Skip to main content

Advertisement

Log in

Chaotic slime mould optimization algorithm for global optimization

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Metaheuristic optimization methods; It is a well-known global optimization approach for large-scale search and optimization problems, commonly used to find the solution many different optimization problems. Slime mould optimization algorithm (SMA) is a recently presented metaheuristic technique that is inspired by the behavior of slime mould. Slow convergence speed is a fundamental problem in SMA as in other metaheuristic optimization methods. In order to improve the SMA method, 10 different chaotic maps have been applied for the first time in this article to generate chaotic values instead of random values in SMA. Using chaotic maps, it is aimed to increase the speed of SMA’s global convergence and prevent it from getting stuck in its local solutions. The Chaotic SMA (CSMA) proposed for the first time in this study was applied to 62 different benchmark functions. These are unimodal, multimodal, fixed dimension, CEC2019, and CEC2017 test suite. The results of the application have been comparatively analyzed and statistical analysis performed with the well-known metaheuristic optimization methods, particle swarm optimization and differential evolution algorithm, and recently proposed grey wolf optimization (GWO) and whale optimization algorithm (WOA). In addition, in the CEC2017 test suite, the CSMA method has been compared with the SMA, WOA, GWO, harris hawk optimization, archimedes optimization algorithm and COOT algorithms that have been proposed in recent years, and statistical analyzes have been made. In addition, CSMA has been tested in 3 different real-world engineering design problems. According to the experimental results, it was observed that CSMA achieved relatively more successful results in 62 different benchmark functions and real-world engineering design problems compared to other compared methods and standard SMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah JM, Ahmed T (2019) Fitness-dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7:43473–43486

    Article  Google Scholar 

  • Agrawal A, Tripathi S (2018) Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability. Evol Intel 14(2):305–313

    Article  Google Scholar 

  • Altay EV, Alatas B (2019) Performance comparisons of socially inspired metaheuristic algorithms on unconstrained global optimization. Adv Intell Syst Comput 759:163–175. https://doi.org/10.1007/978-981-13-0341-8_15

    Article  Google Scholar 

  • Altay EV, Alatas B (2020) Bird swarm algorithms with chaotic mapping. Artif Intell Rev 53(2):1373–1414

    Article  Google Scholar 

  • Altay EV, Alatas B (2021) Differential evolution and sine cosine algorithm based novel hybrid multi-objective approaches for numerical association rule mining. Inf Sci 554:198–221

    Article  MathSciNet  Google Scholar 

  • Arora S, Anand P (2019) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31(8):4385–4405. https://doi.org/10.1007/s00521-018-3343-2

    Article  Google Scholar 

  • Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report

  • Becker M (2015) On the efficiency of nature-inspired algorithms for generation of fault-tolerant graphs. In: Conference on systems, man, and cybernetics, IEEE pp 1657–1663. https://ieeexplore.ieee.org/abstract/document/7379424/

  • Bigham A, Gholizadeh S (2020) Topology optimization of nonlinear single-layer domes by an improved electro-search algorithm and its performance analysis using statistical tests. Struct Multidiscip Optim 62(4):1821–1848. https://doi.org/10.1007/S00158-020-02578-4

    Article  MathSciNet  Google Scholar 

  • Bingol H, Alatas B (2020) Chaos based optics inspired optimization algorithms as global solution search approach. Chaos Solitons Fractals 141:110434

    Article  MathSciNet  Google Scholar 

  • Czerniak JM, Zarzycki H, Ewald D (2017) AAO as a new strategy in modeling and simulation of constructional problems optimization. Simul Model Pract Theory 76:22–33

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  • Dhawale D, Kamboj VK, Anand P (2021) An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm. Eng Comput. https://doi.org/10.1007/S00366-021-01409-4

    Article  Google Scholar 

  • Ekinci S, Izci D, Zeynelgil HL, Orenc S (2020) An application of slime mould algorithm for optimizing parameters of power system stabilizer. In: International symposium on multidisciplinary studies and ınnovative technologies (ISMSIT), IEEE, pp. 1–5. https://ieeexplore.ieee.org/abstract/document/9254597/

  • Erdal F (2017) A firefly algorithm for optimum design of new-generation beams. Eng Optim 49(6):915–931

    Article  Google Scholar 

  • Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172

    Article  Google Scholar 

  • Gao ZM, Zhao J, Li SR (2020) The ımproved slime mould algorithm with cosine controlling parameters. J Phys Conf Ser 1631(1):012083. https://doi.org/10.1088/1742-6596/1631/1/012083

    Article  Google Scholar 

  • Gholizadeh S, Danesh M, Gheyratmand C (2020) A new Newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames. Comput Struct 234:106250

    Article  Google Scholar 

  • Gholizadeh S, Baghchevan A (2017) Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Eng Comput 33(4):1045–1060

    Article  Google Scholar 

  • Gholizadeh S, Milany A (2018) An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Eng Optim 50(11):1829–1849. https://doi.org/10.1080/0305215X.2017.1417402

    Article  MathSciNet  Google Scholar 

  • Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2020) A modified Henry gas solubility optimization for solving motif discovery problem. Neural Comput Appl 32(14):10759–10771. https://doi.org/10.1007/S00521-019-04611-0

    Article  Google Scholar 

  • Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531–1551

    Article  Google Scholar 

  • Hassan MH, Houssein EH, Mahdy MA, Kamel S (2021) An improved manta ray foraging optimizer for cost-effective emission dispatch problems. Eng Appl Artif Intell 100:104155

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Houssein EH, Hosney ME, Elhoseny M, Oliva D, Mohamed WM, Hassaballah M (2020a) Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics. Sci Rep 10(1):1–22

