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Abstract
In recent years some researchers have explored the use of reinforcement learning (RL) 
algorithms as key components in the solution of various natural language processing 
(NLP) tasks. For instance, some of these algorithms leveraging deep neural learning have 
found their way into conversational systems. This paper reviews the state of the art of RL 
methods for their possible use for different problems of NLP, focusing primarily on conver-
sational systems, mainly due to their growing relevance. We provide detailed descriptions 
of the problems as well as discussions of why RL is well-suited to solve them. Also, we 
analyze the advantages and limitations of these methods. Finally, we elaborate on promis-
ing research directions in NLP that might benefit from RL.

Keywords Reinforcement learning · Natural language processing · Conversational 
systems · Parsing · Translation · Text generation

1 Introduction

Machine learning algorithms have been very successful to solve problems in the natural 
language processing (NLP) domain for many years, especially supervised and unsuper-
vised methods. However, this is not the case with reinforcement learning (RL), which is 
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somewhat surprising since in other domains, RL methods have experienced an increased 
level of success with some impressive results, for instance in board games such as AlphaGo 
Zero (Silver et al. 2017). Yet, deep RL (DRL) for natural language processing is still in its 
infancy when compared to supervised learning (LeCun et al. 2015). Thus, the main goal of 
this article is to provide a review of applications of reinforcement learning to NLP. Moreo-
ver, we present an analysis of the underlying structure of the problems that make them 
viable to be treated entirely or partially as RL problems, intended as an aid to newcomers 
to the field. We also analyze some existing research gaps and provide a list of promising 
research directions in which natural language systems might benefit from RL algorithms.

1.1  Reinforcement learning

RL is a term commonly used to refer to a family of algorithms designed to solve problems 
in which a sequence of decisions is needed. RL has also been defined more as a kind of 
learning problem than as a group of algorithms used to solve such problems (Sutton and 
Barto 2018). It is important to mention that RL is a very different kind of learning than the 
ones studied in supervised and unsupervised methods. This kind of learning requires the 
learning system, also known as agent, to discover by itself through the interaction with its 
environment, which sequence of actions is the best to accomplish its goal.

There are three major groups of reinforcement methods, namely, dynamic program-
ming, Monte Carlo methods, and temporal difference methods. Dynamic programming 
methods estimate state or state–action values by making estimates from other estimates. 
This iteratively intertwines policy evaluation and policy improvement updates taking 
advantage of a model of the environment which is used to calculate rewards. Policy evalu-
ation consists of updating the current version of the value function based on the current 
policy. Policy improvement consists of greedifying the policy function based on the cur-
rent value function. Depending on the algorithm and its implementation it might require 
exhaustive sweeping of the entire state space or not. Monte Carlo methods learn from com-
plete sample returns, instead of immediate rewards. Unlike dynamic programming, Monte 
Carlo methods only consider one transition path at a time, the path generated with a sam-
ple. In other words, they do not bootstrap from successor states’ values. Therefore, these 
kinds of methods are more useful when we do not have a model of the environment, the 
so-called dynamics of the environment. Temporal difference methods do not need a model 
of the environment since they can learn from experience, which can be generated from 
interactions with the environment. These methods possess the best of dynamic program-
ming and the best of Monte Carlo. From dynamic programming they inherit the bootstrap-
ping, from Monte Carlo methods they inherit the sampling. As a result of this combina-
tion of characteristics, temporal difference methods have been the most widely used. All 
these methods pose the decision-making problem as a Markov decision process (MDP). An 
MDP is a mathematical method used to solve decision-making in sequence and considers 
as the minimum existing elements a set of states S, a set of actions A, a transition function 
T, and a reward function R. Given an MDP (S, A, T, R), we need to find an optimal policy 
function � , which represents the solution of our sequence decision problem. The aim of 
a RL system, or so-called agent, is to maximize some cumulative reward r ∈ R through a 
sequence of actions. Each pair of state s and action a creates a transition tuple (s, a, r, s�) , 
with s′ being the resulting state. Depending on the algorithm being used and on the particu-
lar settings of our problem, the policy � will be estimated differently.
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A policy � defines the behavior of the agent at any given moment. In other words, a policy 
is a mapping from the set of states S perceived from the environment to a set of actions A that 
should be executed in those states. In some cases, the policy can be stored as a lookup table, 
and in other cases it is stored as a function approximator, such as a neural network. The lat-
ter is imperative when we have a large number of states. The policy is the most important 
mathematical function learned by the reinforcement learning agent, in the sense that it is all 
the agent needs to control its behavior once the learning process has concluded. In general, a 
policy can be stochastic and we formally define it as � ∶ S → A.

The goal in a RL problem is specified by the reward function R. This function maps each 
state or pair of state-action perceived in the environment to one real number r ∈ ℜ called 
reward. This reward indicates how good or bad a given state is. As we mentioned before, the 
goal of an agent is to maximize the total amount of rewards that it gets in the long run, during 
its interaction with the environment. The reward function cannot be modified by the agent, 
however, it can serve as a basis for modifying the policy function. For example, if the action 
selected by the current policy is followed by a low reward, then the policy can be updated in 
such a way that in the future it indicates a different action when the agent encounters the same 
situation. In general, the reward function can also be a stochastic function and it is formally 
defined as R ∶ S → ℜ , or R ∶ S × A → ℜ.

A value function indicates which actions are good in the long run. The value of a state is 
basically an estimation of the total amount of rewards that the agent can expect to accumulate 
in the future, if it starts its path from that state using its current policy. We should not confuse 
the value function with the reward function. The rewards are given directly by the environ-
ment while the values of the states are estimated by the agent, from its interaction with the 
environment. Many RL methods estimate the policy function from the value function. When 
the value function is a mapping from states to real numbers, it is denoted by the letter V. When 
the mapping is from pairs of state-action to real numbers, it is denoted by Q. Formally, we can 
define the value function as V ∶ S → ℜ or Q ∶ S × A → ℜ.

In the case of model-based RL, the agent also has access to a model of the transition func-
tion T of the environment, which may be learnt from experience. For example, given a state 
and an action, the model could predict the next resulting state and reward. Such world models 
are used for planning, this is, a way to make decisions about the next actions to be performed, 
without the need to experience possible situations. In the case of model-free RL, when a 
model of the environment is missing, we have to solve the RL problem without planning and 
that means that a significant amount of experimentation with the environment will be needed.

One of the most popular RL algorithms is the Q-learning algorithm (Watkins 1989). As 
its name suggests, it works by estimating a state-action value function Q. The algorithm 
does not rely on a model of the transition function T, and therefore it has to interact with 
the environment iteratively. It follows one policy function for exploring the environment 
and a second greedy policy for updating its estimations of the values of pairs of states and 
actions that it happens to visit during the learning process. This kind of learning is called 
off-policy learning. The algorithm uses the following rule for updating the Q values:

In this learning rule, � is a parameter defined experimentally and it is known as the learn-
ing rate. It takes values in the interval (0, 1). Moreover, r is the reward signal, � is known 
as the discount parameter and it also takes values in the interval (0, 1), and finally s′ and a′ 

Q(s, a) ← Q(s, a) + �

[

r + � max
a�

Q(s�, a�) − Q(s, a)

]

.



1546 V. Uc-Cetina et al.

1 3

denote the next state and the next action to be visited and executed during the next interac-
tion with the environment.

SARSA is an on-policy learning algorithm, meaning that instead of using two policies, 
one for behavior and one for learning, this algorithm uses only one policy. The same policy 
that is used to explore the environment is the same policy used in the update rule (Sutton 
and Barto 2018). The update rule of the SARSA is the following:

A very important result in recent years was the development of the deep Q-network (DQN, 
Mnih et  al. 2015), in which a convolutional neural network is trained with a variant of 
Q-learning. This algorithm, originally designed to learn to play several Atari 2600 games 
at a superhuman level, is now being applied to other learning tasks. Another algorithm, 
AlphaGo Zero (Silver et  al. 2016), learned to play Go and actually defeated the human 
world champion in 2016. This algorithm uses a deep neural network, a search algorithm 
and RL rules. The successor model MuZero (Schrittwieser et al. 2020) learns a representa-
tion of state, a dynamics and a reward prediction function to maximize future rewards via 
tree search-based planning, achieving more successful game play without prior knowledge 
of the game rules.

DRL is an extension of the classical RL methods to leverage the representational power 
of deep models. More specifically, deep neural networks allow RL algorithms to approxi-
mate and store highly complex value functions, state-action functions, or policy functions. 
For instance, a Q(s, a) function can be represented as a convolutional neural network or a 
recurrent one. Similarly to what happened in other domains such as computer vision, deep 
models are also playing a decisive role in the advancement of RL research, especially in 
MDPs with very large state and action spaces. In fact, reinforcement learning and deep 
neural networks have stayed recently at the center of attention of many researchers who 
have studied and applied them to solve different problems, including problems in NLP, as 
we will discuss below.

1.2  Natural language processing and RL

In NLP, one of the main goals is the development of computer programs capable of com-
municating with humans through the use of natural language. In some applications, such 
as machine translation (MT), these programs are used to help humans who speak different 
languages to understand each other by translating from one natural language to another. 
Through the years, NLP research has gone from being heavily influenced by theories of 
linguistics, such as those proposed by Chomsky (1959, 1965), to the corpus linguistics 
approach of machine learning algorithms and more recently the use of deep neural net-
works as neural language models such as BERT (Devlin et al. 2019) and GPT-3 (Brown 
et al. 2020).

According to Russell and Norvig (2010), to the contrary of formal languages, it is more 
fruitful to define natural language models as probability distributions over sentences rather 
than using definitive sets specified by grammars. The main challenges when dealing with 
natural languages are that they are ambiguous, large and constantly changing. That is why 
initial approaches to model natural languages using grammars were not as successful as 
modern machine learning approaches. In the former approaches, the grammars needed to 
be adapted and their size increased to fulfil the demands for better performance.

Q(s, a) ← Q(s, a) + �[r + �Q(s�, a�) − Q(s, a)].
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One important probabilistic approach to modelling natural languages involves the use 
of n-grams. A sequence of written symbols of length n is called an n-gram. A model of 
the probability distribution of strings containing n symbols is therefore called an n-gram 
model. This model is defined as a Markov chain of order n − 1 in which the probability of 
some symbol si depends only on the immediately preceding n − 1 symbols. Formally, we 
say p(si|si−1, si−2,… , s2, s1) = p(si|si−1,… , si−n+1) . Probabilistic natural language models 
based on n-grams can be useful for text classification tasks (Russell and Norvig 2010).

Important advances in the design of algorithms for training deep neural networks, such 
as the recurrent long short-term memory (LSTM) network (Hochreiter and Schmidhuber 
1997), have allowed researchers to move from probabilistic language models to language 
models based on neural networks. The LSTM neural model has been successfully applied 
to MT. The performance of current translator programs could not be accomplished using 
the approach based on language grammars alone. These new neural models are highly 
complex mathematical functions with thousands of parameters which are estimated itera-
tively from a massive number of training examples gathered from the Internet.

Some problems in NLP can be defined as MDPs and therefore they can be solved using 
RL algorithms. In Fig. 1, we provide a schematic example of how a RL agent would be 
designed to solve a language processing task in which states, actions and rewards operate 
mainly over strings. A set of basic operations may include appending, replacing and delet-
ing words.

In this article, we review five main categories of such problems, namely, syntactic pars-
ing, language understanding, text generation systems, MT, and conversational systems. Of 
these, conversational systems are the most studied ones, which involve finding an optimal 
dialog policy that should be followed by an automated system during a conversation with 
a human user. The other four categories are not widely known applications of reinforce-
ment learning methods and therefore it is interesting to discuss their main benefits and 
drawbacks. In some of them, it is even not easy to identify the elements of a well-defined 
MDP. This might explain why they have not received more attention yet. Identifying these 
different NLP problems is important to discover new research lines at the intersection of 
NLP and RL.

Fig. 1  Schematic view of a reinforcement learning agent designed for language processing. The language 
model agent acts by appending, replacing or deleting strings of words. States are strings of words. The 
language processing environment will provide the agent with the states and rewards after each of the inter-
actions. The reward function is determined by the specific natural language processing task. One simple 
possibility for a reward function would reinforce every optimal action with a +1
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In the next sections, we describe with more detail these five categories of NLP problems 
and their proposed solutions by means of RL. We also discuss the main achievements and 
core challenges on each of these categories.

2  Syntactic parsing

Syntactic parsing consists of analyzing a string made of symbols belonging to some alphabet, 
either in natural languages or in programming languages. Such analysis is often performed 
according to a set of rules called grammar. There could be many ways to perform parsing, 
depending on the final goal of the system (Zhang and Chan 2009; Jiang et al. 2012; Neu and 
Szepesvári 2009; Lê and Fokkens 2017). One of such goals could be the construction of a 
compiler for a new programming language when we are working with formal computer lan-
guages. Another one could be an application of language understanding for human-computer 
interaction.

A grammar can generate many parsing trees and each of these trees specifies the valid 
structure for sentences of the corresponding language. Since parsing can be represented as 
a sequential search problem with a parse tree as the final goal state, reinforcement learning 
methods are tools very well suited for the underlying sequential decision problem. In general, 
a parse is obtained as a path when an optimal policy is used, in a given MDP.

