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Abstract
We present and discuss a novel language restriction for modal logics for multiagent sys-

tems, called modal context restriction, that reduces the complexity of the satisfiability

problem from EXPTIME complete to NPTIME complete. We focus on BDI multimodal

logics that contain fix-point modalities like common beliefs and mutual intentions together

with realism and introspection axioms. We show how this combination of modalities and

axioms affects complexity of the satisfiability problem and how it can be reduced by

restricting the modal context of formulas.

Keywords Modal context restriction � Multiagent theories � BDI � Modal logic �
Satisfiability

1 Introduction

Checking the satisfiability of formulas (Garey and Johnson 1990), along with checking

whether formulas are satisfied in a given model (i.e. model checking Emerson and Clarke

1980), is an important computational task associated with formalisms used for specifying

software systems (Huth and Ryan 2004). In the case of multiagent systems (Wooldridge

2009; Shoham and Leyton-Brown 2008), the satisfiability problem underlies the following

two tasks, appearing during system development. The first is the task of specification

verification. Checking whether there exists a system that satisfies the given specification is

essentially the satisfiability problem. The second task is related to implementation of

individual agents (Shoham 1993). Often such implementations are based on logical for-

malisms and execution of programs of agents involves reasoning tasks related to that

formalism. These tasks are based on checking the satisfiability of formulas.

The problem with checking the satisfiability of formulas of modal logics for multiagent

systems is its high computational complexity (Halpern and Moses 1992). Such logics

usually combine fix-point modalities, like common beliefs and mutual intentions, with

axioms interconnecting different types of modalities, like introspection axioms and realism

axioms (Levesque et al. 1990; Rao and Georgeff 1991; Wooldridge 2000; Dunin-Kęplicz

and Verbrugge 2010). Richness of the formalisms leads to high complexity of
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computational tasks such as checking the satisfiability. One way of addressing this problem

is restricting the language of the formalism (Halpern 1995). Knowing possible language

restrictions and the associated complexity of computational tasks can help designers of

programming languages or the graphical languages for systems design to enforce the

chosen restrictions and ensure lower cost of computational tasks like reasoning or checking

system validity. A classic example of this approach is the Horn fragment of first order logic

that is adopted in logic programming languages, like Prolog.

The rest of the paper is organized as follows. We start with discussing the related

literature and the state of the art in Sect. 2. Then we introduce the logical framework in

Sect. 3. In Sect. 4 we present the general idea of modal context restriction together with

two restrictions for logic TeamLog:We discuss the restrictions and provide examples in

Sect. 5. Section 6 contains the complexity results. Section 7 contains the conclusions.

2 Related literature

The main focus of this paper is the complexity of the satisfiability problem for modal BDI

logics. Modal logics of agency based on BDI model (Bratman 1987) are formalisms used

to specify individual agents in terms of their beliefs, goals/desires and intentions. In the

context of multi-agent systems this formalism is extended with fix-point modalities for

common beliefs and collective (or joint) intentions and commitments. These extensions

where first introduced in the seminal work of Cohen, Levesque et al. (1990). This was

followed by a number of well known early formalism including KARO (van Linder et al.

1994, 1998; Meyer et al. 1999; van der Hoek et al. 1999; Aldewereld et al. 2004), LORA
(Wooldridge 2000), and TeamLog (Dunin-Kęplicz and Verbrugge

1996, 2002, 2004, 2010). More recent works on BDI logics and related formalisms focus

on extending the formalism and for obtaining better formalisation of concepts like desires,

intentions, or coalitions. Dubois et al. (2017) consider the problem of desires revision and

propose a formalism for reasoning about desires based on possibilistic logic. Wobcke

(2015) proposed an agent dynamic logic (ADL) that allows for reasoning about intentions

and action. (Bauters et al. 2014a, b, 2017) develop a BDI formalism that allows for

modelling and reasoning under uncertainty. Ågotnes and Alechina (2018) study axioma-

tisation and complexity of epistemic coalition logic, a formalism combining modalities for

expressing knowledge and common knowledge with the modality expressing that a group

of agents is effective to make a formula true. Lorini and Sartor (2016) propose a logic for

reasoning about social influence based on Belnap et al. (2001) logic of ‘seeing to it that’,

STIT. The BDI model of agency remains an actively studied and used model up to this day.

Most recent applications include multiagent system organizations (Keogh and Sonenberg

2020), supply chain quality inspection (Yan et al. 2020), and traffic simulations (Rüb and

Dunin-Kęplicz 2020).

A common characteristic of multi-agent BDI logics is adopting, along with standard

modal systems Kn, KDn or KD45n, mixed axioms that interrelate modalities representing

different aspects of agent description. Well-known examples of such axioms are the re-
alism axioms (Cohen and Levesque 1990; Rao and Georgeff 1998; Wooldridge 2000) and

the introspection axioms (Rao and Georgeff 1991; Dunin-Kęplicz and Verbrugge

2002, 2004). In the case of basic BDI logics for a single agent (without the temporal or

dynamic component), addition of these axioms does not change the complexity of the

satisfiability problem, and they all remain PSPACE complete (Rao and Georgeff 1998;

Dziubiński et al. 2007). In the multiagent case such logics are extended by lifting indi-

vidual modalities representing beliefs, goals or intentions to the group level by introducing
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fixpoint modalities representing common beliefs, mutual goals or mutual intentions

(Levesque et al. 1990; Wooldridge 2000; Aldewereld et al. 2004; Dunin-Kęplicz and

Verbrugge 2010; Ågotnes and Alechina 2018). Adding such modalities leads to EXPTIME

hard satisfiability problem (Halpern and Moses 1992), and presence of mixed axioms does

not affect this result (Dziubiński et al. 2007).

One of the ways of dealing with high complexity of logical formalisms is restricting

their language, so that the complexity of the satisfiability problem is reduced.1 Restricting

modal depth of formulas by a constant may lead to NPTIME complete satisfiability

problem, while combining this with restricting the number of propositional symbols leads

to linear time solvability of the problem. This, however, is with a constant that depends

exponentially on the number of these symbols (Halpern 1995). In the case of modal logics

with fixpoint modalities the restrictions mentioned above are not that promising, as the

satisfiability problem remains EXPTIME hard, even when modal depth of formulas is

bounded by 2 (Halpern and Moses 1992; Dziubiński et al. 2007). Motivated by these

results, Dziubiński (2013) proposed a new kind of language restriction called modal
context restriction and applied restrictions of this kind to standard systems of multimodal

logics (generated by different combinations of axioms K, T, D, 4 and 5) enriched with

fixpoint modalities. This leads to PSPACE completeness and, when combined with modal

depth restriction, to NPTIME completeness of the satisfiability problem.

