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Abstract

The differential evolution (DE) algorithm is an efficient random search algorithm based on
swarm intelligence for solving optimization problems. It has the advantages of easy imple-
mentation, fast convergence, strong optimization ability and good robustness. However, the
performance of DE is very sensitive to the design of different operators and the setting of
control parameters. To solve these key problems, this paper proposes an improved self-
adaptive differential evolution algorithm with a shuffled frog-leaping strategy (SFSADE).
It innovatively incorporates the idea of the shuffled frog-leaping algorithm into DE, and
at the same time, it cleverly introduces a new strategy of classification mutation, and also
designs a new adaptive adjustment mechanism for control parameters. In addition, we have
carried out a large number of simulation experiments on the 25 benchmark functions of
CEC 2005 and two nonparametric statistical tests to comprehensively evaluate the perfor-
mance of SFSADE. Finally, the results of simulation experiments and nonparametric statis-
tical tests show that SFSADE is very effective in improving DE, and significantly improves
the overall diversity of the population in the process of dynamic evolution. Compared with
other advanced DE variants, its global search speed and optimization performance also has
strong competitiveness.

Keywords Differential evolution - Numerical optimization - Self-adaptive mechanism -
Shuffled frog leaping

1 Introduction

Differential evolution (DE) was jointly proposed by (Storn and Price 1997) to solve
Chebyshev polynomials. It is a simple and efficient evolutionary algorithm for solv-
ing global optimization problems in a continuous search space (Li and Wang 2020).
Essentially, DE is a random search algorithm based on a population, which mainly sim-
ulates the biological evolution process through the three operators of mutation, cross-
over and selection to evolve the initial solution to the global optimal solution (Wang
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et al. 2011). In the past 20 years of development, DE has attracted increasing attention
from researchers and has been successfully applied to various scientific and engineering
fields, such as pattern recognition (Maulik and Saha 2009; Koloseni et al. 2012; Cai and
Wang 2015), image processing (Das and Konar 2009; Su et al. 2012), collision avoid-
ance treatment (Tang et al. 2016; Sun et al. 2017; Tang 2019), and engineering design
(Guo et al. 2001; Zhao et al. 2014; Sakr et al. 2017), and has achieved good application
effects.

When DE is used to solve specific optimization problems, the design of different
operators (i.e., mutation, crossover and selection) and the adjustment of control param-
eters (i.e., population size NP, mutation factor F and crossover probability CR) are very
important (Parouha and Verma 2021). They directly determine the result of DE solution
to a large extent. For different optimization problems, operator design and parameter
setting are often different (Wu et al. 2016). However, improper settings may lead to pre-
mature or slow convergence of algorithm, easily falling into local optimization and other
many problems. Therefore, researchers usually need to try the above settings repeatedly
to better apply DE to solve numerical optimization problems (Zhu et al. 2020).

Therefore, in order to solve the above problem, we summarize a large number of
enhanced DE variants proposed by researchers in recent years, such as FADE (with
fuzzy logic self-adaptive strategy) (Liu and Lampinen 2005), TDE (with trigonometric
mutation operation) (Fan and Lampinen 2003), EDA (with distributed estimation strat-
egy) (Sun et al. 2005), jDE (with self-adaptive parameters) (Brest et al. 2006), AnDE
(with new mutation and selection operation and combining simulated annealing ideal)
(Das et al. 2007), JADE (with "current-to-pbest/1" mutation operation and self-adaptive
parameters) (Zhang and Sanderson 2009), SaDE (with self-adaptive mutation strategies
and parameters) (Qin et al. 2009b), CoDE (with composite generation strategies and
control parameters) (Wang et al. 2011), SspDE (with self-adaptive strategies and con-
trol parameters) (Pan et al. 2011), ESADE (with "current-to-pbest/1" mutation operation
and self-adaptive control parameters) (Guo et al. 2014), DMPSADE (with self-adap-
tive discrete mutation control parameters) (Fan and Yan 2015), MPEDE (with multiple
mutation strategies and self-adaptive parameters) (Wu et al. 2016), DEMPSO (combin-
ing particle swarm optimization ideal) (Mao et al. 2017), SpDE (with multiple subpopu-
lations and phase-mutations strategy) (Pan et al. 2018), HyGADE (combining Genetic
Algorithm ideal) (Chaudhary et al. 2019), and SAMDE (with self-adaptive multipopula-
tion strategy) (Zhu et al. 2020). Through much experimental research and theoretical
analysis, the efficiency and performance of DE variants in solving problems have been
greatly improved. In summary, the above improvements to DE can be simply divided
into the following three types: redesigning the operations, adaptively adjusting control
parameters, and incorporating other intelligent optimization algorithms (Li et al. 2020a).
As a very successful algorithm, SAMDE (Zhu et al. 2020), integrates three effective
ways of improvement. In order to increase the diversity of the population and improve
the optimization performance and speed of the algorithm, this is a very effective attempt
in which the entire population is decomposed into multiple subpopulations in DE. These
subpopulations are continuously decomposed and merged in the evolution process, and
different mutation strategies and control parameter adaptive adjustment mechanisms are
used (MA et al. 2009). Although some effective rules on those settings have been sum-
marized based on a large number of studies (Das and Suganthan 2011), their universal-
ity and adaptability need to be further improved and it is still very difficult to design a
DE algorithm with better comprehensive performance.
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In this paper, to further improve the solution performance of the DE algorithm, acceler-
ate the convergence speed, prevent falling into local optimization and improve the stability,
on the basis of SAMDE (Zhu et al. 2020) and p-ADE (Bi and Xiao 2012), we propose an
improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strat-
egy, called SFSADE. We introduce the mutation strategy based on the classification idea
and design a new parameter adaptive adjustment mechanism. The most important aspect
is to form multiple subpopulations that evolve independently by using the idea of shuffled
frog-leaping. The specific improvement measures include the following four aspects:

(1) Introducing the shuffled frog-leaping strategy, in which dividing meme groups are
based on individual fitness values, thereby forming multiple subgroups to evolve inde-
pendently, improving the diversity and convergence speed of the population;

(2) Designing a new mutation strategy. At the same time, the global optimal solution in
the evolution process and the local optimal solution of each meme group are used to
avoid search blindness caused by the random selection of individuals in the difference
vector;

(3) Using classification mutation strategy. Choosing different evolution directions for
individuals with different fitness values to further balance the “explore” and “exploit”
capability of the algorithm;

(4) Incorporating a new parameter self-adaptive strategy. According to the fitness value
of the individual and the evolutionary number, an adaptive parameter scheme is pro-
vided for each individual. In addition, the SFSADE algorithm proposed in this paper
have carries out 10-, 30- and 50-dimensional tests on the 25 benchmark functions of
CEC 2005 (Suganthan et al. 2005) and also performed two nonparametric statistical
test, Wilcoxon signed rank test and Friedman test. Comparing its performance with
the results of 7 other advanced algorithms at home and abroad mentioned in reference
(Zhu et al. 2020), SFSADE has the great advantage and competitiveness.