Consider for example the simple context-free grammar G1 and the language L(G1) gener-
ated by it. G1 is a 4-tuple (V ,Σ,R, S) where

– V = {A,B} is a finite set of variables,
– Σ = {0, 1, #} is a finite set, disjoint of V, containing terminal symbols,
– R is the finite set of four production rules given in Fig. 2, and
– S ∈ V is the initial variable.

The language L(G1) generated by grammar G1 is an infinite set of strings. Each of these 
strings is created by starting with the initial variable S and iteratively selecting and applying 
one of the production rules in G1 , also called substitution rules. For example, the string 0#1 is 
a valid string belonging to L(G1) and it can be generated by applying the following sequence 
of production rules S → 0A1 , A → B and B → # . Looking at this application of rules as a path 
of string substitutions, we have S ⇒ 0A1 ⇒ 0B1 ⇒ 0#1 . A path of substitutions, known also 
as derivation, can be represented pictorially as a parse tree. For example, the parse tree for the 
derivation of the string 00#11 is illustrated in Fig. 3.

From the previous grammar example G1 we can notice the similarity between the ele-
ments defined in a context-free grammar G = {V ,Σ,P, S} and the elements defined in a MDP 
M = {S,A,T ,R} . Let us now analyze this similarity, element by element, from the point of 
view of an MDP.

– The starting state s of an MDP M can be defined as the initial variable of a grammar, 
denoted by letter S in grammar G.

Fig. 2  Grammar G
1
 with four 

production rules
S → 0A1

A → 0A1 | B
B → #
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– The set of states S in the MDP M can be defined as the set of strings generated by the 
grammar, in other words, the language generated by grammar G, this is S = L(G).

– The set of actions A can be defined as the set of production rules given by grammar G, 
this is A = R ; the MDP transition function T would be immediately defined once we have 
defined the set of production rules itself.

– The reward function R is the only element that cannot be taken straightforward from the 
elements of the grammar and it should be crafted by the designer of the system.

In the specific application of dependency parsing (Kübler et al. 2008), it has been shown 
that a parser can be implemented to use a policy learned by RL, in order to select the 
optimal transition in each parsing stage (Zhang and Chan 2009). Given a sentence with 
n words x = w1w2 …wn , we can construct its dependency tree by selecting a sequence 
of transitions. A stack data structure is used to store partially processed words and also 
a queue data structure is used to record the remaining input words together with the par-
tially labeled dependency structure constructed by the previous transitions. The construc-
tion of the dependency tree is started with an empty stack and the input words being fed 
into the queue. The algorithm performs four different types of transitions until the queue 
is empty. These four transitions are: reduce, which takes one word from the stack; shift, 
which pushes the next input word into the stack; left-arc, which adds a labeled dependency 
arc from the next input word to the top of the stack and then takes the word from the top of 
the stack; and finally right-arc, which adds a dependency arc from the top of the stack to 
the next input word and pushes that same word into the stack. During the construction of 
the parsing tree each one of the transitions is selected using a reward signal. In this particu-
lar implementation the optimal policy for selecting the transitions is estimated using the 
SARSA RL algorithm.

An interesting modification found in the implementation of this algorithm is the replace-
ment of the Q function by an approximation computed through the calculation of the 
negative free energies of a restricted Boltzmann machine. The results of this approach for 
dependency parsing using RL are comparable with state-of-the-art methods. More recently, 
it has been shown that RL can also be used to reduce error propagation in greedy depend-
ency parsing (Lê and Fokkens 2017). In another approach, Neu and Szepesvári (2009) used 
a number of inverse RL (IRL) algorithms to solve the parsing problem with probabilistic 
context-free grammars. In IRL, given a set of trajectories in the environment, the goal is to 
find a reward function such that if it is used for estimating the optimal policy, the resulting 
policy can generate trajectories very similar to the original ones (Ng and Russell 2000).

Another dual learning approach for solving the semantic parsing problem is presented 
by Cao et al. (2019). This dual learning algorithm follows the same strategy used by Zhu 
et  al. (2020), consisting of an adversarial training scheme that can use both labeled and 

Fig. 3  Parse tree of string 00#11 
generated from grammar G

1



1550 V. Uc-Cetina et al.

1 3

unlabeled data. The primary task (semantic parsing) learns the transformation from a query 
to logical form (Q2LF). The secondary task (natural language generation) learns the trans-
formation from a logical form to a query (LF2Q). The agent from the primary task can 
teach the agent from the secondary task and vice versa in a RL fashion. A validity reward 
by checking the output of the primary model at the surface and at semantic levels is used. 
This reward function requires prior knowledge of the logical forms of the domain of inter-
est, and it is used to check for completeness and well-formed semantic representations. The 
experimental results showed that semantic parsing based on dual learning improves perfor-
mance across datasets.

In a probabilistic context-free grammar, each production rule has a probability assigned 
to it, which results in the generation of expert trajectories. Speeding up the learning of 
parse trees using RL has also been studied, specifically the use of apprenticeship RL as a 
variation of IRL has been shown to be an effective method for learning a fast and accurate 
parser, requiring only a simple set of features (Jiang et al. 2012). By abstracting the core 
problem in syntactic parsing, we can clearly see that it can be posed as an optimization 
problem in which the input is a language grammar G and one input string w1 to be parsed, 
and the output is a parse tree that allows the correct parsing of w1 . This problem gives rise 
to the following MDP (S, A, T, R) (Lê and Fokkens 2017):

– The set of states S is defined as the set of all possible partial or complete parse trees that 
can be generated with the given grammar G and the string w1.

– The set of actions A is formed with all the grammar rules contained in G, this is, the 
application of each derivation rule of the grammar is considered to be an action.

– The transition function T can be completely determined and it is deterministic, because 
given a selected grammar rule and the current partially parsed string, we can know with 
certainty the next resulting intermediate parse tree of that string.

– Finally, the reward function R can be defined as a function of the number of arcs that 
are correctly labeled in the resulting parse tree.

Based on this MDP we can formulate a RL system as illustrated in Fig. 4.

Fig. 4  Schematic view of a reinforcement learning agent designed for syntactic parsing. The language pro-
cessing environment will provide the agent with the states and rewards after each of the interactions. The 
reward function can be defined in various ways, for example, a positive reward of 10 may be provided each 
time an appropriate grammar rule is applied
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3  Language understanding

Language understanding can also be posed as a MDP and therefore we can apply sophis-
ticated reinforcement learning algorithms designed in recent years. Furthermore, we can 
implement them together with deep neural networks to cope with the massive amount of 
data that text understanding applications typically require.

Consider a problem of natural language understanding (NLU). In such a problem we 
could have a grammar like the one given in Fig. 5 that allows a program to automatically 
determine the elements of a sentence written in English. Using this grammar, sentences 
such as “The customer with a discount wants a refund” and “The customer with a discount 
cancelled the refund” can be analyzed by an automated system to determine the intention 
of the customer, which in this case is whether she wants a refund or she wants to cancel 
a refund she had previously requested. Therefore, a grammar can be used to detect users’ 
intentions while reinforcement learning can be used to select the optimal sequence of sub-
stitutions during the parsing process of the input sentences. Once the parser program has 
been used to determine the grammatical role of each word in the input text string, the result 
can be stored in a vector-type structure such as [who = user02, intention = “wants”, con-
tent = “discount”]. This vector-type representation of variables who, intention and con-
tent, can be used for another program to determine the most appropriate action to be per-
formed next. For example, informing about a discount to a customer. Figure 6 outlines the 
procedure.

Fig. 5  Grammar defining valid 
sentences in English, grammar 
adapted from Sipser (2013)

〈SENTENCE〉 → 〈NOUN PHRASE〉〈VERB PHRASE〉
〈NOUN PHRASE〉 → 〈CMPLX NOUN〉 | 〈CMPLX NOUN〉〈PREP PHRASE〉
〈VERB PHRASE〉 → 〈CMPLX VERB〉 | 〈CMPLX VERB〉〈PREP PHRASE〉
〈PREP PHRASE〉 → 〈PREP〉〈CMPLX NOUN〉
〈CMPLX NOUN〉 → 〈ARTICLE〉〈NOUN〉
〈CMPLX VERB〉 → 〈VERB〉 | 〈VERB〉〈NOUN PHRASE〉
〈ARTICLE〉 → a | the
〈NOUN〉 → customer | discount | refund
〈VERB〉 → wants | requests | cancelled
〈PREP〉 → with

Fig. 6  Schematic view of a reinforcement learning agent designed for text understanding, as an example 
application. The language model agent acts by assigning values to a vector or list of variables, as a function 
of the utterance of a user. The current user user02 is computed from the user’s utterance. The next state 
is the string generated from the vector of variables as understood by the agent, for example, using a text 
generator agent (see Fig. 7). The language processing environment will provide the agent with the states 
and rewards after each of the interactions. The environment and the reward function are determined by the 
language understanding task being solved, i.e., an infobot
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Ambiguities are an important problem in language understanding. For example, the sen-
tence “the child observes the cat in the tree” may have two interpretations, whether the 
child is in the tree or the cat is in the tree. This kind of ambiguity in the language is hard 
to solve even by humans. Sometimes it can be solved by using context or common sense. 
From the point of view of RL, there is no obvious way to solve it either. One approach 
to this problem would be to leverage the powerful text embedding vectors generated by 
sophisticated language models such as GPT together with a function that rewards mak-
ing corrections as learning interactions go on, taking advantage of the context. GPT-based 
models are very good at keeping contextual information. A reward function could provide 
a larger reward when the interpretation of the intent is more highly evaluated by a context 
metric provided by the language model.

Language understanding programs approached by RL have to deal with systems that 
automatically interpret text or voice in the context of a complex control application, and 
use the knowledge extracted to improve control performance. Usually, the text analysis and 
the learning of the control strategy are carried out both at the same time. For example, 
Vogel and Jurafsky (2010) implement a system capable to learn to execute navigational 
instructions expressed in a natural language. The learning process is carried out using an 
apprenticeship approach, through pairs of paths in a map and their corresponding descrip-
tions in English. The challenge here is to discover which commands match English instruc-
tions for navigation. The correspondence is learned applying RL and using the deviation 
between the given desired path and the route being followed for the reward signal. This 
work demonstrates that the semantic meaning of spatial terms can be grounded into geo-
metric properties of the paths. In a similar approach to language grounding (Branavan et al. 
2012) the system learns to interpret text in the context of a complex control application. 
Using this approach, text analysis and control strategies are learned jointly using a neural 
network and a Monte Carlo search algorithm. The approach is tested on a video game, 
using its official manual as a text guide.

DRL has also been used to automatically play text games (He et  al. 2016), showing 
that it is possible to extract meaning rather than simply memorizing strings of texts. This 
is also the case of the work presented by Guo et al. (2017), where an LSTM and a DQN 
are employed to solve the sequence-to-sequence problem. This approach is tested with 

Fig. 7  Schematic view of a reinforcement learning agent designed for language generation, as an example 
application. The language model agent acts by selecting words from a relevant set of words, which is a 
function of the current state. The current state is a—possibly incomplete—sentence in English. The next 
state is the sentence resulting from appending the word selected by the agent. The language processing 
environment will provide the agent with the states and rewards after each of the interactions. Actions might 
take the form of strings of characters such as n-grams, words, sentences, paragraphs or even full documents. 
The environment and the reward function are determined by the language processing task being solved, i.e., 
text generation
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the problem of rephrasing a natural language sentence. The encoding is performed using 
the LSTM and the decoding is learned by the DQN. The LSTM initially suggests a list of 
words which are taken by the DQN to learn an improved rephrasing of the input sentences.

Zhu et al. (2020) presented a semi-supervised approach to tackle the dual task of intent 
detection and slot filling in NLU. The suggested architecture consists of a dual pseudo-
labeling method and a dual learning algorithm. They apply the dual learning method by 
jointly training the NLU and semantic-to-sentence generation (SSG) models, using one 
agent for each model. As the feedback rewards are non-differentiable, a RL algorithm based 
on policy gradient is applied for optimization. The two agents collaborate in two closed 
loops. The NLU2SSG loop starts from a sentence, first generating a possible semantic form 
by the NLU agent and then reconstructing the original sentence by SSG. The SSG2NLU 
loop goes in reverse order. Both the NLU and SSG models are pre-trained on labeled data. 
The corresponding validity rewards for the NLU and SSG evaluate whether the semantic 
forms are valid. The approach was evaluated on two public datasets, i.e., ATIS and SNIPS, 
achieving state-of-the-art performance. The proposed framework is agnostic of the back-
bone model of the NLU task.

Text understanding is one of the most recent natural language problems approached 
using RL, specifically by DRL. This approach consists of mapping text descriptions into 
vector representations. The main goal is to capture the semantics of the texts. Therefore, 
learning good representations is key. In this context, it has been argued that LSTMs are 
better than bag-of-words (BOW) when combined with RL algorithms. The reason is that 
LSTMs are more robust to small variations of word usage, and they can learn some under-
lying semantics of the sentences (Narasimhan et al. 2015).

As we have seen above, the main applications of reinforcement learning in the con-
text of language understanding have been focused on the learning of navigational direc-
tions. RL or IRL recommend themselves over supervised learning due to the good match 
between sequential decision making and parsing. However, it is not difficult to think of 
other similar applications that could take advantage of this approach. For example, if we 
can manage to design a system capable to understand text to some degree of accuracy, such 
a system could be used to implement intelligent tutors, smart enough to understand the 
questions posed by the user and select the most appropriate learning resource, whether it is 
some text, audio, video, hyperlink, etc.