Another type of restrictions considered in the literature are sub-propositional fragments

of modal logics. In Nguyen (2005) it is shown that the Horn fragment of some of modal

systems has NPTIME complete satisfiability problem, which becomes PTIME complete

when combined with modal depth restriction. More recently, Bresolin et al. (2016) and

(Bresolin et al. 2018) considered the Horn and the Krom fragments of modal basic logics

K, T, K4, and S4, also in combination with allowing box or diamond operators in positive

literals only. They show that all these fragments are PTIME solvable. Wałęga (2019)

considered the core fragment (i.e. an intersection of the Horn and Krom fragments) and

showed that if only box operators in positive literals are allowed, the fragment is NL-

complete. In Bauland et al. (2006) restrictions on propositional operators used in formulas

are considered. To study different sets of propositional operators used in formulas, Post

lattice (Post 1941), which has been successfully used to classify the complexity problems

for propositional calculus, is used. It is shown that in the case of basic normal modal

system K there is a trichotomy: depending on the boolean operators used the satisfiability

problem is either PSPACE complete, coNPTIME complete or PTIME solvable). In the

case of normal modal system KD there is a dichotomy: the satisfiability problem is either

PSPACE complete or PTIME solvable. Almost complete characterization was also

obtained for modal systems T, S4 and S5. Similar approach was also applied to LTL in

Bauland et al. (2009) and to CTL� and CTL in Meier et al. (2008).

In this paper, we build on the idea of modal context restrictions from Dziubiński (2013)

and present modal context restrictions for BDI logics with two types of mixed axioms,

realism axioms and introspection axioms, interrelating modalities of different basic mul-

timodal logics. Presence of mixed axioms results in a richer setup which makes the

problem of designing the right modal context restriction much more difficult than in

Dziubiński (2013) and results in more complex restrictions. In particular, we propose two

novel modal context restrictions, called R1 and R2. We show that the basic modal context

restriction, R1, leads to PSPACE completeness of the satisfiability problem. However,

1 In many cases the term reduced is used under the assumption that NPTIME, PSPACE and EXPTIME are
different and increasing in this order.
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existence of the introspection axioms results in PSPACE hardness of the problem, even if

modal depth of formulas is bounded by 2. An interesting feature of the considered logic is

the fact that models satisfying the formulas may be exponentially deep (with respect to

their size). For this reason a standard tableau based algorithm has to be extended so that it

uses polynomial space to decide the satisfiability. Two of the restrictions proposed in the

paper, R2 and R1ðcÞ, lead to NPTIME solvability of the satisfiability problem, when

combined with modal depth restriction. As working formalism we chose TeamLog (Dunin-

Kęplicz and Verbrugge 2010), a well-known BDI formalism designed to formalise

teamwork in multiagent systems.

3 Logical framework

TeamLog; developed by Dunin-Kęplicz and Verbrugge in a series of papers (Dunin-

Kęplicz and Verbrugge 1996, 2002, 2003, 2004) and a book (Dunin-Kęplicz and Ver-

brugge 2010), is a logical framework proposed to formalize individual and group aspects of

BDI systems. The full TeamLog is a very reach formalism allowing for expressing and

reasoning about various aspects of individual agents and multiagent systems relevant to

cooperative problem solving. Moreover, it is intended to be suitable for possible enrich-

ments that could be designed for chosen classes of multiagent systems. In this paper we

focus on the core TeamLog (which will be simply called TeamLog) presented below. For

the full framework see (Dunin-Kęplicz and Verbrugge 2010).

TeamLog is a propositional multimodal logic that introduces five sets of modal operators

based on a finite and non-empty set of agents A. Three sets of operators,

XB ¼ f½B�j : j 2 Ag, XG ¼ f½G�j : j 2 Ag and XI ¼ f½I�j : j 2 Ag, are used for represent-

ing beliefs, goals and intentions, respectively, of individual agents. We call them individual

modalities, for short, and the set of these modalities is denoted by Xind. Additional two sets

of operators, XBþ ¼ f½B�þG : G 2 PðAÞ n f£gg and XIþ ¼ f½I�þG : G 2 PðAÞ n f£gg are

used for representing common beliefs and mutual intentions of groups of agents. We call

them fixpoint modalities. The set of all modal operators of TeamLog is denoted by XT.

The language of TeamLog; denoted by LT, is based on a countable set of propositional

variables P and on a set of modal operators XT. It is a minimal set of formulas satisfying

the following properties

• P � LT,

• If u 2 LT, then :u 2 LT,

• If u1 2 LT and u2 2 LT, then u1 ^ u2 2 LT,

• If u 2 LT and h 2 XT, then hu 2 LT.

We will also use the following standard abbreviations for propositional constants and

operators:

• >¼def
p ^ :p, where p 2 P,

• >¼def:?,

• u1 _ u2¼
def:ð:u1 ^ :u2Þ,

• u1 ! u2¼
def:ðu1 ^ :u2Þ,

• u1 $ u2¼
defðu2 ! u2Þ ^ ðu2 ! u1Þ,
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as well as the following abbreviations for general beliefs and general intentions of a non-

empty group of agents G

• ½B�Gu¼
defV

j2G½B�ju,

• ½I�Gu¼
defV

j2G½I�ju.

Given a finite set of formulas U, we will use
V
U to denote the conjunction of all formulas

in the set, and
W
U to denote the disjunction of all formulas in the set. We will also use the

conventions that
V
£ ¼ > and

W
£ ¼ ?.

Throughout the paper we will refer to the notion of single negation. Given a formula u,

�u ¼
w; if u ¼ :w for some formula w;

:u; otherwise:

�

A set of formulas U is closed under single negation iff for all u 2 U, it holds that �u 2 U.

Given a set of formulas U we will use :U to denote the smallest set containing U and

closed under single negation.

We will use juj to denote the length of a formula2 and depðuÞ to denote the modal depth
of a formula. Both notions have standard meaning and we omit the definition here. Given a

finite set of formulas U,

depðUÞ ¼
0; if U ¼ £

maxfdepðuÞ : u 2 Ug; otherwise:

�

3.1 Deduction system

TeamLog combines axiom systems KD45n, associated with modal operators from XB

representing beliefs, Kn, associated with modal operators from XG representing goals, and

KDn, associated with modal operators from XI representing intentions. Additionally,

axioms interrelating different modalities, called mixed axioms, as well as axioms related to

fixpoint modalities from XBþ
and XIþ, representing common beliefs and mutual intentions,

are introduced. All these are presented below.

For each of the modal operators h 2 Xind, the following axioms and deduction rules of

the basic modal system K are adopted:

P All instances of propositional tautologies

K hu ^hðu ! wÞ ! hw

MP From u and u ! w infer w (Modus ponens)

GEN From u infer hu (Generalization).

Additionally, depending on which of the sets XB, XG or XI, h belongs to, a subset of the

following axioms is adopted:

D :h?
4 hu ! hhu

5 :hu ! h:hu:

2 Given a set X we will also use |X| to denote the cardinality of X. The notation is standard for both length of
a formula and cardinality of a set. It will be clear from the context what is meant by particular usages.
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The intended meaning of a formula ½B�ju is that agent j believes that u and axioms and

inference rules of the standard doxastic modal logic (c.f. Meyer and van der Hoek 1995;

Fagin et al. 2003) forming the KD45n system are adopted for modal operators from XB.

