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Abstract
The sudden appearance of COVID-19 has put the world in a serious situation. Due to the 
rapid spread of the virus and the increase in the number of infected patients and deaths, 
COVID-19 was declared a pandemic. This pandemic has its destructive effect not only on 
humans but also on the economy. Despite the development and availability of different vac-
cines for COVID-19, scientists still warn the citizens of new severe waves of the virus, 
and as a result, fast diagnosis of COVID-19 is a critical issue. Chest imaging proved to 
be a powerful tool in the early detection of COVID-19. This study introduces an entire 
framework for the early detection and early prognosis of COVID-19 severity in the diag-
nosed patients using laboratory test results. It consists of two phases (1) Early Diagnostic 
Phase (EDP) and (2) Early Prognostic Phase (EPP). In EDP, COVID-19 patients are diag-
nosed using CT chest images. In the current study, 5,  159 COVID-19 and 10,  376 nor-
mal computed tomography (CT) images of Egyptians were used as a dataset to train 7 dif-
ferent convolutional neural networks using transfer learning. Data augmentation normal 
techniques and generative adversarial networks (GANs), CycleGAN and CCGAN, were 
used to increase the images in the dataset to avoid overfitting issues. 28 experiments were 
applied and multiple performance metrics were captured. Classification with no augmenta-
tion yielded 99.61% accuracy by EfficientNetB7 architecture. By applying CycleGAN and 
CC-GAN Augmentation, the maximum reported accuracies were 99.57% and 99.14% by 
MobileNetV1 and VGG-16 architectures respectively. In EPP, the prognosis of the sever-
ity of COVID-19 in patients is early determined using laboratory test results. In this study, 
25 different classification techniques were applied and from the different results, the high-
est accuracies were 98.70% and 97.40% reported by the Ensemble Bagged Trees and Tree 
(Fine, Medium, and Coarse) techniques respectively.
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1 Introduction

By the end of 2019, and specifically on 12 December 2019, a patient suffering from pneu-
monia came to a hospital in Wuhan, Hubei province, China. This patient was diagnosed 
with severe acute respiratory syndrome (SARS) (Wu 2020). The symptoms of the severe 
respiratory syndrome included dizziness, fever, sore throat, and cough (Singhal 2020). 
Wuhan became the center of that unknown virus (Wang et  al. 2020), which was named 
COVID-19 by the World Health Organization (WHO) (Sohrabi 2020). WHO announced 
that the novel coronavirus resulting from the SARS coronavirus 2 (SARS-CoV-2). It was 
classified as a pandemic on 30 January 2020 (Xu and Li 2020).

Now, COVID-19 is the topic of the hour, with its negative effect on life and the econ-
omy. Scientists expect another wave of the virus attack that could be more severe. So, it 
is necessary to diagnose patients and isolate them early. Although Reverse Transcription 
Polymerase Chain Reaction (RT-PCR) is the standard test for confirming COVID-19 cases, 
this test suffers from some false positive or false negative cases (Roy 2021). Chest imaging, 
on the other hand, is a rapid and accurate alternative to diagnose COVID-19.

Chest images, [i.e., computed tomography (CT)] and X-rays play an important role in 
the early detection and diagnosis of the disease (Ozturk 2020). Chest X-ray can be used to 
reveal pulmonary infection with details such as location, shape, and volume, whereas CT-
Scan presents a detailed image of the Alveoli (air sacs) in the lungs (Panwar 2020). Both 
CT and X-ray can be and have already been applied for the diagnosis of COVID-19 in sev-
eral studies (Horry 2020; Chowdhury 2020; Jamshidi 2020). However, CT images are pref-
erable in the detection of COVID-19 because they are more sensitive than X-ray images 
in the investigation of COVID-19 patients (Wong 2020). Chest CT images of COVID-19 
patients indicates peripheral, bilateral, and basal ground-glass opacities with consolidation 
(Parekh et al. 2020).

Convolutional neural networks (CNN) are a class of deep learning approach that have 
been applied in computer vision related tasks due to their incredible ability to extract and 
recognize features from images automatically (Xu et al. 2014). CNN also proved to have 
excellent classification performance (Zhang 2018). Applications of CNNs include muscu-
loskeletal tissue segmentation (Liu 2018), skin cancer classification (Dorj et al. 2018), lung 
tumor detection (Kasinathan 2019), acoustic scene classification (Han et al. 2017), Arabic 
handwritten recognition (Elleuch et al. 2016), face detection (Li et al. 2015) and recogni-
tion (Lawrence et al. 1997), face skin disease classification (Wu 2019), brain imaging clas-
sification (Yuan et al. 2018), breast cancer detection (Wang 2019), EEG signal classifica-
tion (Xu 2019), and image dehazing (Li et al. 2018).

Constructing a CNN from scratch is a completely expensive task in terms of both time 
and resources. On the other hand, the resulting accuracy of such models is not very good, 
especially when the data available for the training process is limited. So, if there is a prob-
lem with the availability of training data, it is not preferred to build the model from the 
beginning. Alternatively, we can use a pre-trained CNN model and just modify its parame-
ters. In this case, the model has already been trained, maybe on a completely different data-
set, but the structure and number of layers have already been determined. All the remaining 
is to train, or fine-tune, the model on the new data to determine the new weights of the 
network (Liu 2017).

This approach is called transfer learning. It came from the fact that we “transfer” or 
reuse the “learning” or knowledge of already pre-trained models on other problems. In 
other words, we can use the experience of the pre-trained model to solve new problems. 
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This approach has been applied successfully in different researches (Lan et al. 2019; Cao 
et al. 2018; Vo et al. 2019). An important advantage of using transfer learning is the high 
accuracy and precision as compared to creating new models.

When dealing with text data classification, CNN is not actually the optimal classifica-
tion approach. Instead, other machine learning methods can be applied for this kind of clas-
sification problem (Jianqiang and Xiaolin 2017; Van Der Walt and Eloff 2018; Cui 2019).

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that is based on the 
fact that machines can “learn” or “train” to find the solution to a given problem. Although 
there are different ML algorithms, they all share the same basic principles.

First, data is collected from different sources. Second, data is formatted. Third, data 
is introduced to the ML classifier. Forth, the classifier chooses the most suitable features 
based on the input training data. Fifth, the classifier is trained on this data. Finally, the clas-
sifier becomes ready for solving the required problem.

In the current work, we propose a complete framework for the accurate diagnosis and 
prognosis of COVID-19 patients using CT chest images and laboratory test results. This 
framework allows not only diagnosing the patient with COVID-19 but also predicting the 
severity of the COVID-19 in patients. The working mechanism is graphically summarized 
in Fig. 1.

Therefore, our framework consists of two phases (1) Early Diagnostic Phase (EDP) and 
(2) Early Prognostic Phase (EPP). EDP is the first phase where the patient entering the hos-
pital is diagnosed using chest CT images. EDP is divided into three steps: First, we used 
image preprocessing techniques in order to prepare the data and make it more applicable. 
Second, we used data augmentation normal techniques and generative adversarial networks 
(GANs), CycleGAN, and CCGAN, as a trail to increase the images in the dataset to avoid 
the overfitting issue. Finally, the resulting dataset is used to train 7 different pre-trained 
CNN architectures. They used models are EfficientNetB7, InceptionV3, ResNet-50, VGG-
16, VGG-19, Xception, and MobileNetV1.