Interestingly, the successful results recently obtained with the combination of deep neu-
ral networks and RL algorithms open another dimension of research that appears to be 
promising in the context of parsing and text understanding. As we have mentioned before, 
creating natural language models is difficult because natural languages are large and con-
stantly changing. We think that DRL could become the next best approach to natural lan-
guage parsing and understanding. Our reasoning is based primarily on two facts. First, 
DRL can store optimally thousands of parameters of the grammars as a neural model, and 
we have already evidence that these neural models can be very effective with other natu-
ral language problems such as machine translation. Second, RL methods would allow the 
agent to keep adapting to changes in a natural language, since the very nature of these algo-
rithms is to learn through interaction and this feature allows the RL agents to constantly 
adapt to changes in their environment.
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4  Text generation systems

Text generation systems are built to automatically generate valid sentences in natural lan-
guage. One of the components of such systems is a language model. Once the language 
model is provided or learned, the optimization problem consists of generating valid 
sequences of substrings that will subsequently complete a whole sentence with some mean-
ing in the domain of the application.

Given a vector representation of a set of variables in a computational system and their 
corresponding values, a reinforcement learning algorithm can be used to generate a sen-
tence in English, or any other natural language, that can serve to communicate specific and 
meaningful information to a human user. However, using the information stored in a set 
of program variables and constructing sentences in a natural language representing such 
information is not an easy task. This problem has been studied in the context of generating 
navigational instructions for humans, where the first step is to decide about the content that 
the system wants to communicate to the human, and the second step is to build the correct 
instructions adding word by word. An interesting point in this approach is that the reward 
function is implemented as a hidden Markov model (Dethlefs and Cuayáhuitl 2011) or as 
a Bayesian network (Dethlefs and Cuayáhuitl 2011). The RL process is carried out with a 
hierarchical algorithm using semi-MDP’s.

Text generation has also been approached using IRL (Ziebart et al. 2008) and genera-
tive adversarial networks (GANs, Goodfellow et  al. 2014). Shi et  al. (2018) proposed a 
new method combining GANs and IRL to generate text. The main result of this work is 
the alleviation of two problems related to generative adversarial models, namely reward 
sparsity and mode collapse. The authors of this work also introduced new evaluation meas-
ures based on BiLingual Evaluation Understudy (BLEU) score, designed to evaluate the 
quality of the generated texts in terms of matching human-generated expert translations. 
They showed that the use of IRL can produce more dense reward signals and it can also 
generate more diversified texts. With this approach, the reward and the policy functions 
are learned alternately, following an adversarial model strategy. According to the authors, 
this model can generate texts with higher quality than previous proposed methods based 
also on GANs, such as SeqGAN (Yu et al. 2017), RankGAN (Lin et al. 2017), MaliGAN 
(Che et al. 2017) and LeakGAN (Guo et al. 2018). The adversarial text generation model 
uses a discriminator and a generator. The discriminator judges whether a text is real or not, 
meanwhile the generator learns to generate texts by maximizing a reward feedback pro-
vided by the discriminator through the use of RL. The generation of entire text sequences 
that these adversarial models can accomplish helps to avoid the exposure bias problem, a 
known problem experienced by text generation methods based on RNNs. The exposure 
bias problem (Bengio et al. 2015) lets small discrepancies between the training and infer-
ence phases accumulate quickly along the generated sequence.

In a text generation task the corresponding MDP might be defined as follows:

– Each state in S is formed with a feature vector describing the current state of the system 
being controlled, containing enough information to generate the output string. We can 
visualize this feature vector as a set of variables that describe the current status of the 
system.

– Actions in A will consist of adding or deleting words.
– With respect to the transition function T, every next state can be determined by the 

resulting string, after we have added or deleted a word.
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– In this task, the reward function could be learned from a corpus of labeled data or more 
manually, from human feedback.

An advantage of RL methods over supervised learning for text generation becomes appar-
ent when there is a diversity of valid text output, i.e., multiple different generations would 
be of equal quality. In this case, it is problematic for supervised learning to define a dif-
ferentiable error for backpropagation. However, evaluation measures like BLEU or the 
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) can be used well to define a 
reward function for RL (Keneshloo et al. 2020). Future research work can focus on adap-
tive natural language generation during human–computer interaction, assuming a continu-
ously changing learning environment. In natural language generation the main goal is to 
build a precise model of the language, and the current existing approaches are far from 
being generic.

Another more complicated possibility is the study of language evolution under a RL 
perspective. In general, language evolution is concerned with how a group of agents can 
create their own communication system (Cangelosi and Parisi 2002). The communication 
system emerges from the interaction of a set of agents inhabiting a common environment. 
A process like this can be modeled as a RL multi-agent system (Mordatch and Abbeel 
2018).

Li et al. (2018) used RL and IRL for paraphrase generation. One of the components of 
this approach is a generator. The generator is initially trained using deep learning and then 
it is fine-tuned using RL. The reward of the generator is given by a second component of 
the architecture, the evaluator. The evaluator is a deep model trained using IRL to evaluate 
whether two given phrases are similar to each other.

5  Machine translation

MT consists in automatically translating sentences from one natural language to another 
one, using a computing device (Hutchins and Somers 1992). An MT system is a program 
that receives text (or speech) in some language as input and automatically generates text 
(or speech), with the same meaning, but in a different language (see Fig.  8). Early MT 
systems translate scientific and technical documents, while current developments involve 

Fig. 8  Schematic view of a reinforcement learning agent designed for language translation. It gets as input 
a text in some language A, and responds with another text string in a different language B. Input and output 
text strings have the same meaning. The language model agent acts by selecting the most relevant string of 
words. The language processing environment will provide the agent with the states and rewards after each 
of the interactions. The environment and the reward function are determined by the machine translation task 
being solved, i.e., translation from English to Spanish
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online translation systems, teaching systems, among others. MT systems have been suc-
cessfully applied to an increasing number of practical problems (Way 2018). Since 1949, 
when the task of MT was proposed to be solved using computers (Weaver 1955), several 
approaches have been studied over the years.

Statistical MT (SMT) is by far the most studied approach to MT. In this paradigm, trans-
lations are generated using statistical models whose parameters are estimated through the 
analysis of many samples of existing human translations, known as bilingual text corpora 
(Brown et  al. 1990; Koehn 2009; Williams et  al. 2016). SMT algorithms are character-
ized by their use of machine learning methods, where neural networks have been used with 
some success (Cho et al. 2014; Devlin et al. 2014; Kalchbrenner and Blunsom 2013).

In the last decade neural networks have won the battle against statistical methods in 
the field of translation. Neural MT (NMT, Stahlberg 2020) uses large neural networks to 
predict the likelihood of a sequence of words. NMT methods have been broadly applied 
to advance up-to-date phrase-based SMT systems, where a unit of translation may be a 
sequence of words (instead of a single word), called a phrase (Koehn et al. 2003). NMT 
systems became a major area of development since the emergence of deep neural networks 
in 2012 (Bahdanau et al. 2015; Wu et al. 2016; He et al. 2017; Hassan et al. 2018; Lam 
et al. 2019). Current state-of-the-art machine learning translation systems rely heavily on 
recurrent neural networks (RNN), such as the LSTM network (Hochreiter and Schmidhu-
ber 1997). In the sequence-to-sequence approach (Sutskever et al. 2014) depicted in Fig. 9, 
which was used for translation (Wu et al. 2016), two RNNs are needed, an encoder and a 
decoder. The encoder RNN updates its weights as it receives a sequence of input words 
in order to extract the meaning of the sentence. Then, the decoder RNN updates its corre-
sponding weights to generate the correct sequence of output words, in this case, the trans-
lated sentence. In the RNN approach the encoder makes reference to a program that would 
internally encode or represent the meaning of the source text, meanwhile the decoder 
will decode that internal representation and output a translated sentence with the correct 
meaning. There are two problems that arise in the training and testing of seq2seq models. 
These problems are known as (1) exposure bias, i.e., the discrepancy between ground-truth 
dependent prediction during training and model-output dependent prediction during test-
ing, and (2) inconsistency between the training and test objectives, i.e., measurement. Both 
problems have been recently studied and various solutions based on RL have been pro-
posed (Keneshloo et al. 2020).

Fig. 9  Sequence-to-sequence RNN architecture for machine translation, adapted from Sutskever et  al. 
(2014)
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Similarly to what can be accomplished in conversational systems, in MT, we see that 
RL algorithms can be used to predict the next word or phrase to be uttered by a person, 
specially during a simultaneous translation task, where the content is translated in real-time 
as it is produced (Fügen et al. 2007). This prediction is useful to increase the quality and 
speed up the translation.

In the case of the training, when it is done interactively, there is evidence that RL can 
be used to improve the real-time translation performance after several interactions with 
humans (Grissom II et al. 2014; Sokolov et al. 2015, 2016). Gu et al. (2017) propose an 
NMT model for real-time translation, where a task-specific neural network learns to decide 
which actions to take (i.e., to wait for another source word or to emit a target word) using a 
fixed pre-trained network and policy gradient techniques. Furthermore, to tackle the need 
of massive training data in MT, He et al. propose a dual learning mechanism, which auto-
matically learns from unlabeled data (He et al. 2016). This method is based on the fact that 
using a policy gradient algorithm together with a reward function defined as the likelihood 
of the language model, it is possible to create a translation model using examples of trans-
lation going in both directions, from language one to language two, and from language two 
to language one. With this approach it is possible to obtain an accuracy similar to the accu-
racy obtained with other neural models, but using only 10% of the total number of training 
examples.

Speech translation systems have improved recently due to simultaneous MT, in which 
translation starts before the full sentence has been observed. In traditional speech transla-
tion systems, speech recognition results are first segmented into full sentences, then MT 
is performed sentence-by-sentence. However, as sentences can be long, i.e., in the case of 
lectures or presentations, this method can cause a significant delay between the speaker’s 
utterance and the translation results, forcing listeners to wait a noticeable time until receiv-
ing the translation. Simultaneous MT avoids this problem by starting to translate before the 
sentence boundaries are detected. As a first step in this direction, Grissom II et al. (2014) 
propose an approach that predicts next words and final verbs given a partial source lan-
guage sentence by modeling simultaneous MT as a MDP and using RL. The policy intro-
duced in this method works by keeping a partial translation, querying an underlying MT 
system and deciding to commit these intermediate translations occasionally. The policy is 
learned through the iterative imitation learning algorithm SEARN (Daumé et al. 2009). By 
letting the policy predict in advance the final verb of a source sentence, this method has the 
potential to notably decrease the delay in translation from languages in which, according to 
their grammar rules, the verb is usually placed in the end of the phrases, such as German. 
However, the successful use of RL is still very challenging, especially in real-world sys-
tems using deep neural networks and huge datasets (Wu et al. 2018).

RL techniques have also had a positive impact in SMT, which uses predictive algo-
rithms to teach a computer how to translate text based on creating the most probable out-
put learned from different bilingual text corpora. As the goal in RL is to maximize the 
expected reward for choosing an action at a given state in an MDP model, algorithms based 
on bandit feedback for SMT can be visualized as MDP’s with one state, where select-
ing an action represents the prediction of an output (Langford and Zhang 2007; Li et al. 
2010). Bandit feedback inherits the name from the problem of maximizing the amount of 
rewards obtained after a sequence of plays with a one-armed bandit machine, without a 
priori knowledge of the reward distribution function of the bandit machine. Sokolov et al. 
(2015) propose a structured prediction in SMT based on bandit feedback, called bandit 
expected loss minimization. This approach uses stochastic optimization for learning from 
partial feedback in the form of an expected 1-BLEU loss criterion (Och 2003; Wuebker 
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et al. 2015), as opposed to learning from a gold standard reference translation. This is a 
non-convex optimization problem, which they analyzed in the stochastic gradient method 
of pseudogradient adaptation (Poljak 1973) that allowed to show convergence of the algo-
rithm. Nevertheless, the algorithm of Sokolov et  al. (2015) presents slow convergence. 
In other words, such a system needs many rounds of user feedback in order to learn in a 
real-world SMT. Moreover, it requires absolute feedback of translation quality. Therefore, 
Sokolov et al. (2016) propose improvements with a strong convexification of the learning 
objective, formalized as bandit cross-entropy minimization to overcome the convergence 
speed problem. They also propose a learning algorithm based on pairwise preference rank-
ings, which simplifies the feedback information.

The same approach used for MT can be used in a rephrasing system (Guo 2015). This 
system receives a sentence as an input, creates an internal representation of the information 
contained in such a sentence and then generates a second sentence with the same meaning 
of the first one. The algorithms used to solve such a challenging problem are the LSTM 
and a DQN. The former is used to learn the representation of the input sentence and the lat-
ter is used to generate the output sentence. The experiments presented in this work indicate 
that the proposed method performs very well at decoding sentences. Furthermore, the algo-
rithm significantly outperformed the baseline when it was used to decode sentences never 
seen before, in terms of BLEU scores. The generation of the output string is not explic-
itly computed from a vector of variables, instead, this vector representation is implicitly 
learned and stored in the weights of the LSTM and the DQN. Similarly, this system does 
not need an explicit model of the language to do the rephrasing, because that model is also 
learned and stored in its neural networks. Therefore, the inner workings of this system are 
the same as a machine learning translator. It receives a string of words as input and gener-
ates another string of words with the same meaning.

