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Abstract
Vector Symbolic Architectures combine a high-dimensional vector space with a set of care-
fully designed operators in order to perform symbolic computations with large numerical 
vectors. Major goals are the exploitation of their representational power and ability to deal 
with fuzziness and ambiguity. Over the past years, several VSA implementations have been 
proposed. The available implementations differ in the underlying vector space and the par-
ticular implementations of the VSA operators. This paper provides an overview of eleven 
available VSA implementations and discusses their commonalities and differences in the 
underlying vector space and operators. We create a taxonomy of available binding opera-
tions and show an important ramification for non self-inverse binding operations using an 
example from analogical reasoning. A main contribution is the experimental comparison 
of the available implementations in order to evaluate (1) the capacity of bundles, (2) the 
approximation quality of non-exact unbinding operations, (3) the influence of combining 
binding and bundling operations on the query answering performance, and (4) the perfor-
mance on two example applications: visual place- and language-recognition. We expect 
this comparison and systematization to be relevant for development of VSAs, and to sup-
port the selection of an appropriate VSA for a particular task. The implementations are 
available.

Keywords Vector symbolic architectures · Hypervectors · High-dimensional computing · 
Hyperdimensional computing

1 Introduction

This paper is about selecting the appropriate Vector Symbolic Architecture (VSA) to 
approach a given task. But what is a VSA? VSAs are a class of approaches to solve com-
putational problems using mathematical operations on large vectors. A VSA consists of a 
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particular vector space, for example [−1, 1]D with D = 10, 000 (the space of 10,000-dimen-
sional vectors with real numbers between −1 and 1) and a set of well chosen operations on 
these vectors. Although each vector from [−1, 1]D is primarily a subsymbolic entity with-
out particular meaning, we can associate a symbolic meaning with this vector. To some 
initial atomic vectors, we can assign a meaning. For other vectors, the meaning will depend 
on the applied operations and operands. This is similar to how a symbol can be encoded in 
a binary pattern in a computer (e.g., encoding a number). In the computer, imperative algo-
rithmic processing of this binary pattern is used to perform manipulation of the symbol 
(e.g., do calculations with numbers). The binary encodings in computers and operations on 
these bitstrings are optimized for maximum storage efficiency (i.e., to be able to distinguish 
2n different numbers in an n-dimensional bitstring) and for exact processing (i.e., there is 
no uncertainty in the encodings or the outcome of an operation). Vector Symbolic Archi-
tectures follow a considerably different approach: 

(1) Symbols are encoded in very large atomic vectors, much larger than would be required 
to just distinguish the symbols. VSAs use the additional space to introduce redun-
dancy in the representations, usually combined with distributing information across 
many dimensions of the vector (e.g., there is no single bit that represents a particular 
property—hence a single error on this bit can not alter this property). As an important 
result, this redundant and distributed representation allows to also store compositional 
structures of multiple atomic vectors in a vector from the same space. Moreover, it 
is known from mathematics that in very high dimensional spaces randomly sampled 
vectors are very likely almost orthogonal (Kanerva 2009) (a result of the concentration 
of measure). This can be exploited in VSAs to encode symbols using random vectors 
and, nevertheless, there will be only a very low chance that two symbols are similar in 
terms of angular distance measures. Very importantly, measuring the angular distance 
between vectors allows us to evaluate a graded similarity relation between the cor-
responding symbols.

(2) The operations in VSAs are mathematical operations that create, process and preserve 
the graded similarity of the representations in a systematic and useful way. For instance, 
an addition-like operator can overlay vectors and creates a representation that is similar 
to the overlaid vectors. Let us look at an example (borrowed from Kanerva (2009)): 
Suppose that we want to represent the country USA and its properties with symbolic 
entities—e.g., the currency Dollar and capital Washington DC (abbreviated WDC). In 
a VSA representation, each entity is a high-dimensional vector. For basic entities, for 
which we do not have additional information to systematically create them, we can use 
a random vector (e.g., sample from [−1, 1]D ). In our example, these might be Dollar 
and WDC—remember, these two high-dimensional random vectors will be very dis-
similar. In contrast, the vector for USA shall reflect our knowledge that USA is related 
to Dollar and WDC. Using a VSA, a simple approach would be to create the vector for 
USA as a superposition of the vectors Dollar and WDC by using an operator + that is 
called bundling: RUSA = Dollar +WDC . A VSA implements this operator such that 
it creates a vector RUSA (from the same vector space) that is similar to the input vec-
tors—hence, RUSA will be similar to both WDC and Dollar.

VSAs provide more operators to represent more complex relations between vectors. For 
instance, a binding operator ⊗ that can be used to create role-filler pairs and create and 
query more expressive terms like: RUSA = Name⊗ USA + Curr⊗ Dollar + Cap⊗WDC , 
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with Name, Curr, and Cap being random vectors that encode these three roles. Why is this 
useful? We can now query for the currency of the USA by another mathematical operation 
(called unbinding) on the vectors and calculate the result by: Dollar = RUSA ⊘ Curr . Most 
interestingly, this query would still work under significant amounts of fuzziness—either 
due to noise, ambiguities in the word meanings, or synonyms (e.g. querying with monetary 
unit instead of currency—provided that these synonym vectors are created in an appro-
priate way, i.e. they are similar to some extent). The following Sect. 2 will provide more 
details on these VSA operators.

Using embeddings in high-dimensional vector spaces to deal with ambiguities is well 
established in natural language processing (Widdows 2004). There, the objective is typi-
cally a particular similarity structure of the embeddings. VSAs make use of a larger set of 
operations on high-dimensional vectors and focus on the sequence of operations that gener-
ated a representation. A more exhaustive introduction to the properties of these operations 
can be found in the seminal paper of Kanerva (2009) and in the more recent paper (Neubert 
et al. 2019b). So far, they have been applied in various fields including medical diagno-
sis (Widdows and Cohen 2015), image feature aggregation (Neubert and Schubert 2021), 
semantic image retrieval (Neubert et al. 2021), robotics (Neubert et al. 2019b), to address 
catastrophic forgetting in deep neural networks (Cheung et  al. 2019), fault detection 
(Kleyko et al. 2015), analogy mapping (Rachkovskij and Slipchenko 2012), reinforcement 
learning (Kleyko et al. 2015), long-short term memory (Danihelka et al. 2016), pattern rec-
ognition (Kleyko et al. 2018), text classification (Joshi et al. 2017), synthesis of finite state 
automata (Osipov et al. 2017), and for creating hyperdimensional stack machines (Yerxa 
et al. 2018). Interestingly, also the intermediate and output layers of deep artificial neural 
networks can provide high-dimensional vector embeddings for symbolic processing with a 
VSA (Neubert et al. 2019b; Yilmaz 2015; Karunaratne et al. 2021). Although processing of 
vectors with thousands of dimensions is currently not very time efficient on standard CPUs, 
typically, VSA operations can be highly parallelized. In addition, there are also particularly 
efficient in-memory implementations of VSA operators possible (Karunaratne et al. 2020). 
Further, VSAs support distributed representations, which are exceptionally robust towards 
noise (Ahmad and Hawkins 2015), an omnipresent problem when dealing with real world 
data, e.g., in robotics (Thrun et al. 2005). In the long term, this robustness can also allow to 
use very power efficient stochastic devices (Rahimi et al. 2017) that are prone to bit errors 
but are very helpful for applications with limited resources (e.g., mobile computing, edge 
computing, robotics).

As stated initially, a VSA combines a vector space with a set of operations. However, 
based on the chosen vector space and the implementation of the operations, a different 
VSA is created. In the above list of VSA applications, a broad range of different VSAs 
has been used. They all use a similar set of operations, but the different underlying vector 
spaces and the different implementations of the operations have a large influence on the 
properties of each individual VSA. Basically, each application of a VSA raises the ques-
tion: Which VSA is the best choice for the task at hand? This question gained relatively 
little attention in the literature. For instance, Widdows and Cohen (2015), Kleyko (2018), 
Rahimi et al. (2017) and Plate (1997) describe various possible vector spaces with corre-
sponding bundling and binding operation but do not experimentally compare these VSAs 
on an application. A capacity experiment of different VSAs in combination with Recurrent 
Neuronal Network memory was done in Frady et al. (2018). However, the authors focus 
particularly on the application of the recurrent memory rather than the complete set of 
operators.
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In this paper, we benchmark eleven VSA implementations from the literature. We pro-
vide an overview of their properties in the following Sect. 2. This section also presents a 
novel taxonomy of the different existing binding operators and discusses the algorithmic 
ramifications of their mathematical properties. A more practically relevant contribution is 
the experimental comparison of the available VSAs in Sect. 3 with respect to the following 
important questions: (1) How efficiently can the different VSAs store (bundle) information 
into one representation? (2) What is the approximation quality of non exact unbind opera-
tors? (3) To what extend are binding and unbinding disturbed by bundled representations? 
In Sect. 4, we complement this evaluation based on synthetic data with an experimental 
comparison on two practical applications that involve real-world data: the ability to encode 
context for visual place recognition on mobile robots and the ability to systematically con-
struct symbolic representations for recognizing the language of a given text. The paper 
closes with a summary of the main insights in Sect. 5. Matlab implementations of all VSAs 
and the experiments are available online.1

We want to emphasize the point that a detailed introduction to VSAs and their opera-
tors are beyond the scope of this paper—instead, we focus on a comparison of available 
implementations. For more basic introductions to the topic please refer to Kanerva (2009) 
or Neubert et al. (2019b).

