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Abstract
The widespread usage of machine learning in different mainstream contexts has made deep 
learning the technique of choice in various domains, including finance. This systematic 
survey explores various scenarios employing deep learning in financial markets, especially 
the stock market. A key requirement for our methodology is its focus on research papers 
involving backtesting. That is, we consider whether the experimentation mode is suffi-
cient for market practitioners to consider the work in a real-world use case. Works meeting 
this requirement are distributed across seven distinct specializations. Most studies focus 
on trade strategy, price prediction, and portfolio management, with a limited number con-
sidering market simulation, stock selection, hedging strategy, and risk management. We 
also recognize that domain-specific metrics such as “returns” and “volatility” appear most 
important for accurately representing model performance across specializations. Our study 
demonstrates that, although there have been some improvements in reproducibility, sub-
stantial work remains to be done regarding model explainability. Accordingly, we suggest 
several future directions, such as improving trust by creating reproducible, explainable, 
and accountable models and emphasizing prediction of longer-term horizons—potentially 
via the utilization of supplementary data—which continues to represent a significant unre-
solved challenge.

Keywords  Deep learning · Machine learning · Neural network · Stock market · Financial 
market · Quantitative analysis · Backtesting · Practice and application

1  Introduction

Technology has long substantially enabled financial innovation  (Seese et  al. 2008). 
In Insights (2019), Deloitte surveyed over 200 US financial services executives to deter-
mine their use of Artificial Intelligence (AI) and its impact on their business. A total of 
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70% of respondents indicated that they use general-purpose Machine Learning (ML), 
with 52% indicating that they use Deep Learning (DL). For these respondents, the most 
common uses of DL are reading claims documents for triage, providing data analytics 
to users through intuitive dashboards, and developing innovative trading and investment 
strategies.

The Institute for Ethical AI & Machine Learning (EAIML) has developed eight prin-
ciples for responsible ML development; these include pertinent topics such as explain-
ability, reproducibility, and practical accuracy (The Institute for Ethical AI & Machine 
Learning 2020). Recent research has emphasized the issue of Explainable AI (XAI) and 
Reproducible AI (Gundersen et al. 2018) in numerous application domains. In a survey 
on XAI, the need for interpretable AI was identified as a major step toward artificial 
general intelligence (Adadi and Berrada 2018). However, more work is needed to ensure 
domain-specific metrics and considerations are used to assess applicability and usability 
across diverse ML domains.

Paleyes et al. (2020) suggest practical consideration in deploying ML for production 
use: “The ability to interpret the output of a model into understandable business domain 
terms often plays a critical role in model selection, and can even outweigh performance 
consideration.” For example,  Nascita et  al. (2021) fully embraces XAI paradigms of 
trustworthiness and interpretability to classify data generated by mobile devices using 
DL approaches.

In the domain of financial analysis using stock market data, a key tool for achieving 
explainability and giving research a good chance at real-world adoption is backtesting 
(de Prado 2018; Arnott et al. 2018). This refers to using historical data to retrospectively 
assess a model’s viability and instill the confidence to employ it moving forward. This 
is based on the intuitive notion that any strategy that worked well in the past is likely to 
work well in the future, and vice versa (de Prado 2018).

Numerous surveys have considered applications of DL to financial markets  (Jiang 
2021; Zhang et al. 2021; Hu et al. 2021; Li and Bastos 2020; Ozbayoglu et al. 2020), 
with (Ozbayoglu et al. 2020) considering numerous financial applications to demonstrate 
that applications involving stock market data, such as algorithmic trading and portfolio 
management, present the most interesting cases for researchers. Elsewhere, (Jiang 2021) 
focuses on DL research in the stock market, especially research concerning reproduc-
ibility; however, despite presenting financial metrics, there is no indication of backtest-
ing or practicality. Meanwhile, (Hu et al. 2021) presents an analysis based on evaluation 
results such as bins of accuracy results and ranges of returns that, nonetheless, offers no 
clear explanation for different kinds of metrics and does not consider XAI.

The authors of Li and Bastos (2020) emphasize the importance of evaluations using 
financial metrics but limit their focus to profitability as a financial evaluation. Although 
they do discuss volatility, this is not considered for evaluation because it can result in 
poor financial returns despite its high level of accuracy. This survey explores the strat-
egies that various researchers have employed to understand DL in the stock market, 
focusing on studies addressing explainability, reproducibility, and practicality. To the 
best of our knowledge, this work represents the first study to adopt backtesting and 
domain-specific evaluation metrics as primary criteria. This is represented by the fol-
lowing specific questions:

Question 1  What current research methods based on deep learning are used in the stock 
market context?
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Question 2  Are the research methods consistent with real-world applications, i.e., have 
they been backtested?

Question 3  Is this research easily reproducible?

To answer question 2, we focus on works that were backtested as part of the 
research methodology. Proper backtesting provides assurance that the algorithm has 
been tested in different time horizons, consistent with domain-specific considerations, 
which improves investor confidence and makes its application in a real-world trading 
scenario more likely   (Arnott et al. 2018). This serves as the primary criteria for the 
literature reviewed. For question 3, we consider not only works where the source data 
and code are provided but also on works the research could be reproduced. Section 4 
further explains the approach employed and the search criteria.

Section  2 explains the characteristics, types, and representations of stock market 
data. Then, Sect.  3 discusses applications of DL in the stock market. We begin the 
section by summarizing the different DL techniques currently used in the stock market 
context and conclude by itemizing the specific ways these techniques are applied to 
stock market data. In Sect.  4, we elaborate on our research questions, answering the 
research questions by summarizing our survey findings. Section 5 presents challenges 
remaining to be unresolved and future research directions, and Sect. 6 concludes the 
survey.

2 � Understanding stock market data

Not unlike other ML applications, data represents a crucial component of the stock mar-
ket learning process (de Prado 2018). Understanding the different forms of data that are 
employed to utilize DL for the stock market substantially contributes to enabling proper 
identification of our data requirements in accordance with the task in question. This 
section considers the different characteristics, types, and representations of data that are 
relevant to mining stock market data using DL. Notably, as will become evident, some 
of these data forms are quite specific to stock market data.

2.1 � Data characteristics

2.1.1 � Source

Although trading venues such as stock exchanges are often perceived as the main source 
of stock market data, in recent years, other data sources, including news articles and social 
media, have been explored as data sources for ML processes (Day and Lee 2016; Haibe-
Kains et al. 2020; Yang et al. 2018; Adosoglou et al. 2020). There is a direct correlation 
between data source and data type, as Sect.  2.2 demonstrates. Data source also largely 
depends on the intended type of analytics. If the goal is a simple regression task using 
purely historical market data, then the primary or only source could be trading data from 
the trading venue. For more complicated tasks, such as studying the effect of user senti-
ments on stock movement, it is common to combine trading data with data obtained from 
social media services or comments on relevant news articles. Irrespective of complications 



2060	 K. Olorunnimbe, H. Viktor 

1 3

associated with the task at hand, it is rare to not use the trading venue as a source because 
literal data is always integral. Although several of the studies considered do not incorporate 
trading data—e.g., (Bao and Liu 2019; Ferguson and Green 2018)—these are generally 
theoretical studies that utilize simulated data.

2.1.2 � Frequency

Data frequency concerns the number of data points within a specific unit of time (de Prado 
2018). What any particular data point captures can be reported in different ways, from 
being represented as an aggregate (e.g., min, max, average) to using actual values. Data 
granularity can range from a daily snapshot (typically the closing value for trading data) to 
a fraction of a second for high-frequency market data. A more established representation of 
stock market data as bars (Sect. 2.3.1) refers to presenting multiple data points as an under-
standable aggregate of the highlights within that time interval.

For non-traditional data sources, such as news or social media, it is quite common 
to combine and summarize multiple individual items within the same time interval. For 
example,  (Day and Lee 2016) uses multiple daily news headlines as part of the training 
data. Elsewhere, using a sentence encoder  (Conneau et  al. 2017) generates equal length 
vectors from differently sized sets of words representing different sentences. The literature 
reviewed commonly uses a snapshot or aggregated data to summarize a data point within a 
time interval. This could be due to the data’s granularity being directly proportional to its 
volume. Consequently, more parameters will be required in neural networks comprising 
highly granular data.

2.1.3 � Volume

Although the volume of the data closely relates to the frequency of the data and the spe-
cific unit of data (de Prado 2018), we should differentiate volume from frequency because, 
while a high frequency typically translates to a relatively high volume, volume size might 
not directly correlate to data frequency. This becomes more apparent when we consider 
seasonality or holidays for the same time interval. We can also recognize that, based on 
the time of day, the volume of data generated for the same subject of interest within the 
same period could be vastly different, suggesting a differential occurrence rate. This is 
particularly relevant for non-conventional data types, such as news and social media data, 
where high volume (i.e., the size of the volume) might not be directly correlated to data 
frequency. This becomes more apparent when we consider seasonality or holidays for the 
same time interval. We can also notice that based on the time of day, the volume of data 
generated for the same subject of interest within the same period could be vastly different, 
suggesting a different rate of occurrence. This is particularly relevant for non-conventional 
data types, such as news or social media data.

Using Apple Inc. as an example  (Investing.com 2013), a day marking a product 
announcement produces a substantially larger volume of news articles and relevant 
social media content than other days. Although this content might not affect the vol-
ume of the trading data—which depends more heavily on market data frequency—such 
instances might produce noticeable differences in the rate of change in market values. An 
increased rate warrants a different level of attention compared to a typical market day. The 
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relationship between market data frequency and alternative data volume itself represents an 
interesting area of research that deserves a special level of attention.

Understanding data volume and data frequency is critical to designing infrastructure 
for processing data. As data volume approaches the realm of big data, precluding effi-
cient computation in memory, it is necessary to consider alternative ways of processing 
data while utilizing relevant components of that data. Here, we begin considering ways 
of parallelizing the learning process without losing relationships between parallel batches. 
Data processing at such a scale requires parallel processing tools, such as those described 
by Zaharia et al. (2010).

2.2 � Data types

2.2.1 � Market data

Market data are trading activities data generated by trading venues such as stock exchanges 
and investment firms. They are typically provided via streaming data feeds or Applica-
tion Programming Interface (API) used within protocols such as the Financial Information 
eXchange (FIX) and the GPRS Tunnelling Protocol (GTP)  (Wikipedia 2020d) (accessed 
19-Aug-2020). A typical trade message concerning stock market data comprises a ticker 
symbol (representing a particular company), bid price, ask price, time of last quote, and 
size of the sale (Table 1).

For messages with quote data, we should expect to see both the bid price & volume and 
the ask price & volume. These represent how much people are willing to buy and sell the 
asset at a given volume. Market data represent the core data type used by ML research in 
the stock market context and typically provide a detailed representation of trading activities 
regarding market assets such as equities/shares, currencies, derivatives, commodities, and 
digital assets. Derivatives can be further broken down into futures, forwards, options, and 
swaps (Derivative 2020).

Market data can be either real-time or historical  (de Prado 2018). Real-time data are 
used to make real-time trading decisions about buying and selling market instruments. His-
torical data are used to analyze historical trends and make informed decisions regarding 
future investments. Typically, historical data can contain intraday or end-of-day data sum-
maries. The granularity of real-time data can be as detailed as a fraction of a second, with 
some tolerance for short delays. Comparing data for the same period, the frequency of a 
real-time data feed is expected to be much higher than historical data.

