then
Ep 0 (H)(x) = S(Zsup H(x), winf H(x))

becomes the construction method given in Proposition 4.10 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 4.9 and 4.10 of Qiao and Hu (2018) are

special cases of Proposition 4.15 and unified by Proposition 4.15. In addition, more

novel semi-decision evaluation functions can be obtained from Proposition 4.15.

In this paper, we define the set M as

M= {meZ[O’l]—Q):infm:qupm: 1}.

Theorem 4.4 Let U be a condition universe and also be a decision universe, Pc =

QPY —P)\ M, Pp =[0,1] and U be a representable uninorm with neutral element of
e €]0,1[. For each H € Pc and x € U, take E(yy,,) : Map(U, Pc) — Map(U, [0, 1]) as:

Eu,,) (H)(x) = U(sup H (x), inf H(x)).
Then Ezy,,,) is a decision evaluation function of U.
Proof Items (E1) and (E2) of Definition 1.1 can be verified from Proposition 4.15. We only

verify item (E3) of Definition 1.1 as follows.
For each H € P¢, it follows that

{0}, <H <{1},.

Therefore, {0}, is the minimum element of P¢ and {1}, is the maximum element of Pc.
Suppose K € M, then, for each x € U, one has hat

inf N (K(x)) = N"(supK(x)) = N"(1) =0,
and
sup N"(K(x)) = N"(inf K (x)) = N"(0) = 1,

respectively. Thus, N"(H) = {N"(h) : h € H} is strong negation on Pc.
For each H € P¢ and x € U, consider the following two cases.

(1) LetinfN"(H(x)) =0 and sup N"(H(x)) = 1, then one has that
inf N"(H(x)) = N'(supH(x)) =0
and
sup N"(H(x)) = N"(inf H(x)) = 1,

respectively. Therefore, one concludes that sup H(x) = 1 and inf H(x) = 0. It con-
flicts with assumptions.
(2) LetinfN"(H(x)) =1 and supN"(H(x)) = 0, then one has that

inf N"(H(x)) = N"(supH(x)) =1
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Fig. 8 Decision evaluation function Ey,, ) (H) and hesitant fuzzy set H

and

sup N"(H(x)) = N"(inf H(x)) = 0.

Therefore, one concludes that supH(x) =0 and inf H(x) =1. However,
sup H(x) > inf H(x). Thus, there not exist inf N"(H(x)) = 1 and sup N"(H(x)) = 0.
According to above discussions, it follows that

Etu,,,)(N"(H))(x) = U(sup N"(H (x)), inf N"(H (x)))

= U(supjcpy() N" (), infhepr) N™(h))
=U(N"(infpcpr(x) 1), N"(SUppeps() 1))
= N"(U(inf H(x),sup H(x)))
=N"(Ewy,,) (H))(x).
Therefore, one obtains that Ey,, ) (N"(H)) = N"(Eg y,,)(H)) O

Example 4.3 Suppose U = {1, ¢y, b3, by, s, b, ¢} and H = 12203041 o4
{(()/);9}4_{03/;0‘5}_’_{0.3;09}+{o.45,oA
3 4 5

0.5,0.7}
% T
5053} | {031.0.51.0.87)
;

- is a hesitant fuzzy set of U. If we
consider the additive generator h(x) = ln(ﬁ), from construction method discussed in

Theorem 4.4, we have decision evaluation function E(H.Z,{n,,,)(H ) of U (see Fig. 8) as:

6

z (H) 0.143 n 0.609 n 0.988 n 0.200 n 0.973 0.480 n 0.750
Uy = .
(Hlrr) b, o 0N N o5 b o

If we take y = 0.65 and » = 0.35, then three-way decision is given as follows:

(1) Acceptance region: ACP(.50.35)(E(tu4,,) H) = {P3, s, P71}
(2) Rejection region: REJ(.65,0.35) (E(rr14,,,), H) = {1, Pa}-
(3)  Uncertain region: UNC g 50.3s)(E(t114,,): F) = {$2, ¢6}-
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In this paper, we define the set £ as £ = {/ € 20U — () : inf/ 4+ sup/ = 1}.

Theorem 4.5 Let U be a condition universe and also be a decision universe, Pc =

QO — )\ £, Pp =10,1] and U be a representable uninorm with neutral element of
e €]0, 1[ and strong negation N"(x) =1 — x on [0,1]. For each H € Map(U,P¢), x € U
and i, p € [0,1] with A+ p =1, take E{H’um’p) : Map(U, Pc) — Map(U, [0, 1]) as:

Elyy,,)H)(x) = U(Zsup H(x) + pinf H(x), Zinf H (x) + psup H(x)).