2  VSAs and their properties

A VSA combines a vector space with a set of operations. The set of operations can vary 
but typically includes operators for bundling, binding, and unbinding, as well as a similar-
ity measure. These operators are often complemented by a permutation operator which is 
important, e.g., to quote information (Gayler 1998). Despite their importance, since per-
mutations work very similar for all VSAs, they are not part of this comparison. Instead we 
focus on differences between VSAs that can result from differences in one or multiple of 
the other components described in the following subsections. We selected the following 
implementations2 (summarized in Table 1): the Multiply-Add-Permute (we use the acro-
nyms MAP-C, MAP-B and MAP-I, to distinguish their three possible variations based 
on real, bipolar or integer vector spaces) from Gayler (1998), the Binary Spatter Code 
(BSC) from Kanerva (1996), the Binary Sparse Distributed Representation from Rachko-
vskij (2001) (BSDC-CDT and BSDC-S to distinguish the two different proposed bind-
ing operations), another Binary Sparse Distributed Representation from Laiho et al. (2015) 
(BSDC-SEG), the Holographic Reduced Representations (HRR) from Plate (1995) and 
its realization in the frequency domain (FHRR) from Plate (2003), Plate (1994), the Vec-
tor derived Binding (VTB) from Gosmann and Eliasmith (2019), which is also based on 
the ideas of Plate (1994), and finally an implementation called Matrix Binding of Additive 
Terms (MBAT) from Gallant and Okaywe (2013).

All these VSAs share the property of using high-dimensional representations (hyper-
vectors). However, they differ in their specific vector spaces �  . Section 2.1 will introduce 

1 https:// github. com/ TUC- ProAut/ VSA_ Toolb ox, additional supplemental material is also available at 
https:// www. tu- chemn itz. de/ etit/ proaut/ vsa.
2 All VSAs are taken from the literature. However, in order to implement and experimentally evaluate 
them, we had to make additional design decisions for some. This led to the three versions of the MAP archi-
tecture from Gayler (1998).

https://github.com/TUC-ProAut/VSA_Toolbox
https://www.tu-chemnitz.de/etit/proaut/vsa
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properties of these high-dimensional vectors spaces and discuss the creation of hypervec-
tors. The introduction emphasized the importance of a similarity measure to deal with 
the fuzziness of representations: instead of treating representations as same or different, 
VSAs typically evaluate their similarity. Section 2.2 will provide details of the used simi-
larity metrics. Table 1 summarizes the properties of the compared VSAs. In order to solve 
computational problems or represent knowledge with a VSA, we need a set of operations: 
bundling will be the topic of Sect.  2.3 and binding and unbinding will be explained in 
Sect. 2.4. This section will also introduce a taxonomy that systematizes the significant dif-
ferences in the available binding implementations. Finally, Sect. 2.5 will describe an exam-
ple application of VSAs to analogical reasoning using the previously described operators. 
The application is similar to the USA-representation example from the introduction and 
will reveal important ramifications of non-self inverse binding operations.

2.1  Hypervectors: the elements of a VSA

A VSA works in a specific vector space �  with a defined set of operations. The generation 
of hypervectors from the particular vector space �  is an essential step in high-dimensional 
symbolic processing. There are basically three ways to create a vector in a VSA: (1) It can 
be the result of a VSA operation. (2) It can be the result of (engineered or learned) encod-
ing of (real-world) data. (3) It can be an atomic entity (e.g. a vector that represents a role 
in a role-filler pair). For these role vectors, it is crucial that they are non-similar to all other 
unrelated vectors. Luckily, in the high-dimensional vectors spaces underlying VSAs, we 
can simply use random vectors since they are mutually quasi-orthogonal. From these three 
ways, the first will be the topic of the following subsections on the operators. The second 
way (encoding other data as vectors, e.g. by feeding an image through a ConvNet) is part of 
the Sect. 4.2 to encode images for visual place recognition. The third way of creating basic 
vectors is topic of this section since it plays an important role when using VSAs and varies 
significantly for the different available VSAs.

When selecting vectors to represent basic entities (e.g., symbols for which we do not 
know any relation that we can encode), the goal is to create maximally different encod-
ings (to be able to robustly distinguish them in the presence of noise or other ambigui-
ties). High-dimensional vector spaces offer plenty of space to push these vectors apart and 
moreover, they have the interesting property that random vectors are already very far away 
(Neubert et  al. 2019b). In particular for angular distance measures, this means that two 
random vectors are very likely almost orthogonal (this is called quasi-orthogonal): If we 
sample the direction of vectors independent and identically distributed (i.i.d.) from a uni-
form distribution, the more dimensions the vectors have, the higher is the probability that 
the angle between two such random vectors is close to 90 degrees; for 10,000 dimensional 
real vectors, the probability to be in 90 ± 5 degrees is almost one. Please refer to Neubert 
et al. (2019b) for a more in-depth presentation and evaluation.

The quasi-orthogonality property is heavily used in VSA operations. Since the different 
available VSAs use different vector spaces and metrics (cf. Sect. 2.2), different approaches 
to create vectors are involved. The most common approach is based on real numbers in the 
continuous range. For instance, the Multiply-Add-Permute (MAP-C—C stands for contin-
uous) architecture uses the real range of [−1, 1] . Other architectures such as HRR, MBAT 
as well as the VTB VSAs use a real range which is normally distributed with a mean of 0 
and a variance of 1/D where D defines the number of dimensions. Another group uses 
binary vector spaces. For example, the Binary Spatter Code (BSC) and the binary MAP 
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(MAP-B as well as MAP-I) architecture generate the vectors in {0, 1} or {−1, 1} . The crea-
tion of the binary values is based on a Bernoulli distribution with a probability of p = 0.5 . 
By reducing the probability p, sparse vectors can be created for the BSDC-CDT, BSDC-S 
as well as the BSDC-SEG VSAs (where the acronym CDT means Context Depend Thin-
ning, S means shifting, and SEG means segmentally shifting, all three are binding opera-
tions and are explained in Sect. 2.4). To initialize the BSDC-SEG correctly, we use the 
density p to calculate the number of segments s = D ⋅ p (this is needed for binding, as 
shown in Fig. 2) and randomly place a single 1 in each segment, all other entries are 0. The 
authors of Rachkovskij (2001) showed that a probability of p =

1
√

D
 (D is the number of 

dimensions) achieves the highest capacity3 in the vector and is therefore used in these 
architectures. Finally, a complex vector space can be used. One example is the frequency 
Holographic Reduced Representations FHRR that uses complex numbers on the unit cir-
cle (the complex number in each vector dimension has length one) (Plate 1994). It is there-
fore sufficient to use uniformly distributed values in the range of (−�,�] to define the 
angles of the complex values—thus, the complex vector can be stored using the real vector 
of angles � . The complex numbers c can be computed from the angles � by c = ei⋅�.

2.2  Similarity measurement

VSAs use similarity metrics to evaluate vector representations, in particular, to find rela-
tions between two given vectors (figure out whether the represented symbols have a related 
meaning). For example, given a noisy version of a hypervector as the output of a series of 
VSA operations, we might want to find the most similar elementary vector from a database 
of known symbols in order to decode this vector. A carefully chosen similarity metric is 
essential for finding the correct denoised vector from the database and to ensure a robust 
operation of VSAs. The term curse of dimensionality (Bellman 1961) describes the obser-
vation that algorithms that are designed for low dimensional spaces often fail in higher 
dimensional spaces—this includes similarity measures based on Euclidean distance (Beyer 
et al. 1999). Therefore, VSAs typically use other similarity metrics, usually based on angles 
between vectors or vector dimensions.

As shown in Table  1, the architectures MAP-C, MAP-B, MAP-I, HRR, MBAT 
and VTB use the cosine similarity (cosine of the angle) between vectors � and � ∈ ℝ

D : 
s = sim(�, �) = cos(�,�) . The output is a scalar value ( ℝD ×ℝ

D
⟶ ℝ ) within the range 

[−1, 1] . Note that -1 means collinear vectors in opposite directions and 1 means identical 
directions. A value of 0 indicates orthogonal vectors.

The binary vector space can be combined with different similarity metrics depending on 
the sparsity: Either the complementary Hamming Distance for binary dense vectors, like 
BSC or the overlap for binary sparse vectors as BSDC-CDT, BSDC-S, BSDC-SEG (the 
overlap can be normalized to the range [0, 1] (0 means non-similar and 1 means similar)). 
Equation 1 shows the equation to compute the similarity (complementary and normalized 
Hamming Distance) between dense ( p = 0.5 ) binary vectors (BSC) � and � ∈ {0, 1}D , 
given the number of dimensions D.