The remaining sections of this paper are organized as follows: Sect. 2 introduces the
basic DE and Shuffled Frog-Leaping algorithm. A review of the related work of differential
evolution algorithms is presented in Sect. 3. In Sect. 4, the proposed algorithm SFSADE
is introduced in detail. Section 5 shows the relevant experimental results and analysis.
Finally, the conclusions are drawn in Sect. 6.

2 Differential evolution and shuffled frog leaping
2.1 Differential evolution

DE is a heuristic random parallel search algorithm based on swarm intelligence, which is
mainly used to solve global optimization problems with continuous variables. Similar to
other evolutionary algorithms, it mainly includes mutation, crossover and selection opera-
tions and performs the evolutionary search process through continuous iterative calcula-
tion. The five key operations of DE are introduced as follows.

@ Springer



3940 Q.Panetal.

2.1.1 Initialization operation

Assume that constrained numerical optimization problems (CNOPs) are defined as follows
(Parouha and Verma 2021).

Minf(X) X C [Xpin: Xpax)» X = (X1, X5, ..., X)) 1)

max

x2

In the initial evolution number 7 = 0, the individuals X;, = (xl e

i’ b xi:,t’ e ’le,)z>
in the initial population of DE are generated by Eq. (2), which is randomly generated
according to the lower bound X,,; xrlnm x’im . mm} and upper bound

Xoar = x:nwc,xiax, N } of the optlmlzatlon problem and is evenly distributed in the
feasible solution space (Das and Suganthan 2011). The dimensionality D of the individual
variables is equal to the dimension n of the decision variable X in the objective function,

and the number of individuals in the population is NP (Fan et al. 2019).

W, =, 4 1and© 1), =2, )i= 1.2, D i= 1,2, NP @
where x’ is the value of the j” dimension of the i individual in the ¢ generation, and
rand(0, 1) represents a random variable uniformly distributed in the range [0, 1].

2.1.2 Mutation operation

In the current " evolutionary number, the i individual x;, in the parent population is also
called the target individual vector, and its corresponding mutant individual vector

— (1 2 D . : .
Vi1 = (vm w1 Viesrr o Vi +1) is generated by the mutation operator. The most basic

mutation strategy “DE/rand/1” is shown in Eq. (3), which is widely used, simple and robust
(Zhang and Duan 2015).

Viernn =X+ F- (Xr2,t - Xr3,t) 3)

where r|, r,,r; € {1,2,..., NP} are randomly selected positive integers that are different
from each other, representing the indexes of three randomly selected different individuals
in the parent population, and r|, r,, 5 are different from the current target individual vector
indexi. X,;, is called the basis vector. X,,, — X 3, are called the difference vector. F is the
mutation factor or scaling factor, and it is one of the main control parameters of the DE
algorithm. It usually takes a value in the range[0, 2], which controls the scaling of the dif-
ference vector and determines the degree of influence on the basis vector.

Some well-known mutation strategies in the literature are summarized as follows (Zhu

et al. 2020):
“DE/rand/2”
Vi =X+ F (X0 = Xp3,) + F - (Xoay = X)) @)
“DE/best/1”
Viert = Xpesty + F - (X1 = Xioy) 5
“DE/best/2”
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Viert = Xpeste ¥ F - (K10 = Xog) + F - (X3, — Xpuy) (6)
“DE/current-to-best/1”
Vieer = Xig + F - (Xposry = Xig) + F - (X1, = X0, @)
“DE/rand-to-best/1”
Viert = Xo1g + F - (Xpeses = Xo10) +F - (X0, = X3,) (®)

where the parameters |, r,, 13, 14, I'sare positive integers in range [1, NP], which are dif-
ferent from the index i and are not equal to each other. X, is the individual with the opti-
mal fitness in the # generation.

Generally, the mutation individuals of the DE algorithm are generated by adding the
weighted difference vector between different individuals in the parent population to the
base vector, which is equivalent to adding a random disturbance to the base vector. In the
early stage of evolution, there is a large difference between individuals, which makes the
difference vector greatly disturb the base vector and ensures a strong exploration ability
and global search ability. With the increase in evolutionary number, the difference between
individuals decreases, which makes the DE algorithm enhance the population exploitation
ability and local search ability.

2.1.3 Detection operation

The out-of-bound detection operator is after the mutation operator, which will ensure that
the value of each dimension in every variant individual V;, is within the boundary con-
straints [Xmm, Xmax] of the CNOPs [see Eq. (1)]. If the value of the ;™ dimension in V;,
exceeds the range, the value can be corrected by the following simple and effective Eq. (9),
that is, an individual is randomly generated according to the initialization operation (see

Sect. 2.1.1) (Fan et al. 2019).

V{t < x,;rlin
V;,t = x,min + rand(o’ 1) ’ (xjrlnax - xlmin)’-.f or (9)
Vf,t > xinax

2.1.4 Crossover operation

After the detection operation, to further increase the diversity of the population, the target
vector individual X;, and its corresponding mutant individual V;,,, need to be crossed to
generate trial individual U;,,, = Ct; e W pays e D ) The DE algorithm generally
employs the following two crossover methods (Zhu et al. 2020).

2.1.4.1 Binomial crossover In binomial crossover, to make the target individuals X ;1 €volve,
it is necessary to ensure that the components of at least one dimension of experimental indi-
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viduals U; ., are generated by the mutation individual V;,,,, while the components of other
dimensions are determined by the parameter CR randomly.

j v/ if <CRorj=j
4 = i+l J= rand
Uien { X/, otherwise j=L12...D (10)

where 7; is a decimal generated by the function rand() in the range [0, 1]. j,

randomly selected from the range [1, D]. CR is the cross probability factor.

4 1 an integer

2.1.4.2 Exponential crossover

-

U = V£,+1 j=<J>p,<J+1>p,....<J+L-1>),
i+l bd otherwise
ir+1
Y (L=1, g=rand(,1) 1n

while(f < CR & L < D)
L=L+1, p=rand(0,1)
end

The above Eq. (11) is used for exponential crossover. J = rand(1, D) means that the
components from the J” dimension to the J 4+ L — 1" dimension of the trial individual
U;,, are all composed of mutation individual V;,, ;. The components of other dimen-
sions are composed of the target vector individual X;, . where the angular brackets
<>, denote a modulo function of modulus D. The difference length L is determined by

CR.

2.1.5 Selection operation

After the crossover operation, DE will use the "greedy" strategy to select between the trial
individual U;, , and the target vector individual X;,. The function value of the two under
the constraint [see Eq. (1)] is also called the fitness value, and the smaller value is selected
as a parent individual of the next generation, while the larger one is eliminated, as shown in
Eq. (12) (Brest et al. 2006).