    Article  Google Scholar 

  • Houssein EH, Saad MR, Hussain K, Zhu W, Shaban H, Hassaballah M (2020b) Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm. IEEE Access 8:19381–19397

    Article  Google Scholar 

  • Houssein EH, Mahdy MA, Blondin MJ, Shebl D, Mohamed WM (2021a) Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst Appl 174:114689

    Article  Google Scholar 

  • Houssein EH, Mahdy MA, Eldin MG, Shebl D, Mohamed WM, Abdel-Aty M (2021b) Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm. J Adv Res 29:147–157

    Article  Google Scholar 

  • Howard FL (1931) The life history of Physarum polycephalum. Am J Bot 18:116–133

    Article  Google Scholar 

  • Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Syst Appl 176:114778

    Article  Google Scholar 

  • Izci D (2021) An enhanced slime mould algorithm for function optimization. In: 3rd International congress on human-computer ınteraction, optimization and robotic applications (HORA), pp 1–5. IEEE. https://ieeexplore.ieee.org/abstract/document/9461325/

  • İzci D, Ekinci S (2021) Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral–derivative controller. Electrica 21(1):151–159

    Article  Google Scholar 

  • Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187

    Article  Google Scholar 

  • Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284

    Google Scholar 

  • Kellert S (1994) In the wake of chaos: unpredictable order in dynamical systems. https://www.google.com/books?hl=tr&lr=&id=KtkgeB7XOYwC&oi=fnd&pg=PR5&dq=Kellert,+S.+H.+(1994).+In+the+wake+of+chaos:+Unpredictable+order+in+dynamical+systems,+University+of+Chicago+Press&ots=iy2rwevgoS&sig=wX4KCY4AGJqfBu-zVOzaoCngAbg

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948. IEEE

  • Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472

    Google Scholar 

  • Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Article  Google Scholar 

  • Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271

    Article  Google Scholar 

  • Meng XB, Li HX, Gao XZ (2019) An adaptive reinforcement learning-based bat algorithm for structural design problems. Int J Bio-Inspired Comput 14(2):114–124

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mitić M, Vuković N, Petrović M, Miljković Z (2015) Chaotic fruit fly optimization algorithm. Knowl Based Syst 89:446–458

    Article  Google Scholar 

  • Naik MK, Panda R, Abraham A (2021) Adaptive opposition slime mould algorithm. Soft Comput. https://doi.org/10.1007/S00500-021-06140-2

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Ueda T (2000) Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys Chem 84(3):195–204

    Article  Google Scholar 

  • Naruei I, Keynia F (2021) A new optimization method based on COOT bird natural life model. Expert Syst Appl 183:115352

    Article  Google Scholar 

  • Ozer AB (2010) CIDE: chaotically initialized differential evolution. Expert Syst Appl 37(6):4632–4641

    Article  Google Scholar 

  • Prayogo D, Cheng MY, Wu YW, Herdany AA, Prayogo H (2018) Differential Big Bang-Big Crunch algorithm for construction-engineering design optimization. Autom Constr 85:290–304

    Article  Google Scholar 

  • Rizk-Allah RM, Hassanien AE, Song D (2021) Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites. ISA Trans. https://www.sciencedirect.com/science/article/pii/S0019057821002081

  • Šešum-Čavić V, Kühn E, Kanev D (2016) Bio-inspired search algorithms for unstructured P2P overlay networks. Swarm Evol Comput 29:73–93

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Tam JH, Ong ZC, Ismail Z, Ang BC, Khoo SY (2019) A new hybrid GA−ACO−PSO algorithm for solving various engineering design problems. Int J Comput Math 96(5):883–919

    Article  MathSciNet  Google Scholar 

  • Törn A, Žilinskas A (1989) Global optimization. https://link.springer.com/978-3-540-50871-7

  • Tzanetos A, Dounias G (2020) Sonar inspired optimization (SIO) in engineering applications. Evol Syst 11(3):531–539. https://doi.org/10.1007/s12530-018-9250-z

    Article  Google Scholar 

  • Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  • Wang X, Deng Y, Duan H (2018) Edge-based target detection for unmanned aerial vehicles using competitive bird swarm algorithm. Aerosp Sci Technol 78:708–720

    Article  Google Scholar 

  • Wilcoxon F, Katti SK, Wilcox RA (1963) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. American Cyanamid, Pearl River, pp 171–176

    MATH  Google Scholar 

  • Yang XS (2011) Metaheuristic optimization. Scholarpedia 6(8):11472

    Article  Google Scholar 

  • Yang LJ, Chen TL (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38(2):168–172. https://doi.org/10.1088/0253-6102/38/2/168

    Article  Google Scholar 

  • Yu KD, Haeusler MH, Fabbri A, Simons K (2018) Bicycle pathway generation through a weighted digital slime mold algorithm via topographical analysis. http://papers.cumincad.org/cgi-bin/works/paper/caadria2018_188

  • Zhao J, Gao ZM, Sun W (2020) The improved slime mould algorithm with Levy flight. J Phys Conf Ser 1617(1):012033. https://doi.org/10.1088/1742-6596/1617/1/012033

    Article  Google Scholar 

  • Zhao J, Gao ZM (2020) The hybridized Harris hawk optimization and slime mould algorithm. J Phys Conf Ser 1682(1):012029. https://doi.org/10.1088/1742-6596/1682/1/012029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Altay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altay, O. Chaotic slime mould optimization algorithm for global optimization. Artif Intell Rev 55, 3979–4040 (2022). https://doi.org/10.1007/s10462-021-10100-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10100-5

Keywords

Navigation