3 The term capacity refers to the number of stored items in the auto-associative memory in Rachkovskij 
(2001)
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The complex space needs yet another similarity measurement. As introduced in section 2.1, 
the complex architecture of Plate (1994) (FHRR) uses angles � of complex numbers. To 
measure how similar two vectors are, the average angular distance is calculated (keep in 
mind, since the complex vectors have unit length, vectors � and � are from ℝD and only 
contain the angles �):

2.3  Bundling

VSAs use the bundling operator to superimpose (or overlay) given hypervectors (similar to 
what was done in the introductory example). Bundling aggregates a set of input vectors of 
space �  and creates an output vector of the same space �  that is similar to its inputs. Plate 
(Plate 1997) declared that the essential property of the bundling operator is the unstruc-
tured similarity preservation. It means: a bundle of vectors � + � is still similar to vector 
A, B and also to another bundle � + � that contains one of the input vectors. Since all 
compared VSAs implement bundling as an addition-like operator, the most commonly used 
symbol for the bundling operation is +.

The implementation is typically a simple element-wise addition. Depending on the vec-
tor space it is followed by a normalization step to the specific numerical range. For instance 
vectors of the HRR, VTB and MBAT have to be scaled to a vector length of one. Bundled 
vectors from the MAP-C are cut at − 1 and 1. The binary VSAs BSC and MAP-B use a 
threshold to convert the sums into the binary range of values. The threshold depends on 
the number of bundled vectors and is exactly half this number. Potential ties in case of an 
even number of bundled vectors are decided randomly. In the sparse distributed architec-
tures, the logical OR function is used to implement the bundling operation. Since only a 
few values are non-zero, they carry most information and shall be preserved. For example, 
Rachkovskij (2001) do not apply thinning after bundling, however, in some application it is 
necessary to decrease the density of the bundled vector. For instance, the language recogni-
tion example in Sect. 4.1 requires a density constraint—we used a (empirically determined) 
maximum density of 50%. Besides the BSDC without thinning, the MAP-I does not need 
normalization as well—it accumulates the vectors withing the integer range. The bundling 
operator in FHRR first converts the angle vectors to the form ei⋅� before using element-
wise addition. Afterward, the complex-valued vectors will be added. Then, only the angles 
of the resulting complex numbers are used and the magnitudes are discarded—the output 
are the new angles � . The complete bundling step is shown in equation 3:

Due to its implementation in form of addition, bundling is commutative and associative in 
all compared VSA implementations except for the normalized bundling operations which 
are only approximately associative: (� + �) + � ≈ � + (� + �).

(1)s = sim(�,�) = 1 −
HammingDist(�,�)

D

(2)s = sim(�, �) =
1

D
⋅

D
∑

i=1

cos(ai − bi)

(3)� + � = angle(ei⋅a + ei⋅b)
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2.4  Binding

The binding operator is used to connect two vectors, e.g., the role-filler pairs in the intro-
duction. The output is again a vector from the same vector space. Typically, it is the most 
complex and most diverse operator of VSAs. Plate (Plate 1997) defines the properties of 
the binding as follows:

– the output is non-similar to the inputs: binding of A and B is non similar to A and B
– it preserves structured similarity: binding of A and B is similar to binding of A’ and B’, 

if A’ is similar to A and B’ is similar to B
– an inverse of the operation exists (defined as unbinding with symbol ⊘)

The binding is typically indicated by the mathematical symbol ⊗.
Unbinding ⊘ is required to recover the elemental vectors from the result of a binding 

(Plate 1997). Given a binding � = �⊗ � , we can retrieve the elemental vectors A or B 
from C with the unbinding operator: � = �⊘ � (or �⊘ � ). R is now similar to the vector 
B or A respectively.

From a historical perspective, one of the first ideas to associate connectionist represen-
tations goes back to Smolensky (1990). He uses the tensor product (the outer product of 
given vectors) to compute a representation that combines all information of the inputs. To 
recover (unbind) the input information from the created matrix, it requires only the normal-
ized inner product of the vector with the matrix (the tensor product). Based on this proce-
dure, it is possible to perform exact binding and unbinding (recovering). However, using 
the tensor product creates a problem: the output of the tensor product of two vectors is a 
matrix and the size of the representation grows with each level of computation. Therefore, 
it is preferable to have binding operations (and corresponding unbinding operations) that 
approximate the result of the outer product in a vector ( � × � → �  ). Thus, according to 
Gayler (2003) a VSA’s binding operation is basically a tensor product representation fol-
lowed by a function to preserve the dimensionality of the input vectors. For instance, Frady 
et al. (2021) shows that the Hadamard product in the MAP VSA is a function of the outer 
product. Based on this dimensionality preserving definition, several binding and unbinding 
operations have been developed specifically for each vector domain. These different bind-
ing operations can be arranged in the taxonomy shown in Fig. 1.

The existing binding implementations can be basically divided into two types: quasi-
orthogonal and non-quasi-orthogonal (see Fig.  1). Quasi-orthogonal bindings explicitly 
follow the properties of Plate (Plate 1997) and generate an output that is dissimilar to 
their inputs. In contrast, the output of a non-quasi-orthogonal binding will be similar to 
the input. Such a binding operation requires additional computational steps to achieve the 
properties specified by Plate (for example a nearest-neighbor search in an item memory 
(Rachkovskij 2001)).

On the next level of the taxonomy, quasi-orthogonal bindings can be further distin-
guished into self-inverse and non self-inverse binding operations. Self-inverse refers to the 
property that the inverse of the binding is the binding operation itself ( unbinding = binding

)4. The opposite is the non self-inverse binding: it requires an additional unbinding opera-
tor (inverse of the binding). Finally, each of these nodes can be separated into approximate 

4 It should be noted that the operator is commonly referred to as self-inverse, but it is rather the vector that 
has this property and not the operator.
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and exact invertible binding (unbinding). For instance, the Smolensky tensor product is 
an exact invertible binding, because the unbinding produces exactly the same vector as in 
the input of the binding: �⊘ (�⊗ �) = � . The approximate inverse produces an unbinding 
output which is similar to the input of the binding, but not the same: �⊘ (�⊗ �) ≈ �.

An quasi-orthogonal binding can be, for example, implemented by element-wise mul-
tiplication (as in Gayler (1998)). In case of bipolar values ( ±1 ), element-wise multiplica-
tion is self-inverse, since 12 = −12 = 1 . The self-inverse property is essential for some VSA 
algorithms in the field of analogical reasoning (this will be the topic of Sect. 2.5). Element-
wise multiplication is, for example, used in the MAP-C, MAP-B and MAP-I architec-
tures. An important difference is that for the continuous space of MAP-C the unbinding is 
only approximate while it is exact for the binary space in MAP-B. For MAP-I it is exact 
for elementary vectors (from {−1, 1} ) and approximate for processed vectors. Compared to 
the Smolensky tensor product, element-wise multiplication approximates the outer product 
matrix by its diagonal. Further, the element-wise multiplication is both commutative and 
associative (cf. Table 1).

Another self-inverse binding with an exact inverse is defined in the BSC architecture. 
It uses the exclusive or (XOR) and is equivalent to the element-wise multiplication in the 
bipolar space. As expected, the XOR is used for both binding and unbinding – it pro-
vides an exact inverse. Additionally, it is commutative and associative like element-wise 
multiplication.

The second category within the quasi-orthogonal bindings in our taxonomy in Fig. 1 
are non self-inverse bindings. Two VSAs have an approximate unbinding operator. Bind-
ing of the real-valued vectors of the VTB architecture are computed using Vector Derived 
Transformation (VTB) as described in Gosmann and Eliasmith (2019). They use a matrix 
multiplication for binding and unbinding. The matrix is constructed from the second input 
vector � , and multiplied with the first vector � afterward. Equation 4 formulates the VTB 
as binding where V ′

b
 represents a square matrix (Eq. 5) which is the reshaped vector b.

(4)� = �⊗ � = Vb ⋅ � =

⎡

⎢

⎢

⎣

V �
b

0 0

0 V �
b

0

0 0 ⋱

⎤

⎥

⎥

⎦

�

Fig. 1  Taxonomy of different 
binding operations. The VSAs 
that use each binding are printed 
in bold (see the Table 1 for more 
details)
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This specifically designed transformation matrix (based on the second vector) provides a 
stringent transformation of the first vector which is invertible (i.e. it allows unbinding). 
This unbinding operator is identical to binding in terms of matrix multiplication, but the 
transposed matrix Vb is used for calculation, as shown in the Eq. 6. These binding and bun-
dling operations are neither commutative nor associative.

Another approximated non self-invertible binding is part of the HRR architecture: the cir-
cular convolution. Binding of two vectors � and � ∈ ℝ

D with circular convolution is calcu-
lated by:

Circular convolution approximates Smolensky’s outer product matrix by sums over all of 
its (wrap-around) diagonals. For more details pleaser refer to Plate (1995). Based on the 
algebraic properties of convolution, this operator is commutative as well as associative. 
However, convolution is not self-inverse and requires a specific unbinding operator. The 
circular correlation (Eq. 8) provides an approximated inverse of the circular convolution 
and is used for unbinding. It is neither commutative nor associative.

