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Abstract
Principal Component Analysis (PCA) is one of the most widely used data analysis meth-
ods in machine learning and AI. This manuscript focuses on the mathematical foundation 
of classical PCA and its application to a small-sample-size scenario and a large dataset in 
a high-dimensional space scenario. In particular, we discuss a simple method that can be 
used to approximate PCA in the latter case. This method can also help approximate kernel 
PCA or kernel PCA (KPCA) for a large-scale dataset. We hope this manuscript will give 
readers a solid foundation on PCA, approximate PCA, and approximate KPCA.

Keywords PCA · Eigen-decomposition · Approximate PCA · Kernel PCA

1 Introduction

What would be the description if you were asked to describe a person sitting next to you? 
Male or female, wear glasses or not, big mouth, small nose, long hair, tall, overweight, 
BMI score, etc. These descriptions can be put together in the form of a “vector”. In this 
manuscript, we consider “column vector”, a matrix of one column and several rows, each 
for a specific description. With ten descriptions, we have a vector of 10 rows. We say that 
this vector lives in a 10-dimensional space. With 100 descriptions, we have a vector of 100 
rows that lives in a 100-dimensional space.

A vector is a mathematical object composed of “length” or “magnitude” and “direc-
tion”. Nonetheless, in this paper, we will use the term “vector” and “point” interchangeably 
since, given a point, we can always assign the vector from the origin point to that given 
point. Note that it is common to work in a very high-dimensional space in AI, machine 
learning, and data science. Some intuitions we have gained from our daily life experience 
in two or three dimensions may not be correct in this very high-dimensional space. Readers 
interested in properties of high-dimensional data may refer to Blum et al. (2017) for more 
detail.

Suppose we have prepared 100 descriptions or features to describe each person. Suppose 
that these features were all numerical, e.g., the height, the weight, the BMI score, etc. Suppose 
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that we sat at a coffee shop and tried to describe each client using our 100 features. For each 
client, we obtain a feature vector that contains all descriptions assigned to him/her. Given a 
collection of feature vectors, what shall we see?

We will see that the observed height values do not go from 0 to infinity. They will be 
bounded within some range, for example, between 150 to 180 cm. The observed weights and 
BMI scores are bounded as well. The observed feature vectors will not be scattered all over the 
whole space. They are clustered around some area, or subspace, within the big multi-dimen-
sional space. With a deeper inspection, you may find correlations between features such as 
height, weight, and BMI score. Therefore, it is tempting to combine these features into a new 
one. The question is then how to combine these features and measure if the combination is 
good.

Principal Component Analysis (PCA) provides such a combination method. Indeed, PCA 
relies on linear combination of these features to construct principal subspace that is the main 
subspace on which most of the feature vectors lie. PCA uses variance as a measure of the 
information content of the subspace. The quality of the selected subspace can be measured by 
comparing the variance of data within it to the total variance of the whole dataset. These are 
two keys idea of PCA. In practice, however, one may run into practical problems such as hav-
ing too few observations compared to the data dimension or having too much computational 
cost due to the high dimensionality of data and a large number of observations, etc. This paper 
describes some practical algorithms for handling these different scenarios. Some material pre-
sented hereafter is extended from our previously published paper (Marukatat 2016). It should 
be noted that this tutorial focuses mainly on the algorithmic aspect of PCA. Readers interested 
in its applications are invited to consult the paper (Ringnér 2008; Gewers et al. 2018; Atchade-
Adelomou et al. 2022) and references therein to see different use-cases of PCA on different 
domains including bioinformatics and quantum computing.

In the following, Sect. 2 first describes PCA in the usual setting where the number of avail-
able data points is larger than the dimension of feature vectors. Then Sect. 3 describes PCA 
that is designed for small-sample-size case. This case could happen; for example, when the 
number of available subjects with a particular disease is limited, the researchers may extract 
all possible features from their blood or tissue sample. The total amount of features could be 
easily more significant than the total number of samples. In this case, classical PCA will not 
be suitable. This section describes a variation of PCA designed to handle this case. Section 4 
describes another variation of PCA designed for large-scale datasets in a very high-dimension 
space. Indeed, current AI and data science datasets are often large with very high-dimension 
feature vectors. This section explains how to mitigate the computational cost of PCA in this 
case. The technique introduced in this section, namely dot product preserving transformation, 
will be used in the subsequent section on approximate kernel PCA. Section 5 discusses ker-
nel PCA or KPCA, a non-linear extension of PCA using kernel trick. The classical KPCA is 
presented in Sect. 5.1. In this section, one will see that the main crux of KPCA is its compu-
tational cost. Two variations of KPCA designed to reduce the cost of KPCA are presented in 
Sects. 5.2 and 5.3 with some examples shown in Sect. 5.5.
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2  Classical case: n > d

This section describes a classical scenario for applying PCA, namely when the number 
of available data points is larger than the dimension of feature vectors. In this section, 
we assume that the dimension of feature vectors is not very large, so all calculations can 
be done on a modest computer.

2.1  Notation

In the following, let � ∈ ℝ
d denotes a feature vector � in d-dimensional space with

A feature vector contains values of features that are observed on actual data. We assume 
that there are no missing values. We further assume that these features are all numerical.

In theory, the features should be selected adequately by domain experts. Nonetheless, 
in practice, we often rely on low-level features, such as the intensity of each pixel in an 
image, that can be computed easily. High-level features, like loops and cusps in hand-
written strokes, contain more information. However, their detection depends on image 
processing functions that must be put in place first. These functions may contain some 
heuristic or programming bias. As a result, for some poorly scanned images, the detec-
tion of high-level features may not be done accurately. Low-level features, such as pixel 
intensities, are more robust because they can always be extracted from all input images. 
Even if each low-level feature may not convey a meaningful description by itself, com-
bining lots of them with lots of data makes it possible to derive meaningful meaning 
using machine learning models. PCA is one method to achieve this goal.

2.2  Linear projection and dot product

The main idea of PCA is to use variance as a measure of information content and to 
identify linear subspace maximizing the variance. The linear subspace can be con-
structed from multiple unit vectors that are orthogonal to each other. Each unit vec-
tor represents a projection axis. Consider a projection axis � ∈ ℝ

d , the projection of 
� ∈ ℝ

d onto the axis � is the point on this axis that is closest to � . This projection can 
be computed by ‖�‖ cos ��,� . Recall that the “dot product” or the “scalar product” or 
the “inner product” between any two vectors � and � denotes as ⟨�, �⟩ satisfies

In the following we will use ⟨�, �⟩ or �T� interchangeably when talking about dot prod-
uct. The projection of � onto the unit vector axis � is then given by a simple dot product 
�T� ∈ ℝ.

Note that the “projection” refers to the location on the projection axis. The same 
location can be described relative to the input space as well by multiplying it with the 

� =

⎡⎢⎢⎢⎣

x1
x2
⋮

xd

⎤⎥⎥⎥⎦

(1)⟨�, �⟩ = �T� = ‖�‖‖�‖ cos ��,�.
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projection axis, i.e., (�T�)� . This quantity is often referred to as the “reconstruction” of 
� from its projection on the axis �.