We can further separate market data, based on the details it contains, into Level I and 
Level II market data. Level II data contains more information and provides detailed infor-
mation on bids and offers at prices other than the highest price (Zhang et al. 2019). Level 

Table 1   A sample trade message 
for Apple Inc. (AAPL)

Ticker symbol AAPL

Name Apple Inc.
Last trade price 289.80
Last trade timestamp 1577480401
Last trade volume 35447203
Exchange NASDAQ
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I data generally contain the basic trading data discussed thus far. Level II data are also 
referred to as order book or depth of book because they show details of orders that have 
been placed but not yet filled. These data also show the number of contracts available at 
different bid and ask prices.

2.2.2 � Fundamental data

Unlike market data, where data directly relate to trading activity on the asset of inter-
est, fundamental data are based on information about the company the asset is attached 
to Christina Majaski (2020). Such data depict the company’s standing using information 
such as cash flow, assets, liabilities, profit history, and growth projections. These kinds of 
information can be obtained from corporate documentation such as regulatory filings and 
quarterly reports. Care has to be taken to confirm whether fundamental data points are pub-
licly available because these are typically reported with a lapse. This means that analyzing 
the data must align properly with the date it became publicly available and not necessarily 
the date the report was filed or indexed.

Notably, some fundamental data are reported with some data yet to be made available, 
becoming backfilled upon availability. When fundamental data are published before source 
data becomes available, placeholder values are used during the interim period. Furthermore, 
given companies can issue revisions or corrections to sources multiple times, these will need 
to be corrected in the fundamental data, which suggests the need to incorporate a backfilling 
technique into the data consumption design. By definition, the frequency of this kind of data 
is very low compared to market data. This might explain why limited DL literature employs 
fundamental data. However, this also indicates the existence of a gap in research utilizing 
this kind of data, which would ideally be filled by considering fundamental data alongside 
other data types to provide a significant learning signal that remains to be fully exploited.

2.2.3 � Alternative data

Alternative data represents any other unconventional data type that can add value to 
already-established sources and types (de Prado 2018). This can range from user-generated 
data (e.g., social media posts, financial news, and comments) to Internet-of-Things data 
(e.g., data from different sensors and devices). Alternative data typically complement the 
aforementioned data types, especially market data. Given the nature of alternative data, 
they are typically much larger, hence requiring a sophisticated processing technique.

Notably, alternative data includes a vast amount of data that is open to interpretation 
because the signal might not be immediately obvious. For example, a market participant 
interested in Apple Inc. stocks might choose to observe different news articles related to 
the company. Although there might be no direct reports about the company releasing a new 
product line, news reports about key meetings or large component purchases can indicate the 
plausibility of action. Accordingly, stock market professionals and researchers have become 
attentive to such indirect signals, and now consider alternative data essential to their data 
pipeline. Numerous researchers now combine traditional data types with either or both news 
article and social media content to make market predictions. Social media especially has 
become a very popular alternative data type, primarily due to its position in the mainstream.

Table 3 presents certain representative attributes of the different data types. All of the 
attributes associated with market data and fundamental data are numerical and aggregated 



2063Deep learning in the stock market—a systematic survey of practice,…

1 3

based on the available time series. For example, the intraday market data entry in row 1 of 
Table 2 shows the open and close prices for a one-hour time window that begins at 10 am 
and ends at 10:59 am. It also includes the maximum and minimum price and the total vol-
ume traded within the same window (Table 3).

A fourth data type known as Analytics data  (de  Prado 2018), describes data derived 
from any of the other three types. Attributes of analytics data are earnings projections or 
sentiments from news or tweets that are combined with trade volume. We have chosen not 
to include this category because it does not clearly represent a direct source, and it is usu-
ally unclear what heuristics have been used to obtain the derived data points. Furthermore, 
given the objective of academic research is to make the metrics explicit, it is counter-intui-
tive to consider them useable input.

Table  4 presents the characteristics of the data employed by the literature reviewed, 
including the aforementioned data types. It is apparent that market data represents the most 
common type, with actual trading prices and volumes often paired with fundamental data 
to compute technical indicators (Soleymani and Paquet 2020; Wang et al. 2019b). Table 5 
presents a more complete representation of freely or publicly available data sources that 
fully itemizes attributes.

Sources including investing.com, finance.yahoo.com and kaggle.com uti-
lize either API or libraries, facilitating interactions with them and unlocking better integra-
tion with the ML system. Sources without any programmatic interface usually make data 
available as manual downloadable files.

The other major factor that affects the preferred data source is the frequency of avail-
ability, for example, whether the data is available multiple times a day (intraday data) or 
once a day (interday data). Given the potential volume and size of historical data, it is com-
mon for intraday data to remain available for a shorter timeframe than interday data, espe-
cially for freely available data sets. However, in most cases, it is possible to pay for intraday 
data for a longer timeframe if required for lower latency projects.

2.3 � Data representation

Data generated from the stock market are typically represented as Bars and Charts. It is 
worth discussing these representations because they represent the most typical forms of 
representing data either numerically (bars) or graphically (charts).

Table 2   Intraday time bar for 
ticker IBM

Date Time Open High Low Close Volume

20160128 10:00 122.17 122.27 122.09 122.09 4,934
20160128 11:00 121.42 121.60 121.38 121.52 12,254

Table 3   Representative attributes by data types

Market data attributes Fundamental data attributes Alternative data attributes

open price, high price, low price, 
close price, volume

revenue, earnings per share, 
market capitalization, dividend, 
average volume, shares out-
standing, next earning date

google trends, news, texts, tweets, 
satellite imagery
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2.3.1 � Bars

Bars enable extraction of valuable information from market data in a regularized man-
ner  (de Prado 2018). They categorize futures into standard and more advanced types, 
with the advanced types comprising derivative computation from standard types. How-
ever, standard types are more common and also form the basis of chart representation.

Standard bars help to summarize market data into equivalent intervals and can be used 
with both intraday and historical data (Fig. 1). The different types of standard bars all typi-
cally contain certain basic information for the specified interval, including the timestamp, 
Volume-Weighted Average Price (VWAP), open price, close price, high price, low price, and 
traded volume, all within the specified interval. The VWAP is based on the total traded for 
the day, irrespective of the time interval, and is computed as 

∑
price ⋅ volume∕

∑
volume . 

The different standard bars are described in the following paragraphs.
Time bars This is the most common bar type and derives from summarizing data into 

an equivalent time interval that includes all of the aforementioned standard bar informa-
tion. Intraday hourly time bars feature hourly standard bar information for every hour of 
the day. For historical data, it is common to obtain details for each day. Table 2 exempli-
fies intraday time bars that can capture information.

The VWAP assists by demonstrating the trend for the price of a traded item during a 
given day. This single-day indicator is reset at the start of each trading day and should 
not be used in the context of daily historical data.

Table 4   Characteristics of data in survey

*Subject to availability
a WRDS—compustat daily updates

Source Type Frequency Free Library

https://​www.​inves​ting.​com Market, fundamental Interday Y Investpy
https://​www.​wrds-​www.​whart​on.​

upenn.​edua
Market, fundamental Interday, intraday N Na

https://​www.​bloom​berg.​com Market, fundamental Interday, intraday N Na
https://​finan​ce.​yahoo.​com Market, fundamental Interday, intraday Y yfinance
https://​www.​kaggle.​com Market Interday* Y Kaggle-api
https://​www.​inter​activ​ebrok​ers.​com Market, fundamental Interday, intraday N Tws-api
https://​www.​taifex.​com.​tw Taiwan market Interday, intraday Y Na
pypi.org/project/tushare China market, fundamental Interday, intraday Y Tushare
https://​optio​nmetr​ics.​com Market, fundamental Interday, intraday N Na
https://​www.​refin​itiv.​com Market, fundamental Interday, intraday N Na
https://​datas​hop.​deuts​che-​boerse.​com Market, fundamental Interday, intraday N Na
https://​www.​trkd.​thoms​onreu​ters.​com Market, fundamental Interday, intraday N Na
https://​www.​wind.​com.​cn China market, fundamental Interday, intraday N Na
https://​etsin.​faird​ata.​fi Nordic market Intraday* Y Na
https://​www.​londo​nstoc​kexch​ange.​

com
UK market Interday N Na

https://​pinna​cleda​ta2.​com Narket, fundamental Interday, intraday N Na
http://​www.​apex.​com.​tw Taiwan market, fundamental Interday, intraday N Na
https://​www.​joinq​uant.​com China market, fundamental Interday, intraday N Jqdatasdk

https://www.investing.com
https://www.wrds-www.wharton.upenn.edu
https://www.wrds-www.wharton.upenn.edu
https://www.bloomberg.com
https://finance.yahoo.com
https://www.kaggle.com
https://www.interactivebrokers.com
https://www.taifex.com.tw
https://optionmetrics.com
https://www.refinitiv.com
https://datashop.deutsche-boerse.com
https://www.trkd.thomsonreuters.com
https://www.wind.com.cn
https://etsin.fairdata.fi
https://www.londonstockexchange.com
https://www.londonstockexchange.com
https://pinnacledata2.com
http://www.apex.com.tw
https://www.joinquant.com
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Tick bars Unlike time bars that capture information at regular time intervals, tick 
bars capture the same information at a regular number of transactions or ticks. Ticks are 
trades in the stock market that can be used to represent the movement of price in trad-
ing data (i.e., the uptick and downtick). Ticks are commonly used for different stages 
of modeling market data, as in the case of backtesting. However, historical stock mar-
ket data are not as freely accessible in the form of tick bars, especially for academic 
research purposes. For this purpose, most of the literature reviewed uses time bars, 
despite its statistical inferiority for predictive purposes.

Volume bars Although tick bars exhibit better statistical properties than time bars 
(i.e., they are closer to independent distribution), they still feature the shortcoming of 
uneven distribution and propensity for outliers (de Prado 2018). This can be because a 
large volume of trade is placed together from accumulated bids in the order book, which 
gets reported as a single tick, or because orders are equally recorded as a unit, irrespec-
tive of size. That is, an order for 10 shares of a security and an order for 10,000 shares 
are both recorded as a single tick. Volume bars help to mitigate this issue by capturing 
information at every predefined volume of securities. Although volume bars feature bet-
ter statistical properties than tick bars  (Easley et  al. 2012), they are similarly seldom 
used in academic research.

Range bars Range bars involve information being captured when a predefined mone-
tary range is traded. They are also referred to as dollar bars (de Prado 2018). Range bars 
are particularly useful because, by nature, securities appreciate or depreciate constantly 

Fig. 1   Survey structure

Fig. 2   Intraday tick time series showing trade price and volume within the trading hours, across 2 
days (Investing.com 2013)
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over a given period. Consider a security that has depreciated by 50% over a certain 
period; by the end of that period, it is possible to purchase twice as much as at the 
beginning. For instance, consider a security that has depreciated from $100 to $50 over 
a given period. A capital investment of $1000 would only have obtained 10 units at 
the start of the depreciation period; however, at the end of the period, that investment 
can obtain 20 units. Furthermore, corporate actions (e.g., splits, reverse splits, and buy-
backs) do not impact range bars to the extent that they impact ticks and volume bars.

2.3.2 � Charts

Charts visually represent the aforementioned bars, especially time bars. It might not be 
clear how these are relevant to a survey of DL applications in the stock market context, 
given it is possible to use the actual data that the charts are based on. However, various 
novel applications have used charts as training data. For example, (Kusuma et al. 2019) 
uses the candlestick plot chart as the input image for a Convolutional Neural Network 
(CNN) algorithm. The charts most commonly used to visually represent stock market 
data are line, area, bar, and candlestick charts. Of interest here, however, are the can-
dlestick and bar charts, which visually encode valuable information that can be used as 
input for DL algorithms.