Then Efﬁu ) is a decision evaluation function of U.
Urep

Proof For each H € P, it follows that

{0}y <H <{1}y.

Therefore, {0}, is the minimum element of P¢ and {1}, is the maximum element of Pc.
Suppose H € P, then it follows that

inf N"(H(x)) +supN"(H(x)) = inf N"(h)+ sup N'(h)

heH (x) heH (x)
=1— sup h+1— inf h
heH (x) heH (x)
=2 — (sup H(x) + inf H(x))
#1,

for each x € U. Thus, N"(H) = {1 — h : h € H} is strong negation on Pc.

(1) Minimum element axiom
Since U(0,0) = 0, it follows that

EEH,Z,{) ({0}y)(x)

~U(isup {0} (x) + prinf {0} (x), Zinf {0} ,(x) + usup {0}, (x))
=0,

for each x € U and A,p € [0,1] with A+ p=1. Therefore, one obtains that
EEH,Z/{)({O}U) =0y.
(2) Monotonicity axiom
Let K, H € Map(U,Pc) with K Cp. H. Then, one gets that

inf K (x) < inf H(x)
and

sup K (x) < sup H (x),
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for each x € U. Thus, it follows that
EQH"M’_B,)) (K)(x) = U(Lsup K (x) + pinf K(x), Zinf K(x) + usup K(x))
<U(Asup H(x) 4+ winf H(x), Ainf H(x) + psup H(x))
= E(p1 14,y (1) (%),

for each x € U. Therefore, one concludes that EE Hiley) (K) C EE Hiley) (H).

(3) Complement axiom
Consider the following two cases.

(i) AsupH(x)+ pinf H(x) =0 and Ainf H(x) + psup H(x) = 1.
(i) AsupH(x)+ uinf H(x) =1 and Ainf H(x) + psup H(x) = 0.

These two cases can be unified by following expressions.
Asup H(x) + psup H(x) + winf H(x) + Ainf H(x) = 1
= (A+p)supH(x) + (u+ A)inf H(x) =1
= supH(x) + inf H(x) =1,

which is contradiction with H € Map(U, Pc).
According to above discussions, it follows that

Elyy,,) (N (H))(x)
=U(ZsupN"(H)(x) + pinf N"(H)(x), Ainf N"(H)(x) + psup N"(H)(x))
=U(1 — Ainf,epy r — HSUP,cp( 75 1 — A SUP,cpr(x) ' — HINTrep(y) r)
=1 —U(Ainf,cp() 7 + LSUP,eprx) T ASUP,epr(x) ¥+ HINE ep() 7)
=1 —U(Ainf H(x) 4+ usup H(x), Asup H(x) + pinf H(x))
:N"(EgH,u, (H))(x).

Therefore, one obtains that Eé HM”{)>(N (H)=N (EEH,MW,))(H ).

)

O

Proposition 4.16 Let U be a condition universe and also be a decision universe, Pc =
Finite(2%') — ), P, = [0,1] and U be a uninorm with neutral element of e € [0,1]. For
each H € Map(U, Finite(2% — 0)) and x € U, take

Z)%EH(X) u(yay)

Enuq(H)(x) = |H (x)]

Then E( 5 is a semi-decision evaluation function of U.

Proof Tt can be checked in a similar way as that of Proposition 4.11 of Qiao and Hu (2018).
O

Remark 4.13
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(1) In Proposition 4.16, take the neutral element of uninorm I/ as e = 1. Then

ZyeH(x) T(y.y)

Eunuus (H)) = =0

becomes the construction method given in Proposition 4.11 of Qiao and Hu (2018).
(2) In Proposition 4.16, take the neutral element of uninorm ¢/ as e = 0. Then

ZyeH(x) S(y7 y)

Eurun H)X) ===

becomes the construction method given in Proposition 4.12 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 4.11 and 4.12 of Qiao and Hu (2018) are

special cases of Proposition 4.16 and unified by Proposition 4.16. In addition, more

novel semi-decision evaluation functions can be obtained from Proposition 4.16.