_ Ui £(Uier) <£(X,)
Xit1 = { X;:rf(U,-,t:ltJ)r > f(X;, \ (12)

2.2 Shuffled frog leaping

The shuffled frog-leaping algorithm (SFLA) is a heuristic random search algorithm based
on swarm intelligence generated by simulating the swarm information sharing and commu-
nication mechanism in the foraging process of frogs. The algorithm was first proposed by
Eusuff and Lansey (Eusuff and Lansey 2003); it combines the advantages of the memetic
algorithm (MA) (Moscato 1989) and particle swarm optimization (PSO) algorithm
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(Kennedy and Eberhart 1995) and has the characteristics of fewer parameter settings, fast
solving speed, and strong global optimization ability (Rahimi-Vahed and Mirzaei 2007).
There are mainly the following three key operations in SFLA (Santander-Jimenez et al.
2018).

2.2.1 Initialization operation

Initialize the frog population as F = (X,, X,,...,Xyp) with NP individuals in total [see
Eq. (2)], and each individual is a randomly generated candidate solution. The i individual
12

is X;, = X o Xippeens xJit, ,xiDt), 1 <i < NP, where t represents the evolutionary num-

ber of each meme group, and D represents the dimension of the solution.

2.2.2 Grouping operation

The grouping operation can divide the population into M subpopulations equally. First, the
NP candidate solutions in the population are arranged in descending order according to the
fitness value calculated by Eq. (1), and then the first candidate solution is classified into
the first subpopulation, and the second candidate solutions are classified into the second
subpopulation. By analogy, the remainder is calculated according to Eq. (13), and the NP
candidate solutions are allocated to M subpopulations, where s represents the subpopula-
tion number to which the i candidate solution is allocated (Hsu and Yang 2020).

s=i%M, i=1,2,...,NP (13)

2.2.3 Local update operation

Fg represents the candidate solution with the highest fitness value of the population in all
previous generations, Fbj represents the candidate solution with the highest fitness value
in the s" subpopulation in the #” evolutionary generation as an optimal solution, and F Wi
represents the candidate solution with the lowest fitness value in the s subpopulation in
the # evolutionary generation as a worst solution. In each local iterative calculation of the
s™ subpopulation, F' wy is updated according to Eq. (14) (Wang et al. 2019). If F W' is better
than ij , that is, the fitness value of Fw' is smaller, then Fw’ will replace the current Fw§ H
otherwise, replace Fbj in Eq. (14) with Fg to recalculate Fw' and compare. If Fw' is still

not better than Fwj, a random solution is generated to replace Fw; by Eq. (2).

Fw' = Fw +rand(0, 1) - (Fb — Fw') (14)

3 Related work

Different operator design and control parameter schemes will have a great impact on the
performance of DE in solving problems. The current improvement in DE can be summa-
rized into the following three types (Li et al. 2020b).
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3.1 Operation design

The operations are the core of DE, and many algorithms focus on its improvement. In TDE,
(Fan and Lampinen 2003) proposed a triangle mutation strategy. It limits the trial individ-
ual to a triangular area to improve the efficiency of mutation operation and has achieved
better results in neural network learning. In JADE, (Zhang and Sanderson 2009) adopted a
new difference method, “DE/current-to-pbest/1”, which randomly selects one of the top p%
excellent individuals to participate in the mutation and increase the diversity of the popula-
tion. In SspDE, (Pan et al. 2011) used a strategy pool containing four mutation strategies
and assigned mutation strategies and control parameter values to each individual at the
same time. After several generations of evolution, the mutation strategy and the value of
the control parameter that correspond to a better individual are redistributed to each indi-
vidual based on a larger probability to improve the speed of convergence. In DMPSADE,
(Fan and Yan 2015) used a strategy pool containing five mutation strategies, which deter-
mines the mutation strategy of each individual according to the cumulative probability of
each strategy and the roulette algorithm. In MPEDE, (Wu et al. 2016) proposed an inte-
grated DE that uses three different mutation strategies to form multiple subpopulations for
simultaneous evolution. In SpDE, (Pan et al. 2018) divided the entire population into three
subpopulations and proposed a new two-stage mutation strategy. The difference between
individuals is considered in the evolution process. A better balance has been achieved
between exploration and exploitation. In HMCFQDE, (Deng et al. 2021) designed a new
hybrid mutation strategy based on the advantage of local neighborhood mutation, which
greatly overcomes the problems of low efficiency of the original DE algorithm, insufficient
diversity in the later stage, and slow convergence speed.

3.2 Control parameter setting

Before solving a specific problem, the relevant control parameters of DE should be deter-
mined first. (Storn and Price 1997) represented the number of populations NP € [3, 10],
and the mutation factor F € [0.5,1.0] was usually considered to be a more appropri-
ate parameter scheme. (Giémperle et al. 2002) proved that NP € [3,8], F = 0.6, and
CR €[0.3,0.9] were better parameter schemes when initializing the population. In fact,
there is no fixed parameter setting scheme that can be well applied to various optimiza-
tion problems. Different parameter schemes should be adopted according to different prob-
lems (Elsayed et al. 2013). Therefore, finding a suitable parameter scheme has attracted the
attention of many researchers. In FADE, (Liu and Lampinen 2005) proposed an adaptive
adjustment scheme that uses a fuzzy logic controller to continuously adjust the mutation
factor F and crossover probability CR through multiple iteration cycles of population indi-
viduals and corresponding fitness function values. In jDE, (Brest et al. 2006) encoded the
control parameters F and CR into the population individuals and adjusted them adaptively
in the continuous iterative calculation. In SaDE, (Qin et al. 2009b) believed that it is pos-
sible to adaptively generate new individuals of the next generation and parameter values
by learning the outstanding individuals of the past and the corresponding control param-
eter values. In CoDE, (Wang et al. 2011) created a parameter pool, including three control
parameter schemes. By comparing the calculation results of the random combination of
three independent trial individuals and the parameter schemes, the optimal scheme and its
parameter scheme are determined to enter the next generation of evolution. In MDE, (Zou
et al. 2013) used a Gaussian distribution and a uniform distribution to adjust the values
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of mutation factor F' and crossover probability CR, respectively. However, in DMPSADE,
(Fan and Yan 2015) used two normal distributions to adaptively adjust the control param-
eter values and achieved better results. In SAMDE, (Zhu et al. 2020) proposed a new muta-
tion strategy "DE/rand assembly/1", where the basis vector is composed of three randomly
selected individuals in proportion. In the evolution process, the entire population is ran-
domly divided into three equal-sized subpopulations, and each subpopulation adopts its
own different mutation strategy and evolves independently. At the same time, it can gener-
ate adaptive control parameters according to evolutionary number. After each generation,
the three subpopulations are mixed to regroup. Compared with other enhanced DE algo-
rithms, SAMDE has a strong competitive performance.