After the patient is diagnosed with positive COVID-19, it is important to predict the 
severity of the disease in order to know whether the patient will need a transfer to an inten-
sive care unit (ICU) as early as possible or not. This is the goal of EPP. In this phase, we 
use laboratory test results extracted from patients’ records as prognostic markers of how 
severe pneumonia will be so that we can rescue the patient and decrease the mortality rate 
resulting from COVID-19.

Fig. 1  Graphical summarization of the working mechanism of the suggested framework
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25 different ML classification techniques are applied, namely Trees (Fine Tree, Medium 
Tree, and Coarse Tree); Discriminant (Linear Discriminant and Quadratic Discriminant); 
Regression (Logistic Regression); Naïve Bayes (Gaussian Naïve Bayes and Kernel Naïve 
Bayes); SVM (Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium 
Gaussian SVM, and Coarse Gaussian SVM); KNN (Fine KNN, Medium KNN, Coarse 
KNN, Cosine KNN, Cubic KNN, and Weighted KNN); and Ensemble (Ensemble Boosted 
Trees, Ensemble Bagged Trees, Ensemble Subspace Discriminant, Ensemble Subspace 
KNN, and Ensemble RUSBoosted Trees).

Our main purpose behind using these models is to compare the results of the different 
ML methods so that we can select the model with the best results.

The main contributions of the current study are:

• A complete framework for the accurate diagnosis and prognosis of COVID-19 patients 
using CT chest images and laboratory test results is proposed. It consists of two phases, 
namely (1) Early Diagnostic Phase (EDP) and (2) EPP.

• During EDP, the used images are raw data collected from Egyptian Radiology centers. 
During EPP, laboratory test results extracted from patients’ records are used as prog-
nostic markers of how severe pneumonia will be.

• During EDP, image pre-processing techniques and data augmentation (using normal 
techniques and GANs) are used to increase the images in the dataset.

• 7 different pre-trained CNN models, namely EfficientNetB7, InceptionV3, ResNet-50, 
VGG-16, VGG-19, Xception, and MobileNetV1 are trained using the TF approach.

• 25 different ML classification techniques were applied, namely Trees (Fine Tree, 
Medium Tree, and Coarse Tree); Discriminant (Linear Discriminant and Quadratic 
Discriminant); Regression (Logistic Regression); Naïve Bayes (Gaussian Naïve Bayes 
and Kernel Naïve Bayes); SVM (Linear SVM, Quadratic SVM, Cubic SVM, Fine 
Gaussian SVM, Medium Gaussian SVM, and Coarse Gaussian SVM); KNN (Fine 
KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, and Weighted KNN); 
and Ensemble (Ensemble Boosted Trees, Ensemble Bagged Trees, Ensemble Subspace 
Discriminant, Ensemble Subspace KNN, and Ensemble RUSBoosted Trees).

• Results of different experiments (in EDP and EPP) are reported using different perfor-
mance metrics.

The rest of the paper is divided into these sections. Section II discusses the related work in 
applying CNN on chest images. The idea and structure of CNN are described in Section 
III. In Section IV, the different machine learning classification techniques are explained. 
Our diagnostic and prognostic framework is proposed in Section V. Results are reported 
and discussed in Section VI. Section VII presents the limitations of our study while Sec-
tion VIII presents the conclusions and future work.

The different study sections are subsections of the current study are summarized and 
infograph-ed in Fig. 2. It can be used as a reference for the reader to map the manuscript 
content and flow.
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2  Related work

A massive effort has been made from the start of the crisis to apply AI techniques to iden-
tify patients with COVID-19 from chest images. Apostolopoulos and Mpesiana (2020) 
used CNN on a dataset of 1, 427 X-ray images including both COVID-19 disease and other 
pneumonia diseases, obtaining an accuracy of 96.78%.

DarkCovidNet model was proposed in Ozturk (2020) as a classifier for COVID-19 and 
pneumonia diseases in X-rays, obtaining an accuracy of 98.08% for binary classifications. 
Brunese et  al. (2020) proposed a three-step process that was based on binary classifica-
tion using deep learning on X-ray chest images. They used a dataset of 6, 523 images and 
achieved an average accuracy of 97%. CoroNet, a CNN model, was proposed by Khan et al. 
(2020). They achieved an accuracy of 89.6%.

Ardakani et al. (2020) applied 10 CNN structures to 1, 020 CT images. The best per-
formance was achieved by ResNet-101 with an accuracy of 99.51% and Xception with an 
accuracy of 99.20%. Zhang (2020) used the ResNet-18 CNN model to classify 361, 221 
CT images with COVID-19, normal, and Influenza. They achieved an accuracy of 92.49%.

Hu (2020) applied a weakly supervised CNN to CT images. They achieved an accuracy 
of 96.2%. Cascaded deep learning classifiers applied to computer-aided design (CAD) sys-
tems were proposed in Karar et al. (2021). A dataset of 306 X-ray images was used and 
they achieved an accuracy of 99.9%.

Nour et al. (2020) proposed an intelligence diagnosis model CNNs. A dataset of 2, 905 
chest images was used, and they achieved an accuracy of 98.97%. Waheed et  al. (2020) 
proposed a model called CovidGAN based on Auxiliary Classifier Generative Adversarial 
Network. They used a dataset of 1, 124 images and achieved an accuracy of 95%.

Sakib et al. (2020) proposed a DL-CRC framework to diagnose COVID-19 from pneu-
monia and healthy cases. Their achieved accuracy is 94.61%. Rajaraman (2020) proposed 
an iteratively pruned model that combines different ensemble schemes to enhance the per-
formance. They could achieve 99.01% accuracy.

Fig. 2  The current study summarization of the different sections and subsections



5068 H. M. Balaha et al.

1 3

Table 1 presents a summary of the discussed previous studies. They are just examples of 
the massive work concerning the application of deep learning on the detection of COVID-
19 (Zhang et al. 2021a, b; Sharma 2021; Mukherjee et al. 2021; Abdulkareem et al. 2021; 
Le et al. 2021; Dansana et al. 2020)

3  Convolutional neural networks (CNNs)

The “ability to learn” is the main advantage of the feedforward neural networks. How-
ever, in the case of images, there are thousands of features from millions of images, which 
means a huge learning capacity.

A CNN is a variation of the Artificial Neural Networks (ANN) designed to deal with 
images. CNN is capable of extracting the mass of features in the images. Despite the huge 
number of features to extract, CNNs can learn only the important features using small con-
nections and parameters (Krizhevsky et al. 2012).

However, these types of networks take a very long time for the training process due 
to the increased complexity in the structure of the network and the massive number of 
extracted features (Qin et  al. 2018). A typical CNN consists of three types of layers (1) 
convolution, (2) pooling, and (3) fully-connected (FC) layers (Yamashita et al. 2018).

Convolution layer A convolution layer is responsible for the feature extraction. It per-
forms mathematical operations such as convolution and passes its output through an activa-
tion function. Filters (i.e., neurons at this layer) convert the input images into output feature 
maps (Abdulazeem et al. 2021a). The usage of an activation function after the convolution 
layer is to compute the output of the neurons in this layer. The type of activation function 
determines the shape of the output of this layer. The most commonly used activation func-
tion in CNN is the Rectified Linear Unit (ReLU) (Balaha et al. 2021c).