Candlestick and bar charts can visually represent Open-High-Low-Close (OHLC) 
data, as Figure 3 shows. These two types of charts are optionally color-coded, with red 
indicating bearish (closing lower than it opened) and green indicating bullish (closing 
higher than it opened). By properly encoding this information into these charts, an algo-
rithm such as CNN can interpret numerous signals to generate an intelligent model.

2.4 � Lessons learned

The distinctive structure and differential representations of stock market data cannot be 
overestimated. This section considers some of these differences, especially those used 
in stock-market implementations of ML algorithms using DL. Understanding data char-
acteristics based on specific use cases can determine a given data set’s suitability for the 
intended use case. By understanding the different types of data used in the stock market, 
we can refer to the data types needed, which closely relate to their characteristics. For 
example, given the nature of alternative data, we can expect it to feature significant vol-
ume, especially in comparison to fundamental data.

The frequency of data also varies significantly by type. Understanding the granularity 
of the intended task enables determination of the frequency of the data to be obtained. For 
example, intraday market data will be required for modeling tasks requiring minute- or 
hour-level data. This also affects the volume of data required. It is interesting to note data 
representation, especially market data. The required frequency guides data representation 
as summarized time bars rather than tick-by-tick data.

Chart representations of market data also provide novel ways of learning from visual 
representations. Candlestick and bar charts convey information at a rich and detailed 
level worthy of exploitation as a learning source. Nonetheless, this is accompanied by 
the complex task of consuming the image rather than the data that it is based upon and, 
although   (Kusuma et  al. 2019) used a candlestick chart for this purpose, the authors 
failed to compare the performance with the performance using the raw data. It would be 
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interesting to observe comparisons of results for raw data and visual representations of that 
same data.

3 � Deep learning for stock market applications

3.1 � What is deep learning?

Deep learning describes an ML technique based on networks of simple concepts and fea-
turing different arrangements or architecture that allows computers to learn complicated 
concepts from simple nodes that are graphically connected using multiple layers (Goodfel-
low et al. 2016). The resurgence of DL was led by probabilistic or Bayesian models such 
as Deep Belief Networks (DBN)  (Hu et al. 2021; Goodfellow et al. 2016), which comprise 

(a) (b)

(c) (d)

Fig. 3   Candlestick & bar charts
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nodes representing random variables with probabilistic relationships to each other. More 
recently, however, Artificial Neural Networks (ANN) that comprise nodes representing 
neurons that are generated by the training process have witnessed increasing popularity. 
All of the architectures we encounter in this survey are based on ANN; this section details 
these architectures.

Generally speaking, ANN are information processing systems with designs based on the 
human nervous system, specifically the brain, and that emphasize problem-solving (Castro 
2006). Typically, they comprise many simple processing elements with adaptive capabili-
ties that can process a massive amount of information in tandem. Given neurons are the 
basic units for information processing in the brain, their simplified abstraction forms the 
foundation of ANN. The features and performance characteristics that ANN share with the 
human nervous system are (Castro 2006): 

1.	 The initial information processing unit occurs in elements known as neurons, nodes or 
units.

2.	 Neurons can send and receive information from both each other and the environment.
3.	 Neurons can be connected, forming a connection of neurons that can be described as 

neural networks.
4.	 Information is transmitted between neurons via connection links called synapses.
5.	 The efficiency of synapses, represented by an associated weight value or strength, cor-

responds, in aggregate, to the information stored in the neural network.
6.	 To acquire knowledge, connective strengths (aggregated weight values) are adapted to 

the environmental stimuli, a process known as learning.

Patterns are created by the information stored between neurons, which represents their syn-
aptic or connective strength (Goodfellow et al. 2016). Knowledge is represented to influ-
ence the course of processing, which becomes a part of the process itself. This invariably 
means that learning becomes a matter of finding the appropriate connective strength to 
produce satisfactory activation patterns. This generates the possibility that an information 
processing mechanism can learn by tuning its connective strength during the processing 
course. This representation also reveals that knowledge is distributed over the connections 
between numerous nodes, meaning no single unit is reserved for any particular pattern.

Thus, an ANN can be summarized according to these three key features: 

1.	 A set of artificial neurons, also known as nodes, units, or neurons.
2.	 A method for determining weight values, known as training or learning techniques.
3.	 A pattern of connectivity, known as the network architecture or structure.

The following sections detail these three features.

3.1.1 � Artificial neurons

A biological neuron primarily comprises a nucleus (or soma) in a cell body and neurites 
(axons and dendrites) (Wikipedia 2020b). The axons send output signals to other neurons, 
and the dendrites receive input signals from other neurons. The sending and receiving of 
signals take place at the synapses, where the sending (or presynaptic) neuron contacts the 
receiving (or postsynaptic) neuron. The synaptic junction can be at either the cell body or 
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the dendrites. This means that the synapses are responsible for signal/information process-
ing in the neuron, a feature that allows them to alter the state of a postsynaptic neuron, 
triggering an electric pulse (known as action potential) in that neuron. The spikes cause 
the release of neurotransmitters at the axon terminals, which form synapses with the den-
drites of other neurons. The action potential only occurs when the neuron’s intrinsic elec-
tric potential (known as membrane potential) surpasses a threshold value.

An artificial neuron attempts to emulate these biological processes. In an artificial neu-
ron, the synapse that connects the input to the rest of the neuron is known as a weight, char-
acterized by synaptic strength, synaptic efficiency, connection strength, or weight value. 
Figure 4 show a typical artificial neuron.

As each input connects to the neuron, it is individually multiplied by the synaptic 
weight at each of the connections, which are aggregated in the summing junction. The 
summing junction adds the product of all of the weighted inputs with the neuron’s bias 
value, i.e., z =

∑
�� + b . The images essentially represent this. The activation func-

tion (also referred to as the squashing function) is represented as g(z) and has the pri-
mary role of limiting the permissible value of the summation to some finite value. It 
determines a neuron’s output relative to its net input, representing the summing junc-
tion’s output. Thus, the neuron’s consequent output, also known as the activation ( a ), 
becomes:

During the learning process, it is common to randomly initialize the weights and biases. 
These parameters are used by the activation to compute the neuron’s output. In this simple 
representation of one neuron, we can imagine that the output (prediction) of the neuron 
is compared with the input (true value) using a loss function to generate the error rate. 
Through an optimization method called Stochastic Gradient Descent, the error rate is prop-
agated back to the network, a process called backpropagation (Rumelhart et al. 1986). This 
process is repeated over multiple iterations or epochs until a defined number of iterations is 
achieved or the error rate falls below a satisfactory threshold.

(1)a = g(z) = g

( n∑

j=1

wjxj + b

)

Fig. 4   Model of a typical neuron (Castro 2006)
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Multiple types of activation functions  (Wikipedia 2020b) are used across different 
neural network architectures. The Rectified Linear Unit (ReLU) activation function has 
been more popular in recent applications of Feed-Forward Neural Networks (FFNN) 
because it is not susceptible to the vanishing gradient issue (Wikipedia 2020c), which 
impacts use of the sigmoid function across multiple layers. It is also more computa-
tionally efficient. Other ReLU generalizations, such as Leaky ReL or Parametric ReLU 
(PReLU) are also commonly used. However, sigmoid continues to be used as a gating 
function in recurrent networks to maintain values between 0 and 1, hence controlling 
what passes through a node  (Goodfellow et  al. 2016). The hyperbolic tangent (tanh) 
activation function is also commonly used in recurrent networks, keeping the values that 
pass through a node between − 1 and 1 (Goodfellow et al. 2016).

3.1.2 � Learning techniques

In the ANN context, learning refers to the way a network’s parameters adapt accord-
ing to the input data. Typically, the learning technique is based on how weights are 
adjusted in the network and how data is made available to the network (Figs. 5, 6).

–	 Technique based on weight adjustment: The most common learning technique cat-
egory, this technique is based solely on how weights are adjusted across an iterative 
process and is dependent on the type of supervision available to the network dur-
ing the training process. The different types are supervised, unsupervised (or self-
organized), and reinforcement learning.

–	 Technique based on data availability: When categorized according to how data is 
presented to the network, the learning technique can be considered offline or online. 
This technique might be chosen because the complete data are not available for 
training in one batch. This could be because either data are streaming or a concept 
in the data changes at intervals, requiring the data to be processed in specific time 
windows. Another reason could be that the data are too large to fit into the memory, 
demanding processing in multiple smaller batches.

Fig. 5   Supervision-based learn-
ing technique

Fig. 6   Learning technique based 
on data availability
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Techniques based on supervision are most common for DL (and indeed DL), with 
increasing studies adopting batch learning approaches. Nonetheless, the primary archi-
tecture of DL networks is not exclusive to one technique category; instead, it is typical 
to find a mix of both, i.e., offline supervised learning and online reinforcement learn-
ing. Unless otherwise specified, it can be assumed that the technique is offline/batch 
learning. For example, supervised learning refers to offline supervised learning unless 
it is specified as online. The key point is that each supervision-based technique can be 
further categorized according to data availability.

3.1.3 � Network architecture

The architecture of an ANN importantly contributes to the ways that it is organized. Net-
work inputs depend solely on training data, and, for the most part, the output represents 
a function of the expected output. The layers between the input and output are mostly 
a design decision that depends largely on the network architecture, which is based on a 
typical neural network’s system of multiple connections. Numerous ANN architectures 
exist across various domains, including communication systems and healthcare (Aceto 
et al. 2019; O’Shea and Hoydis 2017; Xiao 2021), with the stock market applications 
this survey considers adopting even more derivative architectures with easily identifi-
able and well-known foundations. Figure 7 presents these architectures and their com-
mon categorizations based on how they learn weight parameters). The following section 
describes their differences.

The learning techniques based on these architectures can be either discriminative 
or generative. A discriminative model discriminates between different data classes by 
learning the boundaries between them or the conditional probability distribution p(y|x) ; 
meanwhile, a generative model learns the distribution of individual classes or joint 
probability distribution p(x, y) (Hinton 2017). Although most traditional ANN architec-
tures are discriminative, autoencoders and BoltzMann machine are considered genera-
tive. In a Generative Adversarial Network  (Hinton 2017), the two techniques are com-
bined in a novel adversarial manner.

3.1.3.1  Feed‑forward neural networks  Comprising multiple neurons connected in lay-
ers, DL architectures use FFNN widely. Figure 8 presents the architecture of an FFNN. It 

Fig. 7   Taxonomy of deep learning architecture used in stock market applications
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comprises an input layer, representing the input example, one or more hidden layers, and 
an output layer (Goodfellow et al. 2016).

Although Goodfellow et al. (2016) suggest that “a single layer is sufficient to repre-
sent a function”, hey also recommend deeper layers for better generalization. Ideally, 
the number of hidden layers should be decided for the specific task via experimentation. 
The input layer comprises a feature vector representing the input example that is fed to 
the first hidden layer. The hidden layer(s) and the output layer comprise multiple neu-
rons, each with a vector of weights of the same size as the input, as well as a bias value. 
Within the layers, each neuron’s output becomes the input for the next layer, until, 
finally, the output layer uses the final activation to represent the model’s prediction.