2.3  Variance on projection axis and covariance matrix

Given a set of centered real values z1, z2,… , zn zt ∈ ℝ , the variance of this dataset is

Given a set of feature vectors �1,… , �n, �t ∈ ℝ
d , and a projection axis � (that is a unit 

vector, i.e. ‖�‖ = 1 ). The projections on � are �T�1,… ,�T�n . Suppose that the feature 
vectors are centered around zero vectors. Thus, their linear projections will also be cen-
tered appropriately. Note that each dot product yields a simple real value, i.e., �T�t ∈ ℝ . 
Hence, the Eq. (2) can be used to compute the variance:

The last line gives us a shortcut to compute variance on any axis � . Indeed, instead of 
projecting all data onto the axis and then computing the variance, we can pre-compute the 
covariance matrix � first, then given any projection axis � the variance of the projection on 
� is given by �T��.

2.4  PCA problem and Lagrangian

From the above calculation, we can formulate the main idea of PCA as the following con-
strained optimization problem:

For standard optimization problems, we may set the partial derivatives to zero and solve 
the resulting equations or follow the gradient. However, the above problem has an addi-
tional constraint that must be considered. To this end, the standard approach is to use the 
Lagrangian method (see (Dimitri 1996) for more detail on the Lagrangian method).

In short, to solve the following constrained optimization problem:

(2)Var =
1

n

n∑
t=1

z2
t
.

(3)Var (�) =
1

n

n∑
t=1

(�T�t)
2

(4)=
1

n

n∑
t=1

�T�t�
T
t
�

(5)
=�T

[
1

n

n∑
t=1

�t�
T
t

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Covariance matrix

�.

(6)
max
�

�T��

subject to �T� = 1.
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the following Lagrangian function is considered:

with � the Lagrangian coefficient describing the important of the constraint. Then, given 
the solution (�∗, �∗) optimizing the function L, �∗ will be the solution of the initial problem.

For the PCA problem, its Lagrangian is given by

Then, if we compute the partial derivative of L with respect to � and set it to zero, we 
obtain:

The above derivation uses matrix calculus. Readers unfamiliar with this calculation could 
consult reference (Petersen and Pedersen 2012) for more detail.

The Eq. (10) means that the axis � maximizing variance must be an eigenvector of � , 
and � is its corresponding eigenvalue. The eigenvectors and eigenvalues are, in fact, math-
ematical objects that have been studied for a very long time. PCA represents another appli-
cation of this well-founded subject. An example of a commonly used method to extract 
eigenvector and eigenvalue pair, or eigen-decomposition algorithm called the Jacobi 
method is shown in Section A.

2.5  Eigenvalue, variance and axis selection

From Sect.  2.4, we have seen that the projection axis maximizing variance must be an 
eigenvector of the covariance matrix � . However, as � is a d × d matrix, it has d eigenvec-
tors; which one should be selected? To answer this question, we can observed that

In other words, the eigenvalue corresponds to the variance of the data projected onto its 
corresponding eigenvector.

(7)
max
�

f (�)

subject to g(�) = 0,

(8)L(�, �) = f (�) − �g(�),

(9)L(�, �) = �T�� − �
(
�T� − 1

)
.

(10)0 =
�L

��

(11)=2�� − 2��

(12)�� =��.

(13)��i =�i�i

(14)�T
i
��i =�i�

T
i
�i

(15)Var (�i) =�i.
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Given eigenvalues �1 ≥ �2 ≥ ... ≥ �d with �1, �2,… , �d the corresponding eigenvectors. 
From the discussion above, we know that if we select only one projection axis, then �1 
should be the best choice since it corresponds to the largest eigenvalue, thus the largest 
variance of projected data.

Note that from these eigenvalues we can easily compute the total variance, i.e. 
∑d

i=1
�i . 

This total variance represents the entire information content of the dataset. By comparing 
�1 to the total variance, we can judge if a single projection axis �1 is enough to retain the 
most information or not. In practice, a single projection axis is not enough. Fortunately, 
as the eigenvectors are already orthogonal, it is possible to select the next “largest” eigen-
vectors to form the basis of the principal subspace. The next question is how many axes 
should be selected. There are three approaches to this question: 

1. User gives the desired number of axis m.
2. If we assume that p portion of the information content was, in fact, noise, then m should 

be the smallest number such that 
∑m

i=1
�i ≥ p

∑d

i=1
�i.

3. We can also assume that all axis with variance smaller than a pre-defined threshold are 
noise and should be discarded. Thus, we select all axis that �i ≥ ��1.

The PCA algorithm is summarized in Algorithm 1.
Given principal axis �1,… , �m , each new data point � can be represented within the 

principal subspace as:

and the reconstruction of � from its projection on the principal subspace is given by:

(16)

⎡⎢⎢⎢⎣

�T�1
�T�2
⋮

�T�m

⎤
⎥⎥⎥⎦
∈ ℝ

m,
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It is pretty straightforward to prove that the selected principal subspace also minimizes the 
reconstruction error 

∑
t ‖�t − �̂t‖2 and that the reconstruction error is indeed the sum of all 

eigenvalues outside the principal subspace.

2.6  Examples

This section shows examples of the application of PCA to various datasets, namely Dia-
betes1, Wisconsin breast cancer2, Iris3, MNIST4, and CIFAR-105. Table 1 summarizes the 
detail of these datasets Diabetes, Wisconsin breast cancer, and Iris contain multi-dimen-
sional vectors, whereas MNIST and CIFAR contain grayscale images in 28 × 28 pixels and 
RGB images in 32 × 32 pixels, respectively. These images were reorganized into vectors in 
28 × 28 = 784 dimensions and 32 × 32 × 3 = 3072 dimensions respectively. Z-score nor-
malization was applied to all datasets. Thus all data were properly centered.

Figure 1, from the top to the bottom row, shows results from five datasets: Diabetes, 
Wisconsin breast cancer, Iris, MNIST, and CIFAR, respectively. The left column shows 
the eigenvalues plot from the four datasets. The second column shows the cumulated pro-
portion of variances or eigenvalues. The two right columns show the projection of the five 
datasets onto the two first eigenvectors, and onto the first and the last eigenvectors, respec-
tively. In both cases, the projection onto the first eigenvector corresponds to the abscissa. 
One can observe that the variances on the horizontal axis are higher than that on the ver-
tical axis since the eigenvectors are sorted in decreasing order of their eigenvalues, and 
each eigenvalue corresponds to variance on the corresponding eigenvector. For the MNIST 
dataset, the rightmost plot appears to be quite strange. This is due to an outlier in the data-
set shown in Fig. 2a. Indeed, this image has a small white dot on the left side. This dot 
disappears in the reconstruction using 50 first principal components (Fig. 2b). However, 
this reconstruction is blurred. Using more principal components results in a sharper image 
but with some noise. Hence, it is possible to denoise the input data using the PCA method.

Table 2 depicted the number of axes needed to retain 90%, 95%, and 99% of the total 
information compared with the dimension of these datasets. One can observe that for some 

(17)�̂ =

m∑
i=1

(�T�i)�i.