The interpretations of the axioms are in this case as follows: K (distribution of beliefs),

D (consistency of beliefs), 4 (positive introspection) and 5 (negative introspection).

The intended meaning of a formula ½G�ju is that agent j has goal u and axioms and

inference rules of the system Kn are adopted for modal operators from XG. Axiom K is

interpreted as distribution of goals. Note that goals can be inconsistent.

The intended meaning of a formula ½I�ju is that agent j intends u and axioms and

inference rules of the system KDn are adopted for modal operators from XI. The inter-

pretations of the axioms are in this case as follows: K (distribution of intentions)

and D (consistency of intentions).

Mixed axioms, interrelating different modalities, are as follows:

BG4 ½G�ju ! ½B�j½G�ju (Positive introspection of goals)

BG5 :½G�ju ! ½B�j:½G�ju (Negative introspection of goals)

BI4 ½I�ju ! ½B�j½I�ju (Positive introspection of intentions)

BI5 :½I�ju ! ½B�j:½I�ju (Negative introspection of intentions)

IG ½I�ju ! ½G�ju (Goals and intentions compatibility).

Axioms BG4 and BG5 correspond to positive and negative introspection of goals: an

agent is aware of the goals it has and of the goals it does not have. Analogous axioms, BI4
and BI5, are adopted for intentions. Axiom IG corresponds to goals and intentions com-

patibility: intentions of an agent are a subset of its goals.

The axioms of positive and negative introspection of goals and intentions were also

adopted in the first version of the formalism of Rao and Georgeff (1991). The axiom of

goals and intentions compatibility is discussed in Rao and Georgeff (1998) as one of the

realism axioms, extending the realism axiom of Cohen and Levesque (1990) for beliefs and

goals compatibility to compatibility of goals and intentions. It was also adopted by

Wooldridge in his LORA formalism (Wooldridge 2000).

For fixpoint modalities ½O�þG 2 XBþ [ XIþ the following axiom and a rule of inference

are adopted:

C ½O�þGu $ ½O�Gðu ^ ½O�þGuÞ
RC From u ! ½O�Gðw ^ uÞ infer u ! ½O�þGw (Induction).

The intended meaning of a formula ½B�þGu is that group G has a common belief that u. This

notion is defined in terms of general beliefs, ½B�Gu, meaning that every agent in G believes

that u. Thus there is a common belief that u in group G if and only if every agent in G
believes that u, every agent in G believes that every agent in G believes that u, etc., ad

infinitum.

The intended meaning of a formula ½I�þGu is that group G has a mutual intention that u.

This notion is defined in terms of general intentions, ½I�Gu, meaning that every agent in G

intends that u, in analogous way to how common beliefs are defined.

Fixpoint modalities such as common beliefs or mutual intentions are widely used in

formalism for multiagent systems such as the formalism of Levesque et al. (1990), LORA
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of Wooldridge (2000) and the extension of KARO by Aldewereld, Hoek and Meyer and

Bratman (1987).

As we wrote above, operators of general beliefs and general intentions, ½B�G and ½I�G,

are defined in terms of individual beliefs and individual intentions and a formula with these

operators can be translated to a formula without them in linear time, which increases the

size of the formula be a linear factor � jAj. For that reason we will omit them from now

on, as they are not relevant for the complexity issues considered in this paper.

3.2 Semantics

Formulas from LT are interpreted in Kripke models with accessibility relations corre-

sponding to modalities from XT. Since accessibility relations corresponding to operators

from XBþ
and XIþ can be defined in terms of accessibility relations corresponding to

individual modalities Xind, the definition of Kripke models is based on relations corre-

sponding to these operators only.

Definition 1 (Kripke frame) A Kripke frame is a tuple F ¼ W ; Oj : ½O�j 2 Xind
n o� �

,

where

• W 6¼ £ is the set of possible worlds.

• For all ½O�j 2 Xind, Oj � W �W . Each relation Oj stands for the accessibility relation

corresponding to the operator ½O�j.

Definition 2 (Kripke model) A Kripke model is a pair M ¼ F ;Valð Þ, where F is a Kripke

frame and

• Val : P �W ! f0; 1g is a valuation function that assigns the truth values to atomic

propositions in worlds.

Given a binary relation R � W �W and w 2 W we will use R(w) to denote the set of

worlds accessible from w, that is RðwÞ ¼ fv 2 W : ðw; vÞ 2 Rg. Moreover, we will use Rþ

to denote the transitive closure of R. Additionally, given a family of relations fRj : j 2 Ag
and a set of agents G � A , relation RG ¼

S
j2G Rj. The relation corresponding to a modal

operator ½O�þG 2 XT is Oþ
G .

Definition 3 (Satisfaction) Let M be a Kripke model, w be a world in M and u 2 LT be a

formula. The notion of u being satisfied (or being true or holding) in M at w is defined

inductively as follows:

ðM;wÞ�p iff Valðp;wÞ ¼ 1;

ðM;wÞ�:u iff ðM;wÞ2u;

ðM;wÞ�u1 ^ u2 iff ðM;wÞ�u1 and ðM;wÞ�u2;

ðM;wÞ�½O�ju iff ðM; vÞ�u, for all v 2 OjðwÞ;
ðM;wÞ�½O�þGu iff ðM; vÞ�u, for all v 2 Oþ

GðwÞ:
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Let u 2 LT be a formula. We say that u is valid in a Kripke model M if for every world w
in M, ðM;wÞ�u. We denote this fact by M�u. We say that u is satisfiable in M if there

exists a world w in M such that ðM;wÞ�u. Let C be a class of Kripke models. We say that

u is valid in C if M�u, for every M 2 C. We denote this fact by C�u. We say that u is

satisfiable in C if there exists M 2 C such that u is satisfiable in M.

Axioms of modal systems Kn, KDn and KD45n, as far as they do not hold on all frames

like K, correspond to well-known structural properties on Kripke frames, in the sense that

they hold on all frames having certain structural properties (c.f. van Benthem 1984).