Pooling layer The role of the pooling layer is to decrease the dimensionality of the 
feature maps. The commonly used type of pooling operation is max-pooling. In this type 
of pooling, patches are extracted from the input feature maps and the extreme number in 
every patch is produced. The output of the pooling layer is then flattened and transformed 
into a vector of numbers (Balaha et al. 2021d).

Fully-connected (FC) Layer This output vector is connected to fully-connected layers 
(i.e., dense layers). The name fully-connected came from the fact that input is connected 
to every output by a learnable weight. The final layer must have a number of output nodes 
equal to the number of classes (Bahgat et al. 2021).

The most commonly used optimization algorithm is called the backpropagation algo-
rithm. The initial weights and biases of any layer in CNN can have a huge effect on the 
network performance. The most commonly used weight initializers are Glorot (Glorot and 
Bengio 2010), and He initializers (He et al. 2015).

The most common challenge that faces CNNs is known as overfitting. Overfitting occurs 
when a model learns statistical regularities of a specified training set so that by the end of 
the training, the model learns noise instead of correct data. This problem can reduce the 
performance of a CNN, especially when tested with new data.

Several solutions were proposed to eliminate this challenge. One solution is to use 
Dropout (Hinton et al. 2012). Dropout means selecting random weights and setting them to 
zero during the training. By this technique, the model becomes not susceptible to particular 
weight values.
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Another solution to overfitting is to apply Batch normalization (Ioffe and Szegedy 
2015). It means to adaptively normalize the input values of the next layer. This can reduce 
overfitting, improve the flow through the network, permit the use of high-value learning 
rates, and lessen the reliance on the weight initialization process.

Figure 3 is an illustrative example of the different layers of a CNN applied in the detec-
tion of COVID-19.

4  Machine learning algorithms

In this section, the used 25 ML classification algorithms are explained. We have selected 
these algorithms specifically because they are the most common ML classification algo-
rithms. All of these models share the same aim (1) using the labeled training sets to 
train the algorithm or (2) build a model capable of recognizing and classifying unknown 
patterns.

4.1  Decision trees

Decision trees are ML algorithms that are used to predict results after learning the dataset. 
The main idea of decision trees is to split the search space recursively and make a simple 
model for each partition. The split process is graphically represented as a tree, hence the 
name decision tree (Loh 2011).

The structure of the decision tree is similar to a flowchart, in which each node repre-
sents a test, while each branch represents the result of the test, and each leaf represents a 
class number. The difference between Fine, Medium, and Coarse trees is the number of 
maximum splits available. Coarse trees have the minimum splits, while fine trees have the 
maximum splits.

4.2  Discriminant analysis

The discriminant analysis (DA) classifier was introduced by R. Fisher (1936). It is consid-
ered a simple but well-known classifier. Linear discriminant analysis and quadratic discri-
minant analysis are the main types of DA classifiers. The difference between the two types 
is in the decision surface. In the case of the Linear discriminant analysis classifier, and as 
the name indicates, the decision surface is linear. On the other hand, and for quadratic dis-
criminant analysis classifier, the decision surface is nonlinear (Tharwat 2016).

Fig. 3  COVID-19 detection via a convolutional neural network
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The main drawback of the DA classifier is the singularity problem, in which the dimen-
sions of the problem are greater than the total samples in each class. Therefore, DA 
becomes unable to compute the discriminant functions. Different solutions were proposed 
to overcome this problem, including regularized linear discriminant analysis (Friedman 
1989) and the subspace method (Belhumeur et al. 1996).

For a set of m features representing a sample in the dimensional pattern space Rm , there 
are c discriminant functions F = {f1, f2,… , fci} , where c is the total number of categories 
(i.e., classes). DA classifier uses these functions to calculate the sector of each class and 
hence the borders limiting the different classes.

For a class ci at index i with region �i , and for the unknown pattern Xu = {x1, x2,… , xl} , 
if this pattern belongs to class ci , then the corresponding formula is shown in Eq. 1:

where l is the number of features (i.e., parameters) in Xu , ck is a class at index k. A special 
case (shown in Eq. 2) happens when Xu lies on the border between two classes.

The probability of finding Xu in the class region �i is called the posterior probability and is 
calculated using Eq. 3.

where P(Xu|�i) is the probability that Xu belongs to the class region �i and P(�i) is called 
the priori and is calculated using Eq. 4.

where nci is the number of samples in a class ci and N is the total number of samples in the 
sample space. P(Xu) is called the evidence and is calculated using Eq. 5.

4.3  Logistic regression

Logistic Regression (LR) is a reliable statistical method in which the probability of a class 
depends on a set of variables (Dong et al. 2016; Tsangaratos and Ilia 2016). The logistic 
model is calculated using Eq. 6.

where z represents a measure of dependency on variables X (or the predicted output value), 
xi is a variable (or an input) at index i, �0 is the intercept (or bias), �i is the slope of the 
logistic regression model (or coefficient value) at index i, and V is the number of variables 
(or inputs). The probability of the variables P(z) is calculated using Eq. 7.

(1)fci (Xu) > fck (Xu) → (ci, ck = 1, 2,… , c), (i ≠ k)

(2)fci (Xu) = fck (Xu) → (ci, ck = 1, 2,… , c), (i ≠ k)

(3)P(�i|Xu) =
P(Xu|�i) × P(�i)

P(Xu)

(4)P(�i) =
nci

N

(5)P(Xu) =

c∑

i=1

(
P(Xu|�i) × P(�i)

)

(6)z = �0 +

V∑

i=1

(
�i × xi

)
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4.4  Naïve Bayes

Naïve Bayes (NB) is a straightforward probabilistic model built upon the Bayes’ theorem 
(Tsangaratos and Ilia 2016). This classifier, as all ML classifiers, predicts the probability of 
an unknown pattern belonging to a specific class. However, what differentiates this algo-
rithm is the application of Bayes’ theorem. Similar to the DA classifier, the NB classifier 
calculates the conditional (i.e., posterior) probability using Eq. 3.

NB assumes that every variable in the training data is independent of the other variables 
and has an equal contribution to the classification problem. This is a simple but insufficient 
assumption to face real-world problems. Due to independency of variables, P(Xu|�i) is cal-
culated using Eq. 8 and P(Xu) is calculated using Eq. 9.

Substituting by Eq. 8 and Eq. 9 in Eq. 3, the result is shown in Eq. 10.

The denominator of Eq. 10 is the same for a given input pattern regardless of the class, 
hence it can be eliminated as shown in Eq. 11.

In the case of the Gaussian Naïve Bayes, the values in each category are normally distrib-
uted. The probability P(xj|�i) is calculated using Eq. 12.

where � and � are the mean and the standard deviation of xj respectively. Kernel Naïve 
Bayes, on the other hand, uses kernel density estimation in case of classes with continuous 
distribution (Al-Khurayji and Sameh 2017; Murakami and Mizuguchi 2010). The probabil-
ity P(xj|�i) is calculated using Eq. 13.