Table 1  Summary of datasets 
used in this section

Dataset  Dimension (d)   Number of 
samples (n) 

Diabetes 10 442
Wisconsin breast cancer 30 569
Iris 50 150
MNIST 784 60,000
CIFAR 3072 50,000

1 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. datas ets. load_ diabe tes. html.
2 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. datas ets. load_ breast_ cancer. html.
3 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. datas ets. load_ iris. html.
4 http:// yann. lecun. com/ exdb/ mnist/.
5 http:// www. cs. toron to. edu/ ~kriz/ cifar. html.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/%7ekriz/cifar.html
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Diabetes

Breast Cancer

Iris

MNIST

CIFAR

Fig. 1  Plot of eigenvalues (left) and the projection of different datasets onto the two first eigenvectors (mid-
dle) as well as the projection onto the first and the last eigenvectors (right)

Fig. 2  An outlier in MNIST dataset a and its reconstruction using 50 (resp. 100, 200) first principal compo-
nents in b (resp. in c, and d)
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datasets, e.g., Iris and CIFAR, the number of the required axis to retain 90% of informa-
tion is only a small fraction of the total dimension. Other datasets, like Diabetes, requires a 
larger number of axis.

2.7  Discussion

The principal subspace obtained from PCA describes the area in the whole space on 
which most of the data lies. This knowledge is helpful. For example, consider the prob-
lem of face verification. We are given a pair of face images and have to decide if both 
images come from the same person or not. If we compare both images directly, in pixel 
space, so to speak, the observed difference may be due to the background area in the 
images, which does not reflect the identity of the person. By working on the principal 
subspace of the face images, we can be sure that every comparison is meaningful. This 
was the idea behind Eigenface that was the foundation of early face recognition meth-
ods (Sirovich and Kirby 1987; Turk and Pentland 1991).

Today’s face verification methods are based on deep features extracted from deep 
learning models (Wang and Deng 2018). This approach is possible now because we 
have more data to train deep neural networks. In the early period of face recognition, 
the classical face dataset called ORL (orl database) contained only 40 subjects with ten 
images per subject. The size of each image was 92 × 112 pixels, hence 10,304 pixels in 
total. This dataset is tiny compared to today’s datasets. Besides, the main problem, in 
this case, is that we have more dimensions than the number of observations ( d > n ). 
Consequently, the covariance matrix will most likely be ill conditioned and cannot be 
eigen-decomposed. The Eigenface method resolves this problem via dot matrix instead 
of the covariance matrix. This procedure will be described in the next section.

3  Small‑sample‑size case: n ≤ d

This section describes the PCA method designed for the case where the number of 
data points (n) is smaller than the dimension of feature vectors (d). Even if the method 
described in this section originated from image application, it could also be used with 
general feature vectors when n ≤ d . This scenario appears, for example, in bioinformat-
ics (Ringnér 2008). In Ringnér (2008), the author studied 8,534 probes on the microar-
rays with expression measurements extracted from 105 samples. In other words, the 

Table 2  The number of axis 
needed to retain 90%, 95%, and 
99% of total information

 Datasets  Number of axis to retain information  Dimension 

   90%       95%    99%

Diabetes 7 8 8 10
Wisconsin 

breast cancer
7 10 17 30

Iris 2 2 3 50
MNIST 236 331 543 784
CIFAR 103 221 662 3072
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authors consider a dataset of 105 feature vectors in 8,534 dimensions. This dataset can 
be processed using the PCA algorithm described in this section.

In the following, Sects. 3.1 and 3.2 discuss the dot matrix, its relation to the covari-
ance matrix, and the conversion of eigenvectors obtained from both matrices. The use 
of the dot matrix is the foundation of the small-sample-size PCA method described in 
Sect. 3.3.

3.1  Covariance matrix and Dot matrix

Given feature vectors �1,… , �n with �t ∈ ℝ
d . We assume that these vectors are cen-

tered around zero. We can construct a data matrix � = [�1,… , �n] of size d × n . The 
column i of � corresponds to the feature vector �i . Using this data matrix, the covari-
ance matrix can be rewritten as

We often use ��T to denote the covariance matrix since maximizing �T�� or �T��T� 
will result in the same eigenvectors (if we constraint these eigenvectors to be unit vectors).

The dot matrix is defined as �T� . It is easy to see that the element i, j of this matrix 
is indeed the dot product between example i and j, i.e. �T

i
�j.

3.2  Eigenvector conversions

Suppose that � and � are eigenvalue and corresponding eigenvector of dot matrix, then 
we have

Hence �� will be an eigenvector of the covariance matrix under the same eigenvalue � . 
This relation allows us to convert the dot matrix’s eigenvectors into the covariance matrix’s 
eigenvectors. After the conversion, the newly obtained eigenvector should be normalized as 
usual. Note that we have

Hence the normalized version of the eigenvector is simply (1∕
√
�)��

On the other hand, it is also possible to convert eigenvectors of the covariance 
matrix into eigenvectors of the dot matrix. Indeed, if � and � are eigenvalue and cor-
responding eigenvector of dot matrix, then we have

Hence �T� will be an eigenvector of the dot matrix under the same eigenvalue � . To nor-
malize this eigenvector, we have

(18)� =
1

n

n∑
t=1

�t�
T
t
=

1

n
��T .

(19)�T�� =��

(20)(��T )(��) =�(��).

(21)������ = �.

(22)��T� =��

(23)(�T�)(�T�) =�(�T�).
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Hence the normalized version of the eigenvector is (1∕
√
�)�T�

3.3  PCA from dot matrix

From the above discussion, the small-sample-size PCA can be done by eigen-decompose 
the dot matrix first, then converting the result into eigenvectors of the covariance matrix. 
The whole procedure is summarized in Algorithm 2. Note that the size of the covariance 
matrix is d × d , and the size of the dot matrix is n × n . From the computational point of 
view, the rule of thumb is to eigen-decompose a smaller matrix. If d ≤ n , then we should 
eigen-decompose the dot matrix, if d > n we eigen-decompose the covariance matrix.

3.4  Examples

To illustrate the application of PCA in this case ( n ≤ d ), ORL dataset6 is considered along 
with CIFAR-10 dataset. The ORL dataset contains 400 images of 92 × 112 pixels. These 
images were vectorized into 10,304-dimensional vectors. For CIFAR-10, a dataset of 1,000 
examples is constructed for classes 0, 1, and 2. In both cases, the dimension of feature vec-
tors is much higher than the number of examples. Thus, the size of the covariance matrix 
will be larger than that of the dot matrix.

Figure 3 shows results from four datasets namely ’ORL’ and ’CIFAR’ with class 0, 1, 
and 2 respectively. The left column shows the eigenvalues plot from the four datasets. The 
second column shows the cumulative proportion of variance in the principal subspace. The 
two right columns show a projection of the four datasets onto the two first eigenvectors, 
and onto the first and the last eigenvectors, respectively. In both cases, the projection onto 
the first eigenvector corresponds to the abscissa. These 2D plots show the same trend as in 
the standard PCA case. Indeed, the variance on the horizontal axis is higher than that on 
the vertical axis since the eigenvectors are sorted in decreasing order of their eigenvalues 

(24)�T��T� = �.