The rephrasing problem aforementioned consists in generating one string B based on 
some input string A, in such a way that both strings have the same meaning. Considering 
this task we can define an MDP (S, A, P, R) as proposed in Guo (2015):

– The set of states S is defined as the set of all possible input strings wi.
– The set of actions A consists of adding and deleting words taken from some vocabulary.
– The transition function P can be completely determined and it is deterministic. The next 

state is the string that results from adding or deleting a word.
– Finally, the reward function R can be defined as a function that measures how similar 

the strings A and B are, in semantical terms.

In general, MT can be defined as an optimization problem. In the particular case of simul-
taneous translation, we can define an MDP (S, A, P, R) and solve it using RL as we explain 
next. Given an utterance in a language A, we need to find the optimal utterance B that 
maximizes a measure of semantic similarity with respect to A. In this kind of translation 
problem, when the sentences need to be translated as fast as possible, RL can be used for 
learning when a part of a sentence should be trusted and used to translate future parts of 
the same sentence. In this way the person waiting for the translated sentence does not need 
to wait until the translator gets the last word of the original sentence to start the translation 
process. Therefore, the translation process can be accelerated by predicting the next noun 
or verb. The corresponding MDP is the following (Grissom II et al. 2014):

– Each state in S contains the string of words already seen by the translator and the next 
predicted word.
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– The actions in A are mainly of three types: to commit to a partial translation, to predict 
the next word, or to wait for more words.

– The transition function P, indicating the transitions from one state to another is fully 
determined by the current state and the action performed. We can compute the resulting 
string after applying an action.

– The reward function R can be defined based on the BLEU score (Papineni et al. 2002), 
which basically measures how similar one translation is compared to a reference string, 
which is assumed to be available for training.

There is a number of improvements that could be researched in simultaneous MT using 
RL. One is the implementation of these systems in more realistic scenarios where faster 
convergence is required. Currently, the experimentation with this approach has involved 
idealized situations in which the phrase to be translated contains only one verb. This con-
straint should be dropped if we want to employ them in real-world scenarios.

Experiments with other languages are also needed, especially for those languages that 
do not fall into the set of most spoken languages in the world. This will require the esti-
mation of different optimal MDP policies, one for each language. However, if the cor-
rect recurrent neural model can be defined, using RL might help in autonomously learn-
ing machine translation. In the same way that AlphaGo managed to play multiple games 
against itself and improved in the process, it might be the case that future translator algo-
rithms can learn multiple natural languages by talking to themselves.

6  Conversational systems

Conversational systems are designed to interact with various users using natural language, 
most commonly in verbal or written form. They are well structured and engineered to serve 
for instance as automated web assistance or for natural human–robot interaction. The archi-
tecture and functionality of such systems are heavily dependent on the application.

There are two classes of conversational systems. First, open domain systems, usually 
known as chatbots. They are built in a Turing-test fashion. This is, they can hold a conver-
sation basically about any topic, or at least they are trained with that goal in mind. Second, 
closed domain systems which are developed more as expert systems, in the sense that they 
should serve a conversational purpose very well defined and bounded. They should be able 
to provide information or assistance about a specific topic. In this article we are more inter-
ested in this latter system, since serving a well-defined task, can more easily benefit from 
reinforcement learning, due to reduced state and action spaces.

In this section, we will see that RL algorithms can be used to generate suitable responses 
during a conversation with a human user. If the system can be programmed to predict with 
some accuracy how a conversation might occur, then it can optimize the whole process in 
such a way that the system can provide more information in less interactions if we are talk-
ing about a system designed to inform humans, or it can make a more interesting conversa-
tion if it is designed as a chatbot for entertainment. There are a number of factors that affect 
the effectiveness of a conversational system, including context identification, dynamic con-
text adaptation, user intention (Crook et  al. 2014), and domain knowledge (Higashinaka 
et al. 2015).
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Conversational systems consist of three basic components whose sophistication will 
vary from system to system. These components are (Fig. 10): 

1. processing of the input message (perception),
2. the internal state representation (semantic decoder), and
3. the actions (dialogue manager).

The input is a message from the user, for instance, speech, gestures, text, etc. The user’s 
input message is converted to its semantic representation by the semantic encoder. The 
semantic representation of the message is further processed to determine an internal state 
of the system from which the next action is determined by the dialogue manager. Finally, 
the actions might include the generation of natural speech, text or other system actions.

Conversational systems are often heuristically-driven and thus the flow of conversation 
as well as the capabilities are specifically tailored to a single application. Application-spe-
cific rule-based systems can achieve reasonably good performance due to the incorporation 
of expert domain knowledge. However, this often requires a huge number of rules, which 
becomes quickly intractable (Higashinaka et al. 2015).

Due to the limitations of rule-based systems there are ongoing efforts to use data-driven 
or statistical conversational systems based on RL since the early 2000s (Litman et al. 2000; 
Levin et al. 2000; Singh et al. 2000; Singh et al. 2002; Walker 2000; Young 2000). In the-
ory, these data-driven conversational systems are capable of adapting based on interactions 
with real users. Additionally, they require less development effort but at a cost of signifi-
cant learning time. Although very promising they still need to overcome several limitations 
before they are adopted for real-world applications. These limitations stem from both the 
problem itself and from RL algorithms.

RL could potentially be applied to all three components of a conversational system men-
tioned above, starting with perception of the input message, internal system representations 
as well as the decision of the system’s output. However, we argue that RL is more readily 
available for improving the dialogue manager which deals directly with the user interac-
tion. More difficult but also possible using DRL would be the learning of suitable internal 
representations based on the success of the interactions.

Fig. 10  Information flow of a conversational system. This system receives as input a text string contain-
ing a question or simply a comment, and it responds with another text string containing the response. This 
input and response interaction typically iterates several times. Going from “Input text string x” to “Output 
response string x” requires the application in sequence of a text understanding agent (see Fig. 4) and a text 
generator agent (see Fig. 7)
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In a recent survey on neural approaches to conversational AI (Gao et  al. 2018), it is 
recognized that in the last few years, RL together with deep learning models have helped 
to significantly improve the quality of conversational agents in multiple tasks and domains. 
Key aspects of this combination of learning models are that conversational systems are 
allowed to adapt to different environments, tasks, domains and even user behaviors.

A large body of research exists for RL-based conversational systems. For instance, 
POMDP-based conversational systems (Williams and Young 2007; Young et  al. 2010; 
Thomson and Young 2010; Young et al. 2013; Crook et al. 2014) emerged as a strategy to 
cope with uncertainty originating from the perceptual and semantic decoder components. 
However, they also suffer from very large state representations that often become intracta-
ble (curse of dimensionality) which typically necessitates some sort of state space compres-
sion (Crook et al. 2014). We attribute this limitation to the widespread use of discrete state 
space representations typical in dialogue management and early days of RL algorithms. 
We believe that such limitation could be overcome with continuous state space representa-
tions and the use of function approximation techniques such as DQN (Mnih et al. 2015), 
VIN (Tamar et al. 2016), A3C (Mnih et al. 2016), TRPO (Schulman et al. 2015) and many 
others. Although there have been attempts to use function approximation techniques within 
dialogue management systems (Jurcicek et  al. 2010; Henderson et  al. 2008), these have 
not been scaled up. Li et al. (2016) simulated a dialogues between two virtual agents, and 
sequences that display three useful conversational properties are rewarded. These proper-
ties are: informativity, coherence, and ease of answering. This RL model uses policy gradi-
ent methods.

The main implications of using a continuous representation of the states is that we are 
required to estimate less parameters than when we use a discrete state representation. This 
is the case when we are dealing with large state spaces. As a result of handling less param-
eters the learning of policies can be significantly accelerated. Moreover, the quality of the 
learned policies is usually better than the policies learned with discretized state spaces. 
When we are implementing DRL models the number of weights in our neural network 
used to store the value functions can be large. However, the number of parameters of a 
deep model is less than the number of discrete states for which we would need to estimate 
a value.

Lemon (2011) showed that natural language generation problems can be solved using 
RL by jointly optimizing the generation of natural language and the management of dia-
logues. Another approach based on RL to improve the long-turn coherence and consist-
ency of a conversation is proposed in Yu et al. (2017). With this approach it is possible to 
obtain smooth transitions between task and non-task interactions. Papaioannou and Lemon 
(2017) present a chatbot system for task-specific applications. This system for multimodal 
human–robot interaction can generate longer conversations than a rule-based algorithm. 
This implies that the learned policy is highly successful in creating an engaging experi-
ence for chat and task interactions. A conversational agent can be effectively trained using 
a simulator (Li et al. 2017). After a preliminary training, the agent is deployed in the real 
scenario in order to generate interactions with humans. During these interactions with the 
real world the agent keeps learning. In a similar approach, Li et al. (2017) used a movie 
booking system to test a neural conversational system trained to interact with users by pro-
viding information obtained from a structured database. Interestingly, if the action spaces 
of the agents are treated as latent variables, it is possible to induce those action spaces from 
the available data in an unsupervised learning manner. This approach can be used to train 
dialogue agents using RL (Zhao et al. 2019).
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Some researchers have tried to develop question answering (QA) systems with multi-
step reasoning capabilities, based on RL. Though QA systems cannot be considered full 
conversational systems, both share some common challenges. DeepPath (Xiong et  al. 
2017), MINERVA (Das et al. 2018) and M-Walk (Shum et al. 2018) are recent examples 
of systems that perform multi-step reasoning on a knowledge base through the use of RL.

More recently, Yang et al. (2021) presented a dialogue system that learns a policy that 
maximizes a joint reward function. The first reward term encourages topic coherence by 
computing the similarity between the topic representation of the generated response and 
that of the conversation history. The second term encourages semantic coherence between 
the generated response and previous utterance by computing mutual information. The last 
term is based on a language model to estimate the grammatical correctness and fluency 
of the generated response. Lu et  al. (2019) used Hindsight Experience Replay (HER) to 
address the problem of sparse rewards in dialogues. HER allows for learning from failures 
and is thus effective for learning when successful dialogues are rare, particularly early in 
learning. Liu et al. (2020) showed that the goal is to model understanding between interloc-
utors rather than to simply focus on mimicking human-like responses. To achieve this goal, 
a transmitter–receiver-based framework is proposed. The transmitter generates utterances 
and the receiver measures the similarity between the built impression and the perceived 
persona. Mutual persona perception is then used as a reward to learn to generate personal-
ized dialogues. Chen et al. (2020) proposed a structured actor-critic model to implement 
structured DRL. It can learn in parallel from data taken from different conversational tasks, 
achieving stable and sample-efficient learning. The method is tested on 18 tasks of PyDial 
(Ultes et  al. 2017). Papangelis et  al. (2019, 2020) presented a complete attempt at con-
currently training conversational agents. Such agents communicate only via self-generated 
language, outperforming supervised and deep learning baselines. Each agent has a role and 
a set of objectives, and they interact using only the language they have generated.

One major problem regarding the building of conversational systems lies in the amount 
of training data needed (Cuayáhuitl et  al. 2014) which could originate from simulations 
(as in most of the research), offline learning (limited number of interaction data sets) and 
learning from interactions with real users. In fact, training and evaluating such systems 
require large amounts of data. Similarly, measuring the performance of conversational sys-
tems is itself a challenge and different ways of measuring it have been proposed. One way 
is based on the use of some predefined metrics that can be used as the reward function of 
the system, for example, some measurement of the success rate of the system, which can 
be calculated when the system solves the user’s problem. Another way of giving reward 
to the system is by counting the number of turns, which gives preference to more succinct 
dialogues. A more sophisticated way would be to automatically assess the sentiment of the 
evolving conversation, generating larger rewards for positive sentiment (Bothe et al. 2017). 
Other metrics that are being explored are the coherence, diversity and personal style of a 
more human-like conversational system (Gao et al. 2018).

Another way of measuring the performance is through the use of human simulators. 
However, programming human simulators is not a trivial task. Moreover, once we have 
found a functional dialogue policy, there is no way to evaluate it without relying on heuris-
tic methods. Some simulators are completely built from available data. The way they work 
is basically by selecting at the start of each training episode a randomly generated goal and 
a set of constraints. The performance of the system is measured by comparing the sequence 
of contexts and utterances generated after each step during the training. User simulation is 
not obvious and is still an ongoing research field.
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In general, conversational systems can be classified into two different types: (1) task-
oriented systems, and (2) non-task-oriented systems. Both types of systems can be defined 
as a general optimization problem that can be solved using RL algorithms. An MDP 
(S, A, T, R) with the main elements required to solve such an optimization problem is the 
following:

– The set of states S is defined as the history of all utterances, such as comments, ques-
tions and answers happening during the dialogue.

– The set of actions A consists of all the possible sentences that the system can answer to 
the user in the next time step.

– The transition function T. The next state is the updated history of utterances after add-
ing the last sentence generated by the system or the user. The transition function is non-
deterministic in the case of non-predictable user responses.

– Finally, the reward function R can be defined as a function that measures the performance 
of the system, or how similar the generated dialogue is with respect to a reference dialogue 
from an existing corpus.

The training of conversational systems could be also done using human users or using a model 
learned from corpora of a human–computer dialogue. However, the large number of possible 
dialogue states and strategies makes it difficult to be explored without employing a simulator. 
Therefore, the development of reliable user simulators is imperative for building conversa-
tional systems, and this comes with its own set of challenges.