4.6 Summary of construction methods of decision evaluation functions

In Sect. 3, we show two novel construction methods of decision evaluation functions
derived from different semi-decision evaluation functions (see Theorems 3.1 and 3.2).
Furthermore, in Sects. 4.1-4.5, we show some novel construction methods of decision
evaluations function (see Theorems 4.1-4.5) and semi-decision evaluation functions (see
Propositions 4.1-4.16) related to existing semi-decision evaluation functions, fuzzy sets,
interval-valued fuzzy sets, fuzzy relations and hesitant fuzzy sets, respectively.

In Remarks 3.1, 4.1-4.5, 4.7-4.9 and 4.11-4.13, we have pointed out that some existing
construction methods of decision evaluation functions and semi-decision evaluation func-
tions are special cases of the methods proposed in this paper. In addition, more novel
decision evaluation functions and semi-decision evaluation functions can be obtained from
these uninorms-based construction methods. Therefore, on the basis of uninorms, Sects. 3
and 4.1-4.5 fully answer the Question 1 proposed in Sect. 1.3.

Meanwhile, since representable uninorms are self-dual w.r.t. strong negation N”, the
construction methods of decision evaluation functions given in Theorems 3.2 and 4.1-4.4
extend strong negation Np, of partially ordered set Pp from Np,(x) =1—x to N'.
Therefore, Theorems 3.2 and 4.1-4.4 answer the Question 2 proposed in Sect. 1.3.

5 Two illustrative examples

In this section, in order to illustrate the results obtained in this paper, we consider two real
evaluation problems. Firstly, we propose an algorithm to describe the three-way decision
process based on three-way decision space (see Algorithm 1). Secondly, we show the
specific steps of three-way decisions based on three-way decision space derived from semi-
decision evaluation functions. Thirdly, in Sect. 5.2, we consider an evaluation problem of
investment projects. Finally, in Sect. 5.3, we compare different transformation methods by
discussing an evaluation problem of credit card applicants.
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5.1 The three-way decision methodology

Firstly, on the basis of three-way decision space, the three-way decision process of decision
universe U can be simply described as Algorithm 1.

Algorithm 1 The algorithm of three-way decision based on three-way decision
space.
Input A three-way decision space (U, Map(V,Pc),Pp,E); A €
Map(V, Pc); two parameters ¢ and w.
Output The decision evaluation values and three-way decision results of
decision universe U.
. for all z in U do
calculate: the decision evaluation value of z as E(A)(x).
: end for
for all z in U do
if E(A)(x) > then xz € ACP, .,)(E,A).
else if F(A)(z) <w then x € REJ(y ., (E, A).
else v € UNC(y ) (E, A).
end if
: end for
10: return The decision evaluation values and three-way decision result of
decision universe U.

=W N

© o 1 P o

In Sect. 1.3, it has been pointed that a lot of useful functions are semi-decision evaluation
functions. Therefore, in the following, we show the specific steps of three-way decision
based on three-way decision space which is derived from semi-decision evaluation
functions.

Input: A decision universe U; a condition universe V; partially ordered sets Pc; A €Map
¥, Pe).

Output: The three-way decision result of decision universe U.

Step 1:  Select a semi-decision evaluation function Eg.,; related to partially ordered set
Map(V, Pc).

Step 2:  Select a transformation method from semi-decision evaluation functions to
decision evaluation function and obtain the partially ordered set Pp.
Moreover, if Eg.,; satisfies the constraint conditions of the transformation method,
then go to Step 3. Otherwise, repeat Step 2.

Step 3:  Obtain a decision evaluation function £ of U by transformation method and semi-
decision evaluation function Eg. ;.

Step 4:  Establish a three-way decision space (U, Map(V, Pc), Pp, E).

Step 5:  Give two parameters i and w for three-way decision.

Step 6:  Obtain the decision evaluation values and three-way decision results of decision
universe U by Algorithm 1.

5.2 An evaluation problem of investment projects

In this subsection, we consider an real evaluation problem of investment projects (Qian
and Shu 2018; Zhan et al. 2021). Let U = {x1, x2, X3, X4, X5, Xg, X7, X3, X9, X10 } be a set of ten
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investment projects which are considering by venture capital company, AT =
{Cy,C,,C5,C4,FD} be a set of attributes where C; denotes market venture, C; denotes
management venture, C; denotes environment venture, C4 denotes production venture and
FD denotes the degree of preference for investment projects given by decision maker. The
evaluation results of ten projects are listed in Table 1 where the symbol * denotes that the
venture factor of this project is unknown. The decision maker prefers to choose the
investment project with higher value of attribute /D. The venture of investment project is
higher if the value of venture factor attribute Cy (k = 1,2,3,4) is greater.