6 https:// www. kaggle. com/ datas ets/ kasik rit/ att- datab ase- of- faces.

https://www.kaggle.com/datasets/kasikrit/att-database-of-faces
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corresponding to variance on the axis. Moreover, it is interesting to see that most variance 
is due to the first few principal axes.

4  Large‑scale dataset in high‑dimensional space: large n and large d

As time goes by, the size of the face dataset increases from a few hundred images to 
more than ten thousand images. Consequently, both covariance matrix and dot matrix 
will be huge and become difficult to eigen-decompose. This section describes how 
to deal with this problem, starting from a simple heuristic designed for face images 
(Sect. 4.1), then we discuss why it works (Sect. 4.2) before giving a general method to 
handle this case in Sect. 4.4.

ORL

CIFAR class 0

CIFAR class 1

CIFAR class 2

Fig. 3  Plot of eigenvalues (left) and the projection of different datasets onto the two first eigenvectors (mid-
dle) as well as the projection onto the first and the last eigenvectors (right) from ORL dataset (top) and from 
CIFAR dataset class 0, 1, and 2
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4.1  Motivating idea from face images

Consider the three images in Fig.  4. They were principal axis or Eigenfaces obtained 
from ORL dataset at 3 resolutions namely 96 × 112 in Fig. 4a, 77 × 89 in Fig. 4b, and 
46 × 56 in Fig. 4c. Each face image was resized into the desired resolution; then, their 
pixels were rearranged to form a feature vector. We can obtain the face image corre-
sponding to each Eigenface by inverting this pixel arrangement.

One can easily see the similarity between the three sets of Eigenfaces. It is worth not-
ing that the negative of an eigenvector is also an eigenvector with the same variance. Thus, 
given two Eigenfaces, with one that appears to be the inverted color of another, they are, in 
fact, colinear and can be converted into the same Eigenface. An interesting question is why 
eigenvectors obtained from different resolutions look so similar.

Recall that an eigenvector �i of the dot matrix can be converted into an eigenvector of 
the covariance matrix by ��i . Note that

Hence, the coordinates of an eigenvector of the dot matrix can be interpreted as relative 
importance of different examples. This is why Google’s Pagerank uses the coordinate of 
the leading eigenvector of the Internet to describe the importance of each web page (Brin 
and Page 1998).

In general, resizing does not change the face image’s global aspect. Thus, the relative 
importance between images should be affected slightly. This could explain why resizing 
produces similar eigenvectors.

Indeed, from the above discussion, the PCA can be done by approximating the eigen-
structure, i.e., eigenvalues and eigenvectors, of the original dot matrix by eigenstructure 
from reduced-size images. The whole PCA process is summarized in Algorithm 3.

(25)��i =

n∑
t=1

vit�t.

Fig. 4  10 largest Eigenfaces from ORL dataset using 3 resolutions namely the original size 96 × 112 (a), 
77 × 89 (b), and 46 × 56 (c)
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4.2  Matrix perturbation

From the previous Section, we may wonder what kind of aspect of face images impacts the 
relative importance, thus the eigenstructure. If we can somehow identify this aspect, maybe 
a similar approach can also be used for non-image data.

To answer the above question, we first investigate the effect of resizing images. Suppose 
we scaled up the face images from 46 × 56 back to 92 × 112 . We can see that these images 
look similar to the original image but with some blocking artifacts. The same effect can 
be produced by replacing neighbor pixels with the same value, such as the value of the 
top-left pixel. We call this pixel-grouping version of the original image. Figure 5c shows 
an image of Fig. 5a with pixel-grouping strategy using 2 × 2 neighborhood. Figure 5b is 
obtained using downscale + upsample strategy. From Fig. 5, we can see that the downscale 
+ upsample method and the pixel-grouping method produce similar images that are also 
similar to the original image. Hence, in this subsection, we will consider the feature group-
ing strategy for the general feature vector.

Indeed, we consider the simple case of replacing one feature with another one; for 
example, replace feature a by b. Given a vector �t , let �̃tk = �tk if k ≠ a and equals to 

Fig. 5  Original image from ORL dataset (a), its downscale + upsample version (b), its pixel-grouping ver-
sion (c)



5459Tutorial on PCA and approximate PCA and approximate kernel PCA  

1 3

�tb if k = a . Following the discussion in the previous subsection, we investigate the dot 
product of these modified feature vectors:

Hence, the dot matrix can be rewritten as

with �ij = xiaxja − xibxjb From matrix perturbation theory, we know that the difference 
between the eigenvalue of �T� and that of �̃T�̃ is bounded by the size of � . That is, if 
�1 ≥ �2 ≥ ... ≥ �d are the eigenvalues of �T� and �̃�1 ≥ ... ≥ �̃�d the eigenvalues of �̃T�̃ , 
then we have

The first inequality comes from corollary 8.1.6 in Gene (1996) The second inequality is 
because norm-2 of the matrix is the square root of the maximum eigenvalue, whereas the 
Frobenius norm is the square root of the trace that is the sum over all eigenvalues. In the 
case of matrix � we have:

It is worth noting that (��T )ab∕
√
(��T )aa(��

T )bb is indeed the correlation between fea-
tures a and b.

From the Eqs. (30) and (35) we can conclude that if a and b are highly correlated, 
then replacing one by another will only slightly alter the value of obtained eigenvalues. 
As neighbor pixels are often correlated with each other, the pixels replacing strategy or 
resizing strategy allows for maintaining dot product, thus the eigenstructure.

(26)�T
i
�j =

∑
k

xikxjk + xibxjb − xibxjb

(27)=
∑
k

x̃ikx̃jk + xiaxja − xibxjb

(28)=�̃T
i
�̃j + xiaxja − xibxjb

(29)�T� = �̃T�̃ + �

(30)max
i=1,…,d

�𝜆i − �̃�i� ≤ ‖�‖2 ≤ ‖�‖F

(31)‖�‖2
F
=
�
i

�
j

��ij�2

(32)=
∑
i

∑
j

(xiaxja − xibxjb)
2

(33)=
∑
i

∑
j

(
(xiaxja)

2 + (xibxjb)
2 − 2(xiaxja)(xibxjb)

)

(34)=

(∑
i

x2
ia

)2

+

(∑
i

x2
ib

)2

− 2

(∑
i

xiaxib

)2

(35)=(��T )2
aa
+ (��T )2

bb
− 2(��T )2

ab
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4.3  Dot product preserving transformation

From the previous analysis, we know that resizing works because it groups features that are 
highly correlated with each other. Nonetheless, during the analysis, we have seen another criti-
cal component: the dot product preserving transformation. Indeed, if we can somehow trans-
form �t ∈ ℝ

d into �̃t ∈ ℝ
q with q ≪ d such that �T

i
�j ≈ �̃T

i
�̃j , then we may follow the same 

procedure to approximate eigenvalues of the original dataset. The key idea is to preserve dot 
product and fast calculation. This section reviews some transformations that can be used to 
this end.