Axiom D (adopted for ½B�j and ½I�j) corresponds to seriality of Oj (where O 2 fB; Ig)

8sðOjðsÞ 6¼ £Þ;

axiom 4 (adopted for ½B�j) corresponds to transitivity of Bj

8s; tðt 2 BjðsÞ ! BjðtÞ � BjðsÞÞ;

and axiom 5 (adopted for ½B�j) corresponds to Euclidity of Bj

8s; tðt 2 BjðsÞ ! BjðsÞ � BjðtÞÞ:

Similarly, the mixed axioms correspond to certain properties of Kripke frames. Axioms of

positive introspection, B O4 with O 2 fG; Ig, correspond to the following property

8s; tðt 2 BjðsÞ ! OjðtÞ � OjðsÞÞ:

We will call this property generalized transitivity. Axioms of negative introspection, B O5,

with O 2 fG; Ig, correspond to the property

8s; tðt 2 BjðsÞ ! OjðsÞ � OjðtÞÞ:

We will call this property generalized Euclidity. Finally, axiom IG corresponds to the

property

Gj � Ij:

Proofs of these correspondences are given in Dunin-Kęplicz and Verbrugge (2004). Also,

they follow directly from Sahlqvist theorem (c.f. Blackburn et al. 2002, for example). The

class of all Kripke frames with accessibility relations satisfying the properties above will

be called TeamLog frames. Analogously TeamLog models are defined. We will say that u is

TeamLog provable, denoted by ‘T u, if there exists a proof of u that includes axioms from

TeamLog: The deduction system of TeamLog is sound and complete with respect to the

class of TeamLog models, as was shown in Dunin-Kęplicz and Verbrugge (2002).

Theorem 1 Let T be the class of TeamLog models. Then for any u 2 LT

T �u iff ‘T u
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4 Modal context restriction

In this section we introduce a family of language restrictions for modal logics called modal

context restrictions. The idea was already presented in Dziubiński (2013). After intro-

ducing the concept, we propose two restrictions of this kind, called R1 and R2, as well as a

refinement of one of them, called R1ðcÞ, which will be studied in the remaining part of the

paper.

We start by defining the notion of modal context restriction for a general language of

multimodal logic.3 First we need a notion of modal context of a formula within a formula.

Consider a case of a formula appearing only once as a subformula of some given formula.

This subformula is in a scope of a sequence (possibly empty) of modal operators. This

sequence is the modal context of the subformula in the given formula. In general a formula

may appear more than once as a subformula of another formula. In this case there is a set of

sequence of modal operators, one for each appearance of the subformula. To get an

intuition of this concept, assume a modal language over the set of two modal operators

X ¼ fh0;h1g. Every formula has an expression-tree representation associated with it.

Leafs of such a tree are labelled with propositional symbols and internal nodes are labelled

with operators. Each subtree of the expression-tree corresponds to a subformula of the

formula. For example, a formula

u 	 h1ðp ^h0ðq _h1pÞÞ

is represented by a tree in Fig. 1.

Expression-tree representation is unique (up to isomorphism). Modal context of a

subformula of a formula is the set of sequences of modal operators on the paths from the

root of the expression-tree representing the formula to the roots of expression-trees rep-

resenting the subformula. In the example above, modal context of q in u is fh1h0g, modal

context of p in u is fh1;h1h0h1g, modal context of p ^h0ðq _h1pÞ in u is fh1g, and

modal context of u in u is the empty sequence, e. If a formula is not a subformula of the

other formula, then its modal context is £.

Formally, let L½P;X� be a multimodal language over a set of propositional variables P
and a set of (unary) modal operators X. Given u 2 L½P;X�, let

SubðuÞ ¼ fw : w is a subformula of ug

be the set of all subformulas of u.

Definition 4 (Modal context of a formula within a formula) Let fu; ng 2 L½P;X�. The

modal context of formula n within formula u is a set of finite sequences over X,

cont n;uð Þ � X�, defined inductively as follows:

• cont n;uð Þ ¼ £, if n 62 SubðuÞ,
• cont u;uð Þ ¼ feg,

• cont n;:wð Þ ¼ cont n;wð Þ, if n 6¼ :w,

• cont n;w1 ^ w2ð Þ ¼ cont n;w1ð Þ [ cont n;w2ð Þ, if n 6¼ w1 ^ w2,

• cont n;hwð Þ ¼ h � cont n;wð Þ, if n 6¼ hw and h 2 X,

3 The definition of modal context restriction is given for a propositional modal logic with unary modal
operators. It can be extended to the case of modal operators of arbitrary arities and to FOL modal logic in a
natural way.
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where h � S ¼ fh � s : s 2 Sg, for h 2 X and S � X�.

Definition 5 (Modal context of a formula) Modal context of a formula u 2 L½P;X�,
cont uð Þ, is the sum of modal contexts of all its subformulas, that is

cont uð Þ ¼
[

n2SubðuÞ
cont n;uð Þ:

Having defined modal context of a formula, we are ready to define the notion of modal

context restriction. The restriction is the set of sequences of modal operators that are

allowed in modal contexts of formulas.

Definition 6 (Modal context restriction) A modal context restriction is a set of sequences

over X, R � X�, constraining possible modal contexts of subformulas within formulas. We

say that u 2 L½P;X� satisfies a modal context restriction R � X� iff cont uð Þ � R.

To see an example of modal context restriction, consider the multi-modal language over

the set of modal operators X ¼ fh0;h1g. Suppose that we would like to allow only the

formulas were modal operators (if present) are alternating in modal contexts of subfor-

mulas. Such a restriction can be defined by a regular expression

ðe [h1Þ � ðh0h1Þ�ð Þ [ ðe [h0Þ � ðh1h0Þ�ð Þ. Alternatively, we could define it by speci-

fying that subsequences h1h1 and h0h0 are forbidden: X� n ðX� � ðh1h1 [h0h0Þ � X�Þ
(that is, as a complement of the language containing all the sequences that we want to

forbid).

Notice that modal context restriction is a generalisation of restricting modal depth of

formulas by a constant c. Indeed, we could define it as a set of sequences of modal

operators of length at most c.

4.1 Restricting modal context of TeamLog

In this paper we study two modal context restrictions for the language of TeamLog that lead

to PSPACE completeness of the satisfiability problem. The restrictions are presented

below.

The first of the restrictions, R1, is motivated by the formula used to show that the

satisfiability problem for basic multimodal logics with fixpoint modalities is EXPTIME

Fig. 1 Expression tree for
formula h1ðp ^h0ðq _h1pÞ
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hard, even if depth of formulas is bounded by 2 (c.f. Dziubiński et al. 2007). The modal

context of this formula contains sequences of the form ½O�þG ½O�j with j 2 G. Restriction R1

forbids such sequences in modal contexts of formulas. It forbids also sequences ½O�þG ½O�
þ
H

with G \ H 6¼ £. This is motivated by the fact that in TeamLog a formula ½O�þG ½O�
þ
Hw is

equivalent to ½O�þG
V

j2Hð½O�jw ^ ½O�j½O�
þ
HwÞ, the modal context of which contains the

sequence ½O�þG ½O�j that we want to forbid. In the definition below these forbidden sequences

are grouped in the sets SOðGÞ. Additionally the restriction forbids subsequences ½I�þG ½B�j½I�j
with j 2 G. This is motivated by the fact that, due to mixed axioms BI4 and BI5, the

formula ½I�þG ½B�j½I�ju is equivalent to ½I�þG ½I�ju, which is the sequence that we initially

wanted to forbid. For similar reasons sequences ½I�þG ½B�
þ
H ½I�j, ½I�

þ
G ½B�j½I�

þ
F and ½I�þG ½B�

þ
H ½I�

þ
F

are forbidden for if j 2 G \ H or j 2 G \ F or F \ G \ H 6¼ £, respectively. In the defi-

nition below these forbidden sequences are grouped in the sets SIBðGÞ.