3.3 Hybrid strategy

Currently, the strategy of hybridizing DE with different swarm intelligence optimization
algorithms has become one of the most effective ways to enhance its optimization per-
formance. In EDA, (Sun et al. 2005) combined the DE algorithm with the estimation of
the distribution algorithm to better solve the global optimization problem in continuous
space. In AnDE, (Das et al. 2007) merged the DE algorithm with the simulated annealing
algorithm and proposed new individual selection conditions and mutation strategies. The
experimental results show that the performance of the algorithm is better than that of the
traditional DE algorithm. In ESADE, (Guo et al. 2014) used the parameter setting method
and mutation strategy in JADE (Zhang and Sanderson 2009). At the same time, the simu-
lated annealing algorithm is integrated into the selection operator, which greatly enhances
the global search capability. In DEMPSO, (Mao et al. 2017) first executed DE to obtain the
local optimal solution and the individual optimal solution and then used this information
to find the global optimal solution through the iterative loop of the particle swarm opti-
mization algorithm. In HyGADE, (Chaudhary et al. 2019) merged DE and an improved
genetic algorithm based on the crossover of three parents. Compared with the basic genetic
algorithm, the DE algorithm and the genetic algorithm with an improved crossover opera-
tion can obtain a better global optimal solution. In SFDE, (Wang et al. 2019) combined
DE with the most basic shuffled frog-leaping algorithm, which improved the diversity of
the population and the speed of global search during the entire dynamic evolution process.
(Parouha and Verma 2021) designed an advanced hybrid algorithm (haDEPSO), which
integrated with the advanced DE and PSO. The convergence characteristic of them pro-
vided different approximation to the solution space.

We further summarize the algorithms involved in the three types of improvement and
the SFSADE proposed in this paper in detail in Table 1. According to the name of the
algorithm, the time of creation, the mutation strategy (the number of mutation schemes and
the number of individuals required), whether the control parameters are adaptive, whether
the population is divided into sub-populations, whether it is integrated with other algo-
rithms, the core idea of the algorithm, testing function status (number and highest dimen-
sion), algorithm performance evaluation indicators (iteration time, function value, average,
standard deviation, intermediate value, optimal value, worst value) and statistical test type,
a total of 11 aspects are summarized and analyzed. In summary, many enhanced DE algo-
rithms have been studied for the improvement of mutation strategies and the design of self-
adaptive adjustment mechanisms of control parameters. Consequently, determining how to
develop a better hybrid strategy to improve the performance of DE is a pivotal concern cur-
rent research. The SFSADE proposed in this paper adopts all the above three improvement
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methods. It combines the enhanced DE based on the self-adaptive control parameter adjust-
ment mechanism and classification mutation strategy with the meme group idea in shuffled
frog leaping and achieves better results. Compared with the latest advanced DE variants,
such as SAMDE (Zhu et al. 2020) and SFDE (Wang et al. 2019), SFSADE has great differ-
ences and performance improvements.

4 SFSADE

For the DE algorithm, the most critical problem is how to balance the relationship between
"explore" and "explicit" (Deng et al. 2020a). Exploration means that the population is
more inclined to increase diversity so that the individuals will expand the search range in

( Start )

A 4
| Set relevant parameters |

A 4
| Initialize the population randomly |

! I
: =I Calculate individual fitness value| Sub-population 1 :
|

| Merge Sub-population 2 :
! ... |
! I
I I
! I

sub-populations A 4

A | Divide into sub-populations based on fitness value | .
Sub-population m

|Calculate the control parameters for each individual|

l

| Mutation operation based on three types of individuals |

Crossover operation
Selection operation

Based on SFLA

Based on DE

Is the termination
condition met?

Fig. 1 Flow chart of the proposed SFSADE
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the solution space and improve the search performance and reliability of the algorithm.
Explicit means that the population is more inclined to effectively use better individuals and
explore better individuals in a local range. To achieve a good balance between them, our
proposed SFSADE adopts a variety of strategies to improve DE and innovatively incor-
porates the idea of the shuffled frog-leaping algorithm. The flow chart of the SFSADE is
shown in Fig. 1.

As shown in the figure above, the execution process of SFSADE is generally based on
the two algorithms of DE and SFLA. After initializing the parameters and populations of
the algorithm, first learn from SFLA and group the populations according to the fitness
value of the individuals; then use DE as the core to perform unique mutation, crossover,
and selection operations for each individual in different groups; Finally, the groups are
merged and looped until the termination condition is met. Through these improvements,
the SESADE can better improve the search efficiency of the population while maintaining
the diversity of the population to avoid premature convergence. The specific improvement
strategies are described in the following four subsections.

4.1 Shuffled frog-leaping strategy

We are familiar with most swarm intelligence optimization algorithms, such as genetic
algorithms (Sampson 1976), ant colony algorithms (Colorni et al. 1991), and particle
swarm algorithms (Kennedy and Eberhart 1995). Similar to the most basic DE algorithm,
they do not involve grouping operations, but they search and update based on the entire
population, and the execution efficiency is low. However, the shuffled frog-leaping algo-
rithm (Eusuff and Lansey 2003) is introduced in the SFSADE proposed in this paper. It
divides the population into several small meme groups based on a grouping operation, and
each meme group evolves independently of each other in each iteration, which can improve
the execution speed of the algorithm. After each iteration, the meme groups will be fused
again into a new population to transmit information, which is conducive to searching for
the global optimal solution.

In the work of this paper, we will first sort the population according to the fitness values
of all individuals, divide the population into a specified number of subpopulations of the
same size, expand the diversity of the population, and improve the overall search perfor-
mance. Then, instead of updating only the worst individual, such as the traditional shuffled
frog-leaping algorithm or other enhanced DE algorithms, we will let each individual in
each subpopulation perform improved mutation, crossover and other operations to update
so that it is helpful for the population to find the global optimal solution. It is worth men-
tioning that after each iteration, each subpopulation will be merged, and then the group-
ing evolution in the next generation will be executed according to the process. Through
this operation, the information of different subpopulations will be exchanged and shared,
which will further enrich the diversity of the population, make it difficult to fall into local
extremes and search for the global optimal solution better and faster.

4.2 Classification mutation strategy

The mutation operation in DE is actually a process of local search, where the base vector
is the center of the local search, and the difference vector represents the size of the local
search range, including the search step and direction. Therefore, the diversity of the popu-
lation often depends on the diversity of each local search center, namely, the basis vector
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(Bi and Xiao 2012). For the usual mutation form, such as "DE/rand/.", the basis vector is
randomly selected from the population. Although it has good diversity and high search per-
formance, the efficiency is relatively low. Another example is "DE/best/.", which uses the
best individuals of the population as the basis vector. It can make full use of excellent indi-
viduals and has better search efficiency. However, the basis vectors of the entire population
lack diversity and tend to converge prematurely (Cai et al. 2021).