To begin with, we complete Table 1 by a pessimistic strategy, i.e., let the unknown values
of venture factor x = 4. Then, for each investment project x; (i = 1,2,---,10), we denote

the value of venture attribute C; (k = 1,2,3,4) of x; as xl(-k). Then, by applying the formula
IRNINCIING
R(xi,x,-)=1—ﬁk;|x,~ —xl,

we get the fuzzy similarity relation of U on venture attributes C;, C,, C3 and Cy as:

AR R AR Y
8 2 16 16 4 16 16 16
513131151151313

8 4 16 16 8 16 8 16 16
[ B BN R B |

2 4 16 16 8 16 2 16 16
7B 5 73 7 3 s

16 16 16 8§ 16 4 16 4 8
13119511111375
R:1616168 16 2 16 8 8
S A S VR TR S VA €
4 8§ 8 16 16 16 4 16 16
7111531111753

16 16 16 4 2 16 16 8 4

A A N T )

8 2 16 16 4 16 16 16
(UNNERSTINE A A TR

16 16 16 4 8 16 8 16 8

9 B s 5 133 95
L16 16 16 8 8 16 4 16 8 .

In the following, by the three-way decision steps given in Sect. 5.1, we use two decision
evaluation functions derived from semi-decision evaluation functions to analyse this eval-
uation problem.

Firstly, by the construction method of semi-decision evaluation functions given in
Proposition 4.6, we select two semi-decision evaluation functions as

2 yey min{Ry (x,), FD(y) }
U]

E(semi,TM) (FD) (x) =

and
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Table 1 A consistent incomplete

ordered information system with v G G G Ca FD
glg)zlzgy) decision (Qian and Shu o . | . ) 0.5
X2 2 4 3 2 0.9
X3 2 3 1 3 0.6
X4 2 4 1 1 0.8
X5 3 2 * 1 0.6
X6 4 3 4 4 0.9
X7 2 3 1 4 0.7
Xg 4 1 * 2 0.5
X9 3 3 3 1 0.8
X10 2 4 4 4 0.9

R,(x,y) - FD
E(semi,TP)(FD) (x) = ZJ’EU (|U.)|}) )

where Np.(4) = A€. Then, we select the transformation method given by Theorem 3.2
where the representable uninorm is U, and obtain the partially ordered set Pp = [0, 1]. It can
be verified that E(semir,) and E(semit,) satisfy the constraint conditions of Theorem 3.2.
Therefore, we obtain two decision evaluation function of U as Ey, r,) and Ey. 1),
respectively. After that, two corresponding three-way decision spaces are established.
Further, we consider two parameters iy = 0.82 and @ = 0.80. Finally, by Algorithm 1, we
obtain the decision evaluation values of U (see Fig. 9) as:

0.7660 0.8468 0.8213 0.8171 0.8000 0.8173
+ + + + +

E FD) =
(U, Tw) ( ) X X X x4 x5 X
0.8155 0.7660 0.8269 0.8377
+ + + +
X7 Xg X9 X10
and
0.7747 0.8303 0.8179 0.8173 0.7978 0.8120
Ew,.1,)(FD) = + + + + +
X1 X2 X3 X4 X5 X6
0.8207 0.7747 0.8173 0.8313
+ + + + s
X7 Xg X9 X10

respectively. We also obtain the three-way decisions results of ten investment projects (see
Table 2). In this following, on the basis of Table 2, we show some analyses of decision
results.

(1) Investment projects x, and x;¢ are evaluated “acceptation” in two evaluation functions
since x; and x;o have the highest degree of preference given by decision maker and
lower venture compared with xe.