A useful property of the convolution is that it becomes an element-wise multiplication in 
the frequency domain (complex space). Thus, it is possible to operate entirely in the com-
plex vector space and use the element-wise multiplication as the binding operator (Plate 
1994). This leads to the FHRR VSA with an exact invertible and non self-inverse binding5 
as shown in the taxonomy in Fig. 1. With the constraints described in Sect. 2.1 (using com-
plex values with a length of one), the computation of binding and unbinding becomes more 
efficient. Given two complex numbers c1 and c2 with angles �1 and �2 and length 1, multipli-
cation of the complex numbers becomes an addition of the angles:

The same procedure applies to unbinding but with the angles of the conjugates of one of 
the given vectors—hence, it is just a subtraction of the angles �1 and �2 . Note that a modulo 
operation with 2� (angles on the complex plane are in the range of (−�,�] ) must follow 
the addition or subtraction. Based on this assumption, it is possible to operate only with 

(5)V �
b
= d

1

4

⎡

⎢

⎢

⎢

⎣

b1 b2 ⋯ bd�

bd�+1 bd�+2 ⋯ b2d�

⋮ ⋮ ⋱ ⋮

bd−d�+1 bd−d�+2 ⋯ bd

⎤

⎥

⎥

⎥

⎦

, d� =
√

D

(6)� ≈ �⊘ � = V⊤

b
�

(7)� = �⊗ � ∶ cj =

D−1
∑

k=0

bkamod(j−k,D) with j ∈ {0, ...,D − 1}

(8)� ≈ �⊘ � ∶ aj =

D−1
∑

k=0

bkcmod(k+j,D) with j ∈ {0, ...,D − 1}

(9)c1 ⋅ c2 = ei⋅�1 ⋅ ei⋅�2 = ei⋅(�1+�2)

5 It should be noted that there are relations between operations of different VSAs and between self-inverse 
and non self-inverse bindings: If the angles of an FHRR are quantized to two levels (e.g., {0,�} ), the bind-
ing becomes self-inverse and equivalent to binary VSAs like BSC or MAP-B.
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the angles rather than the whole complex numbers. Since the addition is associative and 
commutative, the binding is as well. But analog to the unbinding operation, subtraction is 
non-commutative and non-associative—therefore is also the unbinding. At this point we 
would like to emphasize that HRR and FHRR are basically functionally equivalent – the 
operations are performed either in spatial or frequency domain. However, the assumption 
of unit magnitudes in FHRR distinguishes both and simplifies the implementation of the 
binding. Moreover, in contrast to FHRR, HRR uses an approximate unbinding because it 
is more stable and robust against noise compared to an exact inverse (Plate 1994, p. 102).

In the following, we describe the two sparse VSAs with an quasi-orthogonal, exact 
invertible and non self-inverse binding: the BSDC-S (binary sparse distributed represen-
tations with shifting) and the BSDC-SEG (sparse vectors with segmental shifting as in 
Laiho et al. (2015)). The shifting operation allows to encode hypervectors into a new rep-
resentation which is dissimilar to the input. Either the entire vector is shifted by a certain 
number or divided into segments and each segment is shifted individually by different val-
ues. The former goes as follows: Given two vectors, the first will be converted to a single 
hash-value (e.g. use the on-bits’ position indices). Afterwards, the second vector is shifted 
by this hash-value (circular shifting). This operation has an exact inverse (shifting in the 
opposite direction), but it is neither commutative nor associative.

The latter (segment-wise shifting—BSDC-SEG) includes additional computing steps: 
As described in Laiho et al. (2015), the vectors are split into segments of the same length. 
Preferably, the number of segments depends on the density and is equal to the number of 
on-bits in the vector—thus, we have one on-bit per segment in average. For better under-
standing, see Fig. 2 for binding vector a with vector b. Each of those vectors has m seg-
ments (gray shaded boxes) with n values (bits). The position of the first on-bit in each seg-
ment of the vector gives one index per segment. Next, the segments of the second vector 
b will be circularly shifted by these indices (see the resulting vector in the figure). Like 
the BSDC-S, the unbinding is just a simple shifting by the negated indices of the vector 
a. Since the binding of this VSA resembles an addition of the segment indices, it is both 
commutative and associative. In contrast, the unbinding operation is a subtraction of the 
indices of vector a and b and is neither commutative nor associative. As mentioned earlier, 
different binding operations can be related. As another example, the binding operation of 
BSDC-SEG corresponds to an angular representation as in FHRR with m elements quan-
tized to n levels.

The last VSA with an exact invertible binding mechanism is MBAT. It is similar to 
the earlier mentioned VTB binding that constructs a matrix to bind two vectors. MBAT 
(Gallant and Okaywe 2013) uses matrices with a size of D × D to bind vectors of length 
D—this procedure is similar to the Smolenskys tensor product. The binding matrix must be 
orthonormal and can be transposed to unbind a vector. To avoid creating a completely new 
matrix for each binding, Tissera and McDonnell (2014) uses an initial orthonormal matrix 
M and manipulates it for each binding. It uses the exponentiation of the initial matrix M by 
an arbitrary index i, resulting in a matrix Mi that is still orthonormal but after binding gives 
a different result than the initial matrix M. For our experimental comparison, we randomly 
sampled the initial matrix from an uniform distribution and convert it to an orthonormal 
matrix with the singular value decomposition. Since exponentiation of the initial matrix M 
leads to a high computational effort, we approximate the matrix manipulation by shifting 
the rows and the columns by the appropriate index of the role vector. This index is calcu-
lated with a hash-value of the role vector (simple summation over all indices of elements 
greater than zero). However, like the VTB VSA, the MBAT binding and unbinding are 
neither commutative nor associative.
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According to Fig. 1, there is one VSA that uses a non-orthogonal binding. The BSDC-
CDT from Rachkovskij (2001) introduces a binding operator for sparse binary vectors with 
an additive operator: the disjunction (logical OR). Since disjunction of sparse vectors can 
produce up to twice the number of on bits, they propose a Context Depend Thinning (CDT) 
procedure to thin vectors after the disjunction. The complete CDT procedure is described 
in Rachkovskij and Kussul (2001). Since this binding operation creates an output that is 
similar to the inputs, it is in contrast to Plate’s (1997) properties of binding operators (from 
the beginning of this section). As a consequence, instead of using unbinding to retrieve 
elemental vectors, the similarity to all elemental vectors has to be used to find the most 
similar ones. In contrast to the previously discussed quasi-orthogonal binding operations, 
here, additional computational steps are required to achieve the properties of the binding 
procedure defined by Plate (1997). Particularly, if the CDT is used for consecutive bind-
ing and bundling (e.g., bundling role-filler pairs can be seen as two levels—first is binding 
and second is bundling), this requires to store the specific level (binding at first level and 
bundling at the second level). During retrieval, the similarity search (unbinding) must be 
done in the corresponding level of binding, because this binding operator preserves the 
similarity of all bound vectors (in this example, every elemental vector is similar to the 
final representation after binding and bundling). Based on such iterative search (from level 
to level), the CDT binding needs more computational steps and is not directly comparable 
with the other binding operations. Therefore, the later experimental evaluations will use 
the segment-wise shifting as binding and unbinding for both the BSDC-S and BSDC-SEG 
VSAs instead of the CDT.

Finally, we want to emphasize the different complexities of the binding operations. 
Based on a comparison in Kelly et al. (2013), for D dimensional vectors, the complexities 
(number of computing steps) of binding two vectors are as follows:

– element-wise multiplication
  (MAP-C, MAP-B, BSC, FHRR): O(D)
– circular conv. (HRR): O(D log D)

– matrix binding (MBAT, VTB): O(D2)

Fig. 2  Segment-wise shifting for binding sparse binary vectors a and b 
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– sparse shifting (BSDC-S, BSDC-SEG)6: O(D)

2.5  Ramifications of non self‑inverse binding

Section 2.4 distinguished two different types of binding operations: self-inverse and non 
self-inverse. We want to demonstrate possible ramifications of this property using the clas-
sical example from Pentti Kanerva on analogical reasoning (Kanerva 2010): “What is the 
Dollar of Mexico?” The task is as follows: Similar to the representation of the country USA 
( RUSA = Name⊗ USA + Curr⊗ Dollar + Cap⊗WDC ) from the example in the intro-
duction, we can define a second representation of the country Mexico:

Given these two representations, we, as humans, can answer Kanerva’s question by ana-
logical reasoning: Dollar is the currency of the USA, the currency of Mexico is Peso, thus 
the answer to the above question is “Peso”. This procedure can be elegantly implemented 
using a VSA. However, the method described in Kanerva (2010) only works with self-
inverse bindings, such as BSC and MAP. To understand why, we will explain the VSA 
approach more in detail: Given are the records of both countries RMex and RUSA (the latter is 
written out in the introduction). In order to evaluate analogies between these two countries, 
we can combine all the information from these two representations into a single vector 
using binding. This creates a mapping F:

With the resulting vector representation we can answer the initial question (“What is the 
Dollar of Mexico?”) by binding the query vector (Dollar) to the mapping:

The following explains why this actually works. Equation 11 can be examined based on the 
algebraic properties of the binding and bundling operations (e.g. binding distributes over 
bundling). In case of a self-inverse binding (cf. taxonomy in Fig. 1), the following terms 
result from Eq. 11 (we refer to Kanerva (2010) for a more detailed explanation):

Based on the self-inverse property, terms like Curr⊗ Curr cancel out (i.e. they create a 
ones-vector). Since binding creates an output that is not similar to the inputs, other terms, 
like Name⊗ Curr , can be treated as noise and they are summarized in the term N. The 
noise terms are dissimilar to all known vectors and basically behave like random vectors 
(which are quasi-orthogonal in high-dimensional spaces). Binding the vector Dol to the 
mapping F of USA and Mexico (Eq. 12) creates vector A in Eq. 14 (only the most impor-
tant terms are shown). The part Dol⊗ (Dol⊗ Peso) is important because it reduces to 
Peso, again, based on the self-inverse property. As before, the remaining terms behave like 
noise that is bundled with the representation of Peso. Since the elemental vectors (repre-
sentations for, e.g., Dollar or Peso) are randomly generated, they are highly robust against 

(10)RMex = Name⊗Mex + Curr⊗ Peso + Cap⊗MXC

(11)F = RUSA ⊗ RMex

(12)A = Dol⊗ F ≈ Peso

(13)F = (USA⊗Mex) + (Dol⊗ Peso) + (WDC⊗MXC) + N

6 Number of computational steps also depends on the density p.
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noise. That is why the resulting vector A is still very similar to the elemental vector for 
Peso.

Notice, the previous description is only a brief summary to the “Dollar of Mexico” exam-
ple. We refer to Kanerva (2010) for more details.

However, we can see that the computation is based on a self-inverse binding operation. 
As described in Sect. 2 and the taxonomy in Fig. 1, some VSAs have no self-inverse bind-
ing and need an unbind operator to retrieve elemental vectors.

The above described approach (Kanerva 2010) has the particularly elegant property that 
all information about the two records is stored in the single vector F and once this vector 
is computed, any number of queries can be done, each with a single operation (Eq. 12). 
However, if we relax this requirement, we can address the same task with the two-step 
approach described in Kanerva et al. (2001, p. 265). This also relaxes the requirement of a 
self-inverse binding and uses unbinding instead:

After simplification to the necessary terms (all other terms are represented as noise N), we 
get equation 16.

It can be seen that it is in principle possible to solve the task ’What is the dollar of Mex-
ico?’ with non-self-inverse binding operators. However, this requires storing more vectors 
(both RMex and RUSA are stored) and additional computational effort.

In the same direction, Plate (1995) emphasized the need for a ’readout’ machine for 
the HRR VSA to decode chunked sequences (hierarchical binding). It retrieves the trace 
iteratively and finally generates the result. Transferred to the given example: first, we have 
to figure out the meaning of Dollar (it is the currency of the USA) and query the result 
(Currency) on the representation of Mexico afterward (resulting in Peso). Such a read-
out requires more computation steps caused by iteratively traversing of the hierarchy tree 
(please see (Plate 1995) for more details). Presumably, this is a general problem of all non 
self-inverse binding operations.

3  Experimental comparison

After the discussion of theoretical aspects in the previous section, this section provides an 
experimental comparison of the different VSA implementations using three experiments. 
The first evaluates the bundling operations to answer the question How efficiently can the 
different VSAs store (bundle) information into one representation? The topic of the sec-
ond experiment are the binding and unbinding operations. As described in Sect. 2.4 and 
the taxonomy in Fig. 1, some binding operations have an approximate inverse. Hence, the 

(14)A = Dol⊗ ((USA⊗Mex) + (Dol⊗ Peso) + ... + N)

(15)A = RMex ⊘ (RUSA ⊘ Dol)

(16)

A = ( Curr
���

Role

⊗ Peso
���
Filler

)⊘ (( Curr
���

Role

⊗ Dol
���
Filler

)⊘ Dol
���
Filler

) + N

A = ( Curr
���

Role

⊗ Peso
���
Filler

)⊘ Curr
���

Role

+N

A = Peso + N
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second experiment evaluates the question How good is the approximation of the binding 
inverse? Finally, the third experiment focuses on the combination of bundling and bind-
ing and the ability to recover noisy representations. There, the leading question is: To what 
extent are binding and unbinding disturbed by bundled representations?

A note on the evaluation setup We will base our evaluation on the required number 
of dimensions of a VSA to achieve a certain performance instead of the physical memory 
consumption or computational effort - although the storage size and the computational 
effort per dimension can vary significantly (e.g. between a binary vector and a float vector). 
The main reason is that the actual resource demands of a single VSA might vary signifi-
cantly dependent on the capabilities and limitations of the underlying hard- and software, 
as well as the current task. For example, it is well-known that HRR representations do not 
require a high precision for many tasks (Plate 1994, p. 67). However, low resolution data 
types (e.g. half-precision floats or less) might not be available in the used programming 
language. Instead, using the number of dimensions introduces a bias towards VSAs with 
high memory requirements per dimension, however, the values are supposed to be simple 
to convert to actual demands given a particular application setup.

3.1  Bundling capacity

We evaluate the question How efficiently can the different VSAs store (bundle) infor-
mation into one representation? We use an experimental setup similar to Neubert et  al. 
(2019b), extend it with varying dataset sizes and varying numbers of dimensions, and use 
it to experimentally compare the eleven VSAs. For each VSA, we create a database of 
N = 1, 000 random elementary vectors from the underlying vector space �  . It represents 
basic entities stored in a so-called item memory. To evaluate the bundle capacity of this 
VSA, we randomly chose k elementary vectors (without replacement) from this database 
and create their superposition B ∈ �  using the VSA’s bundle operator. Now the question 
is whether this combined vector B is still similar to the bundled elementary vectors. To 
answer this question, we query the database with the vector B to obtain the k elementary 
vectors, which are the most similar to the bundle B (using the VSA’s similarity metric). 
The evaluation criterion is the accuracy of the query result: the ratio of correctly retrieved 
elementary vectors on the k returned vectors from the database.7

The capacity depends on the dimensionality of �  . Therefore we range the number of 
dimensions D in 4...1156 (since VTB needs even roots the number of dimensions is com-
puted by i2 with i = 2...34 ) and evaluate for k in 2...50. We use N = 1, 000 elementary vec-
tors. To account for randomness, we repeat each experiment 10 times and report means.

Figure 3 shows the results of the experiment in form of a heat-map for each VSA, which 
encodes the accuracies of all combinations of number of bundled vectors and number of 
dimensions in colors. The warmer the color, the higher the achieved accuracy with a par-
ticular number of dimensions to store and retrieve a certain number of bundled vectors. 
One important observation is the large dark red areas (close to perfect accuracies) achieved 
by the FHRR and BSDC architectures. Also remarkable is the fast transition from very low 
accuracy (blue) to perfect accuracy (dark red) for the BSDC architectures; dependent on 
the number of dimensions, bundling will either fail or work almost perfectly. Presumably, 

7 This experimental setup is closely related to Bloom filters that can efficiently evaluate whether an element 
is part of a set. Their relation to VSAs is discussed in Kleyko et al. (2020).
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this is the result of the increased density after bundling without thinning. The last plot in 
Fig.  3 shows how the transition range between low and high accuracies increases when 
using an additional thinning (with maximum density 0.5)8.

For an easier access to the different VSAs performances in the capacity experiment, 
Fig. 4 summarizes the results of the heatmaps in 1-D curves. It provides an evaluation of 
the required number of dimensions to achieve almost perfect retrieval for different values 
of k. We selected a threshold of 99% accuracy, that means 99 of 100 query results are cor-
rect. A threshold of 100% would have been particularly sensitive to outliers, since a single 
wrong retrieval would prevent achieving the 100%, independent of the number of perfect 
retrieval cases. To make the comparison more accessible, we fit a straight line to the data 
points and plot the result as a dotted line.

Dense binary spaces need the highest number of dimensions, real-valued vectors a lit-
tle less and the complex values require the smallest number of dimensions. As expected 
from the previous plots in Fig. 3, the binary sparse (BSDC, BSDC-S, BSDC-SEG) and 
the complex domain (FHRR) reach the most efficient results. They need fewer dimensions 
to bundle all vectors correctly. The sparse binary representations perform better than the 
dense binary vectors in this experiment. A more in-depth analysis of the general benefits of 
sparse distributed representations can be found in Ahmad and Scheinkman (2019). Particu-
larly interesting is also the comparison between the HRR VSA from Plate (1995) and the 
complex-valued FHRR VSA from Plate (1994). Both the FHRR with the complex domain 
as well as the HRR architecture operate in a continuous space (where values in FHRR 
represent angles of unit-length complex numbers). However, operating with real values in 
a complex perspective increases the efficiency noticeably. Even if the HRR architecture is 
adapted to a range of [−�,�] like the complex domain, the performance of the real VSA 
does not change remarkably. This is an interesting insight: If real numbers are treated as if 
they were angles of a complex number, then this increases the efficiency of bundling.