Simulators are in particular useful for getting effective feedback from the environment 
during learning. For instance, Schatzmann and Young (2009) implemented a user simulator 
using a stack structure to represent the states. The dialogue history in this approach consists of 
sequences of push and pop operations. Experiments show the effectiveness of this method to 
optimize a policy and it was shown to outperform a hand-crafted baseline strategy, in a real-
world dialogue system. However, using a simulator always has serious limitations, whether it 
is manually coded, learned from available data, or a mixture of these approaches. A simulator 
is by definition not the real environment and therefore a RL policy trained on it will need some 
or many adjustments to make it work properly in the real environment. In general, the devel-
opment of realistic simulators for RL and the related methodologies to fine-tune the policies 
afterwards to make them generalize well in the real world is still an open question. Moreover, 
the reward function is key to providing effective feedback. It is well known that the design of 
reward functions is a challenging task that requires expert knowledge on the task to be learned 
and on the specific algorithm being used. Very often, it is only after many iterations in the 
design process and a significant amount of experimentation that reward functions are opti-
mally configured. Su et al. studied reward estimation (Su et al. 2018). This approach is based 
on the one hand on the use of a RNN pre-trained off-line to serve as a predictor of success and 
on the other hand, a dialogue policy and a reward function are trained together. The reward 
function is modeled with a Gaussian process using active learning.

Chen et al. propose an interactive reinforcement learning framework to address the cold 
start problem (Chen et al. 2017). The framework, referred to as a companion teacher, con-
sists of three parties: (1) one learning agent, (2) a human user, and (3) a human ‘companion’ 
teacher. The agent (dialogue manager) consists of a dialogue state tracker and a policy model. 
The human teacher can guide learning at every turn (time step). The teacher can guide learn-
ing by both reward or policy-shaping. The authors assume that the dialogue states and policy 
model are visible to the human teacher. In follow-up work (Chen et al. 2017), a rule-based sys-
tem is used for reward- and policy-shaping, but the same strategy could be used to incorporate 
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human feedback. The learning agent is implemented using a DQN and two separate experi-
ence memories for the agent and teacher. Uncertainty estimation is used to control when to ask 
for feedback and learn from the experience memories. Simulation experiments showed that 
the proposed approach could significantly improve learning speed and accuracy.

7  Other language processing tasks

RL has also been used for the improvement of information extraction through the acqui-
sition and incorporation of external information (Narasimhan et  al. 2016). In this work, 
a DQN is trained to select actions based on contextual information, leading the informa-
tion retrieval system to improve its performance by increasing the accuracy of the retrieved 
documents. This approach can help to reduce the ambiguity in text interpretation. The 
selection of actions involves querying and extracting new sources of information repeti-
tively. Actions have two components, a reconciliation decision and a query choice. The 
reward is designed to maximize the extraction accuracy of the values, and at the same time 
the number of queries is minimized. The experimental work with two domains shows an 
improvement over traditional information extractors of 5% on average.

News feed recommendation can be seen as a combinatorial optimization problem and 
therefore it can be modeled as a MDP. He et al. (2016) studied the prediction of popular 
Reddit threads using a bi-directional LSTM architecture and RL. Another approach to the 
same problem involves the incorporation of global context available in the form of discus-
sions from an external source of knowledge (He et al. 2017). An interesting idea explored 
in this approach is the use of two Q-functions. The first is used to generate a first ranking 
of the actions and the second one is utilized to rerank top action candidates. By doing this, 
good actions can be selected, i.e., These actions could otherwise be missed due to the very 
skewed action space that the algorithm can deal with.

Quite often we see that dialogue systems provide semantically correct responses which 
are not necessarily consistent with contextual facts. Mesgar et al. (2021) used RL to fine-
tune the responses, optimizing for consistency and semantics.

Gao et al. (2019) approached another language processing task using RL, namely doc-
ument summarization. The proposed paradigm uses learning-to-rank as a way to learn a 
reward function that is later used to generate near-optimal summaries.

8  Promising research directions

Based on our analysis of the problems and approaches here reported, we now take a 
step further and describe nine research directions that we believe will benefit from a RL 
approach in the coming years. 

1. Recognition of the user’s input. We noticed that a common element missing or at least 
underrepresented in NLP research is the recognition of the user’s input. Commonly, 
this is treated as being inherently uncertain and most research accepts this and tries to 
cope with it without attempting to solve the source of the problems. This along with 
all other machine perception problems are very challenging tasks and far from being 
solved. We argue that trying to address uncertainty of the user input at the initial stages 
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would be more fruitful than simply regarding it as given. Thus, we argue that a future 
research direction would be to develop a reinforcement learning approach for generating 
internal semantic representations of the user’s message from which other fields within 
and beyond NLP could benefit.

2. Internal representation learning. Learning an internal representation of language is a 
more general research direction. By using deep neural networks and reinforcement learn-
ing methods, it is possible to learn to code and decode sequences of text (Guo 2015). 
Although such an architecture was implemented and tested only with a text rephrasing 
task, we believe that the underlying problem of learning an internal representation of 
language is inherently related to some of the most important NLP problems, such as 
text understanding, MT, language generation, dialogue system management, parsing, 
etc. By solving the internal representation problem of language, we may partially solve 
the aforementioned problems to some extent. Therefore, research on deep learning and 
RL methods in a joint approach is currently of great importance to advance the state of 
the art in NLP systems.

3. Exploitation of domain knowledge. Another interesting research path is the one aiming 
at discovering ways to enhance RL through the exploitation of domain knowledge avail-
able in the form of natural language, as surveyed by Luketina et al. (2019). Some current 
trends involve methods studying knowledge transfer from descriptive task-dependent 
language corpora (Narasimhan et al. 2018). Pre-trained information retrieval systems 
can be integrated with RL agents (Chen et al. 2017) to improve the quality of the queries. 
Moreover, relevant information can be extracted from sources of unstructured data such 
as game manuals (Branavan et al. 2012).

4. Exploitation of embodiment. A trend in supervised language learning research con-
siders the importance of embodiment for the emergence of language (Antunes et al. 
2019; Heinrich et al. 2020). Multimodal inputs, such as an agent knowing its actuators 
while performing an action, help in classifying and verbally describing an action and 
allows better generalisation to novel action–object combinations (Eisermann et al. 2021). 
Embodied language learning has recently been brought to RL scenarios, specifically 
question answering where an agent needs to navigate in a scene to answer the questions 
(Tan and Liu 2020), or where it needs to perform actions on objects to answer questions 
(Deng et al. 2020). Like dialogue grounded in vision (Das et al. 2017), such interactive 
scenarios extend language learning into multiple modalities. Such applied scenarios 
also allow to introduce tasks, corresponding rewards, and hence seamless integration 
of language learning with RL. DRL neural architectures are a promising research path 
for the processing of multiple modalities in embodied language learning in a dynamic 
world.

5. Language evolution. From a more linguistic point of view, the study of language evolu-
tion using a RL perspective is also a fertile field for research. This process can be mod-
elled by a multi-agent system, where a collection of agents is capable to create their own 
communication protocol by means of interaction with a common environment and by 
applying RL rules (Mordatch and Abbeel 2018). This kind of research can benefit from 
the recent advances in multi-agent systems and rising computational power. Moreover, 
research on cognitive robotics using neural models together with RL methods (Cruz 
et al. 2018; Cruz et al. 2018; Röder et al. 2020; Eppe et al. 2019; Hafez et al. 2019) has 
reached a point where the addition of language evolution capabilities seems to be more 
promising than ever before.

6. Word embeddings. More important, from our point of view, are the advances in neural 
language models, especially those for word embedding. The recent trend of continuous 
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language representations might have a huge potential if it is used together with RL. 
Word2vec (Mikolov et al. 2013) supplies a continuous vector representation of words. 
In a continuous BOWs architecture, Word2vec trains a simple neural network to predict 
a word from its surrounding words, achieving on its hidden layer a low-dimensional 
continuous representation of words in some semantically meaningful topology. Other 
word embeddings are GloVe (Pennington et al. 2014), which yields a similar perfor-
mance more efficiently by using a co-occurrence matrix of words in their context, and 
FastText (Bojanowski et al. 2017), which includes subword information to enrich word 
vectors and to deal with out-of-vocabulary words.

  A more powerful class of embeddings are contextualized word embeddings, which 
use the context, i.e., previous and following words, to embed a word. Two recent mod-
els are ELMo (Peters et al. 2018), which uses bidirectional LSTM, and BERT (Devlin 
et al. 2019), which uses a deep feedforward Transformer network architecture with self-
attention. Both are character-based and hence, like FastText, use morphological cues 
and deal with out-of-vocabulary words. By taking into account the context, they handle 
different meanings of a word (e.g., “He touches a rock” vs. “He likes rock”). However, 
simple word embeddings become meaning embeddings, blurring the distinction between 
word- and sentence embeddings.

  For the representations of utterances, Word2vec has been extended to Doc2vec (Le 
and Mikolov 2014), and other simple schemes are based on a weighted combination of 
contained word vectors (Arora et al. 2017; Rücklé et al. 2018). However, since these 
simple BOWs approaches lose word-order information, the original sentence cannot be 
reconstructed. Sentence generation is also difficult for supervised sentence embeddings 
such as InferSent (Conneau et al. 2017) or Google’s Universal Sentence Encoder (Cer 
et al. 2018).

  An unsupervised approach to sentence vectors are Skip-Thought Vectors (Kiros et al. 
2015), which are trained to reconstruct the surrounding sentences of an encoded one. 
A simpler model would be an encoder–decoder autoencoder architecture, where the 
decoder reconstructs the same utterance that the encoder gets as input, based on a 
constant-length internal representation. Hence, this is a constant size continuous vector 
representation of an utterance, from which the utterance, which itself could consist of 
continuous word vectors, could also be reproduced.

  To train utterance vectors on dialogues, large dialogue corpora exist, which can be 
classified into human–machine or human–human; spontaneously spoken, scripted spo-
ken, or written (Serban et al. 2018). Examples are datasets of annotated telephone 
dialogues, movie dialogues, movie recommendation dialogues, negotiation dialogues, 
human–robot interaction, and also QA contains elements of dialogues.

  Such continuous language representations could seamlessly play together with con-
tinuous RL algorithms like CACLA (van Hasselt and Wiering 2007), Deterministic 
Policy Gradient (DPG, Silver et al. 2014) or deep DPG (DDPG, Lillicrap et al. 2015). 
These algorithms handle continuous state input and continuous action output. Actions of 
a dialogue agent would be the agent’s utterances, which would result in a new state after 
the response of its communication partner. Continuous utterance representations would 
allow optimization of an action by gradient ascent to maximize certain rewards which 
express desired future state properties. For example, it could be desired to maximize the 
positive sentiment of an upcoming utterance which can be estimated by a differentiable 
neural network (Bothe et al. 2017).

  Other possible desired state properties could be to maximize a human’s excitement in 
order to motivate him to make a decision; to maximize the duration of the conversation, 
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or lead it to an early end with a pleased human; to acquire certain information from, or 
to pass on information to the human. However, not all goals can be easily expressed as 
points in a continuous utterance space that represents a dialogue. To this end, future 
research on language needs to be extended towards representing more of its semantics, 
which entails understanding the entire situation.

7. Intelligent conversational systems. When conversing with chatbots, it is common to 
end up in the situation where the bot starts responding with “I don’t know what you 
are talking about” repeatedly, no matter what it is asked. This problem is identified as 
the generic response problem. The cause for this problem might be that such kind of 
answers occur very often in the training set. Also they are highly compatible with vari-
ous questions (Li et al. 2016). Another issue is when a dataset has similar responses to 
different contexts (Sankar and Ravi 2019). One way to improve the efficiency in RL is 
through the combination of model-based and model-free learning (Hafez et al. 2020). 
We propose that this approach might be useful to solve the generic response problem.

  Furthermore, all the experience gained from working with algorithms designed for 
text-based games and applications on learning of navigational directions can be extended 
and adapted to be useful in the implementation of intelligent tutors, smart enough to 
understand the questions posed by the user and select the most appropriate learning 
resource, whether it is some text, audio, video, hyperlink, etc. Those intelligent tutors 
can improve over time.

8. Assessment of conversational systems. Finally, in conversational systems, a critical 
point that needs further investigation is the definition of robust evaluation schemes that 
can be automated and used to assess the quality of automatic dialogue systems. Cur-
rently, the performance of such systems is measured through ad hoc procedures that 
depend on the specific application and most importantly, they require the intervention 
of a human, which makes these systems very difficult to be scaled.

9. Document-editing RL Assistants.Kudashkina et al. (2020) proposed the domain of 
voice document editing as a particularly well-suited one for the development of RL 
intelligent assistants that can engage in a conversation. They argue that in voice docu-
ment editing, the domain is clearly defined, delimited and the agent has full access to 
it. These conditions are advantageous for an agent that learns the domain of discourse 
through model-based RL. Important future research questions the authors mention are, 
first, what level of ambition should the agent’s learning have? And second, how should 
the training of the assistant be performed, online or offline?

9  Conclusions

We have provided a review of the main categories of NLP problems that have been 
approached using reinforcement learning methods. Some of these problems considered 
reinforcement learning as the main algorithm, such as the dialogue management systems. 
In others, RL was used marginally, only to partially help in the solution of the central prob-
lem. In both cases, RL algorithms have played an important part in the optimization of 
control policies through the self-exploration of the states and actions.

With the current advances in RL algorithms, especially with those algorithms in 
which the value functions and policy functions are replaced with deep neural networks, 
it is impossible not to consider that RL will play a major role in solving some of the most 
important NLP problems. Especially, we have witnessed solid evidence that algorithms 
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with self-improvement and self-adaptation capabilities have pushed the performance in 
challenging machine learning problems to the next level.