In fact, for different basis vectors, the degree of adaptation of the representative indi-
viduals may also vary greatly. For the optimization problem [see Eq. (1)], the smaller the
fitness value is, the better the fitness, and vice versa. Therefore, different individuals should
adopt different schemes in the direction and speed of their mutations to further improve
the diversity and overall adaptability of the population at the same time and to search for a
better global optimal solution. Based on the above analysis and related research, this paper
adopts the following three types of mutation strategies for individuals with different adap-
tation ranges, as shown in Egs. (15-17) (Deng et al. 2021).

Strong individuals:f (Xi’t) <f,s—2-0,

Vii=R;, - X,;,+G,, - (Xgbest,— X;,) (15)
Ordinary individuals: y,; — 2 - 0, < f(X;,) < p,, +2 - 0,
Vii=R;, X, +S;, % (Xsbest, — X;;) + G,, - (Xgbest, — X, (16)
Poor individuals: f (X;,) > u,, +2 - 0,
Vii=R,, X, +S;, (Xsbest, — X;,) a7)

where (Xi’,) represents the fitness value of the 1" generation individual X; under the con-
straint [see Eq. (1)], and y, ; and o, ;, respectively, represent the average and standard devia-
tion of the fitness value of the s meme group in the 1 generation. V, represents the target
individual corresponding to the current individual X;,, X, is an individual that is randomly
selected from the population at the time of mutation as the basis vector that is different
from X;,, Xsbest, is the best individual in the current meme group of the 1" generation, and
Xgbest, represents the global optimal individual within the /* generation. R;,, S;,, and G,,
are, respectively, defined as random mutation coefficient, grouping mutation coefficient,
and global mutation coefficient.

According to Chebyshev’s theorem (Chebyshev 1867), regardless of the data distribu-
tion,, at least 75% of the data values are within two standard deviations of the average. As
shown in Fig. 2, approximately 12.5% of individuals X;, have a fitness value f(X;,) less
than u, — 2 - o, ;. We define them as strong individuals, indicating that they have strong
adaptability. These individuals implement the mutation strategy of Eq. (15), that is, try to
retain the genes of the best individuals and improve local search capabilities. Similarly,
approximately 12.5% of individuals have fitness values greater than y, + 2 - o, , and they
are defined as poor individuals, indicating that they have weaker adaptability. These indi-
viduals implement the mutation strategy of Eq. (17), which promotes their learning from
excellent individuals, enhances the individual’s exploration ability and global search abil-
ity, and accelerates the convergence to the optimal solution. Approximately 75% of individ-
uals have fitness values within the interval [,um 20,5 H+2- 0,,5], and we define these
individuals as ordinary individuals. These individuals implement the mutation strategy of
Eq. (16), that is, while retaining the best genes to learn from them, they also improve the
individual’s exploration ability and global search ability.
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75%
Ordinary individuals

12.5%
Strong individuals

12.5%
Poor individuals

Proportion

Fitness value

Fig. 2 Distribution of individuals in the population

4.3 Self-adaptive control parameters strategy

In the DE, the setting of control parameters and the adjustment schemes have an important
influence on the performance of the algorithm. Inappropriate parameter settings may cause the
algorithm to converge too early or too slowly, and it is impossible to search for a better global
optimal solution (Deng et al. 2020b). In the earlier enhanced DE, fixed control parameter val-
ues were often used. Although this method is simple, it is usually difficult to determine the
appropriate parameter values, and it is also not conducive to the performance of the algorithm.
The current trend is to use a self-adaptive control parameter strategy, that is, to determine dif-
ferent parameter schemes according to the actual situation of each individual.

Based on the new classification mutation strategy proposed above, in our improved DE
algorithm SFSADE, there are mainly four control parameters R;, S; ,, G;, and CR; . The first
three parameters control the mutation operation, and the last parameter controls the propor-
tion of the mutation individual V;, in the trial individual U; ,. These parameters all affect the
convergence speed and population diversity of the algorithm. The increase in R; , or CR; , helps
to increase the degree of random mutation of the individual, enhances the global exploration
ability of the population, and maintains the diversity of the population. Increasing the param-
eters S, , or G;, helps to enhance the local search ability of the individual and the exploitation
ability of the population.

In the current enhanced DE, most of the adaptive parameter adjustment strategies are
dynamically adjusted according to the evolutionary number of the algorithm. However, the
strategy proposed in this paper takes into account the degree of adaptation of different individ-
uals on that basis, that is, adaptively adjusts the control parameters of each individual accord-
ing to the evolutionary number and the individual’s fitness value. See the following Egs.

(18-21) for details(Bi and Xiao 2012).
. (fi,t _fmin >> (18)
fmax _fmin

Si,t:Smin+(Smax_Smin) : <% (2% _2)+§ <]@>> (19)

N =

Ri,t = Rmin + (Rmax _Rmin) : <% : <2 - 2%> +
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<fmax —Jis >> 0
fmax _fmm ( )

CR;, = CR,;, + (CR,.. — CR,;,) - <% ’ (2_2%> * % ‘ <J@>) @b
S, €S

where Ri,t € [Rmin’ max] min> max]’ Gi,t € [Gmin’ Gmax]’ CRi,t € [CRmin’ CRmax]’
t is the current evolutionary number, T is the total evolutionary number, and f,,,. and f,;,
are the fitness values corresponding to the optimal individual and the worst individual of
the group when the evolutionary number is ¢, respectively.

In Fig. 3 above, the change in the four control parameters in Shifted Rosenbrock’s
function test is shown. For our proposed parameter self-adaptive adjustment mecha-
nism, its advantages can be analyzed from three aspects. The first is the influence of
algorithm evolution number on control parameters. With the increase in evolutionary
number, the enhancement of the individual’s global search ability and population explo-
ration ability should gradually transition to increasing the individual’s local search abil-
ity and population exploitation ability so that the algorithm can reach the global optimal
solution faster in the later stage. Therefore, the values of these four control parameters
decrease as the number of algorithm iterations increases. The second is the influence
of the degree of adaptation of each individual on the control parameters. For individu-
als with poor fitness in the population, the degree of mutation and crossover should
be increased to promote their progress in a better search direction. Finally, there is the
weight relationship between evolutionary numbers and individual fitness values. For R;,
and CR;,, because they are more inclined to determine the degree of random evolution
of the individual, it may be possible to make the weights of the two equal. §;, and G;,
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Fig.3 Trend of four control parameters
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are more inclined to determine the directional convergence of the individual, so it is
more reasonable to set the influence ratio of the individual fitness values to twice the
evolutionary numbers.