Broadly, this process aims to derive a generalization about the weights and biases 
associated with each neuron in the network, that is, derive generalizable values of �, b to 
compute z =

∑
�� + b for each neuron (with input � ) in the network. Using an iterative 

training process of forward and backward propagation over multiple examples (training 
data), each layer’s activations are propagated forward across the network, and the error rate 
is propagated back to the first hidden layer. Following the learning process, the network 
(model) can then be used to predict unseen/untested examples.

3.1.3.2  Recurrent neural network  Recurrent Neural Network (RNN) are a special type 
of neural network that keeps a representation of the previously seen input data. These 
networks are ideal for processes where the temporal or sequential order of the input 
example is relevant (Goodfellow et al. 2016).

The recurrence is represented as a loop in each neuron, as Fig. 9 shows, allowing one 
or more passes of the same input, with the network maintaining a state representation 
of each pass. Following the specified number of passes, the final state is transmitted as 
output parameters. This means that RNN allow the possibility of inputs and outputs of 
variable length. That is, given the loop’s flexibility, the architecture can be constructed 
to be one-to-one, one-to-many, many-to-one, or many-to-many.

Fig. 8   n-layer feed-forward neural network (Castro 2006)
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However, typical RNN, make it difficult for the hidden state to retain information 
over a long period. That is, they have a short memory due to the gradient becoming 
smaller and smaller as it is propagated backward in time steps across the recurring 
loop, a phenomenon known as vanishing gradient. This means that for temporal data, 
in which the relevant relationship between data points occurs over a lengthy period, a 
typical RNN model is not ideal. Thus, other versions of RNN have been formulated, 
with the most frequently used approaches being Long Short-term Memory (LSTM) 
lstm and Gated Recurrent Unit (GRU) (Goodfellow et al. 2016). The architectures dis-
cussed can largely reduce the vanishing gradient effect by maintaining a cell state via 
additive updates rather than just the RNN hidden state with product updates (Fig. 10).

3.1.3.3  Convolutional neural networks  Another network architecture type that has 
gained substantial popularity, especially for analyzing digital images, is CNN (Good-
fellow et al. 2016). The reason is that CNN can simplify large amounts of pixel den-

(a) (b)

Fig. 9   RNN (Goodfellow et al. 2016)

(a) (b)

Fig. 10   LSTM & GRU (Goodfellow et al. 2016)
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sity, vastly reducing the number of parameters to work with, making the ANN highly 
efficient. Unlike more conventional ANN, in which the input is represented as a feature 
vector, CNN represent the input as a matrix, which they use to generate the first convo-
lutional layer.

A typical CNN will contain one or more convolutional layers, each connected to its 
respective pooling layer. Figure 11 provides a simple representation of such a network.

3.1.3.4  Autoencoder  Autoencoders are unsupervised ANN that efficiently encode input 
data, a process known as latent representation or encoding. This process involves using 
input data as a feature vector and attempting to reconstruct the same data using fewer 
nodes than the input (Goodfellow et al. 2016). As such, autoencoders are frequently used 
for dimensionality reduction.

As Fig. 12, shows, an autoencoder’s architecture imposes a bottleneck for encoding 
the input representation. A decoder layer subsequently reproduces an output to repre-
sent the reconstructed input. In so doing, it learns a representation of the input data 
while ignoring the input noise. The encoder’s representation of the transformed input is 
referred to as the emphcode, code, and it is the internal or hidden layer of the autoen-
coder. The decoder subsequently generates the output from the code.

Autoencoders are commonly used in stock market data for their dimension reduc-
tion functionality  (Chen et  al. 2018a; Chong et  al. 2017) to avoid dimensionality 
curse (Soleymani and Paquet 2020). This is an important consideration for stock market 

Fig. 11   Architecture of a convolutional neural network (Goodfellow et al. 2016)

Fig. 12   A simple Autoen-
coder (Goodfellow et al. 2016)
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data, where there is value in network simplicity without losing important features. 
In Soleymani and Paquet (2020), a restricted stacked autoencoder network reduces an 11 
feature set to a three feature set before it is fed into a CNN architecture in a deep rein-
forcement learning framework called DeepBreath. This enables an efficient approach to 
a portfolio management problem in a setting that combines offline and online learning. 
Elsewhere, (Hu et al. 2018a) combines CNN and autoencoder architectures in its Con-
voluted Autoencoder (CAE) to reduce candlestick charts to numerical representations to 
improve stock similarity.

3.1.3.5  Deep Reinforcement Learning  Unlike supervised and unsupervised learning, 
in which all learning occurs within the training dataset, a Reinforcement Learning (RL) 
problem is formulated as a discrete-time stochastic process. The learning process inter-
acts with the environment via an iterative sequence of actions, state transitions, and 
rewards, in a bid to maximize the cumulative reward (François-Lavet et al. 2018). The 
future state depends only on the current state and action, meaning it learns using a trial-
and-error reinforcement process in which an agent incrementally obtains experience 
from its environment, thereby updating its current state (Fig. 13). The action to take 
(from the action space) by the agent is defined by a policy.

It is common to see a RL system formulated as a Markov decision process Markov 
decision process (MDP) in which the system is fully observable, i.e., the state of the 
environment is the same as the observation that the agent perceives  (François-Lavet 
et al. 2018). Furthermore, RL can be categorized as model-based or model-free (Rus-
sell and Norvig 2010).

–	 Model-based reinforcement learning The agent retains a transition model of the 
environment to enable it to select actions that maximize the cumulative utility. The 
agent learns a utility function that is based on the total rewards from a starting state. 
It can either start with a known model (i.e., chess) or learn by observing the effects 
of its actions.

–	 Model-free reinforcement learning The agent does not retain a model of the envi-
ronment, instead focusing on directly learning how to act in different states. This 
could be via either an action-utility function (Q-learning) that learns the utility of 
taking an action in a given state or a policy-search in which a reflex agent directly 
learns to map policy, �(s) , from different states to corresponding actions.

Deep Reinforcement Learning (DRL) is a deep representation of RL that can be model-
based, model-free, or a combination of the two  (Ivanov and D’yakonov 2019). The 

Fig. 13   Reinforcement Learn-
ing (François-Lavet et al. 2018)
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stock market can be considered to feature an DRL characteristic, with past states well-
encapsulated in current states and events and the only requirement for future states 
being the current state. For this reason, DRL is a particularly popular approach for 
modern quantitative analysis of the stock market. Applications of DRL in these sce-
narios vary from profitable/value stock selection or portfolio allocation strategy (Wang 
et  al. 2019b; Li et  al. 2019) to simulating market trades in a bid to develop optimal 
liquidation strategy (Bao and Liu 2019).

3.2 � Using deep learning in the stock market

In Section 3.1, we considered what DL is and discussed certain specific DL architectures 
that are commonly used in stock market applications. Although we referred to certain spe-
cific uses of these network types that are employed in the stock market, it is important to 
note that all of the architectures mentioned are also commonly used for other applications. 
However, some specific considerations must be kept in mind when the stock market is the 
target. These range from the model’s composition to backtesting and evaluation require-
ments and criteria. Some of these items do not correspond to a traditional ML toolbox but 
are crucial to stock market models and cannot be ignored, especially given the monetary 
risks involved.

This section first discusses the specifics of modeling considerations for stock market 
applications. It also discusses backtesting as an integral part of the process, and details 
some backtesting methodology. This is followed by a review of the different evaluation 
criteria and evaluation types.

3.2.1 � Modeling considerations

When training an ML model for most applications, we consider how bias and variance 
affect the model’s performance, and we focus on establishing the tradeoffs between the 
two. Bias measures how much average model predictions differ from actual values, and 
variance measures the model’s generalizability and its sensitivity to changes in the train-
ing data. High degrees of bias suggest underfit, and high levels of variance suggest over-
fit. It is typical to aim to balance bias and variance for an appropriate model fit that can 
be then applied to any unseen dataset, and most ML applications are tuned and focused 
accordingly.

However, in financial applications, we must exceed these to avoid some of the following 
pitfalls, which are specific to financial data.

3.2.1.1  Sampling intervals  Online ML applications typically feature sampling windows in 
consistent chronological order. While this is practical for most streaming data, it is not suit-
able for stock market data and can produce substantial irregularities in model performance. 
As Fig.  2 demonstrates, the volume of trade in the opening and closing period is much 
higher than the rest of the day for most publicly available time-based market data. This could 
result from pre-market or after-hours trading and suggests that sampling at a consistent time 
will inadvertently undersample the market data during high-activity periods and undersam-
ple during low-activity periods, especially when modeling for intraday activities.

A possible solution is using data that has been provided in ticks, but these are not always 
readily available for stock market data without significant fees, potentially hindering aca-
demic study. Tick data can also make it possible to generate data in alternative bars, such 
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as tick or volume bars, significantly enhancing the model performance. Notably,  (Easley 
et al. 2012) uses the term volume clock to formulate volume bars to align data sampling to 
volume-wise market activities. This enables high-frequency trading to have an advantage 
over low-frequency trading.

3.2.1.2  Stationarity  Time-series data are either stationary or non-stationary. Stationary 
time-series data preserve the statistical properties of the data (i.e., mean, variance, covari-
ance) over time, making them ideal for forecasting purposes (de Prado 2018). This implies 
that spikes are consistent in the time series, and the distribution of data across different 
windows or sets of data within the same series remains the same. However, because stock 
market data are non-stationary, statistical properties change over time and within the same 
time series. Also, trends and spikes in non-stationary time series are not consistent. By defi-
nition, such data are difficult to model because of their unpredictability. Before any work on 
such data, it is necessary to render them as stationary time series (Fig. 14).

A common approach to converting non-stationary time series to stationary time series 
involves differencing. This can involve either computing the difference between conserva-
tive observations or, for seasonal time series, the difference between previous observations 
of the same season. This approach is known as integral differencing, with (de Prado 2018) 
discussing fraction differencing as a memory-preserving alternative that produces better 
results.

3.2.1.3  Backtesting  In ML, it is common to split data into training and testing sets during 
the modeling process. Given the goal of this exercise is to determine the accuracy or evalu-
ate performance in some other way, it follows that adhering to such a conventional approach 
is appropriate. However, when modeling for the financial market, performance is measured 
by the model’s profitability or volatility of the model. According to Arnott et al. (2018), 
there should be a checklist or Protocol that mandates that ML research include the goal of 
presenting proof of positive outcomes through backtesting.

Opacity and bias in AI systems represent two of the overarching debates in AI eth-
ics  (Müller 2020). Although a significant part of the conversation concerns the civil 
construct, it is clear that the same reasoning applies to other economic and financial AI 

Fig. 14   Time-series for the same 
value of �

t
∼ N(0, 1)

(a)

(b)
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applications. For example,  (Müller 2020) raises concerns about statistical bias and the 
lack of due process and auditing surrounding using ML for decision-making. This relates 
to conversations about honesty in backtesting reports and the selection bias that typically 
affects academic research in the financial domain (Fabozzi and De Prado 2018).

In the context of DL in the stock market, backtesting involves building models that 
simulate trading strategy using historical data. This serves to consider the model’s per-
formance and, by implication, helps to discard unsuitable models or strategies, prevent-
ing selection bias. To properly backtest, we must test on unbiased and sufficiently rep-
resentative data, preferably across different sample periods or over a sufficiently long 
period. This positions backtesting among the most essential tools for modeling finan-
cial data. However, it also means it is among the least understood in research (de Prado 
2018).