Definition 7 (Restriction R1) Let

R1 ¼ X� n X� �
[

G2PðAÞnf£g
SIðGÞ [ SIBðGÞð Þ [

[

G2PðAÞ;jGj 
 2

SBðGÞ

2

4

3

5 � X�

0

@

1

A;

where

SIBðGÞ ¼
[

j2G
½I�þG � ½B�j; ½B�

þ
fjg

n o�
�TBðfjgÞ � TIðfjgÞ; and

SOðGÞ ¼ ½O�þG � TOðGÞ;
TOðGÞ ¼ f½O�j : j 2 Gg [ f½O�þH : H 2 PðAÞ;H \ G 6¼ £g;

for O 2 fB; Ig. The set of formulas in LT satisfying restriction R1 will be denoted by LT
R1

.

Roughly speaking, restriction R1 forbids any operator ½O�j or ½O�þH , with O 2 fB; Ig in

scope of operator ½O�þG , if j 2 G or G \ H 6¼ £. The following formulas satisfy restric-

tion R1:

½B�þf1;2g½I�
þ
f1;2gp;

Indeed, the modal context of the first formula is e; ½B�þf1;2g; ½B�
þ
f1;2g½I�

þ
f1;2g

n o
and none of

these sequences contains any of the forbidden ones. The modal context of the second

formula is e; ½B�þf1;2g; ½B�
þ
f1;2g½G�1

n o
and, again, none of these sequences contains any of the

forbidden ones. The following formulas violate restriction R1:

½I�þf1;2g½B�1½I�1q;

The modal context of the first one is e; ½I�þf1;2g; ½I�
þ
f1;2g½B�1; ½I�

þ
f1;2g½B�1½I�1

n o
, and it contains

a forbidden sequence ½I�þf1;2g½B�1½I�1. The modal context of the second one is

e; ½B�þf1;2g; ½B�
þ
f1;2g½B�1

n o
, and it contains a forbidden sequence ½B�þf1;2g½B�1.
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As we show in Sect. 6 (Proposition 1), the satisfiability problem for formulas from LT
R1

is PSPACE hard, even if modal depth of formulas is bounded by 2. This result is shown

using a formula which contains, in its modal context, sequences of the form ½B�þG ½G�j and

½B�þG ½I�j, with j 2 G. Motivated by that, we study another modal context restriction, R2,

which refines R1 by forbidding such sequences. Additionally, for the reasons similar to

those explained in the case of restriction R1, subsequences forbidden by restriction R2

contain sequences of the form ½B�þG ½I�
þ
H with G \ H 6¼ £. Restriction R2, when combined

with restricting modal depth of formulas by a constant, makes the TeamLog satisfiability

problem NPTIME solvable.

Definition 8 (Restriction R2) Let

R2 ¼ X� n X� �
[

G2PðAÞnf£g
SIðGÞ [ SIBðGÞð Þ [

[

G2PðAÞ;jGj 
 2

~SBðGÞ

2

4

3

5 � X�

0

@

1

A;

where

~SBðGÞ ¼ ½B�þG � f½G�j : j 2 Gg [
[

O2fB;Ig
TOðGÞ

0

@

1

A

and SIB, SI and TO, for O 2 fB; Ig, are defined like in the case of restriction R1. The set of

formulas in LT satisfying restriction R2 will be denoted by LT
R2

.

Restriction R2 extends R1 by forbidding any operator ½O�j or ½O�þH , with O 2 fG; Ig, in the

context of ½B�þG , if j 2 G or H \ G 6¼ £. Thus any formula u 2 LT satisfying restric-

tion R2, satisfies restriction R1 as well, that is LT
R2�LT

R1

. Notice that if jAj ¼ 1, then

LT
R2¼LT

R1

.

The following formulas satisfy restriction R2.

½I�þf1;2g½B�1p;

Indeed, the modal context of the first formula is e; ½I�þf1;2g; ½I�
þ
f1;2g½B�1

n o
and none of these

sequences contains any of the forbidden ones. The modal context of the second formula is

e; ½B�þf1;2g; ½B�
þ
f1;2g½B�3

n o
and, again, none of these sequences contains any of the forbidden

ones.

The following formulas violate restriction R2

½B�þf1;2g½I�
þ
f1;2gp;

Modal context of the first formula is e; ½B�þf1;2g; ½B�
þ
f1;2g½I�

þ
f1;2g

n o
, and it contains a for-

bidden sequence ½B�þf1;2g½I�
þ
f1;2g. Modal context of the second formula is

e; ½B�þf1;2g; ½B�
þ
f1;2g½G�1

n o
, and it contains a forbidden sequence ½B�þf1;2g½G�1. Notice that the

modal contexts above do not contain sequences forbidden by restriction R1, and so the

formulas belong to LT
R1

.
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4.2 Restriction LT
R1ðcÞ

As we show in Sect. 5, restriction R2 is too strong, as it forbids formulas such as collective

intentions, important for specifying cooperating teams of agents (Dunin-Kęplicz and

Verbrugge 2010). Therefore we consider a refinement of restriction R1 that, when com-

bined with restricting modal depth, makes the ½TeamLog satisfiability problem NPTIME

solvable.

The restriction is motivated by the formula used in proof of Proposition 1. One of the

conjuncts in this formula is a formula of the form ½B�þGw where w is a propositional formula

built of 2N atoms of the form ½I�jn (alternatively ½G�jn), with j 2 G. These atoms are used to

implement a counter that can enforce a path of length Oð2NÞ in the model for the formula.

To prevent such a construction, restriction R1ðcÞ bounds, by a constant c, the number of

subformulas of the form ½I�jn, ½G�jn and ½I�þHn, within the direct context of modal operators

½B�þG with j 2 G or H \ G 6¼ £. That is, whenever a formula from LT
R1

has a subformula

which violates modal context restriction R2, then this formula must satisfy this additional

restriction.

To define the restriction, we need to define the set of subformulas of a formula taken

with respect to propositional operators only. Let PTðuÞ be defined inductively as follows:

1. PTðpÞ ¼ fpg, where p 2 P,

2. PTð:wÞ ¼ f:wg [ PTðwÞ,
3. PTðw1 ^ w2Þ ¼ PTðw1Þ [ PTðw2Þ.
4. PTðhwÞ ¼ fhwg, where h 2 XT.

Given a formula hu, the set PTðuÞ contains the subformulas in the direct context of a

modal operator h. So for example in the case of hðp ^ :q _hðhp ^ rÞ _hrÞ, PTðp ^
:q _hðhp ^ rÞ _hrÞ ¼ fp; q;:q;hðhp ^ rÞ;hrg contains the subformulas in the

direct context of the most external operator h.

The restriction is defined as follows.