Currently, none of the NLP tasks here analyzed have RL methods as state-of-the-art 
methodologies. Many of the problems are being solved with increasing success using trans-
former neural network models such as BERT and GPT. However, we argue that RL can be 
jointly applied with deep neural models. RL can provide benefit by its inherent exploratory 
capacity. This is, reinforcement learning can help find better actions and better states due to 
its credit assignment approach. The best policies found by neural networks, such as trans-
formers, can potentially get fine-tuned by reinforcements.

Acknowledgements This work received partial support from the German Research Foundation (DFG) 
under projects CML (TRR-169) and LeCAREbot, and from the Federal Ministry for Economic Affairs and 
Climate Action (BMWK) under project SIDIMO. We thank Burhan Hafez for discussions and providing 
references highly relevant to this review.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Antunes A, Laflaquiere A, Ogata T, Cangelosi A (2019) A bi-directional multiple timescales LSTM 
model for grounding of actions and verbs. In: IEEE/RSJ international conference on intelligent 
robots and systems (IROS), Macau, China, pp 2614–2621

Arora S, Liang Y, Ma T (2017) A simple but tough-to-beat baseline for sentence embeddings. In: Inter-
national conference on learning representations (ICLR), Toulon, France. OpenReview.net

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and trans-
late. In: International conference on learning representations (ICLR), San Diego, CA, USA. arxiv

Bengio S, Vinyals O, Jaitly N, Shazeer N (2015) Scheduled sampling for sequence prediction with 
recurrent neural networks. In: International conference on neural information processing systems 
(NIPS), Montreal, QC, Canada, vol 1. MIT Press, pp 1171–1179

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. 
Trans Assoc Comput Linguist 5:135–146

Bothe C, Magg S, Weber C, Wermter S (2017) Dialogue-based neural learning to estimate the sentiment 
of a next upcoming utterance. In: Lintas A, Rovetta S, Verschure PF, Villa AE (eds) International 
conference on artificial neural networks (ICANN), Alghero, Italy. Lecture notes in computer sci-
ence, vol 10614. Springer, pp 477–485

Branavan SRK, Silver D, Barzilay R (2012) Learning to win by reading manuals in a Monte Carlo 
framework. J Artif Intell Res 43:661–704

Brown PF, Cocke J, Pietra SAD, Pietra VJD, Jelinek F, Lafferty JD, Mercer RL, Roossin PS (1990) A 
statistical approach to machine translation. Comput Linguist 16(2):79–85

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, 
Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, 
Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, 
McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners. 
In: Neural information processing systems (NeurIPS). Online conference

Cangelosi A, Parisi D (eds) (2002) Simulating the evolution of language. Springer, London

http://creativecommons.org/licenses/by/4.0/


1569Survey on reinforcement learning for language processing  

1 3

Cao R, Zhu S, Liu C, Li J, Yu K (2019) Semantic parsing with dual learning. In: Annual meeting of the 
Association for Computational Linguistics (ACL), Florence, Italy, vol 57. Association for Compu-
tational Linguistics, pp 51–64.https:// doi. org/ 10. 18653/ v1/ P19- 1007

Cer D, Yang Y, Kong Sy, Hua N, Limtiaco N, John RS, Constant N, Guajardo-Cespedes M, Yuan S, Tar 
C, Sung YH, Strope B, Kurzweil R (2018) Universal sentence encoder. arXiv: 1803. 11175 [cs]

Che T, Li Y, Zhang R, Hjelm RD, Li W, Song Y, Bengio Y (2017) Maximum-likelihood augmented dis-
crete generative adversarial networks. arXiv: 1702. 07983 [cs]

Chen D, Fisch A, Weston J, Bordes A (2017) Reading Wikipedia to answer open-domain questions. In: 
Annual meeting of the Association for Computational Linguistics (ACL), Vancouver, BC, Canada, 
vol 55. Association for Computational Linguistics, pp. 1870–1879. https:// doi. org/ 10. 18653/ v1/ 
P17- 1171

Chen L, Yang R, Chang C, Ye Z, Zhou X, Yu K (2017) On-line dialogue policy learning with com-
panion teaching. In: Conference of the European Chapter of the Association for Computational 
Linguistics (EACL), Valencia, Spain. Short papers, vol 15. Association for Computational Lin-
guistics, pp 198–204

Chen L, Zhou X, Chang C, Yang R, Yu K (2017) Agent-aware dropout DQN for safe and efficient on-
line dialogue policy learning. In: Conference on empirical methods in natural language process-
ing (EMNLP), Copenhagen, Denmark. Association for Computational Linguistics, pp 2454–2464. 
https:// doi. org/ 10. 18653/ v1/ D17- 1260

Chen Z, Chen L, Liu X, Yu K (2020) Distributed structured actor-critic reinforcement learning for 
universal dialogue management. IEEE/ACM Trans Audio Speech Lang Process 28:2400–2411. 
https:// doi. org/ 10. 1109/ TASLP. 2020. 30133 92

Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learn-
ing phrase representations using RNN encoder–decoder for statistical machine translation. In: 
Conference on empirical methods in natural language processing (EMNLP), Doha, Qatar. Asso-
ciation for Computational Linguistics, pp 1724–1734. https:// doi. org/ 10. 3115/ v1/ D14- 1179

Chomsky N (1959) On certain formal properties of grammars. Inf Control 2(2):137–167. https:// doi. org/ 
10. 1016/ S0019- 9958(59) 90362-6

Chomsky N (1965) Aspects of the theory of syntax. The MIT Press, Cambridge
Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017) Supervised learning of universal sen-

tence representations from natural language inference data. In: Conference on empirical methods 
in natural language processing (EMNLP), Copenhagen, Denmark. Association for Computational 
Linguistics, pp 670–680. https:// doi. org/ 10. 18653/ v1/ D17- 1070

Crook PA, Keizer S, Wang Z, Tang W, Lemon O (2014) Real user evaluation of a POMDP spoken dia-
logue system using automatic belief compression. Comput Speech Lang 28(4):873–887. https:// 
doi. org/ 10. 1016/j. csl. 2013. 12. 002

Cruz F, Magg S, Nagai Y, Wermter S (2018) Improving interactive reinforcement learning: what makes 
a good teacher? Connect Sci 30(3):306–325. https:// doi. org/ 10. 1080/ 09540 091. 2018. 14433 18

Cruz F, Parisi GI, Wermter S (2018) Multi-modal feedback for affordance-driven interactive reinforce-
ment learning. In: International joint conference on neural networks (IJCNN), Rio de Janeiro, Bra-
zil, pp 1–8. https:// doi. org/ 10. 1109/ IJCNN. 2018. 84892 37

Cuayáhuitl H, Kruijff-Korbayová I, Dethlefs N (2014) Nonstrict hierarchical reinforcement learning for 
interactive systems and robots. ACM Trans Interact Intell Syst 4(3):15:1-15:30. https:// doi. org/ 10. 
1145/ 26590 03

Das A, Kottur S, Moura JMF, Lee S, Batra D (2017) Learning cooperative visual dialog agents with 
deep reinforcement learning. In: IEEE international conference on computer vision (ICCV), Ven-
ice, Italy, pp 2951–2960. https:// doi. org/ 10. 1109/ ICCV. 2017. 321

Das R, Dhuliawala S, Zaheer M, Vilnis L, Durugkar I, Krishnamurthy A, Smola A, McCallum A (2018) 
Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforce-
ment learning. In: International conference on learning representations (ICLR), Vancouver, BC, 
Canada

Daumé H III, Langford J, Marcu D (2009) Search-based structured prediction. Mach Learn 75(3):297–
325. https:// doi. org/ 10. 1007/ s10994- 009- 5106-x

Deng Y, Guo X, Zhang N, Guo D, Liu H, Sun F (2020) MQA: answering the question via robotic manip-
ulation. arXiv: 2003. 04641 [cs]

Dethlefs N, Cuayáhuitl H (2011) Combining hierarchical reinforcement learning and Bayesian networks for 
natural language generation in situated dialogue. In: European workshop on natural language genera-
tion (ENLG), Nancy, France, vol 11. Association for Computational Linguistics, pp 110–120

Dethlefs N, Cuayáhuitl H (2011) Hierarchical reinforcement learning and hidden Markov mod-
els for task-oriented natural language generation. In: Annual meeting of the Association for 

https://doi.org/10.18653/v1/P19-1007
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1702.07983
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/D17-1260
https://doi.org/10.1109/TASLP.2020.3013392
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.1016/j.csl.2013.12.002
https://doi.org/10.1016/j.csl.2013.12.002
https://doi.org/10.1080/09540091.2018.1443318
https://doi.org/10.1109/IJCNN.2018.8489237
https://doi.org/10.1145/2659003
https://doi.org/10.1145/2659003
https://doi.org/10.1109/ICCV.2017.321
https://doi.org/10.1007/s10994-009-5106-x
http://arxiv.org/abs/2003.04641


1570 V. Uc-Cetina et al.

1 3

Computational Linguistics: human language technologies (ACL). Short papers, Portland, OR, 
USA, vol 49. Association for Computational Linguistics, pp 654–659

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers 
for language understanding. In: Conference of the North American Chapter of the Association for 
Computational Linguistics: human language technologies (NAACL HLT), Minneapolis, MN, USA. 
Association for Computational Linguistics, pp. 4171–4186. https:// doi. org/ 10. 18653/ v1/ N19- 1423

Devlin J, Zbib R, Huang Z, Lamar T, Schwartz R, Makhoul J (2014) Fast and robust neural network joint 
models for statistical machine translation. In: Annual meeting of the Association for Computa-
tional Linguistics (ACL), Baltimore, MD, USA, vol 52. Association for Computational Linguis-
tics, pp 1370–1380. https:// doi. org/ 10. 3115/ v1/ P14- 1129

Eisermann A, Lee JH, Weber C, Wermter S (2021) Generalization in multimodal language learning from 
simulation. In: International joint conference on neural networks (IJCNN), Shenzhen, China. pp 
1–8. https:// doi. org/ 10. 1109/ IJCNN 52387. 2021. 95342 75

Eppe M, Nguyen PDH, Wermter S (2019) From semantics to execution: integrating action planning with 
reinforcement learning for robotic causal problem-solving. Front Robot AI. https:// doi. org/ 10. 
3389/ frobt. 2019. 00123

Fügen C, Waibel A, Kolss M (2007) Simultaneous translation of lectures and speeches. Mach Transl 
21(4):209–252. https:// doi. org/ 10. 1007/ s10590- 008- 9047-0

Gao J, Galley M, Li L (2018) Neural approaches to conversational AI. In: International ACM SIGIR 
conference on research and development in information retrieval, Ann Arbor, MI, USA, vol 41. 
Association for Computing Machinery, pp 1371–1374

Gao Y, Meyer C, Mesgar M, Gurevych I (2019) Reward learning for efficient reinforcement learning 
in extractive document summarisation. In: 19th International joint conference on artificial intel-
ligence (IJCAI), Macao, China. AAAI Press, pp 2350–2356

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) 
Generative adversarial nets. In: Advances in neural information processing systems (NIPS), Mon-
treal, QC, Canada, vol 27. Curran Associates, Inc., pp 2672–2680

Grissom II A, He H, Boyd-Graber J, Morgan J, Daumé III H (2014) Don’t until the final verb wait: rein-
forcement learning for simultaneous machine translation. In: Conference on empirical methods in 
natural language processing (EMNLP), Doha, Qatar. Association for Computational Linguistics, 
pp 1342–1352. https:// doi. org/ 10. 3115/ v1/ D14- 1140

Gu J, Neubig G, Cho K, Li VO (2017) Learning to translate in real-time with neural machine transla-
tion. In: Conference of the European Chapter of the Association for Computational Linguistics 
(EACL), Valencia, Spain, vol 15. Association for Computational Linguistics, pp 1053–1062

Guo H (2015) Generating text with deep reinforcement learning. In: NIPS deep reinforcement learning 
workshop, Montreal, QC, Canada

Guo J, Lu S, Cai H, Zhang W, Yu Y, Wang J (2018) Long text generation via adversarial training with 
leaked information. Proc AAAI Conf Artif Intell 32(1):5141–5148

Guo X, Klinger T, Rosenbaum C, Bigus JP, Campbell M, Kawas B, Talamadupula K, Tesauro G, Singh 
S (2017) Learning to query, reason, and answer questions on ambiguous texts. In: International 
conference on learning representations (ICLR), Toulon, France

Hafez MB, Weber C, Kerzel M, Wermter S (2019) Deep intrinsically motivated continuous actor-critic 
for efficient robotic visuomotor skill learning. Paladyn J Behav Robot 10(1):14–29. https:// doi. org/ 
10. 1515/ pjbr- 2019- 0005

Hafez MB, Weber C, Kerzel M, Wermter S (2020) Improving robot dual-system motor learning with 
intrinsically motivated meta-control and latent-space experience imagination. Robot Auton Syst 
133:103630

Hassan H, Aue A, Chen C, Chowdhary V, Clark J, Federmann C, Huang X, Junczys-Dowmunt M, Lewis 
W, Li M, Liu S, Liu TY, Luo R, Menezes A, Qin T, Seide F, Tan X, Tian F, Wu L, Wu S, Xia Y, 
Zhang D, Zhang Z, Zhou M (2018) Achieving human parity on automatic Chinese to English news 
translation. arXiv: 1803. 05567 [cs]