When a backtested result is presented as part of a study, it demonstrates the con-
sistency of the approach across various time instances. Recall that overfitting in ML 
describes a model performing well on training data but poorly on test or unseen data, 
indicating a large gap between the training error and the test error  (de  Prado 2018). 
Thus, when backtesting a model on historical data, one should consider the issue of 
backtest overfitting, especially during walk-forward backtesting (de Prado 2018).

Walk-forward is the more common backtesting approach and refers to simulating 
trading actions using historical market data—with all of the actions and reactions that 
might have been part of that—in chronological time. Although this does not guaran-
tee future performance on unseen data/events, it does allow us to evaluate the system 
according to how it would have performed in the past. Figure 15 shows two common 
ways of formulating data for backtesting purposes. Formulating the testing process in 
this manner removes the need for cross-validation because training and testing would 
have been evaluated across different sets. Notably, traditional K-fold cross-validation is 
not recommended in time series experiments such as this, especially when the data is 
not Independent and Identically Distributed (IID) (Bergmeir and Benítez 2012; Zaharia 
et al. 2010).

Backtesting must be conducted in good faith. For example, given backtest overfitting 
means that a model is overfitted to specific historical patterns, if favorable results are 
not observed, researchers might return to the model’s foundations to improve gener-
alizability. That is, researchers are not expected to fine-tune an algorithm in response 
to specific events that might affect its performance. For example, consider overfitting 
a model to perform favorably in the context of the 1998 recession, and then consider 
how such a model might perform in response to the 2020 COVID-19 market crash. By 

(a) (b)

Fig. 15   Backtesting strategies
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backtesting using various historical data or over a relatively long period, we modify our 
assumptions to avoid misinterpretations.

3.2.1.4  Assessing feature importance  In discussing backtesting, we have discussed 
why we shouldn’t selectively “tune” a model to specific historical scenarios to achieve 
a favorable performance to challenge the usefulness of the knowledge gained from the 
model’s performance in such experiments. Feature Importance becomes relevant here. 
Feature importance enables the measurement of the contribution of input features to a 
model’s performance. Given neural networks are typically considered “black-box” algo-
rithms, the movement around explanation AI contributes to the interpretation of the out-
put of the network and understanding of the importance of the constituent features, as 
observed in the important role of Feature Importance Ranking in Samek et al. (2017), 
Wojtas and Chen (2020). Unlike traditional ML algorithms, this is a difficult feat for 
ANN models, typically requiring a separate network for the feature ranking.

3.2.2 � Model evaluation

Machine learning algorithms use evaluation metrics such as accuracy and precision. This 
is because we are trying to measure the algorithm’s predictive ability. Although the same 
remains relevant for ML algorithms for financial market purposes, what is ultimately 
measured is the algorithm’s performance with respect to returns or volatility. The works 
reviewed include various performance metrics that are commonly used to evaluate an algo-
rithm’s performance in the financial market context.

Recall that in Sect. 3.2.1 emphasized the importance of avoiding overfitting when back-
testing. It is crucial to be consistent with backtesting different periods and to be able to 
demonstrate consistency across different financial evaluations of models and strategies. 
Returns represents the most common financial evaluation metric for obvious reasons. 
Namely, it measures the profitability of a model or strategy (Kenton 2020). It is commonly 
measured in terms of rate during a specific window of time, such as day, month, or year. It 
is also common to see returns annualized over various years, which is known as Compound 
Annual Growth Rate (CAGR). When evaluating different models across different time win-
dows, higher returns indicate a better model performance.

However, it is also important to consider Volatility because returns alone do not relay 
the full story regarding a model’s performance. Volatility measures the variance or how 
much the price of an asset can increase or decrease within a given timeframe (Investopedia 
2016). Similar to returns, it is common to report on daily, monthly, or yearly volatility. 
However, contrary to returns, lower volatility indicates a better model performance. The 
The Volatility Index (VIX), a real-time index from the Chicago Board Options Exchange 
(CBOE), is commonly used to estimate the volatility of the US financial market at any 
given point in time  (Chow et al. 2021). The VIX measures the US stock market volatil-
ity based on its relative strength compared to the S &P 500 index, with measures between 
0 and 12 considered low, measures between 13 and 19 considered normal, and measures 
above 20 considered high.

Building on the information derived from returns and volatility, the Sharpe ratio ena-
bles investors to identify little-to-no-risk investments by comparing investment returns with 
risk-free assets such as treasury bonds (Hargrave 2019). It measures average returns after 
accounting for risk-free assets per volatility unit. The higher the Sharpe ratio, the better 
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the model’s performance. However, the Sharpe ratio features the shortcoming of assum-
ing the data’s normal distribution due to the upward price movement. TheSortino ratio can 
mitigate against this, differing by using only the standard deviation of the downward price 
movement rather than the full swing that the Sharpe ratio employs.

Other commonly used financial metrics are MDD and the Calmar ratio, both of which 
are used to assess the risk involved in an investment strategy. Maximum drawdown 
describes the difference between the highest and lowest values between the start of a 
decline in peak value to the achievement of a new peak value, which indicates losses from 
past investments (Hayes 2020). The lower the MDD, the better the strategy, with zero value 
suggesting zero loss in investment capital. The Calmar ratio measures the MDD adjusted 
returns on capital to gauge the performance of an investment strategy. The higher the Cal-
mar ratio, the better the strategy.

Another metric considered important by the works reviewed was VaR, which measures 
risk exposure by estimating the maximum loss of an investment over time using historical 
performance (Harper 2016).

Meanwhile, other well-known non-financial ML metrics commonly used are based on 
the accuracy of a model’s prediction. These metrics are calculated in terms of either the 
following confusion matrix or in terms of the difference between the derived and observed 
target values.

Predicted

Positive Negative Total

Actual Positive TP FP P
Negative FN TN N
Total P′ N′ P + N

True Positive (TP) and True Negative (TN) are the correctly predicted positive and neg-
ative classes respectively. Subsequently, False Positive (FP) and False Negative (FN) are 
the incorrectly predicted positive and negative classes (Han et al. 2012).

The evaluation metrics in Table 7 are expected to be used as complementary metrics to 
the primary and more specific financial metrics in Table 6. This is because the financial 
metrics can evaluate various investment strategies in the context of backtested data, which 
the ML metrics are not designed for. Section 4 demonstrates how these different evaluation 
metrics are combined across the works of literature that we reviewed (Table 7).

3.2.3 � Lessons learned

This section has reviewed different types of deep ANN architectures that are commonly 
used in the stock market literature considering DL. The ANN landscape in this context 
is vast and evolving. We have focused on summarizing these architectures on the basis of 
their recurrence across different areas of specialization within the stock market. Explicitly 
recalling the architectures used should assist explanations of their usage as we proceed to 
our findings in Sect. 4.

We have similarly detailed the expectations of modeling for the financial market and 
how these differ from the traditional ML approach, an important consideration for the rest 
of the survey. That is, although it is worthwhile applying methodologies and strategies 
across different areas of a discipline to advance scientific practice, we should endeavor to 
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also attend to established practice and the reasoning behind that practice. This includes 
also understanding the kinds of metrics that should be used. In conducting this survey, we 
identified several works that used only ML metrics, such as accuracy and F-score, as evalu-
ation metrics (Ntakaris et al. 2019; Lee and Yoo 2019; Kim and Kang 2019; Passalis et al. 
2019; Ganesh and Rakheja 2018). Although this might be ideal for complementary met-
rics, the performance of an algorithm or algorithmic strategy must ultimately be relevant 
to the study domain. By more deeply exploring intra-disciplinary research in the computer 
science field, we begin to understand the space we open up and the value we confer in the 
context of established processes.

By highlighting various considerations and relevant metrics, we trust that we have facil-
itated computer science research’s exploration of ideas using stock market data and indeed 
contributed to the research in the broader econometric space. The next section presents 
this survey’s culmination, discussing how the findings relate to the previously discussed 
background and attempting to answer the study’s research questions and demonstrating the 
criteria employed to shortlist the literature reviewed.

4 � Survey findings

4.1 � Research methodology

This research work set out to investigate applications of DL in the stock market context by 
answering three overarching research questions:

Question 1  What current research methods based on deep learning are used in the stock 
market context?

Question 2  Are the research methods consistent with real-world applications, i.e., have 
they been backtested?

Question 3  Is this research easily reproducible?

Although many research works have used stock market data with DL in some form, we 
quickly discovered that many are not easily applicable in practice due to how the research 
has been conducted. Although we retrieved over 10,000 works1, by not being directly 
applicable, most of the experiments are not formulated to provide insight for financial pur-
poses, with the most common formulation being as a traditional ML problem that assumes 
that it is sufficient to break the data into training and test sets.

Recall that we categorized learning techniques by data availability in Sect. 3.1.2. When 
the complete data are available to train the algorithm, it is defined as offline or batch learn-
ing. When that is not the case, and it is necessary to process the data in smaller, sequential 
phases, as in streaming scenarios or due to changes in data characteristics, we categorize 
the learning technique as online. Although ML applications in the stock market context 
are better classified as online learning problems, surprisingly, very few research papers 
approach the problem accordingly, instead mostly approaching it as an offline learning 
problem, a flawed approach (de Prado 2018).

1  Searched for “deep learning” AND “stock market” on Google Scholar
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2  Query results as of November 5, 2020

To apply this approach to financial ML research for the benefit of market practition-
ers, the provided insight must be consistent with established domain norms. One generally 
accepted approach to achieving this is backtesting the algorithm or strategy using histori-
cal data, preferably across different periods (Bergmeir and Benítez 2012; Institute 2020). 
Although Sect. 3.2.1 discussed backtesting, we should re-iterate that backtesting does not 
constitute a “silver bullet” or a method of evaluating results. However, it does assist evalua-
tion of the performance of an algorithm across different periods. Financial time-series data 
are not IID, meaning the data distribution differs across different independent sets. This 
also means that there is no expectation that results across a particular period will produce 
similar performances in different periods, no matter the quality of the presented result. 
Meanwhile, the relevant performance evaluation criteria are those that are financially spe-
cific, as discussed in Sect. 3.2.2. To this end, we ensured that the papers reviewed provide 
some indication of consideration of backtesting. An ordinary reference sufficed, even if the 
backtested results are not presented.

We used Google Scholar (Google 2020) as the search engine to find papers matching 
our research criteria. The ability to search across different publications and the sophisti-
cation of the query syntax  (Ahrefs 2020) was invaluable to this process. While we also 
conducted spot searches of different publications and websites to validate that nothing was 
missed by our chosen approach, the query results from Google Scholar proved sufficient, 
notably even identifying articles that were missing from the results of direct searches on 
publication websites. We used the following query to conduct our searches:

“deep learning” AND “stock market” AND (“backtest” OR “back test” OR “back-
test”)

This query searches for publications including the phrases “deep learning”, 
“stock market”, and any one of “backtest”, “back test” or “back-test”. 
We observed these three different spellings of “backtest” in different publications, sug-
gesting the importance of catching all of these alternatives. This produced 185 results2, 
which include several irrelevant papers. For validation, we searched using Semantic 
Scholar (Scholar 2020), obtaining approximately the same number of journal and confer-
ence publications. We chose to proceed with Google Scholar because Semantic Scholar 
does not feature such algebraic query syntax, requiring that we search for the different 
combinations of “backtest” individually with the rest of the search query.