Fig. 3  Heat-maps showing the accuracies of different number of bundled vectors and numbers of dimen-
sions

8 Since the BSDC architecture performance also depends on the given sparsity, we want to refer to Kleyko 
et al. (2018) for a more exhaustive sensitivity analysis of sparse vectors on a classification task.
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We want to emphasize again that different VSAs potentially require very different 
amounts of memory per dimension. Very interestingly, in these experiments, the sparse 
vectors require a low number of dimensions and are additionally expected to have particu-
larly low memory consumption. A more in-depth evaluation of memory and computational 
demands is an important point for future work.

Besides the experimental evaluation of the bundle capacity, the literature provides ana-
lytical methods to predict the accuracy for a given number of bundled vectors and number 
of dimensions. Since it this is not yet available for all of our evaluated VSAs, we have 
not used it in our comparison. However, we found a high accordance of our experimental 
results with the available analytical results. Further information about analytical capacity 
calculation can be found in Gallant and Okaywe (2013), Frady et al. (2018) and Kleyko 
(2018).

Influence of the item memory size In the above experiments, we used a fixed num-
ber of vectors in the item memory ( N = 1, 000 ). Plate (Plate 1994, p. 160 ff) describes a 
dependency between the size of the item memory and the accuracy of the superposition 
memory (bundled vectors) for Holographic Reduced Representations. The conclusion was 
that the number of vectors in the item memory (N) can be increased exponentially in the 
number of dimensions D while maintaining the retrieval accuracy. To evaluate the influ-
ence of the item memory size for all VSAs, we slightly modify our previous experimental 
setup. This time, we fix the number of bundled vectors to k = 10 and report the minimum 
number of dimensions that is required to achieve an accuracy of at least 99% for a varying 
number N of elements in the item memory.

The results can be seen in the Fig. 5 (using a logarithmic scale for the item memory 
size). Although the absolute performance varies between VSAs, the shape of the curves 
are in accordance with Plate’s previous experiment on HRRs. Since there are no qualitative 
differences between the VSAs (the ordering of the graphs is consistent), our above com-
parison of VSAs for a varying number of bundled vectors k is presumably representative 
also for other item memory sizes N.

Fig. 4  Minimum required number of dimensions to reach 99% accuracy. The solid lines represent linear 
fitted curves. The flatter the curves/lines, the more efficient is the bundling. Keep in mind, different VSAs 
might have very different memory consumption per dimension
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3.2  Performance of approximately invertible binding

The taxonomy in Fig. 1 includes three VSAs that only have an approximate inverse bind-
ing: MAP-C, VTB and HRR. The question is: How good is the approximation of the 
binding inverse? To evaluate the performance of the approximate inverses, we use a setup 
similar to Gosmann and Eliasmith (2019). We extended the experiment to compare the 
accuracy of approximate unbinding of the three relevant VSAs. The experiment is defined 
as follows: we start with an initial random vector v and bind it sequentially with n other 
random vectors �� ⋯ �

�
 to an encoded sequence S (see Eq. 17). The task is to retrieve the 

elemental vector v by sequentially unbinding the random vectors �
�
⋯ �

�
 from S. The result 

is a vector �′ that should be highly similar to the original vector v (see Eq. 18).

We applied the described procedure for the 3 approximated VSAs (all exact-invertible bind-
ings would produce 100% accuracy and are not shown in the plots) with n = 40 sequences 
and D = 1024 dimensions. The evaluation criterion is the similarity of v and v′ , normalized 
to range [0,  1] (minimum to maximum possible similarity value). Results are shown in 
Fig. 6. In accordance with the results from Gosmann and Eliasmith (2019), the VTB bind-
ing and unbinding performs better than the circular convolution/correlation from HRR. It 
reaches the highest similarity over the whole range. The bind/unbind operator of the MAP-
C architecture with values within the range [−1, 1] performs slightly worse than HRR. In 
practice, VSA systems with such long sequences of approximate unbindings can incorpo-
rate a denoising mechanism. For example, a nearest neighbor search in an item memory 
with atomic vectors to clean up the resulting vector (often referred to as clean-up memory).

(17)� = ((�⊗ �
�
)⊗ �

�
)...⊗ �

�

(18)�
� = �

�
⊘ ...(�

�−� ⊘ (�
�
⊘ �))

Fig. 5  Result of the capacity experiment with fixed number of neighbors and varying item memory size. 
Please note the logarithmic scale. The straight lines are fitted exponential functions
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3.3  Unbinding of bundled pairs

The third experiment combines the bundling, the binding and the unbinding operator in 
one scenario. It extends the example from the introduction, where we bundled three role-
filler pairs to encode the knowledge about one country. A VSA allows querying for a filler 
by unbinding the role. Now, the question is: How many property-value (role-filler) pairs 
can be bundled and still provide the correct answer to any query by unbinding a role? This 
is similar to unbinding of a noisy representation and to the experiment on scaling proper-
ties of VSAs in (Eliasmith 2013, p. 141) but using only a single item memory size.

Similar to the bundle capacity experiment in the previous section 3.1, we create a data-
base (item memory) of N = 1, 000 random elemental vectors. We combine 2k (k roles and 
k fillers) randomly chosen elementary vectors from the item memory to k vector pairs by 
binding these two entities. The result are k bound pairs, equivalent to the property-value 
pairs from the USA example ( Name⊗ USA...). These pairs are bundled to a single repre-
sentation R (analog to the representation RUSA ) which creates a noisy version of all bound 
pairs. The goal is to retrieve all 2k elemental vectors from the compact hypervector R by 
unbinding. The evaluation criterion is defined as follows: we compute the ratio (accuracy) 
of correctly recovered vectors to the number of all initial vectors (2k). As in the capacity 
experiment, we used a variable number of dimensions D = 4...1156 and a varying num-
ber of bundled pairs k = 2...50 . Finally, we run the experiment 10 times and use the mean 
values.

Similar to the bundling capacity experiment (Sect. 3.1), we provide two plots: Fig. 7 
presents the accuracies as heat-maps for all combinations of numbers of bundled pairs and 
dimensions, and Fig. 8 shows the minimum required number of dimensions to achieve 99% 
accuracy. Interestingly, the overall appearance of the heatmaps of the two BSDC archi-
tectures in Fig. 7 is roughly the same, but the BSDC-SHIFT has a noisy red area, which 
means that some retrievals failed even if the number of dimensions is high enough in gen-
eral. The similar fuzziness can be seen at the heat-map of the MBAT VSA.

Again, Fig.  8 summarizes the results to 1-D curves. It contains more curves than in 
the previous section because some VSAs share the same bundling operator, but each has 
an individual binding operator. For example, the performance of the different BSDC 

Fig. 6  Normalized similarity between the initial vector v and the unbound sequence vector �′ with different 
numbers of sequences
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architectures varies. The sparse VSA with the segmental binding is more dimension-
efficient than shifting the whole vector. However, all BSDC variants are less dimension-
efficient than FHRR in this experiment, although they performed similar in the capacity 
experiment from Fig. 4. Furthermore, all VSAs based on the normal (Gaussian) distrib-
uted continuous space (HRR, VTB and MBAT) achieve very similar results. It seems 
that matrix binding (e.g. MBAT and VTB) does not significantly improve the binding and 
unbinding.

Finally, we evaluate the VSAs by comparing their accuracies to those of the capacity 
experiment from Sect. 3.1 as follows: We select the minimum required number of dimen-
sions to retrieve either 15 bundled vectors (capacity experiment in Sect. 3.1) or 15 bun-
dled pairs (bound vectors experiment). Table  2 summarizes the results and shows the 
increase between the bundle and the binding-plus-bundle experiment. Noticeably, there is 

Fig. 7  Heat-maps showing the accuracies of different number of bundled vectors and numbers of dimen-
sions

Fig. 8  Minimum required number of dimensions to reach 99% accuracy in unbinding of bundled pairs 
experiment. The solid lines represent linear fitted curves
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a significant rise of the number of dimensions for the sparse binary VSA. It requires up to 
44% larger vectors when using the bundling in combination with binding. However, the 
segmental shifting method with an increase of 22% works better than shifting the whole 
vector. One reason could be the increasing density during binding of sparsely distributed 
vectors because it uses only the disjunction without a thinning procedure. MAP-C, MAP-
B, MAP-I, HRR, FHRR and BSC only show a marginal change of the required number of 
dimensions. Again, the complex FHRR VSA achieves the overall best performance regard-
ing minimum number of dimensions and increase in order to account for pairs. However, 
this might result mainly from the good bundling performance rather than the better binding 
performance.

4  Practical applications

This section experimentally evaluates the different VSAs on two practical applications. The 
first is recognition of the language of a written text. The second is a task from mobile 
robotics: visual place recognition using real-world images, e.g., imagery of a 2800 km 
journey through Norway across different seasons. We chose these practical applications 
since the former is an established example from the VSA literature and the latter an exam-
ple of a combination of VSAs with Deep Neural Networks. Again, we will compare VSA 
using the same number of dimensions. The actual memory consumption and computational 
cost per dimension can be quite different for each VSA. However, this will strongly depend 
on the available hard- and software.