He D, Lu H, Xia Y, Qin T, Wang L, Liu TY (2017) Decoding with value networks for neural machine 
translation. In: International conference on neural information processing systems (NIPS), Long 
Beach, CA, USA, vol 30. Curran Associates, Inc., pp 177–186

He D, Xia Y, Qin T, Wang L, Yu N, Liu TY, Ma WY (2016) Dual learning for machine translation. In: 
Advances in neural information processing systems (NIPS), Barcelona, Spain, vol 29, pp 820–828

He J, Chen J, He X, Gao J, Li L, Deng L, Ostendorf M (2016) Deep reinforcement learning with a natu-
ral language action space. In: Annual meeting of the Association for Computational Linguistics 
(ACL), Berlin, Germany, vol 54. Association for Computational Linguistics, pp 1621–1630

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P14-1129
https://doi.org/10.1109/IJCNN52387.2021.9534275
https://doi.org/10.3389/frobt.2019.00123
https://doi.org/10.3389/frobt.2019.00123
https://doi.org/10.1007/s10590-008-9047-0
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.1515/pjbr-2019-0005
https://doi.org/10.1515/pjbr-2019-0005
http://arxiv.org/abs/1803.05567


1571Survey on reinforcement learning for language processing  

1 3

He J, Ostendorf M, He X (2017) Reinforcement learning with external knowledge and two-stage Q-func-
tions for predicting popular Reddit threads. arXiv: 1704. 06217 [cs]

He J, Ostendorf M, He X, Chen J, Gao J, Li L, Deng L (2016) Deep reinforcement learning with a com-
binatorial action space for predicting popular Reddit threads. In: Conference on empirical methods 
in natural language processing (EMNLP), Austin, TX, USA. Association for Computational Lin-
guistics, pp 1838–1848. https:// doi. org/ 10. 18653/ v1/ D16- 1189

Heinrich S, Yao Y, Hinz T, Liu Z, Hummel T, Kerzel M, Weber C, Wermter S (2020) Crossmodal lan-
guage grounding in an embodied neurocognitive model. Front Neurorobot. https:// doi. org/ 10. 
3389/ fnbot. 2020. 00052

Henderson J, Lemon O, Georgila K (2008) Hybrid reinforcement/supervised learning of dialogue poli-
cies from fixed datasets. Comput Linguist 34(4):487–511

Higashinaka R, Mizukami M, Funakoshi K, Araki M, Tsukahara H, Kobayashi Y (2015) Fatal or not? 
Finding errors that lead to dialogue breakdowns in chat-oriented dialogue systems. In: Conference 
on empirical methods in natural language processing (EMNLP), Lisbon, Portugal. Association for 
Computational Linguistics, pp 2243–2248

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https:// 
doi. org/ 10. 1162/ neco. 1997.9. 8. 1735

Hutchins WJ, Somers HL (1992) An introduction to machine translation. Academic, London
Jiang J, Teichert A, Eisner J, Daumé III H (2012) Learned prioritization for trading off accuracy and 

speed. In: Advances in neural information processing systems (NIPS), Lake Tahoe, NV, USA, vol 
25

Jurcicek F, Thomson B, Keizer S, Mairesse F, Gasic M, Yu K, Young SJ (2010) Natural belief-critic: 
a reinforcement algorithm for parameter estimation in statistical spoken dialogue systems. In: 
Annual conference of the International Speech Communication Association (INTERSPEECH), 
Makuhari, Japan, pp 90–93

Kalchbrenner N, Blunsom P (2013) Recurrent continuous translation models. In: Conference on empiri-
cal methods in natural language processing (EMNLP), Seattle, WA, USA. Association for Compu-
tational Linguistics, pp 1700–1709

Keneshloo Y, Shi T, Ramakrishnan N, Reddy CK (2020) Deep reinforcement learning for sequence-to-
sequence models. IEEE Trans Neural Netw Learn Syst 31(7):2469–2489. https:// doi. org/ 10. 1109/ 
TNNLS. 2019. 29291 41

Kiros R, Zhu Y, Salakhutdinov RR, Zemel R, Urtasun R, Torralba A, Fidler S (2015) Skip-thought vectors. 
In: Advances in neural information processing systems (NIPS), Montreal, QC, Canada, vol 28. Cur-
ran Associates, Inc., pp 3294–3302

Koehn P (2009) Statistical machine translation. Cambridge University Press, Cambridge
Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics on Human Language Technology 
(HLT-NAACL), Edmonton, AB, Canada. Association for Computational Linguistics, pp 48–54. 
https:// doi. org/ 10. 3115/ 10734 45. 10734 62

Kübler S, McDonald R, Nivre J (2008) Dependency Parsing. Synth Lect Hum Lang Technol 2(1):1–127. 
https:// doi. org/ 10. 2200/ S0016 9ED1V 01Y20 0901H LT002

Kudashkina K, Pilarski PM, Sutton RS (2020) Document-editing assistants and model-based reinforcement 
learning as a path to conversational AI. arXiv: 2008. 12095 [cs]

Lam TK, Schamoni S, Riezler S (2019) Interactive–predictive neural machine translation through reinforce-
ment and imitation. In: Proceedings of machine translation summit XVII: research track, Dublin, Ire-
land, vol 1. European Association for Machine Translation, pp 96–106

Langford J, Zhang T (2007) The epoch-greedy algorithm for contextual multi-armed bandits. In: Advances 
in neural information processing systems (NIPS), 2007, Vancouver, BC, Canada, vol 20. Curran 
Associates, Inc., pp 817–824

Lê M, Fokkens A (2017) Tackling error propagation through reinforcement learning: a case of greedy 
dependency parsing. In: Conference of the European Chapter of the Association for Computational 
Linguistics (EACL), Valencia, Spain, vol 1. Association for Computational Linguistics, pp 677–687

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: International confer-
ence on machine learning (ICML), Beijing, China, vol 32. PMLR, pp 1188–1196

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https:// doi. org/ 10. 1038/ 
natur e14539

Lemon O (2011) Learning what to say and how to say it: joint optimisation of spoken dialogue management 
and natural language generation. Comput Speech Lang 25(2):210–221. https:// doi. org/ 10. 1016/j. csl. 
2010. 04. 005

http://arxiv.org/abs/1704.06217
https://doi.org/10.18653/v1/D16-1189
https://doi.org/10.3389/fnbot.2020.00052
https://doi.org/10.3389/fnbot.2020.00052
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.3115/1073445.1073462
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
http://arxiv.org/abs/2008.12095
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.csl.2010.04.005
https://doi.org/10.1016/j.csl.2010.04.005


1572 V. Uc-Cetina et al.

1 3

Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human–machine interaction for learning 
dialog strategies. IEEE Trans Speech Audio Process 8(1):11–23. https:// doi. org/ 10. 1109/ 89. 817450

Li J, Monroe W, Ritter A, Galley M, Gao J, Jurafsky D (2016) Deep reinforcement learning for dialogue 
generation. In: Conference on empirical methods in natural language processing (EMNLP), Austin, 
TX, USA. Association for Computational Linguistics, pp 1192–1202

Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to personalized news article 
recommendation. In: International conference on world wide web (WWW), Raleigh, NC, USA, vol 
19. Association for Computing Machinery, pp 661–670. https:// doi. org/ 10. 1145/ 17726 90. 17727 58

Li X, Chen YN, Li L, Gao J, Celikyilmaz A (2017) End-to-end task-completion neural dialogue systems. 
In: International joint conference on natural language processing (IJCNLP), Taipei, Taiwan. Asian 
Federation of Natural Language Processing, pp 733–743

Li X, Lipton ZC, Dhingra B, Li L, Gao J, Chen YN (2017) A user simulator for task-completion dialogues. 
arXiv: 1612. 05688 [cs]

Li Z, Jiang X, Shang L, Li H (2018) Paraphrase generation with deep reinforcement learning. In: Confer-
ence on empirical methods in natural language processing (EMNLP), Brussels, Belgium. Association 
for Computational Linguistics, pp 3865–3878. https:// doi. org/ 10. 18653/ v1/ D18- 1421

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control 
with deep reinforcement learning. arXiv: 1509. 02971

Lin K, Li D, He X, Zhang Z, Sun Mt (2017) Adversarial ranking for language generation. In: Advances in 
neural information processing systems (NIPS), Long Beach, CA, USA, vol 30. Curran Associates, 
Inc.

Litman DJ, Kearns MS, Singh SP, Walker MA (2000) Automatic optimization of dialogue management. 
In: International conference on computational linguistics (COLING), vol 18, Saarbrücken, Germany. 
Association for Computational Linguistics, pp 502–508

Liu Q, Chen Y, Chen B, Lou JG, Chen Z, Zhou B, Zhang D (2020) You impress me: dialogue generation 
via mutual persona perception. In: Annual meeting of the Association for Computational Linguistics 
(ACL), vol 58. Association for Computational Linguistics, pp 1417–1427.https:// doi. org/ 10. 18653/ 
v1/ 2020. acl- main. 131

Lu K, Zhang S, Chen X (2019) Goal-oriented dialogue policy learning from failures. Proc AAAI Conf Artif 
Intell 33(01):2596–2603

Luketina J, Nardelli N, Farquhar G, Foerster J, Andreas J, Grefenstette E, Whiteson S, Rocktäschel T (2019) 
A survey of reinforcement learning informed by natural language. In: 28th International joint con-
ference on artificial intelligence (IJCAI), Macau, China, pp 6309–6317.https:// doi. org/ 10. 24963/ ijcai. 
2019/ 880

Mesgar M, Simpson E, Gurevych I (2021) Improving factual consistency between a response and persona 
facts. In: Conference of the European Chapter of the Association for Computational Linguistics 
(EACL), Main Volume. Association for Computational Linguistics, pp 549–562. https:// doi. org/ 10. 
18653/ v1/ 2021. eacl- main. 44

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. 
arXiv: 1301. 3781 [cs]

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchro-
nous methods for deep reinforcement learning. In: 33rd International conference on machine learn-
ing (ICML), proceedings of machine learning research (PMLR), New York, NY, USA, vol 48, pp 
1928–1937

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidje-
land AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wier-
stra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 
518(7540):529–533

Mordatch I, Abbeel P (2018) Emergence of grounded compositional language in multi-agent populations. 
In: Proceedings of the AAAI conference on artificial intelligence, vol 32(1)

Narasimhan K, Barzilay R, Jaakkola T (2018) Grounding language for transfer in deep reinforcement learn-
ing. J Artif Intell Res 63:849–874

Narasimhan K, Kulkarni TD, Barzilay R (2015) Language understanding for text-based games using 
deep reinforcement learning. In: Conference on empirical methods for natural language processing 
(EMNLP), Lisbon, Portugal. Association for Computational Linguistics, pp 1–11

Narasimhan K, Yala A, Barzilay R (2016) Improving information extraction by acquiring external evidence 
with reinforcement learning. In: Conference on empirical methods in natural language processing 
(EMNLP), Austin, TX, USA. Association for Computational Linguistics, pp 2355–2365. https:// doi. 
org/ 10. 18653/ v1/ D16- 1261

https://doi.org/10.1109/89.817450
https://doi.org/10.1145/1772690.1772758
http://arxiv.org/abs/1612.05688
https://doi.org/10.18653/v1/D18-1421
http://arxiv.org/abs/1509.02971
https://doi.org/10.18653/v1/2020.acl-main.131
https://doi.org/10.18653/v1/2020.acl-main.131
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.18653/v1/2021.eacl-main.44
https://doi.org/10.18653/v1/2021.eacl-main.44
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/D16-1261
https://doi.org/10.18653/v1/D16-1261


1573Survey on reinforcement learning for language processing  

1 3

Neu G, Szepesvári C (2009) Training parsers by inverse reinforcement learning. Mach Learn 77(2):303. 
https:// doi. org/ 10. 1007/ s10994- 009- 5110-1

Ng AY, Russell SJ (2000) Algorithms for inverse reinforcement learning. In: International conference 
on machine learning (ICML), Stanford, CA, USA, vol 17. Morgan Kaufmann Publishers, Inc., pp 
663–670

Och FJ (2003) Minimum error rate training in statistical machine translation. In: 41st Annual meeting on 
Association for Computational Linguistics (ACL), Sapporo, Japan, vol 1. Association for Computa-
tional Linguistics, pp 160–167

Papaioannou I, Lemon O (2017) Combining chat and task-based multimodal dialogue for more engaging 
HRI: a scalable method using reinforcement learning. In: ACM/IEEE international conference on 
human–robot interaction (HRI), Vienna, Austria. ACM, pp. 365–366. https:// doi. org/ 10. 1145/ 30297 
98. 30348 20

Papangelis A, Namazifar M, Khatri C, Wang YC, Molino P, Tur G (2020) Plato dialogue system: a flexible 
conversational AI research platform. arXiv: 2001. 06463 [cs]

Papangelis A, Wang YC, Molino P, Tur G (2019) Collaborative multi-agent dialogue model training via 
reinforcement learning. In: Annual SIGdial meeting on discourse and dialogue (SIGDIAL), Stock-
holm, Sweden, vol 20. Association for Computational Linguistics, pp. 92–102. https:// doi. org/ 10. 
18653/ v1/ W19- 5912

Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine trans-
lation. In: Annual meeting of the Association for Computational Linguistics (ACL), Philadelphia, 
Pennsylvania, USA, vol 40. Association for Computational Linguistics, pp. 311–318. https:// doi. org/ 
10. 3115/ 10730 83. 10731 35

Pennington J, Socher R, Manning C (2014) GloVe: global vectors for word representation. In: Conference 
on empirical methods in natural language processing (EMNLP), Doha, Qatar. Association for Com-
putational Linguistics, pp 1532–1543. https:// doi. org/ 10. 3115/ v1/ D14- 1162

Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized 
word representations. In: Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT), New Orleans, LA, USA. Associa-
tion for Computational Linguistics, pp 2227–2237

Poljak BT (1973) Pseudogradient adaptation and training algorithms. Avtom Telemeh 3:45–68
Röder F, Eppe M, Nguyen PDH, Wermter S (2020) Curious hierarchical actor-critic reinforcement learning. 