The search query construct provided us with the starting point for answering research 
questions (1) and (2). Then, we evaluated the relevance to the research objective of the 
185 publications and considered how each study answered question (3). We objectively 
reviewed all query responses without forming an opinion on the rest of their experimental 
procedure with the rationale that addressing the basic concerns of a typical financial ana-
lyst represents a good starting point. Consequently, we identified only 35 papers as relevant 
to the research objective. Table 8 quantifies the papers reviewed by publication and year 
of publication. It is interesting to observe the non-linear change in the number of publica-
tions over the last 3 years as researchers have become more conscious of some of these 
considerations 
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4.2 � Summary of findings

Section  3.1.3 explained the different architectures of the deep ANN that are commonly 
used in stock market experiments. Based on the works reviewed, we can categorize the 
algorithms into the following specializations:

–	 Trade Strategy: Algorithmically generated methods or procedures for making buying 
and selling decisions in the stock market.

–	 Price Prediction: Forecasting the future value of a stock or financial asset in the stock 
market. It is commonly used as a trading strategy.

–	 Portfolio Management: Selecting and managing a group of financial assets for long 
term profit.

–	 Market Simulation: Generating market data under various simulation what-if market 
scenarios.

–	 Stock Selection: Selecting stocks in the stock market as part of a portfolio based on per-
ceived or analyzed future returns. It is commonly used as a trading or portfolio manage-
ment strategy.

–	 Risk Management: Evaluating the risks involved in trading, to maximize returns.
–	 Hedging Strategy: Mitigating the risk of investing in an asset by taking an opposite 

investment position in another asset.

Although a single specialization is usually the primary area of focus for a given paper, it 
is common to see at least one other specialization in some form. An example is testing a 
minor trade strategy in price prediction work or simulating market data for risk manage-
ment. Table 9 illustrates the distribution of the different DL architectures across different 
areas of specialization for the studies reviewed by this survey. Architectures such as LSTM 
and DRL are more commonly used because of their inherent temporal and state awareness. 
In particular, lstm is favorable due to its relevant characteristic of remembering states over 
a relatively long period, which price prediction and trade strategy applications, in particu-
lar, require. Novel use cases (e.g., (Wang et al. 2019b) combine LSTM and RL to perform 
remarkably well in terms of annualized returns. There are many such combinations in trade 
strategy and portfolio management, where state observability is of utmost importance.

Table 8   Quantifying papers 
by publication and year of 
publication

Publisher Count Year Count

IEEE 9 2018 6
arXiv 8 2019 10
SSRN 5 2020 19
Elsevier 3
ACM 2
MDPI 2
Springer 2
IOP Publishing 1
Wiley 1
IJCAI 1
Institutional Investor 

Journals
1
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Although FFNN is seldom used by itself, there are multiple instances of it being used 
alongside other approaches, such as CNN and RNN. Speaking of CNN, it is surpris-
ing how popular it is, considering it is more commonly used for image data. True to its 
nature, attempts have been made to train models using stock market chart images (Kusuma 
et al. 2019; Hu et al. 2018a). Given its ability to localize features, CNN is also used with 
high-frequency market data to identify local time series patterns and extract useful fea-
tures  (Chong et  al. 2017). Autoencoders and Restricted Boltzmann machine (RBM) are 
also used for feature extraction, with the output fed into another kind of deep neural net-
work architecture (Table 10).

We further examined the evaluation metrics used by the reviewed works. Recall that 
Sect.  3.2.2 presented the different financial and ML evaluation metrics observed by our 
review. As Table 11 shows, returns constitute the most commonly used comparison meas-
ure for obvious reasons, especially for trade strategy and price prediction; the most com-
mon objective is profit maximization. It is also common to see different derivations of 
returns across different time horizons, including daily, weekly, and annual returns (Wang 
et al. 2019c; Théate and Ernst 2020; Zhang et al. 2020a).

Although ML metrics such as accuracy and MSE are typically combined with financial 
metrics, it is expected that the primary focus remains financial metrics; hence, these are the 
most commonly observed.

Table 9   Quantifying the architectures and _elds considered by publications surveyed

Architecture Count

LSTM 17
CNN 12
DRL 11

FFNN 6
RNN 2

(a) DL architecture. 1-n
per publication

Specialization Count

Trade Strategy 15
Price Prediction 8

Market Simulation 3
Stock Selection 3
Risk Management 1
Hedging Strategy 1

(b) Area of specialization. 1 per
publication

0 4 8 12 16 20

Trade Strategy

Price Prediction

Stock Selection

Market Simulation

Risk Management

Portfolio Management

Hedging Strategy
RNN
FFNN
Encoder
DRL
CNN
LSTM

(c) distribution of architectures across

architectures per specialization
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The following observations can be made based on the quantified evaluation metrics pre-
sented in Table 11:

–	 Returns is the most common financial evaluation metric because it can more intuitively 
evaluate profitability.

–	 Maximum drawdown and Sharpe ratio are also common, especially for trade strategy 
and price prediction specialization.

–	 The Sortino and Calmar ratios are not as common, but they are useful, especially given 
the Sortino ratio improves upon the Sharp ratio, and the Calmar ratio adds metrics 
related to risk assessment. Furthermore, neither is computationally expensive.

–	 For completeness, some studies include ML evaluation metrics such as accuracy and 
precision; however, financial evaluation metrics remains the focus when backtesting.

–	 Mean square error is the more common error type used (i.e., more common than MAE 
or MAPE).

4.2.1 � Findings: trade strategy

A good understanding of the current and historical market state is expected before making 
buying and selling decisions. Therefore, it is understandable that DRL is particularly popu-
lar for trade strategy, especially in combination with LSTM. The feasibility of using DRL 
for stock market applications is addressed in Li et  al. (2020), which also articulates the 
credibility of using it for strategic decision-making. That paper compares implementations 
of three different DRL algorithms with the Adaboost ensemble-based algorithm, suggest-
ing that better performance is achieved by using Adaboost in a hybrid approach with DRL.

The authors of Wang et  al. (2019c) address challenges in quantitative financing 
related to balancing risks, the interrelationship between assets, and the interpretability of 

Table 11   Quantifying evaluation 
measures used in different 
specializations

TS trade strategy, PP price prediction, MS market simulation, SS stock 
selection, PM portfolio management, RM risk management, HS hedg-
ing strategy

TS PP MS SS PM RM HS

Returns 13 8 2 2 4 1 0
MDD 8 2 1 2 0 0 0
Sharpe ratio 7 3 1 1 3 0 0
Sortino ratio 3 0 0 0 0 0 0
Calmar ratio 3 0 0 0 0 0 0
Accuracy 3 1 0 2 0 0 0
Volatility 3 0 0 0 0 0 0
Recall 2 1 1 1 0 0 0
Precision 2 2 1 1 0 0 0
F-score 2 1 1 1 0 0 0
VaR threshold 0 0 0 0 0 1 0
MAE 1 1 0 0 0 0 0
MAPE 1 1 0 0 0 0 0
MSE 1 3 0 0 0 0 1
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strategies. They propose a DRL model called AlphaStock that uses LSTM for state man-
agement to address the issue. For the interrelationship amongst assets, (Vaswani et  al. 
2017) proposes a Cross-Asset Attention Network (caan) using an Attention Network. This 
research uses the buy-winners-and-sell-losers (BWSL) trading strategy and is optimized on 
the Sharpe ratio, evaluating performance according to profit and risk. The approach dem-
onstrates good performance for commutative wealth, performing over three times better 
than the market. Although there could be some questions regarding the way the training 
and test sets were divided, especially given cross-validation was not used, this work dem-
onstrates an excellent implementation of a DL architecture using stock market data.

Elsewhere, (Théate and Ernst 2020) maximizes the Sharpe ratio using a state-of-the-art 
DRL architecture called the Trading Deep Q-Network (TQDN) and also proposes a perfor-
mance assessment methodology. To differentiate from the Deep Q-Network (DQN), which 
uses a CNN algorithm as the base, the TQDN uses an FFNN along with certain hyperpa-
rameter changes. This is compared with common baseline strategies, such as buy-and-hold, 
sell-and-hold, trend with moving average, and reversion with moving average, producing 
the conclusion that there is some room for performance improvements. Meanwhile, (Zhang 
et al. 2020d) uses DRL as a trading strategy for futures contracts from the Continuously 
Linked Commodities (CLC) database for 2019. Fifty futures are investigated to understand 
how performance varies across different classes of commodities and equities. The model is 
trained specifically for the output trading position, with the objective function of maximiz-
ing wealth. While the literature also includes forex and other kinds of assets, we focused on 
stock/equities. Other DRL applications include (Chakole and Kurhekar 2020), which com-
bines DRL with FFNN, and (Wu et al. 2019), which combines DRL with LSTM.

Among non-DRL architectures, the most common we observed were CNN and LSTM. 
In Hu et al. (2018b), Candlestick charts are used as input for a CAE, primarily to capture 
non-linear stock dynamics, and long periods of historical data are represented as charts. 
The algorithm starts by clustering stocks by sector and selects top stocks based on returns 
within each cluster. This procedure outperforms the FTSE 100 index over 2,000 backtested 
trading days. It would be interesting to observe how this compares to using the numbers 
directly instead of using the chart representation.

Given Moving Average Convergence/Divergence (MACD) is known to perform worse 
than expected in a stable market (Lei et al. 2020), uses uses Residual Network (ResNet), 
a layer-skipping mechanism, to improve its effectiveness. The authors propose a strategy 
called MACD-KURT, which is based on ResNet as an algorithm and Kurtosis as a pre-
diction target. Meanwhile, (Chen et al. 2018b) uses a filterbank to generate 2D visualiza-
tions using historical time series data. Fed into CNN for pair trading strategy, this helps to 
improve accuracy and profitability. It is also common to observe LSTM-based strategies, 
either for converting futures into options  (Wu et al. 2020), in combination with Autoen-
coders for training market data (Koshiyama et al. 2020), or in more general trade strategy 
applications (Sun et al. 2019; Silva et al. 2020; Wang et al. 2020; Chalvatzis and Hristu-
Varsakelis 2020).

4.2.2 � Findings: price prediction

The Random Walk Hypothesis, popularized by Malkiel (1973), suggests that stock price 
changes in random ways, similar to a coin toss, precluding prediction. However, because 
price changes are influenced by factors other than historical price, numerous papers and 
practical applications combine all of these to attempt to obtain some insight into price 
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movement. Given the temporal nature of buying and selling, the price prediction speciali-
zation also requires some degree of historical context. For this reason, RNN and LSTM are, 
unsurprisingly, often relied on. However, what is surprising is the novel use of CNN for 
this purpose, either as an independent algorithm or in combination with RNN algorithms.

For example, (Wang et  al. 2019a) takes inspiration from RNN applications involving 
observing repeating patterns in speech and video, proposing Convolutional LSTM-based 
Variational Sequence-to-Sequence model with Attention (CLVSA) as a hybrid comprising 
RNN and convoluted RNN. The paper also introduces Kullback-Leibler divergence (KLD) 
to address overfitting in financial data. This work follows an optimal backtesting method 
involving training and testing in a sliding windows approach for 8 years. Specifically, from 
the start of the period, the model is trained on 3 years of data, evaluated on 1 week of data, 
and tested the following week. Then, the training regimen shifts forward by a week before 
being repeated until the end of the period. However, there is no indication of whether the 
model is updated (i.e., online learning) or a net-new model is introduced for each sliding 
window. The latter is suspected. Nonetheless, the experiment shows that the algorithm pro-
duces very high returns. Elsewhere, (Baek and Kim 2018) proposes an LSTM architecture 
called ModAugNet as a data augmentation approach designed to prevent overfitting of stock 
market data.