(7)P(z) =
ez

1 + ez

(8)P(Xu|�i) =

l∏

j=1

P(xj|�i)

(9)P(Xu) =

l∏

j=1

P(xj)

(10)P(�i�Xu) =

�∏l

j=1
P(xj��i)

�
× P(�i)

∏l

j=1
P(xj)

(11)P(�i|Xu) = argmax

{( l∏

j=1

P(xj|�i)
)
× P(�i)

}

(12)P(xj��i) =
1

√
2 × � × �

× e
(xj−�)

2

2×�2

(13)P(xj|�i) =
1

√
nci × h

×

nci∑

v=1

Kernel(xj, xvji)
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where h is a smoothing parameter optimized on the training dataset, xvji is the value of the 
feature in the jth position of the vth input in class ci , and Kernel(xj, xvji) is a Gaussian func-
tion having zero mean and variance of 1 and is calculated using Eq. 14.

4.5  Support vector machine

Support vector machine (SVM) classifier was proposed by Vapnik (2013). It is a widely 
used ML algorithm for statistical learning problems. The idea behind SVM is to separate 
data into two classes so that, SVM can build a model from this data during the training 
process. Then, the SVM classifier becomes ready for classifying new data. SVM selects the 
hyperplane that maximizes the distance between the two classes measured by the closest 
points (Rojas-Domínguez et al. 2017; Huang et al. 2013).

For a given classification problem with training dataset: {(X1, y1), (X2, y2),… , (XN , yN)} 
where yi represents the class number and equals −1 or 1. The hyperplane separating points 
belonging to class yi = 1 from the points belonging to class yi = −1 is chosen so that the 
space from the hyperplane and the nearest point is maximized. The hyperplane can be cal-
culated using Eq. 15.

where w is the weight vector and b is the bias.
For linearly separable data, two parallel hyperplanes can be used to separate the two 

categories of data. These hyperplanes are chosen so that the distance separating them is as 
large as possible. The gap between these two hyperplanes is called the margin.

To prevent data from falling in the margin and ensure that data is on the right side of the 
hyperplane, Eq. 16 is used. Eq. 17 is a simplified version of it.

The SVM classifier problem works on minimizing Eq. 18.

where C is a parameter and Lhinge is the hinge loss and is calculated using Eq. 19.

Different SVM strategies can be used. For linearly separable data, linear SVM can be 
applied. Quadratic SVM uses quadratic function for nonlinearly separable data (Dagher 
2008). Cubic SVM is the case in which the kernel function is cubic (Jain et al. 2018). Fine 
Gaussian SVM makes fine distinctions between categories, while Medium Gaussian SVM 

(14)Kernel(a, b) =
1

√
2 × �

× e
(a−b)2

2×h2

(15)wT × Xi + b = 0

(16)
{

wT × Xi + b ≥ 1, if yi = 1

wT × Xi + b ≤ −1, if yi = −1

(17)yi ×
(
wT × Xi + b

)
≥ 1

(18)min
a,b

{
1

2
× ||w||2 + C ×

n∑

i=1

Lhinge

(
1 − yi ×

(
wT × Xi + b

))}

(19)Lhinge(u) = max {0, u}
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makes medium distinctions between categories. Coarse Gaussian SVM makes coarse dis-
tinctions between categories. The difference between the last three types is in the scale of 
the kernel.

4.6  k‑Nearest neighbor

k-Nearest Neighbor (kNN) classifier is a simple and accurate classifier that does not build 
a model from the training data. Instead, training and test data enter the classifier, and the 
classifier computes the distance between every test sample and the whole training dataset 
to assign the test sample to a class based on nearest neighbors (Zhang et al. 2017).

kNN is a lazy, non-parametric classifier. Its accuracy depends on the chosen distance 
measure technique. Euclidean distance is the standard measurement of the closeness 
between two points (Deng et al. 2016).

There are different types of kNN classifiers, including Fine kNN, Medium kNN, Coarse 
kNN, Cosine kNN, Cubic kNN, and Weighted kNN. The difference between these types is 
in the variations between the different classes and the number of neighbors.

4.7  Ensemble classifier

The main idea behind the Ensemble classifier is to combine different models into one pow-
erful Ensemble model (Scholz and Klinkenberg 2005). The motivation towards the ensem-
ble classifier is to be able to learn more effectively than a single classifier can (Shen and 
Chou 2006). For instance, Ensemble Boosted Tree is a combination of AdaBoost and Deci-
sion Tree classifier. Ensemble Bagged Tree is a combination of Bagging algorithm and 
Decision Tree classifier.

Ensemble Subspace Discriminant is built upon the usage of random subspace ensemble 
method with discriminant classifier, while Ensemble Subspace kNN is built upon the usage 
of random subspace ensemble method with Nearest Neighbor classifier. Ensemble RUS-
Boosted Trees integrates different weak tree classifiers using RUSBoost (Random Under 
Sampling) algorithm, adding more accuracy to tree classifiers (Zhou 2012).

5  The proposed framework for diagnosis and prognosis of COVID‑19

The destructive effect caused by COVID-19 on the life of millions of people all over the 
world forced scientific research to try to diagnose the virus accurately and as quickly as 
possible. The problem increases as the number of patients increase, especially if they need 
to be transferred to the intensive care unit (ICU). Countries are trying to provide oxygen 
generators for patients with problems in breathing in order to save their lives. However, 
with the huge number of infected patients, this becomes a challenging task.

Our proposed framework aims to accurately diagnose COVID-19 patients using CT 
chest images and prognose the severity of infection in order to determine whether the 
patient will need ICU or not using laboratory test results. The proposed framework consists 
of two phases, namely (1) Early Diagnostic Phase (EDP), and (2) Early Prognostic Phase 
(EPP). This section gives a detailed description of the two phases of the proposed frame-
work. The suggested framework is graphically summarized in Fig. 4.
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5.1  Early Diagnostic Phase (EDP)

The diagnosis of positive COVID-19 patients is the first step towards the treatment. The 
patient performs chest CT images to check whether he/she is infected or not as CT shows 
pulmonary ground-glass opacities, either unilateral or bilateral.

EDP is the first phase in the proposed framework. This phase verifies whether the 
patient is infected by COVID-19 or not. It consists of three steps, namely (1) image pre-
processing, (2) data augmentation, and (3) transfer learning. These steps are explained in 
detail as follows.

CT image dataset In their comprehensive review, Roberts (2021) recommended using 
not only data from the Internet but also adding new high-quality data to avoid overfitting 
and to solve the bias problem. They also recommended maintaining powerful validation 
using external datasets in order to build robust models. Therefore, in the current study, 
we used a dataset of CT images including positive COVID-19 images and non-COVID-19 
images of Egyptian patients collected from Egyptian Radiology centers. The dataset con-
tains a total of 15, 535 CT images with 5, 159 images of confirmed positive COVID-19 
cases and 10, 376 images of normal (i.e., non-COVID-19) cases. All images are used in the 
“JPG” format. A sample of the CT images with COVID-19 is shown in Fig. 5.

Image pre-processing Images obtained from the Radiology centers can’t be used directly 
with CNNs because:

Fig. 4  Graphical summarization of the suggested framework
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• They are from different sources.
• They have different dimensions.
• They contain unnecessary details (i.e., noise).