4.3.1  Gaussian random projection

An example of such transformation is the Gaussian random projection. Indeed, given Gauss-
ian random vectors �1,… ,�q ∈ ℝ

d with �i ∼ N(0, �d) where �d is identity matrix in ℝd . 
We know that if q is large enough, then its sample covariance matrix will converge to �d , i.e. 
(1∕q)��T ≈ �d where � = [�1,… ,�q] .. From this observation, we define the following 
transformation function:

Therefore, we have

4.3.2  Feature hashing

Given hash functions h ∶ {1,… , d} → {1,… , q} and s ∶ {1,… , d} → {1,−1} , Weinberger 
et al. (2009) proposed the following feature hashing function: for j = 1,… , q

The dot product between two hash vectors is then

(36)f gauss (�) =
1√
q
�T�.

(37)f gauss (�i)
T f gauss (�j) =

1

q
�T
i
��T�j

(38)=�T
i

[
1

q
��T

]
�j

(39)≈�T
i
�j.

(40)f (h,s)(�)j =
∑

i∶h(i)=j

s(i)�i.

(41)⟨f (h,s)(�), f (h,s)(�)⟩ =
q�
j=1

f (h,s)(�)jf
(h,s)(�)j

(42)=
∑
j

( ∑
i∶h(i)=j

s(i)�i

)( ∑
i�∶h(i�)=j

s(i�)�i�

)
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Observe that if we take the expectation over hash function s, then the second term on the 
right-hand side will vanish. As a result �h,s[⟨f (h,s)(�), f (h,s)(�)⟩] = ⟨�, �⟩ . In Weinberger 
et al. (2009) the authors proved other properties of this feature hash function, including the 
bound over the variance of the inner product and concentration of the length of the hash 
vectors (Weinberger et al. 2009). From the above description, the dot product preserving 
transformation can be achieved by concatenating hashing vectors from multiple hash func-
tions. Let (hi, si), i = 1,… , l be l hash functions we define:

It is worth noting that this hashing is inspired by works in stream processing field. In fact, 
in stream processing, several sketching methods have been proposed to keep estimating 
frequencies and other moments of items using a limited amount of memory. An example 
of a sketching method is the count-min sketch (Graham and MuthuKrishnan 2005) that 
inspired the work of Shi et al. on hash kernels (Shi et al. 2009). Hash kernels rely on hash-
ing function similar to Eq. (40) but without the random sign function s. Hence, Shi et al. 
(2009) feature hashing was biased, with a bias that reduces as the number of hash func-
tions increases. The random sign function introduced by Weinberger et al. (2009) turns the 
feature hashing function into an unbiased estimator for dot product. Interestingly, the hash 
function from Weinberger et  al. is the same as the count sketch method (Charikar et  al. 
2002), but with different conditions on the hash functions. This example underlines that dot 
product preserving transformations could also be found in other domains that may appear 
to be distant subjects at first, such as stream processing.

4.4  Approximate PCA

In summary, the PCA for large-scale data in high dimensional space can be done by adapt-
ing the Algorithm 3 using dot product preserving transformation instead of simple down-
sizing. This approximate PCA algorithm is summarized in Algorithm 4.

(43)=
∑
j

∑
i∶h(i)=j

�i�i +
∑
j

∑
i≠i�∧h(i)=h(i�)

s(i)s(i�)�i�i�

(44)=
∑
i

�i�i +
∑
j

∑
i≠i�∧h(i)=h(i�)

s(i)s(i�)�i�i�

(45)=⟨�, �⟩ +�
j

�
i≠i�∧h(i)=h(i�)

s(i)s(i�)�i�i�

(46)f f (�)iq+j =
1

l
f (hi,si)(�)j, i = 1,… , l, j = 1,… , q.
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4.5  Examples

To illustrate the application of PCA in this case (large n and large d), a larger dataset is 
considered namely Dogs VS Cats dataset7. The training split of this dataset contains 25,000 
images of cats and dogs in various sizes. These images were resized into 224 × 224 pixels, 
then fed into several deep neural networks to extract visual feature vectors. Table 3 summa-
rizes the dimensions of feature vector from different deep neural structures.

Figure 6 shows Mean Absolute Proportion Error (MAPE) between the dot product in 
the input space and that in the space defined by Gaussian random projection (top row) 
and feature hashing (bottom row). These plots are obtained using q equal to 500, 1000, 
2000, 3000, and 5000 dimensions. Figure 6a–d are obtained from VGG16, DenseNet121, 
InceptionV3, and ResNet50 respectively. Similarly, Fig. 6e–h are obtained from VGG16, 
DenseNet121, InceptionV3, and ResNet50. This Figure shows that the MAPE reduces as 
q increases. Moreover, comparing the two dot product preserving transformations, we can 
observe that Gaussian random projection outperforms feature hashing in several cases. 
Thus, we shall consider only Gaussian random projection in the following examples.

Figure 7 shows the plot of eigenvalues obtained by approximate PCA using Gaussian 
random projection with 500 dimensions in the top row. This Figure also shows the plot of 
the cumulative proportion of total variance obtained from different neural structures in the 
second row. The third row of this Figure shows the projection onto two first principal axis 
with red color for “Dog” and blue for “Cat”. One can observe that even if InceptionV3 has 

Table 3  Dimension of feature 
vectors from different deep 
neural structures

 Network   Dimension 

VGG16 25,088
DenseNet121 50,176
InceptionV3 51,200
ResNet50 100,352

7 https:// www. kaggle. com/ compe titio ns/ dogs- vs- cats/.

https://www.kaggle.com/competitions/dogs-vs-cats/
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the fastest increase in cumulative variance, its scatter plot shows a mixed area between the 
two classes. For VGG16 and ResNet50, the two classes seem to be better separated. None-
theless, it should be emphasized that PCA is not designed for classification tasks. Hence, 
one should not expect the principal subspace to be suited for classification in all cases. 
Another subspace projection, such as linear discriminant analysis or LDA (Fukunaga 
1990), that is designed for classification, could yield better classification accuracy.

Fig. 6  Mean Absolute Proportion Error (MAPE) between the dot product in the input space and that in the 
space defined by Gaussian random projection (top row) and feature hashing (bottom row)

Fig. 7  Eigenvalues plot in decreasing order. These eigenvalues are obtained from approximate PCA 
using Gaussian random projection with q = 500 from VGG16 (a), DenseNet121 (b), InceptionV3 (c), 
and ResNet50 (d). The second row show the cumulative proportion of total variance for VGG16 (e), 
DenseNet121 (f), InceptionV3 (ga), and ResNet50 (h)
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5  Kernel PCA and its approximation methods

So far, we have considered a simple linear projection of numerical feature vectors. In prac-
tice, most data could be cluttered around an area that may not form a linear subspace but 
a non-linear one. A convenient way of performing non-linear PCA is to use kernel trick 
(Schölkopf et al. 1999, 2018). The kernel trick idea is to reformulate any linear analysis 
method to involve only the dot product, then replace the dot product with a kernel function. 
Et Voilà! You obtain a non-linear version of the original linear method.