4.1  Language recognition

For the first application, we selected a task that has previously been addressed using a VSA 
in the literature: recognizing the language of a written text. For instance, Joshi et al. (2017) 
presents a VSA approach to recognize the language of a given text from 21 possible lan-
guages. Each letter is represented by a randomly chosen hypervector (a vector symbolic 

Table 2  Comparison of the 
minumum required number of 
dimensions to reach a perfect 
retrieval of 15 bundled vectors 
and 15 bundled pairs (results are 
rounded to the tenth unit)

Fourth column shows the growth between the first and the second 
experimental results (rounded to one unit)

Vector space # Dimensions to 
bundle 15 vectors

# Dimensions to 
bundle 15 pairs

Increase (%)

MAP-C 640 620 − 3
MAP-B 790 780 − 1
BSC 750 750 ± 0
HRR 510 520 + 2
FHRR 330 340 + 3
MAP-I 470 490 + 4
VTB 510 550 + 7
MBAT 510 570 + 11
BSDC-SEG 320 410 + 22
BSDC-S 320 570 + 44
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representation). To construct a meaningful representation of the whole language, short 
sequences of letters are combined in n-grams. The basic idea is to use VSA operations 
(binding, permutation, and bundling) to create the n-grams and compute an item memory 
vector for each language. The used permutation operator � is a simple shifting of the whole 
vector by a particular amount (e.g., permutation of order 5 is written as �5 ). For example, 
the encoding of the word ’the’ in a 3-gram (that combine exactly the three consecutive let-
ters) is done as follows: 

1. Basis is a fixed random hypervector for each letter: �
�
, �

�
, �

�

2. The vector of each letter in the n-gram is permuted with the permutation operator 
according to the position in the n-gram: �0�

�
, �1�

�
, �2�

�

3. Permuted letter vectors are bound together to achieve a single vector that encodes the 
whole n-gram:

  �
���

= 𝜌0�
�
⊗ 𝜌1�

�
⊗ 𝜌2�

�

The “learning” of a language is simply done by bundling all n-grams of a training 
dataset ( �

�������
= �

���
+ �... ). The result is a single vector representing the n-gram sta-

tistics of this language (i.e., the multiset of n-grams) and that can then be stored in an 
item memory. To later recognize the language of a given query text, the same proce-
dure as for learning a language is repeated to obtain a single vector that represents all 
n-grams in the text, and a nearest neighbor query with all known language vectors in 
the item memory is performed.

We use the experimental setup from Joshi et  al. (2017) with 21 languages and 
3-grams to compare the performance of the different available VSAs. Since the matrix 
binding VSAs need a lot of time to learn the whole language vectors with our current 
implementation, we used a fraction of 1,000 training and 100 test sentences per lan-
guage (which is 10% of the total dataset size from Joshi et al. (2017)).

Figure  9 shows the achieved accuracy of the different VSAs at the language rec-
ognition task for a varying number of dimensions between 100 and 2,000. In general, 
the more dimensions are used, the higher is the achieved accuracy. MBAT, VTB and 
FHRR need fewer dimensions to achieve high accuracy. It can be seen that the VTB 
binding is considerably better at this particular task than the original circular con-
volution binding of the HRR architecture (HRR is less efficient compared to VTB). 
Interestingly, the FHRR has almost the same accuracy as the architectures with matrix 
binding (VTB and MBAT) although it uses less costly element-wise operations for 
binding and bundling. Finally, BSDC-CDT was not evaluated on this task. Since it has 
no thinning process after bundling, bundling hundreds of n-gram vectors results in an 
almost completely filled vector which is unsuited for this task.

4.2  Place recognition

Visual place recognition is an important problem in the field of mobile robotics, e.g., 
it is an important means for loop closure detection in SLAM (Simulation Localiza-
tion And Mapping). The following Sect. 4.2.1 will introduce this problem and outline 
the state-of-the-art approach SeqSLAM (Milford and Wyeth 2012). In Neubert et  al. 
(2019b), we already described how a VSA can be used to encode the information from 
a sequence of images in a single hypervector and perform place recognition similarly to 
SeqSLAM. Approaching this problem with a VSA is particularly promising since the 
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image comparison is typically done based on the similarity of high-dimensional image 
descriptor vectors. The VSA approach has the advantage of only requiring a single vec-
tor comparison to decide about a matching—while SeqSLAM typically requires 5–10 
times as many comparisons. After presentation of the CNN-based image encodings in 
Sects. 4.2.3,  4.2.4 will use this procedure from Neubert et al. (2019b) to evaluate the 
performance of the different VSAs.

4.2.1  Pairwise descriptor comparison and SeqSLAM

Place recognition is the problem of associating the robot’s current camera view with 
one or multiple places from a database of images of known places (e.g., images of all 
previously visited locations). The essential source of information is a descriptor for each 
image that can be used to compute the similarity between each pair of a database and a 
query image. The result is a pairwise similarity matrix as illustrated on the left side of 
Fig. 11. The most similar pairs can then be treated as place matchings.

Place recognition is a special case of image retrieval. It differs from a general image 
retrieval task since the images typically have a temporal and spatial ordering—we can 
expect temporally neighbored images to show spatially neighbored places. A state-of-
the-art place recognition method that exploits this additional constraint is SeqSLAM 
(Milford and Wyeth 2012), which evaluates short sequences of images in order to find 
correspondences between the query camera stream and the database images. Basically, 
SeqSLAM not only compares the current camera image to the database, but also the 
previous (and potentially the subsequent) images.

Fig. 9  Accuracy on the language recognition experiment with increasing number of dimensions. The results 
are smoothed with an average filtering with kernel size of three
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Algorithm 1 Simplified SeqSLAM core algorithm
Input: Similarity matrix S of size m× n, sequence length parameter d
Output: New similarity matrix R
1: for i = 1 : m do
2: for j = 1 : n do
3: accSim = 0
4: for k = −d : 1 : d do
5: accSim += S(i+k, j+k)
6: end for
7: R(i,j) = accSim / (2·d+1)
8: end for
9: end for
10: return R

Algorithm 1 illustrates the core processing of SeqSLAM in a simplified algorithmic 
listing. Input is a pairwise similarity matrix S. In order to exploit the sequential infor-
mation, the algorithm iterates over all entries of S (the loops in lines 1 and 2). For each 
element the average similarities over the sequence of neighbored elements is computed 
in a third loop (line 4). This neighborhood sequence is illustrated as a red line in Fig. 11 
(basically, this is a sparse convolution). This simple averaging is known to significantly 
improve the place recognition performance, in particular in case of changing environ-
mental conditions (Milford and Wyeth 2012). The listing is intended to illustrate the 
core idea of SeqSLAM. It is simplified since border effects are ignored and since the 
original SeqSLAM evaluates different possible velocities (i.e. slopes of the neighbor-
hood sequences). For more details, please refer to Milford and Wyeth (2012). The key 
benefit of the VSA approach to SeqSLAM is that it will allow to completely remove the 
inner-loop.

4.2.2  Evaluation procedure

To compare the performance of different place recognition approaches in our experi-
ments, we use a standard evaluation procedure based on ground-truth information 
about place matchings (Neubert et al. 2019a). It is based on five datasets with available 
ground truth: StLucia Various Times of the Day (Glover et al. 2010), Oxford RobotCar 
(Maddern et al. 2017), CMU Visual Localization (Badino et al. 2011), Nordland (Sün-
derhauf et al. 2013) and Gardens Point Walking (Glover 2014). Given the output of a 
place recognition approach on a dataset (i.e., the initial matrix of pairwise similarities S 
or the output of SeqSLAM R), we run a series of thresholds on the similarities to get a 
set of binary matching decisions for each individual threshold. We use the ground truth 
to count true-positive (TP), false-positive (FP), and false-negative (FN) matchings, and 
further compute a point on the precision-recall curve for each threshold with precision 
P = TP∕(TP + FP) and recall R = TP∕(TP + FN) . To obtain a single number that repre-
sents the place recognition performance, we report AUC, the area under the precision-
recall curve (i.e., average precision, obtained by trapezoidal integration).
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4.2.3  Encoding images for VSAs

Using VSAs in combination with real-world images for place recognition requires an image 
encoding into meaningful descriptors. Dependent on the particular vector space of the VSA 
the encoding will be different. We will first describe the underlying basic image descriptor, 
followed by an explanation and evaluation of the individual encodings for each VSA.

We use a basic descriptor similar to our previous work (Neubert et al. 2019a). Sünder-
hauf et al. (2015) showed that early convolutional layers of CNNs are a valuable source 
for creating robust image descriptors for place recognition. For example, the pre-trained 
AlexNet (Krizhevsky et al. 2012) generates the most robust image descriptors at the third 
convolution level. To use these as input for the place recognition pipeline, all images pass 
through the first three layers of AlexNet and the output tensor of size of 13 × 13 × 384 is 
flattened to a vector of size 64,896. Next, we apply a dimension-wise standardization of 
the descriptors for each dataset following Schubert et al. (2020). Although this is already 
a high-dimensional vector, we use random projections in order to distribute information 
across dimensions and influence the number of dimensions: To obtain a N-dimensional 
vector (e.g. N = 4, 096 ) from a M-dimensional space (e.g. M = 64, 896 ), the original vec-
tor is multiplied by a random M × N matrix with values drawn from a Gaussian normal 
distribution. M is row-wise normalized. Such a dimensional reduction can lead to loss of 
information. The effect on the pairwise place recognition performance for each data set is 
shown in Fig. 10. It shows the AUC of pairwise comparison of both, the original descrip-
tors and the dimension-reduced descriptors (calculated and evaluated as described in the 
section above). The plot supports that the random projection is a suitable method to reduce 
the dimensionality and distribute information, since the projected descriptors reach almost 
the same AUC as the original descriptors.