4.4 The basic process of SFSADE

Through the three strategies to improve DE introduced above, we come to the detailed frame-
work of SFSADE as given in Algorithm 1. Generally speaking, the complexity of the opti-
mization algorithm is divided into time complexity and space complexity (Guanghui et al.
2020). However, the time consumed by the direct execution of the algorithm is very depend-
ent on the test environment and also affected by the scale of the data. In view of this, we ana-
lyze its time complexity from the code itself. It can be estimated by calculating the number of
basic operations that require constant time. Its usual function form is Time, = f(n), where n
is the dimension of the problem, Time, is the execution time of the n-dimensional algorithm,
f () is a function that returns the execution time (Mirsadeghi and Khodayifar 2021).

Algorithm 1 Pseudocode of SFSADE

1: Set the population size NP, the number of meme groups N, the solution dimension D and the boundary
2: [Xmin» Xmax), the initial evolution algebrat, the total number of population iterations T, the number of
3: iterations within each group K, the control parameter boundary R;; € [Rpmin, Rimaxl> Sit € [Smins Smaxls
4 Gt € [Gmins Gumaxl: CRig € [CRipmy CRmaxls
5: According to Eq. (2), the initial population is randomly distributed in the solution space;
6: %Generational evolution
7: while t <T
g; for i =1:NP
10‘_ Calculate the fitness value f(X;) of each individual X; according to Eq. (1);
; end
112'_ Find the best individual Xgbest within the t** generation;
13j Sort all individuals in the population according to the fitness value and divide the population into N
14j groups equally through the grouping operator [see Eq. (13)];
15: %Group evolution
16: for s=1:N
17: Find the best individual Xsbest in the group s of the t** generation;
18: %Evolution within the group
19: for k=1:K
20: Calculate the mean and standard deviation of the fitness of individuals in the s** group;
21 for i = 1: NP/N
22: %Perform mutation operation
23' According to Egs. (18-20), calculate the control parameters R, S, G corresponding to the
24: mutation of individual X;;
25: Carry out classification mutation according to Egs. (15-17);
26: According to Eq. (8), detection operation is performed on variant individuals;
27; %Perform Crossover operation
28: Calculate the cross probability CR according to Eq. (21);
29: Perform binomial crossover according to Eq. (10);
30: %Perform selection operation
31: According to Eq. (12), the population adopts a greedy strategy to evolve;
32: end
33: end
34: end
35 Mix the groups to form a new population;
36: t=t+1,;
37: end

There are many types of time complexity: constant time (does not depend on the size of
the problem), linear time (increases in a linear manner as the problem size increases), poly-
nomial time (increases as the problem dimension based on polynomial function), exponen-
tial time (exponentially increases with the increase of the problem dimension), factorial
time (calculates according to the factorial as the problem size increases) and so on, respec-
tively corresponding too(1),0(n), o(n“),0(b"), o(n!) and so on. Most optimization
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algorithms, such as differential evolution, particle swarm optimization, simulated anneal-
ing, etc., have a time complexity ofo(p(n + CF)), where p is the size of the population, n is
the dimension of the problem, and CF is the Cost Function time complexity (Mirsadeghi
and Khodayifar 2021). Therefore, as shown in the code in Algorithm 1, due to the addi-
tional nesting of loops outside, the time complexity of SFSADE iso(p(n” + CF)).

5 Experimental study

To verify the effect of the above improvement measures and the performance of the
improved SFSADE algorithm, we conducted a large number of simulation experiments.
The experimental program is written and run in MATLAB R2016a, and the calculation is
performed on a 64-bit computer with an Intel(R) Core(TM) i7-10875H @ 2.3 GHz CPU,
16 GB RAM, and a Windows 10 operating system. At the same time, the test function
selected by our experiment, the setting of related parameters, and the improved DE for
comparison are shown in the literature that proposed the SAMDE algorithm (Zhu et al.
2020).

5.1 Selection test function

To comprehensively evaluate the performance of our algorithm, we implemented and
tested it on the 25 benchmark functions of CEC 2005 (Suganthan et al. 2005). As shown
in Table 2 below, it includes unimodal functions F1 — F5, basic multimodal functions
F6 — F12, extended multimodal functions F13 — F14, and hybrid multimodal functions
F15 — F25. In fact, the number of local optimal solutions of most multimodal functions
will increase exponentially with the increase of the dimension of the problem variables,
which makes multimodal functions one of the most difficult optimization problems to solve
(Bi and Xiao 2012).

5.2 Comparison with state-of-the-art DE algorithms

We compare SFSADE with 7 advanced DE algorithms in JADE (Zhang and Sanderson
2009), SaDE (Qin et al. 2009a), SOUPDE (Weber et al. 2011), EPSDE (Mallipeddi et al.
2011), ESADE (Guo et al. 2014), MPEDE (Wu et al. 2016), and SAMDE (Zhu et al. 2020).
Among them, SOUPDE and MPEDE use multiple subpopulation coevolution strategies,
such as SFSADE. SaDE and EPSDE have multiple mutation strategies, such as SFSADE.
JADE and ESADE can adaptively adjust control parameters such as SFSADE. As the lat-
est improved DE algorithm, SAMDE integrates all the above improvement strategies, such
as SFSADE. Therefore, we choose these enhanced DE variants for comparison, which has
strong significance and pertinence.

To carry out comparative experiments more fairly, we refer to the relevant parameter
settings in (Zhu et al. 2020) and compare them with the relevant calculation results. The
maximum number of function evaluations is set as 2000 X D, which is equal to the popu-
lation evolution number 7" multiplied by the evolution number of meme groups N in our
SFSADE algorithm. The size of the population is also set to 60, and the boundary range
of the control parameters R, S, G and CR is also [0, 1]. The parameter settings of the other
comparison algorithms are also the same. Moreover, the following settings are imple-
mented: JADE with NP = 100; SaDE with NP = 50, Ip = 30; SOUPDE with NP = 30,
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ps =0.5, pu=0.5, CR = 0.9; EPSDE with NP = 50; ESADE with NP = 50, ¢, = 1000;
MPEDE with NP =250,ng =20, 4, = 4, = 43 =0.2;

We have performed 10-, 30-, and 50-dimensional optimization problems on 25 bench-
mark functions, and each test function performs 20 independent experiments on the cor-
responding dimension, calculates its average error and corresponding standard deviation
as the final result, and records them in Tables 3, 4 and 5. The symbols "+", "~", and "—" in
each table indicate that the performance of the corresponding algorithm is better, similar,
or worse than SESADE. For each test function, the optimal value found in all enhanced DE
variants is highlighted in bold.