The kernel PCA relies on this kernel trick to perform non-linear projection. The main 
crux of kernel PCA lies in the eigen-decomposition of the kernel matrix whose size is 
n × n where n is the size of the dataset. This section briefly reviews the kernel method, and 
the Kernel PCA (Schölkopf et al. 1999) in Sect. 5.1. Then the approximate KPCA is dis-
cussed in Sects. 5.2 and 5.3.

5.1  Kernel PCA

The kernel considered in this manuscript is the Mercer’s kernel (Schölkopf et  al. 1999; 
Shawe-Taylor and Cristianini 2004). In short, if � is a valid Mercer’s kernel, then there 
exists a mapping function Φ such that

Recall that ⟨., .⟩ denotes the dot product. This bracket notation will be used in the following 
to render formulas easier to read.

The range of the mapping function Φ is called the reproducing kernel Hilbert space or 
RKHS. To simplify the discussion, we shall refer to it as the kernel space instead of the 
input space.

The key of the kernel method is that Φ can be unknown meaning that we know it does 
exist, but we do not know its analytical form. Fortunately, several properties can be derived 
implicitly from the dot product without accessing the vector’s coordinate. For example, the 
Euclidean distance in kernel space is given by:

This implicit calculation allows transforming the classical linear method into a non-linear 
one at the expense of a higher computational cost.

5.1.1  Implicit centering in kernel space

Indeed as Φ is unknown, we cannot explicitly compute the mean vector nor subtract it from 
each data point in the kernel space. However, the mean vector � can be defined implicitly 
via Φ as follows:

(47)�(�, �) = ⟨Φ(�),Φ(�)⟩.

(48)‖Φ(�) − Φ(�)‖2 = �(�, �) + �(�, �) − 2�(�, �)

(49)� =
1

n

n∑
t=1

Φ(�t)
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Even if we cannot compute the mean vector explicitly in kernel space, we can compute the 
dot product between two data points after mean subtraction as follows:

In summary, data centering in kernel space can be done implicitly via the modified kernel 
�̂� . This modified kernel will be used instead of the dot product in dot matrix calculation. 
To reduce confusion, we shall refer to the dot matrix in this case as the kernel matrix. The 
kernel PCA relies on the eigen-decomposition of this kernel matrix �:

For n data points, the size of this kernel matrix will be n × n.

5.1.2  Projection axis in kernel space

Before writing down the kernel PCA algorithm, it should be noted that the projection axis 
is also defined in the kernel space, similar to the mean vector above. Hence, it is impossible 
to write it down explicitly since Φ is unknown. We have to work with its definition. Indeed, 
by adopting the Eq. (25) to the kernel space with normalization, an eigenvector �i of the 
covariance matrix in kernel space must be of the form:

where �i = [vi,1, ..., vi,n]
T is the ith eigenvector of the kernel matrix and �i its corresponding 

eigenvalue.
Even if the numerical values of the vector �i cannot be computed explicitly, we may still 

compute the projection of Φ(�) onto �i as follows:

(50)
⟨Φ(�) − �,Φ(�) − �⟩ =⟨Φ(�),Φ(�)⟩ − ⟨Φ(�),Φ(�)⟩ − ⟨Φ(�),Φ(�)⟩

+ ⟨Φ(�),Φ(�)⟩

(51)

=⟨Φ(�),Φ(�)⟩ − 1

n

n�
t=1

⟨Φ(�),Φ(�
t
)⟩ − 1

n

n�
t=1

⟨Φ(�),Φ(�
t
)⟩

+
1

n2

n�
t=1

n�
t�=1

⟨Φ(�
t
),Φ(�

t�
)⟩

(52)

=�(�, �) −
1

n

n�
t=1

�(�, �t) −
1

n

n�
t=1

�(�, �t)⟩

+
1

n2

n�
t=1

n�
t�=1

�(�t, �t� )⟩

(53)≡�̂�(�, �).

(54)�i,j = �̂�(�i, �j), 0 ≤ i, j ≤ n.

(55)�i =
1√
�i

n�
t=1

vi,tΦ(�t),
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Given a new data point � , the projection of Φ(�) onto ith eigenvector is given by:

Note that we may replace � in the Eq. (56) by �̃� for projection of centered data in kernel 
space.

5.1.3  KPCA

The whole kernel PCA can be summarized as shown in Algorithm 5.

5.2  Approximate Kernel PCA

The main crux of kernel PCA lies in the eigen-decomposition of the kernel matrix. Indeed, 
the size of the kernel matrix is n × n , where n is the size of the dataset. As the mapping 
function, Φ is unknown. It is not possible applying the method described earlier in Sect. 4 
directly. In the following, we first present empirical kernel map and its relation to the ker-
nel matrix. Then we combine it with the approximation method described in Sect. 4.

5.2.1  Empirical kernel map and kernel matrix

Given a dataset of n points �1, ..., �n and a kernel � , the empirical kernel map (EKM) trans-
forms any data point � into n-dimensional space as follows:

It is straightforward, seeing that the dot product between two EKM vectors is not equal to 
the kernel function. Thus EKM does not preserve the dot product in kernel space. Some 

⟨�i,Φ(�)⟩ = 1√
�i

n�
t=1

vi,t⟨Φ(�t),Φ(�)⟩

=
1√
�i

n�
t=1

vi,t�(�t, �)

(56)⟨�i,Φ(�)⟩ = 1√
�i

n�
t=1

vi,t�(�t, �).

(57)Φ̃(�) =

⎡⎢⎢⎣

𝜅(�, �1)

⋮

𝜅(�, �n)

⎤⎥⎥⎦



5467Tutorial on PCA and approximate PCA and approximate kernel PCA  

1 3

authors have proposed additional methods to restore the kernel value (Schölkopf et  al. 
1999). Our method will not follow this line. Indeed, we consider the outer product used to 
construct the covariance matrix instead.

Let �̂t = Φ(�t) be the mapped value of �t in the kernel space via the kernel � with its mapping 
function Φ . In fact �̂t is not computable since Φ is unknown. Let �̂ = [�̂1, ..., �̂n] be the obtained 
data matrix. The kernel matrix can be expressed as �̂T�̂ , and the EKM can be rewritten by

Hence

where � is the kernel matrix.

5.2.2  Large‑scale approximate KPCA algorithm

The last equation in the previous section implies that the covariance matrix of EKM vectors is 
exactly squared of the kernel matrix. Hence, we may decompose the former instead of the latter. 
However, one may wonder about this advantage since both matrices are n × n with large n.

The advantage is that we now have access to these EKM vectors’ coordinates. Therefore, 
it is possible to reduce the computational cost using dot product preserving transformation 
described in Sect. 4. The whole approximate kernel PCA can be summarized in Algorithm 6

(58)Φ̃(�̂t) = �̂T �̂t.

(59)Φ̃(�t)Φ̃(�t)
T =�̂T �̂t�̂

T
t
�̂

(60)
n∑
t=1

Φ̃(�t)Φ̃(�t)
T =�̂T�̂�̂T�̂

(61)=�2,
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5.3  Nyström method

It should be noted that there exists another approximate kernel matrix eigen-decomposition 
called the Nyström method (Williams and Seeger 2000). The basic idea of the Nyström 
algorithm is to eigen-decompose a small selected working set first. Then to expand the 
resulting eigenvectors/eigenvalues to cover the whole dataset.