(2) For investment projects x;,xs and xg, on the one hand, decision maker have lower
degree of preference than others. On the other hand, we completed the incomplete
values of Table 1 through a pessimistic strategy. Therefore, x1, x5 and xg are evaluated
“rejection” in two evaluation functions.
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0.86 T T T T T T T T T T

0.84

0.82

0.8

0.78

0.76 \ \ \ \ \ \ \ \ \ \

Xp Xy X3 Xy X5 Xg Xg Xg Xg Xyg

Fig. 9 The decision evaluation values of investment projects based on E. 7, and Eyy, 7,

Table 2 Three-way decision results of ten investment projects

Acceptance region Rejection region Uncertain region
Ewu..np {x2,x3,%9,x10} {x1,x5,x3} {x4,x6,x7}
Eu. 1) {x2,x7,x10} {x1, x5, x5} {x3,X4,%6,%0}

5.3 An evaluation problem of credit card applicants

In this subsection, we compare different transformation methods from semi-decision eval-
uation functions to decision evaluation functions. On the one hand, in Remark 3.1, we have
pointed out that t-norms and t-conorms-based transformation method proposed in Hu (2017)
is a special case of uninorm-based transformation method given in Theorem 3.1. On the
other hand, the constraint conditions of semi-decision evaluation function of the transfor-
mation method given in Theorem 3.2 is more complex than others. Therefore, we only
compare the overlap and grouping functions-based transformation method given in Jia and
Qiao (2020) with the uninorms-based transformation method given in Theorem 3.1 by a real
evaluation problem of credit card applicants (Hu 2017; Lin et al. 2012; Qiao and Hu 2018;
Qiao and Hu 2020).

Suppose that U = {x1,x2,x3,X4, X5, X6, X7,X5, X9 } i a set of nine credit card applicants.
In this evaluation problem, we consider two condition attributes of applicants, that is,
education and salary. The values of attribute salary are {low, middle, high} and the values of
attribute education are {good, better, best}. The values of attributes of nine applicants are
given by three specialists. We denote y; (i = 1,2,3) and n; (i = 1,2, 3) as evaluation results
given by specialists 1, 2 and 3, respectively. In addition, y; denotes yes and »; denotes no.
The evaluation results of nine applicants are listed as Table 3. From Table 3, for the

attributes “salary” and “education”, three specialists give evaluation results, corresponding
to attributive mean value, in Table 4. Moreover, the x,(k) (k =1,2,3) denotes the attributive

mean values in Table 4 for all applicants x; (i = 1,2,---,9). Then, by applying the formula
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Table 3 An evaluation information system (Hu 2017; Lin et al. 2012; Qiao and Hu 2018; Qiao and Hu 2020)

U AT
Attributive value Education Salary

Best Better Good High Middle Low

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
X yro Y2 n3y m np n3 np Ny ys o yr Y2 Y3 np o np ny o onp npo ng
X2 ney2 ny yir Y2 y3 hm o np n3 yr Y2 ys hm np n3y yip n n3
X3 ny np n3 np onp hyoyr Y2 ys oyt Y2 Y3 nmp np n3 o np Ny n3
X4 Y Y2 y3 nm nhnp h3 n hp n3y np np K3 yr Y2 Y3 np hp n3
X5 Yo Y2 n3 o ong y2 hy np y2 ys hmp o np nhn3 yr Y2 Y3 Y1 hy n3
X6 ny np n3 ng onp Ny oyy Y2 Yy hp o np n3y ypr Y2 Y3 np np n
X7 Yro Y2 y3 m nmp n3 ng np ys nm nmp n3 yr Y2 n3 o np np )3
Xg n Yy ny yir Y2 y3 hm np n3 np np ny yr Y2 y3 np )y n3
X9 ny np n3 np o np n3y oy Yy Yy hp o np n3y onp np o nyoyr )2 )3

Table 4 The corresponding attributive mean value of evaluation information system (Hu 2017; Qiao and Hu
2018; Qiao and Hu 2020)

U AT
Attributive mean value Education Salary
Best Better Good High Middle Low
X 2 0 i 1 0 0
R 1 1 0 1 0 L
X3 0 0 1 1 0 0
X4 1 0 0 0 1 0
xs 3 3 5 0 ! 3
X6 0 0 1 0 1 0
2

X7 1 0 i 0 3 1
X3 i 1 0 0 1 :
X9 0 0 1 0 0 1

3
R(xi) = expq — > o — x| 5,
k=1

we obtain fuzzy similarity relations of U on salary attribute and education attribute,

respectively, as:
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1 072 1 0.14 0.10 0.14 0.14 0.10 0.14]
072 1 072 010 0.14 0.10 0.19 0.14 0.19
1 072 1 0.14 0.10 0.14 0.14 0.10 0.14
0.14 0.10 014 1 072 1 051 072 0.14
Ry=0.10 0.14 0.10 072 1 072 072 1 0.19
0.14 0.10 0.14 1 072 1 051 072 0.14
0.14 0.19 0.14 051 0.72 0.51 1 072 026
0.10 0.14 0.10 072 1 072 072 1 0.19
010.14 0.19 0.14 0.14 0.19 0.14 026 0.19 1

and

1 019 026 051 051 026 0.72 0.19 0.26]
0.19 1 0.10 0.19 0.19 0.10 0.14 1 0.10
026 010 1 014 026 1 0.19 010 1
0.51 0.19 014 1 026 0.14 072 0.19 0.14
R.= 1051 019 026 026 1 026 037 0.19 0.26