Although most algorithms use data from market trades, DeepLOB (Zhang et al. 2019) 
uses Limit Order Book (LOB) data with Google’s Inception Module CNN to infer local 
interaction and feed the output to an LSTM model. It uses a CNN filter to capture spatial 
structure in LOB and LSTM to capture time dependencies, achieving Accuracy/Precision/
Recall/F1 in the 60–70% range. The study also performs a minor simulation to test a mock 
trade strategy using the model’s prediction. It would be interesting to see results on returns 
based on a full trade strategy or portfolio management.

In another use of LSTM with other architectures (Zhao et al. 2018), incorporates fun-
damental and technical indicators to create a market attention model featuring a tempo-
ral component to learn a representation of the stock market. They propose MarketSegNet, 
a convolutional Autoencoder architecture that uses an image of numerical daily market 
activities to generate a generic market feature representation. The generated features are 
subsequently fed into an LSTM architecture to generate the prediction model. The results 
of such an approach compared with a model using actual numbers would be interesting 
to consider. Elsewhere, (Zhang et  al. 2020b) compares LSTM with two different LSTM 
hybrid architectures, one using Autoencoder and one using CNN. Although the hybrid ver-
sions demonstrate better performance on accuracy tests, one hybrid’s performance is only 
slightly better than non-hybridized LSTM in terms of Returns/Sharpe Ratio. Meanwhile, 
(Fang et al. 2019), combines a non-NN Regression model with LSTM, concluding that the 
hybrid is better than the plain LSTM in terms of accuracy but less stable when backtested.

In terms of non-LSTM architectures (Wang et al. 2018), uses a one-dimensional CNN 
for price prediction, with the results suggesting that the model can extract more general-
ized feature information than traditional algorithms. This claims to be the first applica-
tion of CNN on financial data, with the authors suggesting that their method achieves a 
significantly higher Sharpe ratio than Support Vector Machines (Support Vector Machines 
(SVM)), FFNN, and simple buy-and-hold. Furthermore, the work proposes a weighted 
F-score that assigns priority to the different errors based on how critical they are. It is 
suggested that the weighted F-score works better than the traditional F-score for financial 
data. Finally, (Zhang et al. 2020c) achieves a promising performance with a much simpler 
approach, using an Autoencoder algorithm for feature extraction alone.
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4.2.3 � Findings: portfolio management

Portfolio management represents another specialization area that relies heavily on DRL. In 
(Liang et al. 2018), three state-of-the-art gameplay and robotics DRL algorithms, namely, 
Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and 
Policy Gradient (PG), are implemented for portfolio management. The paper also proposes 
a new training method that improves efficiency and returns in the Chinese stock market. 
This approach does not produce favorable results, with the authors discovering that their 
model needs more data to work sufficiently in a bull market. Adjusting the objective func-
tion does not help to alleviate the risk, which is deemed too complex. However, it repre-
sents one of the earliest works to attempt to properly tackle the problem of conducting DL 
research using stock market data.

The authors of Park et al. (2020) also use DRL—specifically, Q-Learning—for optimal 
portfolio management across multiple assets. Departing from a formulated trading process, 
they use an MDP in which the action space, with respect to size, is the trading direction. 
They also use a mapping function to derive a reasonable trading strategy in the action space 
and simulate actions in the space, enabling them to obtain experience beyond the available 
data. For a baseline comparison, the authors use known strategies, such as buy-and-hold, 
random selection, momentum (buy improvement in previous or sales decrease in previous, 
based on priority), and reversion (opposite of momentum). Their experimentation outper-
forms baseline comparisons in terms of overall returns.

The authors of Guo et  al. (2018) propose the Robust Log-Optimal Strategy (RLOS) 
as part of an ensemble of pattern matching strategies comprising RLOS and DRL (i.e., 
RLOSRL) for portfolio management. This approach, based on the log optimal (logarithmi-
cally optimal rate of returns), approximates log function using Taylor expansion. It was 
compared with the naïve average and follows the winning strategies as a baseline. Both 
RLOS and RLOSRL perform better than all other approaches across multiple backtests 
with consistently impressive returns. Notably, the RLOSRL demonstrates superior perfor-
mance, potentially significantly due to the state-aware DRL architecture. To help under-
stand the environmental state, (Wang and Wang 2019) uses FFNN with ResNet to address 
overfitting problems associated with noisy financial data, applying the strategy to regime-
switching (statistical change in the data series) and concluding that ResNet performs better 
than a regular FFNN.

4.2.4 � Findings: market simulation

Historical data are very useful and commonly used to evaluate performance over different 
known states. However, this features the problem that it relies entirely upon history, and the 
state is fully known and encapsulated into past market and economic events, introducing 
complications when unknown states or future what-if scenarios must be tested to ensure a 
robust model performance in such circumstances. Consider, for example, that a SARS-like 
global pandemic had been predicted for several years before the COVID-19 outbreak of 
2020. It would have been useful to know how the market might react before the pandemic. 
In this context, market data simulation is invaluable.

The authors in Maeda et al. (2020) propose a market DRL framework to help improve 
the performance of DL algorithms using a combination of DRL and LSTM with simulated 
market data. By simulating the order books for limit, market, and cancel orders, they are 
able to maximize returns. This draws upon the premise that because past market actions 
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might not represent a good indicator for the future, it is better to use simulated data for 
backtesting purposes. Also, specific scenarios can be created using simulated data that 
does not correspond to past situations, enabling the generation of data for the forecasted 
circumstance. This combines market simulation with trade strategy specialization. For a 
baseline, it compares random market actions using the same simulated data, achieving con-
sistently impressive results.

A different approach is taken in Raman and Leidner (2019), which uses 6 weeks of 
real market data to generate simulated data. The authors use a DRL model to decide on a 
trading decision (sell, hold, or buy) for the simulated conditions, comparing the algorithm 
with other baseline strategies and comparing the simulated data with Monte Carlo simula-
tions. It would be interesting to see comparisons with substantially longer time frames. 
Elsewhere, (Buehler et al. 2020) introduces a financial time series market simulation that 
relies on a very small amount of training data, using the signature of historical path seg-
ments known as “rough paths” (Vaswani et al. 2017; Boedihardjo et al. 2016) in combina-
tion with an Autoencoder. Interestingly, the authors conclude that the data generated are 
not significantly better than the market data and are useful for test purposes but not for real 
applications.

4.2.5 � Findings: stock selection

The stock selection problem is at the core of most, if not all, stock market specializations. 
This represents a hard problem that some deem impossible to solve. According to Mal-
kiel (1973), a group of monkeys throwing darts at a financial page will perform equally as 
well as experts in the task of stock selection. Nonetheless, this has not stopped researchers 
exploring the problem. Although the research focus usually exceeds the singular action of 
selecting the stock, few studies really emphasize either this or the reasoning behind it.

The authors of Zhang et  al. (2020a) use a feature selection technique called Dou-
bleEnsemble to identify key features from stock market data. This involves training sub-
models [FFNN or gradient boosting ensembles  (Zhang et al. 2020a)] with weighted fea-
tures to alleviate overfitting problems and stabilize them to learn with noisy financial data. 
To prevent stability issues and incurring huge costs by retraining models after feature 
removal, as traditional approaches do, a shuffling-based feature selection method has been 
proposed. This means that different feature sets are trained across different sample sets, and 
loss is measured as indicated by the missing feature. The authors backtest by hedging on a 
position based on model prediction, with the results showing significantly improved returns 
and Sharpe ratio in the context of China’s A-share market. It would be interesting to see 
how this compares to traditional feature reduction methods, such as Principal Component 
Analysis [(Principal Component Analysis (PCA)], in terms of performance, compute cost, 
and returns.

More sophisticated architectures have also been used. For instance, (Yang et al. 2019) 
uses CNN and LSTMfor a stock trading strategy based on stock selection. Their proposal 
builds features directly from the Chinese market, and a purchase is made from the model’s 
prediction based on a projected profit of ≥ 0.14%. The models perform significantly better 
than the baseline of CSI300 in the Chinese market, which is impressive considering trans-
action fees are included. Interestingly, a CNN-based architecture outperforms an LSTM-
based architecture. This study features the drawback of not providing a comparison with a 
simple, baseline strategy, such as buy and hold.
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Rather than constructing features using market data alone (Amel-Zadeh et  al. 2020), 
bases its predictions entirely on existing financial statement data (from Compustat), com-
paring RNN and LSTM with non-DL algorithms, such as random forest and regression. 
These experiments achieve a mild, slightly-better-than-chance prediction rate of 53–59%, 
with the random forest model outperforming the DL algorithms in terms of returns. There 
is no evidence that lagged-time fundamentals are included as a factor in the feature engi-
neering procedure.

4.2.6 � Findings: risk management

Aiming to minimize risk to maximize returns, risk management represents an important 
specialization that must be incorporated into other strategies. However, our findings reveal 
that limited attention is focused on this specialization. Nonetheless, the recent market crash 
of 2020, caused primarily by the COVID-19 pandemic  (Wikipedia 2020a), is likely to 
renew interest in this line of research, with at least one study already motivated by these 
events.

That study, (Arimond et al. 2020), compares FFNN, temporal CNN, and LSTM algo-
rithms with the Hidden Markov Model (Hidden Markov Model (HMM)) to estimate the 
VaR threshold. A VaR breach is reached when portfolio returns fall below the threshold. 
The model is trained to estimate the probability of regime change, referred to as regime-
switching. This is commonly modeled as the change in market condition from a bull mar-
ket (trending up) to a bear market (trending down). By estimating the moment of the VaR 
breach, it is possible to mitigate the risk to the portfolio.

4.2.7 � Findings: hedging strategy

Similar to risk management, the hedging strategy specialization does not feature an exten-
sive work of literature that fits our survey of backtested DL research in the stock market 
context. The authors of Ruf and Wang (2020) propose HedgeNet for generating a hedging 
strategy using FFNN over one period. Rather than predicting an estimate for option price 
and using that as the hedging strategy, a hedging ratio is predicted directly from the FFNN, 
the main metric of interest. This aligns with a recommendation from Bengio (1997).

Considering hedging strategies rely on training pairs of an asset at opposite positions, 
it would be interesting to see applications of state-conscious algorithms, such as DRL or 
LSTM, applied in this context.

Table  12 presents the highlights of and problems with the studies reviewed, demon-
strating that while all represent impressive work in different capacities, many insufficiently 
discuss model explainability, and none focus on the long-term investment horizon. Also, 
while these works mostly combine market and fundamental data, it is still difficult to 
include alternative data, such as news texts or Twitter data, which can enrich the modeling 
process. This is largely due to the unavailability of such data, especially for long historical 
time windows. The next section elaborates on these challenges. As this area of research 
continues to mature, we hope that more attention is paid to these issues and that researcher 
interests can influence the industry at large to make most of the cost-prohibitive data forms 
available for research purposes.
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4.3 � Lessons learned

This section has focused on our research’s findings and methodology. While numerous 
studies have used stock market data for ML, readers will notice that very few works do the 
due diligence of backtesting as part of their experimentation. Of over 10,000 publications 
identified, only 35 papers meet this criterion. We have reviewed and summarized these 
contributions. These studies primarily focus on several specialization areas, and we have 
reviewed them on the basis of those specializations. Notably, the works considered were 
mostly published in the last 3 years and mostly based on market data from the US and 
China.