Definition 9 (Restriction R1ðcÞ) Let c
 0. A formula u satisfies the restriction R1ðcÞ if

u 2 LT
R1

and either u 2 LT
R2

or one of the following holds:

• u is of the form :w and w satisfies restriction R1ðcÞ,

• u is of the form w1 ^ w2 and w1 and w2 satisfy restriction R1ðcÞ,

• u is of the form ½O�jw, with O 2 fB;G; Ig and j 2 A, and w satisfies restriction R1ðcÞ,

• u is of the form ½I�þGw, with G 2 PðAÞ n f£g, and w satisfies restriction R1ðcÞ,

• u is of the form ½B�þGw, with G 2 PðAÞ n f£g, w satisfies restriction R1ðcÞ and

f½O�jn : ½O�jn 2 :PTðwÞ and j 2 Gg [ f½I�þHn : ½I�þHn 2 :PTðwÞ
�
�
�

and H \ G 6¼ £gj� c.

The set of formulas in LT satisfying restriction R1ðcÞ will be denoted by LT
R1ðcÞ.

The following formulas satisfy restriction R1ð1Þ.

½B�þf1;2g½I�
þ
f1;2gp;
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Firstly, both the formulas satisfy restriction R1. The set of formulas in the direct context of

½B�þf1;2g in the first formula, PTð½I�þf1;2gpÞ ¼ f½I�þf1;2gpg and since this set contains only one

formula, restriction R1ð1Þ is satisfied. The set of formulas in the direct context of ½B�þf1;2g in

the second formula, PTð½I�2p _ qÞ ¼ f½I�2p; qg and since this set contains only one formula

of the form ½I�jn, ½G�jn or ½I�þHn with j 2 f1; 2g or H \ f1; 2g 6¼ £, namely ½I�2p, so

restriction R1ð1Þ is satisfied as well.

The following formulas violate restriction R1ð1Þ and satisfy restriction R1ð2Þ

½B�þf1;2g ½I�1p ^ ½I�2q
� �

;

Both the formulas satisfy restriction R1. The set of formulas in the direct context of ½B�þf1;2g
in the first formula, PTð½I�1p ^ ½I�2qÞ ¼ f½I�1p; ½I�2qÞ and since this set contains two for-

mulas of the form ½I�jn with j 2 f1; 2g, so restriction R1ðcÞ with c ¼ 1 is violated, but it is

satisfied with c ¼ 2. The set of formulas in the direct context of ½B�þf1;2g in the second

formula, PTð½G�2p _ ½I�þf2;3gqÞ ¼ f½G�2p; ½I�
þ
f2;3gqg and since this set contains two formulas,

½G�jp with j 2 f1; 2g, and ½I�þfHgq with H \ f1; 2g 6¼ £, so restriction R1ðcÞ with c ¼ 1 is

violated, but it is satisfied with c ¼ 2.

5 Discussion

Let us start the discussion of the two restrictions with formulas specifying beliefs of groups

of agents. When interpreted in the context of BDI agents, R1 can be seen as forbidding

common introspection of beliefs within a group of agents. In other words, it forbids any

formula of the form ½B�þGu where u contains, within the scope of propositional operators,

any formulas referring to beliefs of agents from G. For example the following formula

specifies that group G commonly beliefs that some agent j believes that u holds

½B�þG ½B�ju

If j 62 G (and if u satisfies R1), then this formula satisfies restriction R1. However, if j 2 G,

then the formula does not satisfy the restriction. Similarly, the following formula specifies

that group G commonly believes that some other group H commonly believes that u holds

½B�þG ½B�
þ
Hu

If G \ H ¼ £ (and if u satisfies R1), then this formula satisfies restriction R1 and it

violates it if G \ H 6¼ £. The second case could be seen as a consequence of the first one,

given that the formula ½B�þG ½B�
þ
Hu $ ½B�þG ½B�þHu ^ ½B�ju

� �
is provable in TeamLog:

Summarizing, as long as the objects of common beliefs of a group of agents are ‘external’

for that group, i.e. do not concern beliefs of the agents in the group, restriction R1 is not

violated.

Let us look at restriction R2 now. It forbids, in addition to what is forbidden by R1,

common introspection of goals and intentions within a group of agents. Hence the fol-

lowing formula, specifying that group G of agents commonly believes that agent j has

intention u:

½B�þG ½I�ju

123

3088 M. Dziubiński



is allowed by R2 if j 62 G (and u satisfies R2) and is forbidden otherwise. Similarly with

the formula ½B�þG ½G�ju, specifying that group G of agents has common belief that agent j

has goal u, as well as with the formula

½B�þG ½I�
þ
Hu;

specifying that group G of agents has common belief that group H of agents has mutual

intention u. In this case the formula satisfies condition R2 as long as G \ H ¼ £ (and u
satisfies R2) and violates it otherwise.

Summarizing, similarly like in the case of restriction R1, restriction R2 is not violated

as long as the objects of common beliefs of a group of agents are ‘external’ for that group,

where external means this time that it does not concern any informational or motivational

attitudes of the agents in the group.

Interpretation of the restrictions in the case of mutual intentions of groups of agents is

similar to that of common beliefs. There is one addition, however. Both restrictions, R1

and R2, forbid formulas of the form

½I�þG ½B�j½I�ju;

with j 2 G, specifying that group G of agents has mutual intention that agent j believes that it

has intention u. This is needed because, due to awareness axioms, formulas of this form are

equivalent to formulas of the form ½I�þG ½I�ju (which are forbidden like the analogous ones for

common beliefs). For similar reasons formulas ½I�þG ½B�
þ
H ½I�ju, ½I�þG ½B�j½I�

þ
Fu and ½I�þG ½B�

þ
H ½I�

þ
Fu

are forbidden by R1 and R2, if j 2 G \ H or j 2 G \ F or F \ G \ H 6¼ £, respectively.

Now let us turn to formulas specifying important properties of multiagent systems. For

example one of the fundamental notions underlying teamwork is that of collective inten-

tion, defined as follows (Dunin-Kęplicz and Verbrugge 2010):

C- INTG uð Þ 	 ½I�þGu ^ ½B�þG ½I�
þ
Gu

does not satisfy R2, while it satisfies R1 (as long as it is satisfied by formulas u and ½I�þGu).

Another notion fundamental for specifying teamwork is (bilateral) social commitments

between agents in a team. For example social commitment of agent i towards agent j with

respect to some action a is defined as follows (Dunin-Kęplicz and Verbrugge 2010):4

COMM i; j; að Þ 	 ½I�ja ^ ½G�jdoneði; aÞ ^ ½B�þfi;jg ½I�jdoneði; aÞ ^ ½G�jdoneði; aÞ
� �

:

This formula does not satisfy R2, because of presence of formulas ½I�jdoneði; aÞ and

½G�jdoneði; aÞ in the direct context of operator ½B�þfi;jg. However, it satisfies restriction R1.

Notice also that the formula satisfies R1ðcÞ with c ¼ 2.