So, the first step is to pre-process the dataset to convert it to a suitable format for CNN to 
detect the necessary features. The steps used for image pre-processing are shown in Fig. 6.

Fig. 5  CT sample images of Egyptian patients with COVID-19

Fig. 6  Image pre-processing phase
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For each image, the first step is to read the image file. The next step is to convert the 
image to a grayscale image (Bui et al. 2016). In the next step, Gaussian blurring is applied 
to eliminate the unnecessary noise (Gedraite and Hadad 2011).

After that, the Binary and Otsu threshold methods are used to separate pixels into the 
foreground and background pixels to generate a mask image (Yuan et al. 2016). A contour 
detection algorithm is then applied to separate the foreground object of interest. The largest 
contour is then used to create a mask to be subtracted from the original image to get the 
required image.

This image is then cropped and resized so that the dataset images have the same dimen-
sions. Figure 7 shows a sample image before and after pre-processing.

Data augmentation The main problem in using CNNs in image classification is 
the availability of data for the training process. The less the data, the more the network 
becomes prone to the overfitting problem. To overcome this, data augmentation techniques 
are used. It is achieved by applying distortions to the training samples which results in 
new training data (Salamon and Bello 2017). This means that more training images can be 
extracted from the original dataset by augmentations (Shorten and Khoshgoftaar 2019).

The normal image augmentation techniques include brightness change, cropping, rota-
tion, shearing, zooming, and flipping (Başaran et  al. 2020). Adjusting brightness means 
manipulating the light of the image to make the augmented image darker or lighter. Crop-
ping is done by taking a region from the image with specified dimensions.

Rotation generates a new image by changing the angle in the clockwise or counterclock-
wise directions around its center. Shearing is done by shifting one part of an image in a 
direction and the other part in the opposite direction.

Zooming can be either zoom in or zoom out of the image. Flipping is transforming the 
original image horizontally or vertically in a mirror-reversal manner. Figure 8 shows the 
result of different augmentation methods on a sample CT image.

A more advanced augmentation approach used in this study is the generative adversarial 
networks (GANs) (Goodfellow et al. 2014). GAN is a framework for training generative 

Fig. 7  A sample image before and after pre-processing
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models (Denton et al. 2015). It achieved very good results in many image generation tasks 
(Zhang et al. 2019). GANs have two parts (1) a generator and (2) a discriminator.

The generator is responsible for generating realistic images while the discriminator 
decides if the produced images can be distinguished from the real ones (Park et al. 2019). 
The main reason for the GANs’ success is the use of adversarial loss that imposes the pro-
duced images to be indistinguishable from real photos (Salimans et al. 2016).

One type of GAN, known as CycleGAN (Zhu et al. 2017), converts an image from one 
domain to another while there are no paired examples (Chu et al. 2017). Another type of 
GAN, known as Conditional GAN (Mirza and Osindero 2014), extends GANs by adding 
an additional layer to both the generator and the discriminator. This layer contains some 
additional information such as class labels (Dai et al. 2017; Isola et al. 2017).

A modification to CGAN in Denton et al. (2016) known as context-conditional genera-
tive adversarial networks (CC-GANs), was proposed. In this method, the generator in con-
ditional GANs is trained to complete an absent image patch. The conditions of the genera-
tor and discriminator depend on the surrounding pixels.

Fig. 8  Different augmentation methods: a original image, b reduce brightness, c increase brightness, d 
cropping, e rotation 90◦ , f rotation 180◦ , g rotation 270◦ , h shearing, i zoom in, j zoom out, k flip vertical, 
and l flip horizontal
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To explain this, the generator receives an input image with a randomly hidden patch 
and outputs a filled image. The discriminator receives the complete image so that it doesn’t 
learn to distinguish cutouts over the edge of that lost patch. In this paper, we applied both 
CycleGAN and CC-GAN to increase the dataset.

The CycleGAN is trained on 12 epochs with a batch size of 1 while the CC-GAN is 
trained on 50, 000 epochs with a batch size of 32. The dataset is resized to (96, 96) in the 
colored mode. Tables 2 and 3 show the generator and the discriminator of the CycleGAN 
respectively.

Tables 4 and 5 show the generator and the discriminator of the CC-GAN respectively.
The downsampling block consists of a convolutional layer, leaky ReLU activation layer, 

and a normalization layer. The upsampling block consists of an upsampling layer, a convo-
lutional layer, a normalization layer, and a concatenation layer.

Figures 9 and 10 show sample results after training the CycleGAN and CC-GAN on the 
presented dataset respectively.

Table 2  Architecture of the used 
CycleGAN discriminator

# Architecture layer Output shape

1 Input Layer (96, 96, 3)
2 Downsampling Block (48, 48, 64)
3 Downsampling Block (24, 24, 128)
4 Downsampling Block (12, 12, 256)
5 Downsampling Block (6, 6, 512)
6 Convolutional Layer (6, 6, 1)

Table 3  Architecture of the used 
CycleGAN generator

# Architecture layer Output shape

1 Input Layer (96, 96, 3)
2 Downsampling Block (48, 48, 32)
3 Downsampling Block (24, 24, 64)
4 Downsampling Block (12, 12, 128)
5 Downsampling Block (6, 6, 256)
6 Upsampling Block (12, 12, 256)
7 Upsampling Block (24, 24, 128)
8 Upsampling Block (48, 48, 64)
9 Upsampling Layer (96, 96, 64)
10 Convolutional Layer (96, 96, 3)

Table 4  Architecture of the Used 
CC-GAN discriminator

# Architecture layer Output shape

1 Input Layer (96, 96, 3)
2 Sequential Layer (12, 12, 256)
3 Flatten Layer (36864)
4 Convolutional Layer (12, 12, 1)
5 Dense Layer (3)
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Transfer learning (TL) Recently, transfer learning has been commonly used in deep 
learning problems. Utilizing the transfer learning (Wang et al. 2021), a pre-trained CNN 
model can be reused in a relevant application (Deepak and Ameer 2019). The goal of trans-
fer learning is to learn from related tasks.

Studies showed that the already learned knowledge plays a great role specifically in the 
case of rare training data (Han et  al. 2018). The CNN structures used in this study are 
EfficientNetB7, InceptionV3, ResNet-50, VGG-16, VGG-19, Xception, and MobileNetV1.

EfficientNetB7 (Tan and Le 2019) was introduced to overcome the MBConv mobile 
bottleneck. InceptionV3 (Szegedy et al. 2016) has 48 layers. It uses inception modules to 
lessen the number of parameters and raise the training speed. ResNet-50 (He et al. 2016) 

Table 5  Architecture of the Used 
CC-GAN generator

# Architecture layer Output shape

1 Input Layer (96, 96, 3)
2 Downsampling Block (48, 48, 32)
3 Downsampling Block (24, 24, 64)
4 Downsampling Block (12, 12, 128)
5 Downsampling Block (6, 6, 256)
6 Upsampling Block (12, 12, 256)
7 Upsampling Block (24, 24, 128)
8 Upsampling Block (48, 48, 64)
9 Upsampling Layer (96, 96, 64)
10 Convolutional Layer (96, 96, 3)

Fig. 9  Two samples after training the CycleGAN on the presented dataset
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has 49 convolutional layers followed by one FC layer with 16 residual blocks. VGG-16 
(Simonyan and Zisserman 2014) has 5 convolutional blocks containing 13 convolutional 
layers, and 3 fully-connected layers.