Upon analyzing the specific work items and methodologies in these papers, several sim-
ple patterns become obvious. For example, tasks depending heavily upon historical con-
text—i.e., trading strategy and price prediction—commonly employ stateful architectures, 
such as DRL and LSTM, as the primary architecture to approach past market activities. 
Interestingly, although various of these problems have been formulated as online learn-
ing problems, the literature has not substantially established that connection. One of this 
work’s objectives has been to identify this blind spot such that, as the computer science 
research community matures in this area, it will be possible to leverage established prac-
tices to further improve the state-of-the-art.

The next section itemizes some of the interesting challenges identified during this sur-
vey and suggests future directions that can improve the field.

5 � Challenges and future directions

Previous sections have discussed what it means to conduct backtested DL research in the 
stock market context and summarized current research pursuing such a direction. Although 
there has been increasing focus on this area in recent years, numerous research challenges 
clearly remain. This section summarizes these challenges and provides suggested research 
directions.

5.1 � Challenges

5.1.1 � Availability of historical market data

At the core of studies based on stock market analysis is the availability of consistently 
updated historical data. Unfortunately, such data is a premium product that is not readily 
available, especially at high levels of granularity (i.e., intraday and tick data). Paywalls 
often restrict access to such data, complicating its use for academic research, especially 
research without significant financial backing. Institutions such as Wharton Research Data 
Services (WRDS)  (Wachowicz 2020) collaborate with academic institutions to provide 
access to some of these kinds of data. However, the degree of access is determined by 
the subscription level, which depends on the importance ascribed by the subscribing insti-
tution. Nonetheless, the data remain widely inaccessible to a larger pool of institutions, 
making the only options either inconsistent publicly available market data or paying the 
premium.
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5.1.2 � Access to supplementary data

Closely related to the previous issue is access to related data types, which can be used to 
improve performance on modeling tasks involving financial data. Examples include fun-
damental data (e.g., quarterly reports) and alternative data (e.g., news articles and tweets 
about the company of interest). It is important to differentiate these kinds of data because 
sources usually differ from those responsible for market data. Notably, Twitter recently 
announced API access for research purposes (Tornes and Truijillo 2021), which could help 
with this issue. However, there are many other kinds of potential supplementary data, and 
there remains some work to reach a state where such data is readily available. For exam-
ple, it would be invaluable for news API services, such as webhose.io, to provide API 
access to supplementary news data for research purposes.

5.1.3 � Long term investment horizon

Several studies reviewed consider a relatively short investment horizon, from a few 
days to a few months. Given a significant amount of investments in the stock market are 
associated with portfolios that span decades, such as retirement funds, buying and hold-
ing growth investment is attractive. Growth investment expects above-average returns for 
young public companies, with the expectation of significant future growth. For example, 
Shopify (SHOP) IPO-ed at $17 in May-2015; as of Feb-2020, a share was worth ∼$530 , 
with the price ending the year at ∼$1100 . This suggests that it was a growth investment at 
the early stage; identifying that character early would have produced larger than average 
returns. Such patterns could be discovered by using supplementary data as discussed. By 
modeling similar historical growth investments as part of an investment strategy, it might 
be possible to identify newer investments that can produce handsome returns for long-term 
investments.

5.1.4 � Effect of capital gains tax

Several studies draw conclusions on strategy without considering trading costs or taxation. 
This is more pronounced for short-term investments, for which tax rates are high (10–37% 
in the US) compared to long-term investments (0–20%). Thus, to accurately represent 
returns, these costs must be considered; however, this is seldom done.

5.1.5 � Financial ML/DL framework

Many popular ML and DL frameworks, including scikit-learn (Pedregosa et al. 2011), Ten-
sorFlow (Abadi et al. 2016), Keras (Chollet et al. 2015), PyTorch (Paszke et al. 2019), have 
improved the state-of-the-art. These frameworks are commonly used in both academic 
research and industrial research for production-level use cases. Although these frameworks 
appeared frequently in the studies reviewed, implementations generally corresponded to 
the respective financial considerations, that is, we observed no real attempts to extend 
existing frameworks using improvements based on these specialized works.

Stock market ML problems involve incrementally learning using time-series data. 
Although this represents an online learning problem, the similarity remains to be fully 
appreciated. For example, ideas commonly used for concept drift in online learning 
research (Lu et al. 2020) appear perfectly suited to regime switch in quantitative analysis 
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research. Meanwhile, some ML frameworks that are dedicated to online learning research 
have the tools and consideration for concept drift and prequential evaluation built into their 
framework. These include scikit-multiflow (Montiel et al. 2018) and River (Montiel et al. 
2020).

The absence of such frameworks for financial ML means that individual research teams 
must implement their ideas without attempting to integrate them into an open-source 
framework. Section 3.2.1 discusses protocols for ML research that involve proving results 
via backtesting. Having an accessible framework focused on DL research using financial 
data would enable the promotion of such ideas and allow research in this area to more 
closely conform to established industry practice. It would also enable researchers to pro-
vide specific implementations to improve the state-of-the-art, avoiding the current siloed 
approach that precludes real effort at cohesion.

5.2 � Future directions

The challenges identified in the previous section lead to several ideas for future research in 
this area:

Applicability in practice This work’s focus has been on ensuring we attend to how pre-
vious works have been validated in practice. Industry applicability, trustworthiness, 
and usability (The Institute for Ethical AI & Machine Learning 2020; Gundersen et al. 
2018) should be our core guiding forces as we expand computer science learnings and 
research into domain-specific applications such as the financial market. One approach 
is ensuring that we adhere to guiding protocols, such as backtesting, when conducting 
research experiments in the financial market context  (Arnott et  al. 2018). This aligns 
with pertinent AI research topics such as reproducibility and explainability (i.e., XAI).
Improvements in trust Although significant attention has recently been focused on AI 
trustworthiness, there remains much work to be done. An important principle for build-
ing trust in AI is explicability, which entails creating explainable and accountable AI 
models (Thiebes et al. 2020). Ensuring that research is explicable further improves the 
chance of employing that research in real-world scenarios. Recall that Sect. 3.2.1 indi-
cated that feature importance could provide explainable insights from input features, 
which, in turn, endow trust. There remains substantial work to be done on this mat-
ter, as the summaries provided in Table  12 evidence, especially the limited attention 
given to explainability. Another important point of tension for generating trust in AI is 
reproducibility. Among other considerations, publications must be easy to validate by 
external researchers. Notably, (Thiebes et al. 2020) provides a checklist including rele-
vant statistical items and code and data availability. However, of the 35 papers reviewed, 
only seven (20%) provide the source code for their research. Ensuring that all published 
works include access to the source code and data would help increase trust, making 
industrial application more plausible.
Public availability of data One means of improving trust in AI research is the availabil-
ity of public data that researchers can use as a benchmark. Unfortunately, because this is 
relatively uncommon for financial market research, relevant fundamental (i.e., quarterly 
reports), alternative (i.e., news and social media), and granular/intraday market data are 
often behind paywalls. This means that even if most researchers were to publish their 
source code, they still might not be able to publish their data due to legal implications. 
While efforts made by corporate organizations such as Twitter is laudable (Tornes and 
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Truijillo 2021), there remains work to be done by the industry and researchers to make 
relevant research data available for this purpose. An ideal set would be historical mar-
ket data over a long period, with corresponding fundamental and alternative data sets. 
Although WRDS  (Wachowicz 2020) is a good source of such for research purposes, 
research institutions must choose to subscribe and will provide varying levels of access 
based on financial commitment.
Focus on long-horizon More emphasis should be made to apply DL market strategies to 
long-horizon investments targeted at growth investing. As previously mentioned, signif-
icantly more gains can be expected in the long-term investment horizon (i.e., > a year) 
by focusing on potential unicorns in their early stage. The consideration that one com-
mon investment portfolio type is retirement funds, which feature a relatively long time 
span, makes a compelling case for considering modeling techniques focused on long-
term returns. However, a potential drawback is that this complicates evaluating annual-
ized metrics, especially for longer-term objectives. A hybrid approach might be to mix a 
short-term strategy with a vision for the long term. Additionally, employing alternative 
data, such as news articles, about not only the company of interest but also competitors 
can enable longer-term horizons to be better forecast. Additionally, tracking either or 
both geopolitical and environmental events and their potential impacts to “learn from 
the past” represents an interesting future study direction.
Financial DL frameworks Significant work has been done to apply ML to stock market 
research. However, unified frameworks remain uncommon, especially in DL research. 
Thus, a useful step would be to develop a financial DL toolbox for online learning using 
non-stationary financial data that are inherently volatile  (Pesaranghader et  al. 2016). 
Section  3.2.1 discussed the peculiarities of learning from non-stationary time-series 
data pertaining to the stock market. A unified financial DL toolbox improved by differ-
ent research would help to foster innovation based on newer ideas.

6 � Conclusion

As DL becomes more common in financial research, it is apparent that attention is increas-
ingly focused on ensuring that the research process conforms to procedures established 
in the financial domain. A recent example of this is the renewed attention on backtesting 
algorithms using historical data and domain-specific evaluation metrics. As neural proces-
sors become ubiquitous, traditionally compute-intensive algorithms become more attrac-
tive for online learning. Consequently, we expect to see DL increasingly applied to solving 
research problems using stock market data.

This survey involved reviewing backtested applications of DL in the stock market. The 
backtesting requirement indicates that the research has demonstrated some degree of due 
diligence, enabling consideration for real-world use. After demonstrating the nature of 
stock market data and common representations of these data, before and after some pre-
processing for ML purposes to understanding the nuances of this type of data, we summa-
rized DL architectures, focusing on those used in the literature reviewed. This enabled the 
quick establishment of points of reference for discussion of the architectures in the context 
of those studies.

While numerous studies have explored stock market applications of DL, we focused on 
those that demonstrate evidence of research methodology consistent with the domain and 
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thus more likely to be considered by industry practitioners (Paleyes et al. 2020; The Insti-
tute for Ethical AI & Machine Learning 2020; Gundersen et al. 2018). In following this 
approach, it was hoped that this survey might serve as a basis for future research answering 
similar questions. To that end, we concluded the survey by identifying open challenges and 
suggesting future research directions. Our future work will aim to assist in addressing such 
challenges, especially through explorations of supplementary data and developing novel 
explainable financial DL frameworks.

Appendix 1—Acronyms

AI Artificial intelligence
ANN Artificial neural networks
API Application Programming Interface
CAE Convoluted autoencoder
CAGR​ Compound annual growth rate
CBOE Chicago Board Options Exchange
CNN Convolutional neural network
DBN Deep belief networks
DL Deep learning
DQN Deep Q-Network
DRL Deep reinforcement learning
EAIML Ethical AI & machine learning
FFNN Feed-forward neural networks
FIX Financial information exchange
GRU​ Gated recurrent unit
GTP GPRS tunnelling protocol
HMM Hidden markov model
IID Independent and identically distributed
KLD Kullback-Leibler divergence
LOB Limit order book
LSTM Long short-term memory
MACD Moving average convergence/divergence
MAE Mean absolute error
MAPE Mean absolute percentage error
MDD Maximum drawdown
MDP Markov decision process
ML Machine learning
MSE Mean square error
NLP Natural language processing
OHLC Open-high-low-close
PCA Principal Component Analysis
PReLU Parametric ReLU
RBM Restricted Boltzmann machine
RL Reinforcement learning
RNN Recurrent neural network
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ReLU Rectified linear unit
ResNet Residual network
RoR Rate of returns
SVM Support vector machines
TQDN Trading deep Q-network
VIX Volatility index
VWAP Volume-weighted average price
VaR Value-at-risk
WRDS Wharton research data services
XAI Explainable AI
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