Tables 3, 4, 5 above respectively show the overall performance of SFSADE and the
other 7 advanced DE variants on 25 test functions of 10, 30, and 50 dimensions. First of
all, for unimodal functions F1 — F5, when solving the optimization problem F1, SFSADE
performs optimally in three dimensions, and its performance is far superior to all other DE
variants; on F2 — F5, the performance of SFSADE is at a general level, only better than
some DE variants. Especially for F5, the optimization results are poor. Secondly, For the
basic multimodal functions F6 — F12, SFSADE is only at a disadvantage in F6, and for
other functions, it is almost all superior to other DE variants in three dimensions. Finally,
whether it is the extended multimodal functions F13 — F14 or the hybrid multimodal func-
tions F15 — F25, compared with other DE variants, the performance of SFSADE is still far
ahead. Only for the two functions F24 and F25, SFSADE and other DE variants achieve
similar results, or it is at an intermediate level.

In addition, for each dimension, we have calculated the number of times that SFSA
outperforms JADE, SaDE, SOUPDE, EPSDE, ESADE, MPEDE, and SAMDE on 25
test functions. On 10-dimensional functions, it is 21, 21, 24, 20, 19, 24, 20, defeating
other opponents 21.29 times on average. Suffice it to say that the overall performance of
SFSADE is better than the other 7 advanced DE variants, and it is highly competitive. On
30 dimensions, the times are 21, 20, 22, 19, 19, 19, and 18 respectively. Although the aver-
age number of wins against other opponents has been reduced by 19.71, the overall per-
formance of SFSADE is still better than other DE variants. On the 50th dimension, the
times are 19, 19, 23, 20, 20, 19, and 18 respectively, and the average number of times of
defeating other opponents is the same as on the 30th dimension, both are 19.71. It can also
be seen that the overall performance of SFSADE is still far better than the other 7 advanced
DE variants.

Through all the above optimization experiments, we can clearly see that SFSADE has
competitive optimization results under different dimensions and types of test functions, and
its results have great advantages over other algorithms. For further visual comparison, we
quantitatively summarize these results in Fig. 4 according to four types and three dimen-
sions. Among the 5 unimodal functions, one function has the best performance; among the
7 basic multimodal functions, 5, 6, and 6 optimal performances are achieved in the three
dimensions respectively; on the 2 extended multimodal functions, SFSADE all reaches
the best; for the 11 hybrid multimodal functions, it defeats almost all opponents in three
dimensions. Obviously, our improved algorithm SFSADE is very successful and has strong
comprehensive performance. Especially for high-dimensional hybrid multimodal func-
tions that are extremely difficult to solve, SEFSADE can still obtain the most accurate results
when comparing with the other 7 algorithms, which further reflects its powerful optimiza-
tion capabilities.

@ Springer



3970 Q.Panetal.

D=10 = D=30 = D=50

12
10
8
6
4
2
0
unimodal basic multimodal  extended multimodal  hybrid multimodal
(5) (7) (2) (11)
D=10 1 5 2 11
D=30 1 6 2 10
D=50 1 6 2 11

Fig.4 Situation where SFSADE is better than others under different dimensions and types of test functions

5.3 Statistical test

To further analyze the experimental results, we use the Wilcoxon signed ranks test and
Friedman test, two nonparametric statistical tests, to evaluate the performance of the above
algorithms (Mirsadeghi and Khodayifar 2021). Therefore, we consider to propose two dif-
ferent hypotheses and compare the proposed algorithm SFSADE with the other DE vari-
ants, namely JADE, SaDE, SOUPDE, EPSDE, ESADE, MPEDE, and SAMDE algorithms:

(a) HO: There is no significantly difference between the proposed algorithm and the other
variant algorithms;

(b) H1: There is a significantly difference between the proposed algorithm and the other
variant algorithms.

The Wilcoxon signed ranks test involves two samples and is used to detect the sig-
nificant differences between the two samples (Derrac et al. 2011). Therefore, it is used
for pairwise comparisons of the algorithms. Combining the optimization results of the
average error in Tables 3, 4, 5, we perform Wilcoxon signed ranks test and show it in
Table 6. In this table, R* represents the sum of ranks that our proposed algorithm is
better than the second algorithm, and R~ represents the sum of ranks in the opposite
case, and satisfies the equation Rt + R~ = n(n + 1)/2. From the p-value we calculate for
each test function in each dimension, it can be seen that SFSADE shows a significant
improvement over the other 7 DE variants with the significance levels & = 0.05. There-
fore, we reject the null hypothesis HO, which proves that there is a significant difference
in the performance comparison between our proposed algorithm and the other 7 DE
variants.

The Friedman test is a nonparametric simulation method of two-way analysis of
variance. Through multiple comparisons, significant differences between different

@ Springer



SFSADE: an improved self-adaptive differential evolution... 3971

Table 6 The Wilcoxon signed

- - . " — ]
ranks test results Dimension  Comparison R R p-value

10 SAMBDE versus JADE 270.0 55.0 0.003821

SAMDE versus SaDE 285.0 40.0  0.000980

SAMDE versus SOUPDE ~ 302.0 23.0 0.000174
SAMDE versus EPSDE 259.0 66.0 0.009417
SAMBDE versus ESADE 253.0 720 0.014889
SAMDE versus MPEDE 303.0 22.0 0.000157
SAMDE versus SAMDE ~ 258.0 67.0 0.010181
30 SAMDE versus JADE 2355 915 0.071861
SAMDE versus SaDE 271.5 535 0.005139
SAMDE versus SOUPDE  281.5 43.5 0.001843
SAMDE versus EPSDE 240.5 84.5 0.042502
SAMDE versus ESADE 222.0 103.0 0.109385
SAMBDE versus MPEDE 2275 975 0.097490
SAMDE versus SAMDE ~ 213.5 111.5 0.198543
50 SAMDE versus JADE 222.0 103.0 0.109386
SAMDE versus SaDE 238.5 86.5 0.048675
SAMDE versus SOUPDE  303.5 21.5 0.000203
SAMBDE versus EPSDE 264.5 60.5 0.007235
SAMDE versus ESADE 2245 100.5 0.124528
SAMDE versus MPEDE 219.5 105.5 0.153106
SAMDE versus SAMDE 221.5 103.5 0.129953

algorithms are found (Derrac et al. 2011). We first sort the 7 algorithms to be compared
for the results of the 25 test functions and then examine the differences across columns
to compare the overall performance of each algorithm. The results of the Friedman
test are shown in Table 7. We write the corresponding general rank according to the
Friedman rank, which represents the general performance of all of the algorithms on
these functions. It can be seen from the ranking results that the performance of all algo-
rithms is ranked in any of the 10 dimensions, 30 dimensions, and 50 dimensions. The
algorithm SFSADE we proposed ranks first, far surpassing other algorithms. This once
again shows that SFSADE has a strong comprehensive performance.