026 010 1 014 026 1 019 0.10 1

0.72 0.14 0.19 0.72 037 019 1 0.14 0.19

0.19 1 0.10 0.19 0.19 0.10 0.14 1 0.10
01026 0.10 1 0.14 026 1 019 0.10 1

To begin with, let 4 = &2 4+ 92 4+ 1+ 88 4 1 - 02 4. &1 - €3 4 D be a fuzzy set of U. Fuzzy
set A denotes the middle-aged peoples of U. Then, by the construction method of semi-
decision evaluation function given in Proposition 4.5, we select two semi-decision evalu-
ation functions

vy T(Rs(x,y),A4
R

and

education X) = ZyEV T(Re(x,y),A(y))
Faemi (A)( ) a ZyEVRE(x7y)

semi
where T is the Lukasiewicz t-norm and Np,(4) = AC. In the following, in order to obtain
decision evaluation functions, we use two transformation methods from semi-decision
evaluation functions to decision evaluation functions given in Theorem 3.1 and Lemma 3.2,

respectively. It can be verified that E::if:y and E:Sr‘r‘fia‘i"“ satisfies the constraint condition of

these two transformation methods.

Firstly, by the transformation method given in Theorem 3.1, we take uninorm I as U ,

U;; , and the product t-norm Tp, respectively. Then, from semi decision evaluations EY

i . . . . . lary salary
and Ecducation e obtain six decision evaluation functions as E*° E*¢
semi Uy, U%3,C)7 (U 4 U20,C)
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Table 5 Decision evaluation values of attribute 4 of credit card applicants

X1 X2 X3 X4 X5 X6 X7 X8 Xo
FO .. 0869 0790 0869 0564 0597 0564 0575 0597 052
0.7:%% o
E(VZ‘:[:”,‘;/{M o 0.869 0.790 0.869 0.564 0.597 0.564 0.575 0.597 0.365
0.4 U7, C
E(sn;lmg- o 0.755 0.695 0.755 0.564 0.597 0.564 0.575 0.597 0.365
PSP,
E‘E(a)[{"g o 0.654 0.609 0.654 0.531 0.549 0.531 0.536 0.549 0.440
2,92,
E‘(";’)I‘"g o 0.586 0.553 0.586 0.512 0.519 0.512 0.514 0.519 0.477
3.G3,
gy 0.734 0.671 0.734 0.553 0.582 0.553 0.564 0.582 0.374
(Ot Gt ,C)
[education 0.887 0.480 0.479 0.893 0.901 0.479 0.866 0.480 0.479
Uy 7U>.C)
E(";l:cali;g’}, o 0.887 0.480 0.479 0.893 0.724 0.479 0.866 0.480 0.479
0.4:UC
E(E[Ti:?:i%) 0.751 0.480 0.479 0.756 0.724 0.479 0.761 0.480 0.479
E(‘gf‘gz"’g) 0.648 0.490 0.490 0.652 0.620 0.490 0.661 0.490 0.490
Efg;}‘?gfzfvg) 0.581 0.496 0.496 0.584 0.559 0.496 0.592 0.496 0.496
[Eeducation 0.733 0.483 0.482 0.739 0.711 0.482 0.738 0.483 0.482
(Ot .Gt ,.C)

salary education education education : : ; _
E(Tptsp,cw E Uea03 ) E (U 2105.C) and E(TP‘SPQ, respectively. It is worth noting that t-norm

Tp is a special case of overlap function Op.
Then, by the transformation method given in Lemma 3.2, we take overlap function O as

. . .. . 1 .
0>, O3 and O,,), respectively. Then, from semi decision evaluations £ and Eeducation

semi semi ’

. . .. . . salary salary salary education
we obtain six decision evaluation functions as £ (02,G.C) £(03.65,0) (O Goss ) E<02’G2‘C),

Eg’j‘g’;"& and Ezg”‘;’gswc), respectively.