The third important notion is collective commitment. Several variants of it can be

defined, corresponding to different strength of motivational and informational interde-

pendencies within a team of agents. In this case even restriction R1 can be too strong.

Consider, for example, the strongest two forms of collective commitment, robust and

strong collective commitment:

4 Proposition doneði; aÞ is true iff agent i successfully executed a (simple or complex) action a. Proposition
constitutesðP;uÞ is true iff P is a plan for achieving u. Both these propositions can be defined formally in
richer version of TeamLog which are out of the scope in this paper.
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R-COMMG;P uð Þ 	C-INTG uð Þ ^ constitutesðP;uÞ ^ ½B�þGconstitutesðP;uÞ
^
^

a2P

_

i;j2G
½B�þGCOMM i; j; að Þ

S-COMMG;P uð Þ 	C-INTG uð Þ ^ constitutesðP;uÞ ^ ½B�þGconstitutesðP;uÞ

^ ½B�þG
^

a2P

_

i;j2G
COMM i; j; að Þ

 !

In both cases the last component, expressing team awareness about the distribution of

social commitments within the group involves common beliefs within the group about

beliefs of agents from this group (which are contained in the definition of COMM i; j; að Þ).
Hence, both definitions of commitments do not satisfy the restriction R1. The formula

defining the robust commitment is not a problem, because it can be replaced by an

equivalent formula that satisfies restriction R1. Let responsibility of agent i towards agent j
with respect to action a be defined as follows:

RESP i; j; að Þ 	 ½I�ja ^ ½G�jdoneði; aÞ

Notice that social commitment of one agent towards another is responsibility plus

awareness about this responsibility. Consider now the following definition of robust

commitment:

R-COMM0
G;P uð Þ 	C-INTG uð Þ ^ constitutesðP;uÞ ^ ½B�þGconstitutesðP;uÞ

^
^

a2P

_

i;j2G
½B�þGRESP i; j; að Þ

It can be easily seen that R-COMMG;P uð Þ is equivalent to R-COMM0
G;P uð Þ, as the formula

½B�þG w ^ ½B�jw
� �

$ ½B�þGw is provable in TeamLog for any w, G 2 PðAÞ n f£g and j 2 G.

In the case of strong commitment one could deal with the problem by lowering the level

of awareness about the distribution of the social commitments, replacing subformula

½B�þG
V

a2P
W

i;j2G COMM i; j; að Þ
� �

with ½B�G
V

a2P
W

i;j2G COMM i; j; að Þ
� �

.5 Another pos-

sibility is to consider an alternative definition of bilateral commitment, where social

commitments are replaced by bilateral responsibilities

S-COMM0
G;P uð Þ $C-INTG uð Þ ^ constitutesðP;uÞ ^ ½B�þGconstitutesðP;uÞ

^ ½B�þG
^

a2P

_

i;j2G
RESP i; j; að Þ

 !

^
^

a2P

^

i;j2G
RESP i; j; að Þ ! ½B�þfi;jg RESP i; j; að Þð Þ

5 This could be strengthened by finitely nesting the operators of general beliefs:

½B�mG
V

a2P
W

i;j2G COMM i; j; að Þ
� �

, where ½B�mG stands for ½B�G repeated m times. See (Dunin-Kęplicz and

Verbrugge 2010) for the discussion of this form weakening the awareness components of multiagent
systems specifications.
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In this version of the notion of strong commitment the group is fully aware of bilateral

responsibilities within the group with regard to the actions of the plan P for achieving the

goal u, but the awareness about existence of bilateral awareness about these responsibil-

ities is not required.

As the examples above show, restriction R1 is sufficiently weak to allow for expressing

the key properties of cooperating teams of agents, such as collective intentions and social

(bilateral commitments). What the restriction forbids, are the formulas where groups of

agents have common beliefs about beliefs of agents from the group or have mutual

intentions with regards to intentions of agents from the group. Essentially, the objects of

common beliefs must be ‘external’ with respect to the group. In particular, they may be

beliefs of agents from outside the group about the beliefs of agents in the group. Similarly

in the case of mutual intentions. This restriction may be a problem when some kinds of

collective commitments are concerned. The problem there is the awareness part, where

common beliefs about social (bilateral) commitments within a group are expressed. It can

be overcome by restating the formula expressing the collective commitment (like in the

case of robust commitment). If this is impossible (like in the case of social commitment),

alternative forms of collective commitments, where social commitments are replaced with

responsibilities, can be considered. In these variants, the group as a whole holds a common

belief about all the bilateral responsibilities, but it does not hold common belief about the

bilateral awareness about these responsibilities. We would like to note that other, weaker,

forms of collective commitments, like the team commitment and the distributed com-

mitment (c.f. Dunin-Kęplicz and Verbrugge 2010) are expressible with restriction R1.

Restriction R2 is too strong to allow for expressing even collective intentions. However

it is still of use. Methodologies of agent oriented modelling and design, like the one

proposed by Kinny et al. (1996); Kinny and Georgeff (1997); Kinny (1998), often divide

the process of agents modelling by separating construction of belief model, goal model and

plan model. Similarly, in specification of multiagent systems using formalisms like

TeamLog; separate parts could be distinguished, where purely informational and purely

motivational aspects of individual agents and groups of agents are specified and parts

where interrelations between these parts are specified. In such cases restriction R2 can be

applied to the purely informational or purely motivational parts, while restriction R1 can

be applied to the mixed parts.

In the discussion above we restricted attention to TeamLog formalism. However, similar

formulas, where agents in a group hold common beliefs about intentions or goals of group

members appear also in other theories of teamwork. See for example (Levesque et al.

1990; Wooldridge and Jennings 1999; Aldewereld et al. 2004).

6 Complexity of the satisfiability problem

In this section we study the complexity of checking the satisfiability of formulas from LT
R1

and LT
R2

. We focus on presenting the algorithms and general ideas. For that reason we

moved most of the proofs to the Appendix.

For checking the satisfiability of formulas from LT
R2

we will use the method based on

pre-tableau construction presented in Halpern and Moses (1992). However, adopting a

similar algorithm for LT
R1

would not work. This is because, as we show below, formulas of

LT
R1

may require an exponentially deep model with respect to the size of input formula,

while all the algorithms based on the pre-tableau method perform a depth first search
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constructing sequences of nodes that constitute the tree-like structure of the pre-tableau for

a given input.

Proposition 1 Let jAj
 2. Then there exists a satisfiable formula u 2 LT
R1

such that any

TeamLog model M in which it is satisfied contains a sequence of pairwise different worlds
of length exponential with respect to juj.

Proposition 1 is shown by writing a formula that implements a binary counter. That is, the

formula enforces a path in its model, where formulas of the form ½I�jn1; . . .; ½I�nN (alter-

natively ½G�jn1; . . .; ½G�nN ) have different valuations, implementing a counter over N bits.