Let �1, ..., �n be given data. Suppose, without loss of generality, that q first points were 
selected. Let �q

i
 and �q

i
, i = 1,… ,m be the eigenvalues and the corresponding eigenvectors 

obtained from q data points. Nyström method approximate the eigenvalues/eigenvectors 
using kernel matrix � as follows:

where �n,q is the appropriate n × q sub-matrix of the whole kernel matrix �.
As the eigen-decomposition is performed on the working set, its selection is crucial for 

the correctness of the approximated eigenstructure. To this end, several selection methods 
have been proposed, including uniform sampling, diagonal sampling, and column-norm 
sampling (Kumar et al. April 2012). For the uniform sampling, each example has an equal 
probability of being selected. The diagonal sampling selects working point �i according to 
probability pd

i
 such that:

The column-norm sampling selects working set with probability pc
i
 such that:

5.4  Complexity analysis

For the approximate KPCA, the main computational cost is in EKM calculation ( O(n2) ), 
the dot product preserving transformation ( O(qnd) ), the eigen-decomposition ( O(q3) ), and 
eigen-conversion ( O(qn2) ). The highest cost is in eigen-decomposition and eigen-conver-
sion. The total complexity of this method is O((q + 1)n2 + qnd + q3).

For Nyström algorithm, the main computational cost is in working set selection, eigen-
decomposition ( O(q3) ), and eigen-conversion ( O(q2n) ). For working set selection, the 
complexity varies depending on the selection method. In fact, the complexity of uniform, 
diagonal, and column-norm sampling are O(1) , O(n) , and O(n2) respectively. The complex-
ity of the Nyström method is smaller than that of Approx-KPCA, especially when uniform 
sampling is used. It is worth noting that in some cases, this simple uniform sampling could 
outperform diagonal and column-norm sampling. This is due to the randomized nature of 
the sampling procedure. Thus, we would suggest using uniform or diagonal sampling first 
since they have lower complexity costs.

(62)�̂�i =
n

q
𝜆
q

i

(63)�̂i =

√
n

q

1

𝜆
q

i

�n,q�
q

i
,

(64)pd
i
=

�(�i, �i)
2

∑
j �(�i, �j)

2
.

(65)pc
i
=

∑
j �(�i, �j)

2

∑
k

∑
j �(�k, �j)

2
.
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5.5  Examples

To illustrate the application of KPCA and its approximation methods, the ORL dataset 
was considered again. The dimension of the lower subspace in Approx-KPCA is set to the 
same value as the size of the working set in the Nyström method. Thus Approx-KPCA and 
Nyström algorithm will need to eigen-decompose matrices of the same size, i.e., q × q . 
To compare the two approximation methods, it is worth emphasizing that an eigenvector 
represents the projection axis but not the direction. Indeed, an eigenvector � and its nega-
tion −� will have the same eigenvalue, i.e., the same variance of projected data. Hence, to 
compare eigenvectors obtained from the different methods, we consider the absolute corre-
lation between them. Let � and �′ be two eigenvectors obtained from two different methods, 
and the similarity measure is defined as follows:

A suitable approximation method should have a high similarity, close to 1.
Furthermore, we also consider the difference in eigenvalues. Indeed, let � and �′ be 

two eigenvalues obtained from vanilla KPCA and one of the two approximation methods, 
respectively, The difference between � and �′ is measured as:

A suitable approximation method should have a smaller difference.
We perform KPCA, Approx-KPCA and KPCA with Nyström using various kernels, 

namely Tangent hyperbolic kernel with a = 0.0001, r = 0 , RBF kernel with � = 0.0001 , 
Polynomial kernel degree 5, and the sum of these three kernels. The resulting similarities 
and difference are shown in Figs. 8 and 9. Approx-KPCA (g) and (f) correspond to approx-
imate KPCA using Gaussian random projection and feature hashing, respectively. Nyström 
(r) refers to Nyström method with random working set selection. Nyström (d) and (c) refer 
to Nyström method with diagonal sampling and column-norm sampling, respectively The 
experiment was repeated ten times.

Figures 8 and 9 show average similarity between 10 first eigenvectors and average dif-
ference between 10 first eigenvalues respectively. From the two Figures, one can observe 
that both Approx-KPCA and Nyström method yield high similarity, especially for the first 
eigenvectors. This similarity increases as q increases. Therefore, one can expect that the 
principal space obtained from these approximation methods lies close to the real one. For 
eigenvalues, one can see that Approx-KPCA with Gaussian random projection is the best 
in several cases. Approx-KPCA with feature hashing yields a large difference for tangent 
hyperbolic and RBF kernels. Nyström method with diagonal and column sampling yield 
a large difference for polynomial and sum kernels. From these results, we would sug-
gest using Approx-KPCA with Gaussian random projection when precise eigenvalues are 
needed.

(66)Sim (�, ��) =
��T���
‖�‖‖��‖

(67)Diff (�, ��) =
|� − ��|

�
.
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q = 50 q = 200

Tanh
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Fig. 8  Average similarity between first 10 eigenvectors obtained from KPCA and that obtained from differ-
ence approximation methods
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Fig. 9  Average difference between first 10 eigenvalues obtained from KPCA and that obtained from differ-
ence approximation methods
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6  Summary

In this tutorial, we reviewed the classical PCA method and the problem that may arise 
when applying it to very small or very large high-dimensional datasets. We have also dis-
cussed different methods that may be used to handle these cases. We have shown that a 
good PCA approximation could be achieved with dot product preserving transformation. 
This paper considers two particular transformations: Gaussian random projection and 
the feature hashing method. Other transformations could also be used if they provide dot 
product preservation and fast calculation. We also showed how this approximation method 
could be applied to alleviate the computational problem that occurred in kernel PCA. We 
have made our code in Python that is used in the experiment available at https:// github. 
com/ peune/ pca. Readers with a background in Python programming can study this code to 
better understand this subject. All data used in this paper are from public datasets. They are 
also available upon request.

A Jacobi method for eigen‑decomposition

Given a square matrix � of size d × d , its eigen-decomposition is given by:

with � = diag (�1,… , �d) and � = [�1,… , �d] such that �T
i
�j = 1 if i = j and 0 otherwise.

The vectors �1,… , �d are eigenvectors of � with corresponding eigenvalues �1,… , �d:

The eigen-decomposition of � , gives a powerful method to compute power of � , e.g. 
�p = ��p�T where �p = diag (�

p

1
, ..., �

p

d
) . In particular, when p = −1 , this eigen-decom-

position tells us that � is not invertible if some of its eigenvalues are zeros. It is also pos-
sible to compute fancy things like �1∕2.