Then, if we consider two parameters y = 0.75 and w = 0.48, by Algorithm 1, we obtain
the decision evaluation values of U (see Table 5) and the three-way decisions results of U
(see Table 6). In the following, on the basis of Tables 5 and 6, we show some analyses of

these two transformation methods.

(1) For salary attribute, on the basis of semi-decision evaluation function E::La;y, we

obtain six decision evaluation functions (see Fig. 10). Applicant x9 are evaluated
rejection in these six decision evaluation functions. This accords with his low salary
evaluated by three specialists. Applicants x4, xs,x6,x7 and xg are evaluated uncertain
in six decision evaluation function. However, applicants x; and x3, as two middle-
aged and high salary evaluated by three specialists people, are evaluated uncertain by

o . . salary salary salary
decision evaluation functions E(Oz,Gz,C)’ E(O},G},C) and E(OWM,GWMC

sonable. Meanwhile, applicants x; and x3 are evaluated acceptance by decision

. . salary salary salary
evaluation functions E(ug_,,u$-3,C)’ E(u3_4,u2-6,0) and E(Tpﬁsmc

conditions, the uninorms-based transformation method is superior to overlap and
grouping functions-based transformation method.

(2) For education attribute, on the basis of semi-decision evaluation function Ecducation,
we obtain six decision evaluation functions (see Fig. 11). It is worth noting that all

education

applicants are evaluated uncertain by decision evaluation functions E<02_G2 or

)- It is not rea-

) Therefore, under such
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Table 6 Three-way decisions results of attribute 4 for evaluation of credit card applicants

Acceptance region Rejection region Uncertain region
B L {x1, 22, %3} {xo} {x4,x5,%6,%7, %8}

(Us7.U.°.C)

lary
E(vz‘:aa:‘u?”,c) {orx2, 3 {xo} {4, x5, X6, %7, X3 }

EﬁaMnV . {X17X3} {Xg} {x27X47x5,x5,X7,Xg}

(TpSp,C)

e X X1,X2,X3,X4,X5,X6,X7, X
B, 6.0) 0 {xo} {x1,%2,x3,X4,5,X6,%7, X3}
E‘(‘Zlf?;g 0) 0 {xo} {x1,X2,x3,X4,Xs,X6,%7,X3 }

vy X X1,X2,X3,X4,X5,X6,X7,X
E 0.6t ) 0 {xo} {1, %2, %3, X4, X5, X6, X7, Xg }
Eed?mtimz X1, X4,X5, X o X3 Xe . X X @

Uy ,U23,0) { 1445455 7} { 2, X3, X6, X85 9}

Eedﬂ:calion, X1.X4. X o X3 X6 - Xe . X X
Uy 4 U°,C) {1, 34,07} {x2,x3, %6, %8, %0 } {xs}
E(e;i%ﬁwcn) {1, 30,07} {x2,x3,x6, %8, %0 } {xs}

education
Ef5 6,0 0 0 U

education
E5Go) 0 0 U

education
LGt G ©) 0 0 U

0.9
0.8 7
0.7 b
06 b
051 ]
4l ey \ i
0. * (U U03.C)
salary
-4- E(u‘;‘.ui”' C)
psalary
0.3F ’+ - E[Tpsp('l B
[y
(02.62.0)
ielary
_$_ (03,G3,C)
0.2 salary ]
{} - E(o,,,u.(;,,,u.c)
0.1 L L L L L L L L L
X1 X2 X3 X4 X5 X6 X7 X8 X9

Fig. 10 Six decision evaluation functions for salary attribute

education education tod : H :
E(O},G},C) and E(OmM,GmM,C)’ Decision maker can not obtain any useful information
education education

from the three-way decision results derived from Ezoz,Gz,C)’ (0rGe.0)

On the other hand, decision maker can obtain reasonable three-way

and

education

(Ot s Gt ,C)°

decision results (see Table 6) from decision evaluation functions Efg’:"”g%ﬁ o)
07U

EFZZC”ZTQE o) and Ef‘;fg;’”c”) which are derived from uninorms-based transformation
0.4Ux s WPy

method. Therefore, under such conditions, the uninorms-based transformation
method is superior to overlap and grouping functions-based transformation method.
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0.95 T T
education
+ E(u‘;T.L;i‘ 5.0)
09r [Feducation B
: —3 - Bt
0 85 | ((;f!ll!rf/()vr |
: e By
%E(’f{ 1.C)
F education -
0.8 Bl ©)
0.75 i
0.7 4
0.65 d
0.6 4
0.55 4
051 d
0.45 | | | L L . . | .
X1 X2 X3 X4 X5 X6 X7 X8 X9