Afterwards the descriptors can be converted into the vector spaces of the individual 
VSAs (cf. table  1). Table  3 lists the encoding methods to convert the projected, stand-
ardized CNN descriptors to the different VSA vector spaces. It has to be noticed that 
the sLSBH method doubled the number of dimensions of the input vector (pleaser refer 
to Neubert et  al. (2019a) for details). The table also lists the influence of the encod-
ings on the place recognition performance (mean and standard deviation of AUC 
change over all datasets). The performance change in the 4th column was computed by 
(Accprojected − Accconverted)∕Accprojected.

It can be seen that the encoding method for HRR, VTB and MBAT VSAs does not influ-
ence the performance. In contrast, the conversion of the real-valued space into the sparse 
binary domain leads to significant performance losses (approx. 22%). However, this is mainly 
due to the fact that we compare the encoding of a dense real valued vector into a sparse 
binary vector of only twice the number of dimensions (a property of the used sLSBH proce-
dure (Neubert et al. 2019a)). The encoding quality improves, if the number of dimensions in 
the sparse binary vector is increased. However, for consistency reasons, we keep the number 
of dimensions fixed. The density of the resulting sparse vectors is 1∕

√

2 ⋅ D.

4.2.4  VSA SeqSLAM

The key idea of the VSA implementation of SeqSLAM is to replace the costly post-pro-
cessing of the similarity matrix S in Algorithm 1 by a superposition of the information of 
neighbored images already in the high-dimensional descriptor vector of an image. Thus, 
the sequential information can be harnessed in a simple pairwise descriptor comparison 
and the inner-loop of SeqSLAM (line 4 in Algorithm 1) becomes obsolete.
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This idea can be implemented as preprocessing of descriptors before the computation 
of the pairwise similarity matrix S. Each descriptor Xi in the database and query set is 
processed independently into an new descriptor vector Yi that also encodes the neighboring 
descriptors:

(19)Yi = +d
k=−d

(

Xi+k ⊗ Pk

)

Fig. 10  AUC of original descriptors and projected descriptors (decrease number of dimensions) for each 
dataset. Evaluation based on pairwise comparison of database and query images

Table 3  Encoding methods

Last column represents the AUC change between the original data (after projection) and the converted data 
with pairwise comparison. The density of sLSBH is 1∕

√

2 ⋅ D

elements X of Space V Encoding of input I VSA perf. change [%]

X ∈ {−1, 1}D
X =

{

1 I > 0

−1 I <= 0

MAP-B −2.2 ± 1.9

X ∈ {0, 1}D
X =

{

1 I > 0

0 I <= 0

BSC −2.2 ± 1.9

X ∈ [−1, 1]D

X =

⎧

⎪

⎨

⎪

⎩

1 I >= 1

−1 I <= −1
I else

MAP-C −1 ± 1.3

X ∈ ℝ
D

X =
I

norm(I)
HRR, VTB, MBAT 0

X ∈ ℂ
D , X = ei⋅� � = arg(F{I}) FHRR −0.9 ± 0.8

X ∈ {0, 1}2⋅D sLSBH Neubert et al. (2019b) BSDC-S, BSDC-SEG −21.9 ± 16
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Each image descriptor from the sequence neighborhood is bound to a static position vector Pk 
before bundling to encode the ordering of the images within the sequence. The position vec-
tors are randomly chosen, but fixed across all database and query images. In a later pairwise 
comparison of two such vectors Y, only those descriptors X that are at corresponding positions 
within the sequence contribute to the overall similarity (due to the quasi-orthogonality of the 
random position vectors and the properties of the binding operator). In the following, we will 
evaluate the place recognition performance when implementing this approach with the differ-
ent VSAs. Please refer to Neubert et al. (2019a) for more details on the approach itself.

4.2.5  Results

In the experiments, we use 4,096 dimensional vectors (except for sLSBH encodings with 
twice this number) and sequence length d = 5 . Table 4 shows the results when using either 
the original SeqSLAM on an particular encoding or the VSA-implementation. The per-
formance of the original SeqSLAM on the original descriptors (but with dimensionality 
reduction and standardization) can, e.g. be seen at the VTB column. To increase the read-
ability, we highlighted the overall best results in bold and visualized the relative perfor-
mance of a VSA to the corresponding original SeqSLAM with colored arrows. In most 
cases, the VSA approaches can approximate the SeqSLAM method with essentially the 
same AUC. Particularly the real-valued vector spaces (MAP-C, HRR, VTB) yield good 
AUC in both the encoding itself (Table 3) and the sequence-based place recognition task. 
MAP-C achieves 100% AUC on the Nordland dataset (which is even slightly better than 
the SeqSLAM algorithm) and has no considerable AUC reduction in any other data-
sets. Also the VTB and MBAT architectures achieve very similar results to the original 
SeqSLAM approach. However, it has to be noticed that these VSAs use matrix binding 
methods, which leads to a high computational effort compared to element-wise binding 
operations. The performance of the sparse VSAs (BSDC-S, BSDC-SEG) varies, including 
cases where the performance is considerably worse than the original SeqSLAM (which in 
turn achieves surprisingly good results given the overall performance drop of the sparse 
encoding from Table 3).

Fig. 11  Evaluation metric of the place recognition experiment. The gray tones images represent the similar-
ity matrix (color encoded similarities between the database and query images – bright pixels correspond-
ing to a high similarity). Left: pairwise comparison of database and query images. Right: sequence-based 
comparison of query and database images with the red line representing the sequence of compared images
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5  Summary and conclusion

We discussed and evaluated available VSA implementations theoretically and experimen-
tally. We created a general overview of the most important properties and provided insights 
especially to the various implemented binding operators (taxonomy of Fig.  1). It was 
shown that self-inverse binding operations benefit in applications such as analogical rea-
soning (“What is the Dollar of Mexico?”). On the other hand, these self-inverse architec-
tures, like MAP-B and MAP-C, show a trade-off between an exactly working binding (by 
using a binary vectors space like {0, 1} or {−1, 1} ) or a high bundling capacity (by using 
real-valued vectors). In the bundling capacity experiment, the sparse binary VSA BSDC 
performed well and required only a small number of dimensions. However, in combination 
with binding, the required number of dimensions increased significantly (and also includ-
ing the thinning procedure did not improve this result). Regarding the real-world applica-
tion to place recognition, the sparse VSAs did not perform as well as other VSAs. Presum-
ably, this can be improved by a different encoding approach or by using a higher number 
of dimensions (which would be feasible given the storage efficiency of sparse representa-
tions). High performance at both synthetic and real-world experiments could be observed 
in the simplified complex architecture FHRR that uses only the angles of the complex 
values. Since this architecture is not self-inverse, it requires a separate unbinding opera-
tion and cannot solve the “What is the dollar of Mexico?” example by Kanerva’s elegant 
approach. However, it could presumably be solved using other methods that iteratively pro-
cess the knowledge tree (e.g., the readout machine in Plate (1995)), but come at increased 
computational costs. Furthermore, the two matrix binding VSAs (MABT and VTB) also 
show good results in the practical applications of language and place recognition. How-
ever, the drawback of these architecture is the high computational effort for binding.

This paper, in particular the taxonomy of binding operations, revealed a very large diver-
sity in available VSAs and the necessity of continued efforts to systematize these approaches. 
However, the theoretical insights from this paper together with the provided experimental 
results on synthetic and real data can be used to select an appropriate VSA for new applica-
tions. Further, they are hopefully also useful for the development of new VSAs.

Although the memory consumption and computational costs per dimension can signifi-
cantly vary between VSAs, the experimental evaluation compared different VSAs using a 
common number of dimensions. We made this decision since the actual costs depend on 
several factors like the underlying hard- and software, or the required computational preci-
sion for the current task. For example, some high-level languages like Matlab do not well 
support binary representations and not all CPUs support half-precision floats. We consider 
the number of dimensions as an intuitive common basis for comparison between VSAs that 
can later be converted to memory consumption and computational costs once the influ-
encing factors for a particular application are clear. Recent in-memory implementations of 
VSA operators (Karunaratne et al. 2020) are important steps towards VSA specific hard-
ware. Nevertheless, a more in-depth evaluation of resource consumption of the different 
VSAs is a very important part of future work. However, this will require additional design 
decisions and assumptions about properties of the underlying hard- and software.

Finally, we want to repeat the importance of permutations for VSAs. However, as 
explained in Sect.  2, we decided to not particularly evaluate differences in combination 
with permutations since they are applied very similarly in all VSAs (however, simple per-
mutations were used in the language recognition task).
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