VGG-19 (Simonyan and Zisserman 2014) is a deeper CNN than VGG-16 because it 
has 5 convolutional blocks containing 16 convolutional layers and 3 fully-connected lay-
ers. Xception (Chollet 2017) modifies the inception net by replacing the inception modules 
with “depthwise separable convolutions”. It consists of 2 convolutional layers, depthwise 
separable convolution layers, 4 convolutional layers, and a fully-connected layer. Mobile-
NetV1 (Howard et al. 2017) was intended for use on a mobile platform. It uses depthwise 
convolutions so that memory usage is reduced (Balaha et al. 2021b).

Performance metrics Different performance metrics were used in our study to evalu-
ate the performance of the different pre-trained CNN architectures. The used metrics are 
Accuracy (Eq.  20), Precision (Eq.  21), Recall (Eq.  22), and F1-Score (Eq.  23) (Balaha 
et al. 2021a).

(20)Accuracy =
TP + TN

TP + TN + FP + FN

(21)Precision =
TP

TP + FP

(22)Recall =
TP

TP + FN

(23)F1score =2 ×
Precision × Recall

Precision + Recall

Fig. 10  Six samples after training the CC-GAN on the presented dataset
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By testing the network, one of four results can appear (1) TP means a true diagnosis of 
COVID-19 case, (2) TN means a truly non-COVID-19 case, (3) FP means that the network 
wrongly diagnosed COVID-19 for a healthy image, and (4) FN means the network couldn’t 
diagnose COVID-19 in an infected image. The area under curve (AUC) is also calculated 
to indicate the performance.

Training environment All scripts for the EDP are written in the Python programming 
language. The authors used two environments for that phase (1) a Toshiba Qosmio X70-A 
device with Windows 10 operating system, Intel Core i7 processor, 32 GB RAM, and 
Nvidia GTX with 4 GB GPU graphics card, and (2) Google Colab is used as the training 
environment with the help of its Graphical Processing Unit (GPU). Keras (a deep learning 
package), NumPy, MatPlotlib, OpenCV, and Pandas are the used Python packages (Balaha 
and Saafan 2021).

5.2  Early Prognostic Phase (EPP)

EPP begins when the patient is diagnosed as positive COVID-19. This phase is used to 
prognose the severity of the infection in order to predict whether the patient will need to 
transfer to the ICU or not as early as possible.

Different ML algorithms are applied for the classification of patients into two groups 
(1) group 1 needs the ICU and (2) group 2 does not need the ICU. These algorithms use 
laboratory test results extracted from patients’ records as prognostic markers of how severe 
pneumonia will be so that we can rescue the patient.

Table  6 presents a brief description of the different prognostic markers (Baranovskii 
et al. 2020). Table 7 presents a sample of 5 random records from the dataset.

To achieve the best accuracy, we applied 25 different classification techniques, namely:

• Trees (Fine Tree, Medium Tree, and Coarse Tree).

Table 8  CNN and TL experiments’ configurations summarization

Configuration Value

Dataset Type CT Images
Dataset Size 15, 535 (5, 159 COVID and 10, 376 Non-COVID)
Dataset Split Ratio 85% ∶ 15%

Dataset Pre-processing Figure 6
Data Augmentation Normal and GANs
Pre-trained CNN Models EfficientNetB7, InceptionV3, ResNet-50, VGG-

16, VGG-19, Xception, and MobileNetV1
Pre-trained Weights ImageNet
Optimizer Adam ( � = 0.5)
Learning Rate 0.0002
Number of Epochs 128
Batch Size 32
Performance Metrics Accuracy, F1-score, Precision, Recall, and AUC 
Programming Language Python
Training Environment Toshiba Qosmio X70-A and Google Colab
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• Discriminant (Linear Discriminant and Quadratic Discriminant).
• Regression (Logistic Regression).
• Naïve Bayes (Gaussian Naïve Bayes and Kernel Naïve Bayes).
• SVM (Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium 

Gaussian SVM, and Coarse Gaussian SVM).
• KNN (Fine KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, and 

Weighted KNN).
• Ensemble (Ensemble Boosted Trees, Ensemble Bagged Trees, Ensemble Subspace Dis-

criminant, Ensemble Subspace KNN, and Ensemble RUSBoosted Trees).

Then, the algorithm with the best accuracy is chosen and the results from this model are 
the main lead to prognoses the infection.

Dataset pre-processing The numerical dataset is pre-processed before applying the ML 
classifier. The empty (i.e. null) values are filled with zeros. The dataset is applied after that 
to the standardization method. Standardization is a scaling method where the values are 
centered around the mean (i.e., the mean becomes zero) with a unit standard deviation (Gal 
and Rubinfeld 2019). Equation 24 shows the used standardization method.

where � is the mean of the features and � is the standard deviation of the features.
Training environment All scripts for the EPP are written in MATLAB programming 

language. The authors used for that phase a Toshiba Qosmio X70-A device with Windows 
10 operating system, Intel Core i7 processor, 32 GB RAM, and Nvidia GTX with 4 GB 
GPU graphics card.

(24)X� =
X − �

�

Fig. 11  EfficientNetB7 results comparison using the testing subset
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6  Experimental results and discussion

In this section, the experiments’ results of our diagnostic and prognostic framework are 
presented and discussed.

6.1  COVID‑19 diagnosis using CNN and TL

Each transfer learning architecture used the “ImageNet” pre-trained weights. All layers are 
set to be trainable. A flatten layer, a 25% dropout layer, and an output dense layer followed 
the base transfer learning architecture. The experiment number of epochs was 128 and the 
batch size was 32. The user optimizer was Adam with a learning rate of 0.0002 and a beta 
value ( � ) of 0.5. The dataset is split into 85% for training and validation and 15% for test-
ing. The training and validation portion is split internally into 85% for training and 15% for 
validation. Table 8 summarizes the CNN and TL experiments’ configurations.

Every following subsection shows four experiments each one in a separate row. The first 
experiment is performed without augmentation. The second is performed with normal aug-
mentation techniques. The third and fourth experiments are performed using CC-GAN and 
CycleGAN augmentation respectively.

EfficientNetB7 Table 9 shows the performance metrics results for the testing sub-dataset 
and the whole dataset. The lowest testing loss value is 0.022 and is reported by the no 
augmentation experiment. The highest testing accuracy value is 99.61% and is reported by 
the no augmentation experiment. The highest testing AUC value is 0.999 is reported by the 
CycleGAN augmentation experiment.

The highest testing recall value is 99.62% and is reported by the no augmentation exper-
iment. The highest testing precision value is 99.62% and is reported by the no augmenta-
tion experiment. The highest testing F1-score value is 0.996 is reported by the CycleGAN 
augmentation experiment. All experiments, except the normal augmentation one, reported 
testing accuracies above 99%.

Fig. 12  InceptionV3 results comparison using the testing subset
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Figure 11 shows the graphical representation of the EfficientNetB7 model results com-
parison using the testing subset.