5.4 Parameter analysis

Taken together, the performance of SFSADE is far superior to that of other advanced DE
variants under the same experimental conditions. This strongly proves that the three key
improvement strategies we proposed, namely, the grouping evolution strategy, the classi-
fication mutation strategy, and the self-adaptive control parameter adjustment strategy, are
all very effective. However, the poor test results on the unimodal functions F2 — F5 are still
due to inappropriate initial setting parameters (Zhu et al. 2020). In the above experimen-
tal process, the range of control parameters, the ratio of population evolution number and
group evolution number, and the number of meme groups will all affect the final result.
We tested the sensitivity of SFSADE to changes in these important parameters through
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Table 7 The Friedman test
results

Fig.5 The effect of the number
of group iterations on the results

Dimension Algorithm Friedman rank General rank
10 JADE 5.34 6
SaDE 3.98 4
SOUPDE 5.08 5
EPSDE 3.70 3
ESADE 6.00 7
MPEDE 6.94 8
SAMDE 2.92 2
SFSADE 2.04 1
30 JADE 4.84 5
SaDE 4.60 4
SOUPDE 5.84 8
EPSDE 5.04 6
ESADE 5.12 7
MPEDE 4.48 3
SAMDE 3.62 2
SFSADE 2.46 1
50 JADE 5.24 7
SaDE 5.06 6
SOUPDE 6.20 8
EPSDE 4.54 5
ESADE 4.30 4
MPEDE 4.08 2
SAMDE 4.12 3
SFSADE 2.46 1
60
[
50 ~‘
40 I Group iterations = 100
Group iterations = 800
[} Group iterations = 1500
(—3 301 Group iterations = 2200
20
}
10 FY
0 — 2 = - — — i
0 20 40 60 80 100

experiments. This further shows that SFSADE still has good performance for solving uni-

modal functions.
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Fig.6 The effect of the number 45 ¢
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We take the experiment on the unimodal function F2 on 10 dimensions as an example,
and the range of the self-adaptive control parameters of mutation and crossover operation
is still [0.1, 0.9].

First, we conducted an experiment on the sensitivity of the parameter and the num-
ber of function evaluations. It is 2000 X D in the original experiment, which is equal
to the population evolution number multiplied by the group evolution number. In this
experiment, the number of meme groups is fixed at 4, the number of populations is fixed
at 60, and the population evolution iterations are fixed at 200. The number of group-
ing iterations is set to 100, 800, 1500, and 2200 to increase the number of function
evaluations. Figure 5 shows the experimental results. The global optimal solutions cor-
responding to the four different grouping iterations are 5.82E — 01, 2.31E-04, 3.58E-08,
and 7.14E — 10. Therefore, within a certain range, as the number of grouping iterations
increases, the convergence speed of the algorithm gradually increases, and the global
optimal solution to be solved is increasingly better than the best result in Table 2.

Then, we experimented with the sensitivity of the parameter of the number of meme
groups. In this experiment, the population number is fixed at 60, the population evolution
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iterations are fixed at 150, the number of grouping iterations is 300, and the number of
meme groups is set to 3, 4, 5, and 6. Figure 6 shows the experimental results. The global
optimal solutions corresponding to the four different numbers of meme groups are,
1.37E-01, 1.10E-04, 1.66E-08, and 1.53E-10. It can be seen that the number of meme
groups is different, and the convergence speed of the algorithm and the global optimal
solution of the solution are also different. Therefore, it is particularly important to select a
more appropriate number of meme groups during the experiment.

Finally, we experimented on the sensitivity of the population size parameter. In this
experiment, the number of meme groups is fixed at 3, and the number of function evalua-
tions is fixed at 2000 X D, where the population evolution iterations is 200, the group itera-
tions is 100, and the population numbers are set to 60, 120, 180, and 240. Figure 7 shows
the experimental results. The global optimal solutions corresponding to the four different
population sizes are 4.91E-01, 3.03E-03, 6.28E-07, and 1.63E — 09. Therefore, within a
certain range, as the number of populations increases, the convergence speed of the algo-
rithm gradually increases, and the global optimal solution to be solved is also better, which
is also better than the best result in Table 2.

Through the above experiments, it can be seen that the setting of the experimental
parameters has a great influence on the results. When optimizing the unimodal function,
we can actively adjust the relevant experimental parameters to find a better global optimal
solution. In particular, the two parameters that can be manually adjusted, the maximum
evaluation number of the function and the population size, have significantly improved the
solution effect of SESADE. It also shows that our comprehensive improvement strategy for
DE is very effective.

6 Conclusion

In order to improve the performance of DE algorithm in solving numerical optimiza-
tion problems, this paper proposes an improved adaptive differential evolution algorithm
SFSADE based on a shuffled frog-leaping strategy. In theory and experiment, we have
verified the innovation and improvement in the algorithm from three different aspects:
First, we have successfully integrated the shuffled frog-leaping algorithm, and divided the
population into multiple sub-populations randomly based on the fitness value of the indi-
vidual. Each sub-population does not affect independent evolution. After each generation
is updated, these sub-populations reintegrate into a population, and carry out information
transmission and exchange, so as to fully improve the diversity and convergence speed of
the population. Second, in the process of evolution, we adopt a new classification muta-
tion strategy designed, that is, individuals with different fitness values are affected by the
dual effects of the global optimal individual and the grouped optimal individual to fur-
ther enhance the adaptability and diversity of the population. Third, we introduce a new
adaptive control parameter adjustment mechanism designed, that is, each generation will
automatically adjust the control parameters related to mutation and crossover operations
according to the evolutionary number and individual fitness values, which further improves
the performance of the algorithm.

In addition, this paper uses the CEC2005 benchmark functions to carry out a large
number of experiments, and conducts two non-parametric statistical tests, the Wilcoxon
signed ranks test and Friedman test, which are compared with the other 7 most advanced
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DE variants (JADE, SaDE, SOUPDE, EPSDE, ESADE, MPEDE, and SAMDE) to conduct
a comprehensive comparison and analysis. Through the results, it is proved that SFSADE
has a strong comprehensive performance, which is far superior to other DE variants. At
the same time, we also analyzed the sensitivity of SFSADE to related experimental param-
eters, further showing that compared with other DE variants, the three innovative improve-
ment strategies of SFSADE have obvious advantages and competitiveness.

The good performance of SFSADE can try to solve optimization problems in many
fields. For example, for the optimization model in multithreshold image segmentation, the
algorithm may improve the segmentation effect and increase the segmentation speed; in
the UAV trajectory planning problem, the algorithm may be able to overcome complex
constraints and improve the quality of trajectory planning. In the future, we will further
improve SFSADE, try to address numerical optimization problems of higher dimensions
or different benchmark functions under time constraints, and hope to further solve other
specific optimization problems in the real world.
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