There are several eigen-decomposition algorithms. One of the most widely used is the 
Jacobi method (Jacobi 1846), which relies on rotation matrices. The obtained eigenvectors 
form an orthonormal basis of the d-dimensional space. Observed that � = ���T can be 
rearranged as �T�� = � . Therefore, eigen-decomposition can be found by searching for a 
matrix � such that that the product �T�� is a diagonal matrix. To this end, the Jacobi 
method will successively rotate the default basis of the d-dimensional space until the prod-
uct becomes diagonal. In fact, the d-dimensional space, the default basis is composed of 
vector �i = [0, ..., 1

⏟⏟⏟
ith

, ...., 0]T , i = 1,… , d . The rotation is performed on a couple of 

axes. For example given two axis i,  j and a rotation angle we define the rotation matrix 
P(i, j, �):

(68)� = ���T

(69)��i = �i�i.

https://github.com/peune/pca
https://github.com/peune/pca
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 where c = cos � and s = sin � It can be proved that � and ���T will have the 
same eigenstructure. Therefore, Jacobi method tries to find P1,P2,… ,Pn such that 
Pn...P1AP

T
1
...PT

n
 is diagonal.

The main question is how to select (i, j) and � . The Jacobi method answers this question 
by considering �� = ���T

As we want �′ to become closer and closer to the diagonal matrix, we should select the 
largest off-diagonal element �′

ij
 and choose proper � to shrink its value to 0. For this task, 

we select � such that

If �ii = �jj we select � = �∕4 . Hence, the Jacobi method iteratively selects (i, j) from larg-
est off-diagonal element, then construct rotation matrix using � as defined in 72. The whole 
process is repeated until all off-diagonal elements become small enough. This requires 
computational cost around O(d3).

B Kernel function

This section introduces the basic idea behind kernel and kernel methods (Schölkopf et al. 
1999, 2018; Shawe-Taylor and Cristianini 2004; Hofmann et al. 2008). The kernel that 
we are interested in is the Mercer’s kernel. A real-valued function � satisfies the Mer-
cer’s condition if for all square-integrable function g we have ∫ ∫ g(�)�(�, �)g(�) ≥ 0 . 
In practice, given a dataset �1,… , � and its kernel matrix � , this condition implies 

(71)

��
ii
=c2�ii − 2sc�ij + s2�jj

��
jj
=s2�ii + 2sc�ij + c2�jj

��
ij
= ��

ji
=(c2 − s2)�ij + sc(�ii − �jj)

��
ik
= ��

ki
=c�ik − s�jk k ≠ i, j

��
jk
= ��

kj
=s�ik + c�jk k ≠ i, j

��
kl
=�kl k, l ≠ i, j

(72)

0 =(c2 − s2)�ij + sc(�ii − �jj)

= cos(2�)�ij +
1

2
sin(2�)(�ii − �jj)

tan(2�) =
2�ij

�jj − �ii.
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that the kernel matrix is positive-semidefinite matrix, i.e. for all vector � ∈ ℝ
n we have 

�T�� ≥ 0 The Mercer condition guarantees that there exists a mapping function Φ such 
that

Recall that ⟨., .⟩ denotes the dot product. This bracket notation will be used in the following 
to render formulas easier to read.

The range of the mapping function Φ is called the reproducing kernel Hilbert space or 
RKHS. To simplify the discussion, we shall refer to it as the kernel space as opposed to the 
input space.

The key of the kernel method is that Φ can be unknown meaning that we know it does 
exist, but we do not know how it is. Fortunately, several properties can be derived directly 
from the dot product without accessing the vector’s coordinate. Thus, these properties can 
also be computed from kernel function, even if Φ remains unknown. An example of such 
properties is the Euclidean distance. Indeed, as we have

so by replacing the dot product with a kernel function we obtain:

where Φ is the mapping function of the kernel �.
Examples of valid kernels are:

– Linear kernel �(�, �) = �T�

– Polynomial kernel  �(�, �) = (�T�)p

– RBF kernel or Gaussian kernel  �(�, �) = exp(−�‖� − �)‖2
– Laplacian kernel  �(�, �) = exp(−‖� − �‖∕�)
– Tangent hyperbolic kernel  �(�, �) = tanh(a�T� + r)

– Histogram intersection kernel (Barla et al. 2003)  �(�, �) =
∑

i min{�i, �i} when �, � are 
two histograms

– Generalized histogram intersection kernel (Boughorbel et  al. 
2005)  �(�, �) =

∑
i min{��i�� , ��i��}

– Chi-square kernel (Hein and Bousquet 2004, 2005) between two distributions � and � : 

– Hellinger kernel (Hein and Bousquet 2004, 2005) between two distributions � and � : 

– Jensen-Shannon kernel (Hein and Bousquet 2004, 2005) between two distributions � 
and � : 

(73)�(�, �) = ⟨Φ(�),Φ(�)⟩.

(74)‖� − �‖2 = �T� + �T� − 2�T�,

(75)‖Φ(�) − Φ(�)‖2 = �(�, �) + �(�, �) − 2�(�, �),

�(�,�) = ∫
X

p(x)q(x)

p(x) + q(x)
d�(x)

�(�,�) = ∫
X

√
p(x)q(x)d�(x)

�(�,�) = −
1

log 2 ∫
X

p(x) log
p(x)

p(x) + q(x)
+ q(x) log

q(x)

p(x) + q(x)
d�(x)
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– String kernel (Lodhi et al. 2002) between two strings �, � defined over finite alphabet 
Σ : 

 where n is the given length of sub-string considered. For a string � = �1,… , �|�| with 
�i ∈ Σ , let �[i ∶ j] = �i, ...,�j . The mapping function ��(�) is defined as the weighted 
sum of sub-string � found within � , i.e. 

 with 𝜆 < 1 weighting coefficient.
– Fisher kernel (Jaakkola and Haussler 1999): for a given probabilistic model p: 

 where the explicit mapping function Φ is the gradient of log likelihood: 

 and � is the Fisher’s information matrix, i.e. 

 In practice, we often use an approximate version of this kernel, i.e. �(�, �) = Φ(�)TΦ(�). 
This kernel allows nicely integrating a generative model into a discriminative frame-
work such as SVM.

It is also possible constructing a new kernel from existing kernels. Let 
�1, �2 ∶ X × X → ℝ be two valid kernels. The following kernels are also valid

– �(�, �) = �1(�, �) + �2(�, �)

– �(�, �) = c�1(�, �), c ∈ ℝ
+

– �(�, �) = �1(�, �) + c, c ∈ ℝ
+

– �(�, �) = �1(�, �)�2(�, �)

– �(�, �) = f (�)f (�) for all f ∶ X → ℝ

– �(�, �) = exp
(
−�(�1(�, �) + �1(�, �) − 2�1(�, �))

)
 (note: this is an RBF kernel in 

another kernel space)
– �(�, �) =

�1(�,�)√
�1(�,�)�1(�,�)

 (note: this is the cosine of the angle between Φ(�),Φ(�))

Acknowledgements This work was supported by the Program Management Unit for Human Resources & 
Institutional Development, Research and Innovation (PMU-B) [grant number B04G640107].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

�(�, �) =
∑
�∈Σn

��(�)��(�),

��(�) =
∑

i∶�[i∶|�|]=�
�|�|,

�(�, �) = Φ(�)T�−1Φ(�),

Φ(�) = ∇� log p(�|�),

� = �
[
Φ(�)Φ(�)T

]
.
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