InceptionV3 Table 10 shows the performance metrics results for the testing sub-dataset 
and the whole dataset. The lowest testing loss value is 0.027 is reported by the no aug-
mentation experiment. The highest testing accuracy value is 99.27% is reported by the no 
augmentation experiment. The highest testing AUC value is 0.999 is reported by the no 
augmentation CycleGAN augmentation experiments.

The highest testing recall value is 99.28% is reported by the no augmentation experi-
ment. The highest testing precision value is 99.28% is reported by the no augmentation 
experiment. The highest testing F1-score value is 0.993 is reported by the no augmentation 
experiment. All experiments, except the normal augmentation one, reported testing accura-
cies above 98.8%.

Figure 12 shows the graphical representation of the InceptionV3 model results compari-
son using the testing subset.

ResNet50 Table  11 shows the performance metrics results for the testing sub-dataset 
and the whole dataset. The lowest testing loss value is 0.023 is reported by the CycleGAN 
augmentation experiment. The highest testing accuracy value is 99.32% is reported by the 
CycleGAN augmentation experiment. The highest testing AUC value is 0.998 is reported 
by the CycleGAN augmentation experiment.

The highest testing recall value is 99.32% is reported by the CycleGAN augmentation 
experiment. The highest testing precision value is 99.32% is reported by the CycleGAN 
augmentation experiment. The highest testing F1-score value is 0.993 is reported by the 
CycleGAN augmentation experiment. All experiments, except the normal augmentation 
one, reported testing accuracies above 98.9%.

Figure 13 shows the graphical representation of the ResNet50 model results comparison 
using the testing subset.

VGG-16 Table 12 shows the performance metrics results for the testing sub-dataset and 
the whole dataset. The lowest testing loss value is 0.048 is reported by the no augmenta-
tion experiment. The highest testing accuracy value is 99.14% is reported by the CC-GAN 

Fig. 13  ResNet50 results comparison using the testing subset
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augmentation experiment. The highest testing AUC value is 0.997 is reported by the no 
augmentation experiment.

The highest testing recall value is 99.16% is reported by the CC-GAN augmentation 
experiment. The highest testing precision value is 99.16% is reported by the CC-GAN 
augmentation experiment. The highest testing F1-score value is 0.992 is reported by the 
CC-GAN augmentation experiment. All experiments, except the normal augmentation one, 
reported testing accuracies above 98.7%.

Figure 14 shows the graphical representation of the VGG-16 model results comparison 
using the testing subset.

VGG-19 Table  13 shows the performance metrics results for the testing sub-dataset 
and the whole dataset. The lowest testing loss value is 0.053 is reported by the CycleGAN 
augmentation experiment. The highest testing accuracy value is 99.32% is reported by the 
CycleGAN augmentation experiment. The highest testing AUC value is 0.996 is reported 
by the CycleGAN augmentation experiment.

The highest testing recall value is 99.32% is reported by the CycleGAN augmentation 
experiment. The highest testing precision value is 99.32% is reported by the CycleGAN 
augmentation experiment. The highest testing F1-score value is 0.993 is reported by the 
CycleGAN augmentation experiment. All experiments, except the normal augmentation 
one, reported testing accuracies above 98.5%.

Figure 15 shows the graphical representation of the VGG-19 model results comparison 
using the testing subset.

Xception Table 14 shows the performance metrics results for the testing sub-dataset and 
the whole dataset. The lowest testing loss value is 0.027 is reported by the no augmentation 
experiment. The highest testing accuracy value is 99.32% is reported by the no augmenta-
tion experiment. The highest testing AUC value is 0.999 is reported by the no augmenta-
tion experiment.

The highest testing recall value is 99.32% is reported by the no augmentation experi-
ment. The highest testing precision value is 99.32% is reported by the no augmentation 

Fig. 14  VGG-16 results comparison using the testing subset
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experiment. The highest testing F1-score value is 0.993 is reported by the no augmentation 
and CycleGAN augmentation experiments. All experiments, except the normal augmenta-
tion one, reported testing accuracies above 99.1%.

Figure 16 shows the graphical representation of the Xception model results comparison 
using the testing subset.

MobileNetV1 Table 15 shows the performance metrics results for the testing sub-dataset 
and the whole dataset. The lowest testing loss value is 0.018 is reported by the CycleGAN 
augmentation experiment. The highest testing accuracy value is 99.57% is reported by the 
CycleGAN augmentation experiment. The highest testing AUC value is 0.999 is reported 
by the CycleGAN augmentation experiment.

The highest testing recall value is 99.58% is reported by the CycleGAN augmentation 
experiment. The highest testing precision value is 99.58% is reported by the CycleGAN 
augmentation experiment. The highest testing F1-score value is 0.996 is reported by the 
no augmentation and CycleGAN augmentation experiments. All experiments, except the 
normal augmentation one, reported testing accuracies above 99.0%.

Figure 17 shows the graphical representation of the MobileNetV1 model results com-
parison using the testing subset.

From the results, the best testing accuracies are shown in Table  16. The two highest 
testing accuracies were 99.61% and 99.57% and were achieved by EfficientNetB7 and 
MobileNetV1 respectively. It is clear that using normal data augmentation methods did not 
report the expected results as normal methods produced images with less-feature-quality 
images. In other words, cropping and shearing may have abandoned the important features 
in the mages. So, some of the important features in the original images were lost. However, 
CycleGAN and CCGAN could produce images similar to the original ones in the collected 
dataset. Hence, the important features were preserved.

Fig. 15  VGG-19 results comparison using the testing subset
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6.2  Prognosis of COVID‑19 severity using ML algorithms

Each machine learning algorithm was applied to 50 cross-validation folds to avoid the 
overfitting. Table 17 summarizes the ML experiments’ configurations.

Table 18 shows the experiment results of the used ML algorithms with the appliance 
of the standardization method. The Ensemble Bagged Trees method reported the highest 
accuracy value ( 98.7%).

Table 19 shows the experiment results of the used ML algorithms without the appliance 
of the standardization method. The Ensemble Bagged Trees method reported the highest 
accuracy value ( 98.7%).

Figure 18 shows a graphical comparison between the results of the ML algorithms with 
and without standardization. It worth mentioning that (1) Quadratic Discriminant and 
Gaussian Naïve Bayes could not report results in both cases, (2) without standardization 
reported higher accuracies than standardization in six experiments, (3) standardization 
reported higher accuracies than without standardization in five experiments, and (4) twelve 
experiments reported the same results in both cases.

6.3  Comparison with state‑of‑the‑art studies

Table 20 compares the best results of the current study using the CNN and TL approach 
with the discussed state-of-the-art related studies. The table reports the accuracies that 
each study could achieve concerning their approach and dataset.

From Table 20, the current study reports an accuracy value that is higher than 11 related 
studies. Figure 19 shows a graphical representation of the results in ascending order.

Fig. 16  Xception results comparison using the testing subset
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7  Limitations

Despite the promising results of the current study, there are still some limitations. First, the 
unavailability of images is a challenging task. Second, the dataset is collected from differ-
ent centers, and therefore, there may be some vendors’ differences, such as image quality 
and encoding formats, that may cause small errors after that. Third, normal data augmenta-
tion methods results should be improved. However, the results obtained from our study are 
promising and the proposed framework’s concepts can be applied in hospitals and COVID-
caring centers to make more reliable systems.