In: International conference on artificial neural networks (ICANN). Lecture notes in computer sci-
ence, Bratislava, Slovakia. Springer, pp 408–419

Rücklé A, Eger S, Peyrard M, Gurevych I (2018) Concatenated power mean word embeddings as universal 
cross-lingual sentence representations. arXiv: 1803. 01400 [cs]

Russell S, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Pearson, Harlow
Sankar C, Ravi S (2019) Deep reinforcement learning for modeling chit-chat dialog with discrete attributes. 

In: Annual SIGdial meeting on discourse and dialogue, Stockholm, Sweden, vol 20. Association for 
Computational Linguistics, pp 1–10

Schatzmann J, Young S (2009) The hidden agenda user simulation model. IEEE Trans Audio Speech Lang 
Process 17(4):733–747. https:// doi. org/ 10. 1109/ TASL. 2008. 20120 71

Schrittwieser J, Antonoglou I, Hubert T, Simonyan K, Sifre L, Schmitt S, Guez A, Lockhart E, Hassabis 
D, Graepel T, Lillicrap T, Silver D (2020) Mastering Atari, Go, Chess and Shogi by planning with a 
learned model. Nature 588(7839):604–609

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In: Interna-
tional conference on machine learning (ICML), proceedings of machine learning research (PMLR), 
Lille, France, vol 37, pp 1889–1897

Serban IV, Lowe R, Henderson P, Charlin L, Pineau J (2018) A survey of available corpora for building 
data-driven dialogue systems: the journal version. Dialogue Discourse 9(1):1–49. https:// doi. org/ 10. 
5087/ dad. 2018. 101

Shi Z, Chen X, Qiu X, Huang X (2018) Toward diverse text generation with inverse reinforcement learning. 
In: International joint conference on artificial intelligence (IJCAI), Stockholm, Sweden, vol 27, pp 
4361–4367. https:// doi. org/ 10. 24963/ ijcai. 2018/ 606

Shum HY, He XD, Li D (2018) From Eliza to XiaoIce: challenges and opportunities with social chatbots. 
Front Inf Technol Electron Eng 19(1):10–26. https:// doi. org/ 10. 1631/ FITEE. 17008 26

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, 
Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap 
T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of go with deep neu-
ral networks and tree search. Nature 529(7587):484–489. https:// doi. org/ 10. 1038/ natur e16961

https://doi.org/10.1007/s10994-009-5110-1
https://doi.org/10.1145/3029798.3034820
https://doi.org/10.1145/3029798.3034820
http://arxiv.org/abs/2001.06463
https://doi.org/10.18653/v1/W19-5912
https://doi.org/10.18653/v1/W19-5912
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1803.01400
https://doi.org/10.1109/TASL.2008.2012071
https://doi.org/10.5087/dad.2018.101
https://doi.org/10.5087/dad.2018.101
https://doi.org/10.24963/ijcai.2018/606
https://doi.org/10.1631/FITEE.1700826
https://doi.org/10.1038/nature16961


1574 V. Uc-Cetina et al.

1 3

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algo-
rithms. In: 31st International conference on machine learning (ICML). Proceedings of machine learn-
ing research (PMLR), Beijing, China, vol 32, pp 387–395

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton 
A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering 
the game of go without human knowledge. Nature 550(7676):354–359. https:// doi. org/ 10. 1038/ natur 
e24270

Singh S, Kearns M, Litman DJ, Walker MA (2000) Empirical evaluation of a reinforcement learning spoken 
dialogue system. In: National conference on artificial intelligence (AAAI), Austin, TX, USA, vol 17. 
AAAI Press, pp 645–651

Singh SP, Litman D, Kearns M, Walker M (2002) Optimizing dialogue management with reinforcement 
learning: experiments with the NJFun system. J Artif Intell Res 16:105–133. https:// doi. org/ 10. 1613/ 
jair. 859

Sipser M (2013) Introduction to the theory of computation, 3rd edn. Course technology. Cengage Learning, 
Boston

Sokolov A, Kreutzer J, Lo C, Riezler S (2016) Learning structured predictors from bandit feedback for 
interactive NLP. In: Annual meeting of the Association for Computational Linguistics (ACL), Ber-
lin, Germany, vol 54. Association for Computational Linguistics, pp 1610–1620. https:// doi. org/ 10. 
18653/ v1/ P16- 1152

Sokolov A, Riezler S, Urvoy T (2015) Bandit structured prediction for learning from partial feedback in 
statistical machine translation. In: Proceedings of MT summit XV, Miami, FL, USA. Association for 
Machine Translation in the Americas, pp 160–171

Stahlberg F (2020) Neural machine translation: a review. J Artif Intell Res 69:343–418. https:// doi. org/ 10. 
1613/ jair.1. 12007

Su PH, Gašić M, Young S (2018) Reward estimation for dialogue policy optimisation. Comput Speech Lang 
51:24–43. https:// doi. org/ 10. 1016/j. csl. 2018. 02. 003

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances 
in neural information processing systems (NIPS), Montreal, QC, Canada, vol 27. Curran Associates, 
Inc., pp 3104–3112

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. Adaptive computation and 
machine learning series. The MIT Press, Cambridge

Tamar A, WU Y, Thomas G, Levine S, Abbeel P (2016) Value iteration networks. In: Advances in neu-
ral information processing systems (NIPS), Barcelona, Spain, vol 29. Curran Associates, Inc., pp. 
2154–2162

Tan S, Liu H (2020) Towards embodied scene description. In: Robotics: science and systems. RSS Founda-
tion, Corvallis

Thomson B, Young S (2010) Bayesian update of dialogue state: a POMDP framework for spoken dialogue 
systems. Comput Speech Lang 24(4):562–588

Ultes S, Rojas-Barahona LM, Su PH, Vandyke D, Kim D, Casanueva I, Budzianowski P, Mrkšić N, Wen 
TH, Gašić M, Young S (2017) PyDial: a multi-domain statistical dialogue system toolkit. In: Pro-
ceedings of system demonstrations, Vancouver, BC, Canada, vol 55. Association for Computational 
Linguistics, pp 73–78

van Hasselt H, Wiering MA (2007) Reinforcement learning in continuous action spaces. In: IEEE sym-
posium on approximate dynamic programming and reinforcement learning (ADPRL), Honolulu, HI, 
USA, pp 272–279. https:// doi. org/ 10. 1109/ ADPRL. 2007. 368199

Vogel A, Jurafsky D (2010) Learning to follow navigational directions. In: Annual meeting of the Associa-
tion for Computational Linguistics (ACL), Uppsala, Sweden, vol 48. Association for Computational 
Linguistics, pp 806–814

Walker MA (2000) An application of reinforcement learning to dialogue strategy selection in a spoken dia-
logue system for email. J Artif Intell Res 12:387–416. https:// doi. org/ 10. 1613/ jair. 713

Watkins CJCH (1989) Learning from delayed rewards. Dissertation, Cambridge University
Way A (2018) Quality expectations of machine translation. In: Moorkens J, Castilho S, Gaspari F, Doherty 

S (eds) Translation quality assessment: from principles to practice, machine translation: technologies 
and applications, vol 1. Springer, Cham, pp 159–178. https:// doi. org/ 10. 1007/ 978-3- 319- 91241-7_8

Weaver W (1955) Translation. In: Locke WN, Booth AD (eds) Machine translation of languages: fourteen 
essays. The MIT Press, Cambridge, pp 15–23

Williams JD, Young S (2007) Partially observable Markov decision processes for spoken dialog systems. 
Comput Speech Lang 21(2):393–422

https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1613/jair.859
https://doi.org/10.1613/jair.859
https://doi.org/10.18653/v1/P16-1152
https://doi.org/10.18653/v1/P16-1152
https://doi.org/10.1613/jair.1.12007
https://doi.org/10.1613/jair.1.12007
https://doi.org/10.1016/j.csl.2018.02.003
https://doi.org/10.1109/ADPRL.2007.368199
https://doi.org/10.1613/jair.713
https://doi.org/10.1007/978-3-319-91241-7_8


1575Survey on reinforcement learning for language processing  

1 3

Williams P, Sennrich R, Post M, Koehn P (2016) Syntax-based statistical machine translation, synthesis lec-
tures on human language technologies, vol 9. Morgan & Claypool Publishers. https:// doi. org/ 10. 2200/ 
S0071 6ED1V 04Y20 1604H LT033

Wu L, Tian F, Qin T, Lai J, Liu TY (2018) A study of reinforcement learning for neural machine translation. 
In: Conference on empirical methods in natural language processing (EMNLP), Brussels, Belgium. 
Association for Computational Linguistics, pp 3612–3621. https:// doi. org/ 10. 18653/ v1/ D18- 1397

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, 
Klingner J, Shah A, Johnson M, Liu X, Kaiser Ł, Gouws S, Kato Y, Kudo T, Kazawa H, Stevens K, 
Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes 
M, Dean J (2016) Google’s neural machine translation system: bridging the gap between human and 
machine translation. Computing Research Repository (CoRR) in arXiv abs/1609.08144, 23

Wuebker J, Muehr S, Lehnen P, Peitz S, Ney H (2015) A comparison of update strategies for large-scale 
maximum expected BLEU training. In: Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies (NAACL HLT), Denver, CO, USA. 
Association for Computational Linguistics, pp 1516–1526. https:// doi. org/ 10. 3115/ v1/ N15- 1175

Xiong W, Hoang T, Wang WY (2017) DeepPath: a reinforcement learning method for knowledge graph 
reasoning. In: Conference on empirical methods in natural language processing (EMNLP), Copenha-
gen, Denmark. Association for Computational Linguistics, pp 564–573. https:// doi. org/ 10. 18653/ v1/ 
D17- 1060

Yang M, Huang W, Tu W, Qu Q, Shen Y, Lei K (2021) Multitask learning and reinforcement learning for 
personalized dialog generation: an empirical study. IEEE Trans Neural Netw Learn Syst 32(1):49–62

Young S, Gašić M, Keizer S, Mairesse F, Schatzmann J, Thomson B, Yu K (2010) The hidden information 
state model: a practical framework for POMDP-based spoken dialogue management. Comput Speech 
Lang 24(2):150–174

Young S, Gašić M, Thomson B, Williams JD (2013) POMDP-based statistical spoken dialog systems: a 
review. Proc IEEE 101(5):1160–1179

Young SJ (2000) Probabilistic methods in spoken-dialogue systems. Philos Trans Math Phys Eng Sci 
358(1769):1389–1402

Yu L, Zhang W, Wang J, Yu Y (2017) SeqGAN: sequence generative adversarial nets with policy gradient. 
Proc AAAI Conf Artif Intell 31(1):2852–2858

Yu Z, Rudnicky A, Black A (2017) Learning conversational systems that interleave task and non-task con-
tent. In: International joint conference on artificial intelligence (IJCAI), Melbourne, VIC, Australia, 
vol 26, pp 4214–4220. https:// doi. org/ 10. 24963/ ijcai. 2017/ 589

Zhang L, Chan KP (2009) Dependency parsing with energy-based reinforcement learning. In: International 
conference on parsing technologies (IWPT), Paris, France, vol 11. Association for Computational 
Linguistics, pp 234–237

Zhao T, Xie K, Eskenazi M (2019) Rethinking action spaces for reinforcement learning in end-to-end dialog 
agents with latent variable models. In: Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies (NAACL HLT), Minneapolis, Min-
nesota, vol 1. Association for Computational Linguistics, pp 1208–1218. https:// doi. org/ 10. 18653/ v1/ 
N19- 1123

Zhu S, Cao R, Yu K (2020) Dual learning for semi-supervised natural language understanding. IEEE/ACM 
Trans Audio Speech Lang Process 28:1936–1947. https:// doi. org/ 10. 1109/ TASLP. 2020. 30016 84

Ziebart BD, Maas A, Bagnell JA, Dey AK (2008) Maximum entropy inverse reinforcement learning. In: 
23rd National conference on artificial intelligence (AAAI), Chicago, IL, USA, vol 3. AAAI Press, pp 
1433–1438

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.2200/S00716ED1V04Y201604HLT033
https://doi.org/10.2200/S00716ED1V04Y201604HLT033
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.3115/v1/N15-1175
https://doi.org/10.18653/v1/D17-1060
https://doi.org/10.18653/v1/D17-1060
https://doi.org/10.24963/ijcai.2017/589
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.18653/v1/N19-1123
https://doi.org/10.1109/TASLP.2020.3001684

	Survey on reinforcement learning for language processing
	Abstract
	1 Introduction
	1.1 Reinforcement learning
	1.2 Natural language processing and RL

	2 Syntactic parsing
	3 Language understanding
	4 Text generation systems
	5 Machine translation
	6 Conversational systems
	7 Other language processing tasks
	8 Promising research directions
	9 Conclusions
	Acknowledgements 
	References