Fig. 11 Six decision evaluation functions for education attribute

According to above discussions, by using commonly used uninorms and overlap and
grouping functions, the uninorms-based transformation method has better performance than
overlap and grouping functions-based transformation method under some conditions.
Meanwhile, in Remark 3.2, it has been pointed out that the uninorms-based transformation
method has the looser constraint of semi-decision evaluation functions than overlap and
grouping functions-based transformation method. Therefore, under some conditions, the
uninorms-based transformation method is superior to overlap and grouping functions-based
transformation method.

6 Conclusion

This article continues the work given by Jia and Qiao (2020) and Qiao and Hu (2018)
and mainly discusses the construction methods of decision evaluation functions based on
uninoms. For convenience, the uninorms-based construction methods of semi-decision
evaluation functions and decision evaluation functions proposed in this paper can be called
uni-construction methods. To be precise, this article obtains the following results:

« In order to construct more decision evaluation functions, this paper proposes two novel
transformation methods from semi-decision evaluation functions to decision evaluation
functions based on uninorms and representable uninorms, respectively. Meanwhile, on
the basis of uninorms, this paper proposes some novel construction methods of semi-
decision evaluation function and decision evaluation functions related to known semi-
decision evaluation functions, fuzzy sets, interval-valued fuzzy sets, fuzzy relations and
hesitant fuzzy sets, respectively.

« The representable uninorms-based construction methods of decision evaluation functions
(see Theorems 3.2 and 4.1-4.4) generalize the strong negation Np, of partially ordered
set Pp from Np, (x) = 1 — x to the strong negation derived from the additive generator of
representable uninorms.
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/ . . . / Decision evaluation functions \
Semi-decision evaluation functions

Overlap and grouping functions based functions

T-norms and t-conorms based
functions

Uninorms based functions

Overlap and grouping functions
based functions

e
T-norms and t-conorms based
functions

Uninorms based functions

/ Transformation methods \

Overlap and grouping functions based
methods

T-norms and t-conorms based
methods

Uninorms based methods

Representable uninorms based
functions

Representable uninorms
based methods

/

Fig. 12 The relationship among different decision evaluation functions

« The relationship among different decision evaluation functions are discussed in this
paper (see Remarks 3.1,3.2, 4.1-4.5, 4.7-4.9 and 4.11-4.13). The Fig. 12 shows the
relationship among different decision evaluation functions.

« This paper analyses two real evaluation problems to illustrate the results obtained in this
paper. The corresponding three-way decision results are reasonable. Meanwhile, we
compare the overlap and grouping functions-based transformation method with the
uninorms-based transformation method. The comparison result shows that the uninorms-
based transformation method is superior to the overlap and grouping functions based-
transformation method under some conditions.

It is worth noting that this paper shows lots of methods to construct different decision
evaluation functions for different partially ordered sets. Therefore, for different decision-
making problems, the decision maker can choose corresponding methods to construct
enough decision evaluation functions according to their decision-making environment.
Furthermore, according to actual situation, decision maker can choose specific and appro-
priate decision evaluation functions to solve decision-making problems. For example,
overlap functions have been successfully applied to fuzzy community detection problems
(Gomez et al. 2016) and power quality diagnosis system (Nolasco et al. 2019). Therefore,
for these problems, decision maker can preferentially choose overlap and grouping func-
tions-based decision evaluation functions. Meanwhile, uninorms have been successfully
used to neural networks (de Campos Souza and Lughofer 2021, 2022a, b) and classification

@ Springer



New constructions of decision evaluation functions... 5925

of COVID-19 markers (Roy et al. 2020). Thus, uninorms-based decision evaluation func-
tions can be given priority to solve these problems.

In the later research, on the one hand, we will further research the application of decision
evaluation functions in practical problems. On the other hand, from the theoretical view-
point, there are still some unsolved problems about decision evaluation functions, such as:

o« How to construct decision evaluation functions through other commonly used
aggregation functions? For example, nullnorms, uni-nullnorms, and so on.

« The algebraic properties of decision evaluation functions have not been researched.

o In Theorem 3.2, the constraint conditions of semi-decision evaluation function are
strong. Can the constraint conditions be relaxed?
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