Fig. 17  MobileNetV1 results comparison using the testing subset

Table 16  Highest testing 
accuracies from the different 
experiments

Architecture Approach (experiment) Testing accuracy 
(%)

EfficientNetB7 No Augmentation 99.61

InceptionV3 No Augmentation 99.27

ResNet50 CycleGAN Augmentation 99.32

VGG-16 CC-GAN Augmentation 99.14

VGG-19 CycleGAN Augmentation 99.32

Xception No Augmentation 99.32

MobileNetV1 CycleGAN Augmentation 99.57
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8  Conclusions and future work

Despite the availability of different vaccines, the COVID-19 nightmare is still threatening 
the lives of millions of people all over the world. Not only fast diagnosis of COVID-19 
but also prognosis of the severity of the infection is very important, especially in the lack 
of oxygen crisis. The deficiency of ICU can result in numerous deaths because of breath-
ing problems. Therefore, a massive effort is done to try to overcome the pandemic. In this 
work, we proposed a diagnostic and prognostic framework for the COVID-19 patients. For 
the diagnosis of COVID-19, we applied the transfer learning approach and used 7 differ-
ent pre-trained CNN structures to classify COVID-19 from CT chest images. The patients’ 
data were collected from the Egyptian Radiology centers. Therefore, data needed pre-pro-
cessing to be suitable for deep learning. Different data augmentation methods were applied 
to increase the dataset image diversity to avoid overfitting. 28 experiments were applied 
using the 7 pre-trained CNN architectures and performance metrics were captured. The 
two highest testing accuracies were 99.61% and 99.57% and were reported by Efficient-
NetB7 and MobileNetV1 architectures respectively. For the prognosis of the severity of 
COVID-19 in positive cases, 25 different machine learning algorithms were applied on 
numerical test results. Among the different algorithms, the best accuracy value was 98.70% 
and was reported by the Ensemble Bagged Trees ML method. In future work, we plan to 
apply the Internet of Things (IoT) as an improvement to our framework. The usage of IoT 
can facilitate the diagnosis and add more flexibility in resource management.

Table 17  ML experiments’ configurations summarization

Configuration Value

Dataset Type Numeric
Dataset Size 231
Dataset Pre-processing Standardization Method
ML Models Trees (Fine Tree, Medium Tree, and Coarse Tree); 

Discriminant (Linear Discriminant and Quadratic 
Discriminant); Regression (Logistic Regression); 
Naïve Bayes (Gaussian Naïve Bayes and Kernel 
Naïve Bayes); SVM (Linear SVM, Quadratic 
SVM, Cubic SVM, Fine Gaussian SVM, Medium 
Gaussian SVM, and Coarse Gaussian SVM); KNN 
(Fine KNN, Medium KNN, Coarse KNN, Cosine 
KNN, Cubic KNN, and Weighted KNN); and 
Ensemble (Ensemble Boosted Trees, Ensemble 
Bagged Trees, Ensemble Subspace Discriminant, 
Ensemble Subspace KNN, and Ensemble RUS-
Boosted Trees)

Number of Features 15
Cross-Validation Folds 50
Programming Language MATLAB
Performance Metrics Accuracy
Training Environment Toshiba Qosmio X70-A
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Table 18  ML algorithms 
experiment results with 
standardization

ML algorithm Accuracy

Fine Tree 96.5%

Medium Tree 96.5%

Coarse Tree 97.0%

Linear Discriminant 94.8%

Quadratic Discriminant NA
Logistic Regression 95.7%

Gaussian Naïve Bayes NA
Kernel Naïve Bayes 90.0%

Linear SVM 95.2%

Quadratic SVM 95.7%

Cubic SVM 94.8%

Fine Gaussian SVM 56.7%

Medium Gaussian SVM 94.8%

Coarse Gaussian SVM 94.8%

Fine KNN 90.0%

Medium KNN 88.3%

Coarse KNN 68.0%

Cosine KNN 92.6%

Cubic KNN 87.0%

Weighted KNN 90.5%

Ensemble Boosted Trees 56.7%

Ensemble Bagged Trees 98.7%

Ensemble Subspace Discriminant 94.4%

Ensemble Subspace KNN 94.8%

Ensemble RUSBoosted Trees 84.4%
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Table 19  ML algorithms 
experiment results without 
standardization

ML algorithm Accuracy

Fine Tree 97.4%

Medium Tree 97.4%

Coarse Tree 97.4%

Linear Discriminant 94.8%

Quadratic Discriminant NA
Logistic Regression 96.1%

Gaussian Naïve Bayes NA
Kernel Naïve Bayes 92.2%

Linear SVM 94.8%

Quadratic SVM 95.7%

Cubic SVM 94.8%

Fine Gaussian SVM 56.7%

Medium Gaussian SVM 94.8%

Coarse Gaussian SVM 94.8%

Fine KNN 90.0%

Medium KNN 88.3%

Coarse KNN 68.0%

Cosine KNN 91.8%

Cubic KNN 86.6%

Weighted KNN 90.5%

Ensemble Boosted Trees 56.7%

Ensemble Bagged Trees 98.7%

Ensemble Subspace Discriminant 95.2%

Ensemble Subspace KNN 87.4%

Ensemble RUSBoosted Trees 79.7%

Fig. 18  Graphical comparison bettwen the ML algorithms
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Appendices

Table of Symbols

Table 21 shows the used symbols in the current study.

Table 20  Comparison with 
state-of-the-art studies: tabular 
representation

Reference Accuracy

Apostolopoulos and Mpesiana (2020) 96.78%

Ozturk (2020) 98.08%

Brunese et al. (2020) 97%

Khan et al. (2020) 89.6%

Ardakani et al. (2020) 99.51%

Zhang (2020) 92.49%

Hu (2020) 96.2%

Karar et al. (2021) 99.9%

Nour et al. (2020) 98.97%

Waheed et al. (2020) 95%

Sakib et al. (2020) 94.61%

Rajaraman (2020) 99.01%

Current Study 99.61%

Fig. 19  Comparison with state-of-the-art studies: graphical representation
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Table 21  Table of symbols

Symbol Meaning

m The number of features
Rm The dimensional pattern space
c The number of categories (i.e. classes)
ci A class at index i
�i A class region at index i
Xu An unknown pattern
f A set of discriminant functions
fci A discriminant function at ci
ck A class at index k
P(�i|Xu) The posterior probability of finding Xu in the class region �i

P(Xu|�i) The probability that Xu belongs to the class region �i

P(�i) The priori of a class region �i

P(Xu) The evidence of Xu

nci The number of samples in a class ci
N The total number of samples in the sample space
z A measure of dependency on variables or the predicted output value
X The variables or inputs
i An index
k An index
�
0

The intercept or bias
�i The slope of the logistic regression model or the coefficient value at index i
V The number of variables or inputs
P(z) The probability of the variables
l The number of features (i.e., parameters) in Xu

j An index
� The mean value
� The standard deviation value
h A smoothing parameter optimized on the training dataset
xvji The value of the feature in the jth position of the vth input in class ci
yi The class number
w The weight vector
b The bias
C A parameter
Lhinge The hinge loss
TP True positive
TN True negative
FP False positive
FN False negative
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