6.1 Complexity of LT
R2

Algorithm 1 for checking satisfiability of formulas from LT
R2

presented in this section is

based on the standard tableau method for modal logics. Our presentation follows (Halpern

and Moses 1992) in the general methodology, which can be summarized as consisting of

the following steps:

1. Define the notion of modal tableau for the logic in question. A modal tableau is a

Kripke frame with worlds labelled with sets of formulas and accessibility relations

satisfying additional properties associated with axioms generating the logic considered.

2. Show that any formula of the logic is satisfiable iff there is a tableau for it.

3. Give an algorithm for checking the satisfiability of a formula. The algorithm constructs

a tree-like structure called a pre-tableau which forms a basis for the tableau for the

formula.

4. Show that the algorithm has a termination property and is valid.

5. Analyse the computational complexity of the algorithm.

In steps 1 and 2 we follow (Dziubiński et al. 2007) where modal tableau for TeamLog is

defined. The main difficulty are steps 3 and 4, particularly the termination property. In step

3 we extend the algorithm from (Dziubiński et al. 2007) so that fixpoint modalities can be

dealt with. For step 4 we find the property of sets of formulas processed by the algorithm

that ‘decreases’ during execution of the algorithm. In these steps we extend the ideas used

in Dziubiński (2013) for standard systems of multimodal logics enriched with fixpoint

modalities.

The notion of modal tableau is based on the notion of model graph, which we define

below.

Definition 10 (Model graph) A model graph T is a tuple

T ¼ W ; Oj : ½O�j 2 Xind
n o

; L
� �

, where W and Oj are defined like in a Kripke frame and L

is a labelling function associating with each state w 2 W a set L(w) of formulas.

The modal tableau for TeamLog is a model graph with labelling sets of formulas satisfying

additional properties, which we define below. Firstly, all labels of states are closed

propositional tableaux. We define these notions below.

Definition 11 (Closed set of formulas) A set of formulas U is closed if it satisfies the

following condition, for all G � A and O 2 fB; Ig:
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Cl If ½O�þGu 2 U, then f½O�j½O�
þ
Gu; ½O�ju : j 2 Gg � U,

Given a formula u, we will use ClðuÞ to denote the smallest closed set of formulas

containing u. Similarly, given a set of formulas U we will use ClðUÞ to denote the smallest

closed set of formulas having U as a subset.

Definition 12 (Propositional tableau) A propositional tableau is a set T of formulas such

that T is not trivially inconsistent6 and:

1. If ::w 2 T then w 2 T .

2. If u ^ w 2 T then u 2 T and w 2 T .

3. If :ðu ^ wÞ 2 T then either f�u;wg � T or fu; �wg � T or f�u; �wg � T .

A propositional tableau for a formula u is a minimal propositional tableau T such that

u 2 T . It is easy to see that every closed propositional tableau for u is a maximal con-

sistent subset of :ClðPTðuÞÞ.7 Notice that, by definition, a propositional tableau cannot be

trivially inconsistent.

A modal tableau for TeamLog; called a TeamLog tableau is defined as follows.

Definition 13 (TeamLog tableau) A modal tableau is a model graph T ¼

W ; Oj : ½O�j 2 Xind
n o

; L
� �

such that for all w 2 W , L(w) is a closed propositional tableau.

6 A set of formulas U is trivially inconsistent if there is a formula u 2 U such that :u 2 U.
7 Recall that :ClðPTðuÞÞ is the closure of ClðPTðuÞÞ with respect to single negation.
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Moreover, for any ½O�j 2 XT and any ½O�þG 2 XT the following conditions are satisfied, for

all w 2 W:

T1 If ½O�ju 2 LðwÞ and v 2 OjðwÞ, then u 2 LðvÞ. If ½O�þGu 2 LðwÞ and v 2 Oþ
GðwÞ, then

u 2 LðvÞ.
T2 If :½O�ju 2 LðwÞ, then there exists v 2 OjðwÞ such that �u 2 LðvÞ. If

:½O�þGu 2 LðwÞ, then there exists v 2 Oþ
GðwÞ such that �u 2 LðvÞ.

The following conditions are satisfied if ½O�j 2 XT is associated with additional axioms

from D – 5 (c.f. Halpern and Moses 1992):

• If ½O�j is associated with axiom D, then the following condition is satisfied, for any

w 2 W:

TD If ½O�ju 2 LðwÞ, then either u 2 LðwÞ or OjðwÞ 6¼ £.

• If ½O�j is associated with axiom 4, then the following condition is satisfied, for any

w 2 W:

T4 If v 2 OjðwÞ and ½O�ju 2 LðwÞ, then ½O�ju 2 LðvÞ.

• If ½O�j is associated with axiom 5, then the following condition is satisfied, for any

w 2 W:

T5 If v 2 OjðwÞ and ½O�ju 2 LðvÞ, then ½O�ju 2 LðwÞ.

The following additional conditions, associated with axioms B O4, B O5 (with O 2 fG; Ig)

and IG are satisfied for all j 2 A and w 2 W:

TB O4 If v 2 BjðwÞ and ½O�ju 2 LðwÞ, then ½O�ju 2 LðvÞ.
TB O5 If v 2 BjðwÞ and ½O�ju 2 LðvÞ, then ½O�ju 2 LðwÞ.
TIG If v 2 GjðwÞ and ½I�ju 2 LðwÞ, then u 2 LðvÞ.

A TeamLog tableau is a modal tableau satisfying conditions T1 and T2 (for all ½O�j with

O 2 fB;G; Ig and j 2 A), condition TD (for all ½O�j with O 2 fB; Ig and j 2 A), condi-

tions T4 and T5 (for all ½B�j with j 2 A) and conditions TBG4, TBG5, TBI4, TBI5

and TIG. Given a formula u, we say that T is a tableau for u if there exists a state w 2 W
such that u 2 LðwÞ.

The following proposition links existence of TeamLog tableau for a formula with its

satisfiability.

Proposition 2 A formula u 2 LT is satisfiable iff there is a TeamLog tableau for u.

6.1.1 Algorithm for LT
R2

Algorithm 1 tries to construct a pre-tableau – a tree-like structure that forms the basis for a

TeamLog tableau for an input formula u. A pre-tableau consists of nodes connected with a

successor relation. Each node can have zero or more successors and each of them has zero
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or one predecessor. There is at most one node in the pre-tableau that has no predecessors

and it is called the root. Each node is labelled with a set of formulas. The root is labelled

with the set containing the input formula only. The nodes of a pre-tableau can be divided

into two groups: internal nodes and states. Successors of states correspond to accessibility

relations and are created for formulas of the form :½O�jw in the labels of states and, in the

case of modal operators with which axiom D is associated, for formulas of the form ½O�jw
in the labels of states. To construct a TeamLog tableau based on a given pre-tableau, a

subset of states of the pre-tableau is selected and the accessibility relations are constructed

on the basis of successor relations for states. Labels of states must be closed propositional

tableaux satisfying additional requirements given below. Internal nodes correspond to

subsequent steps of constructing labels of states. For the more detailed explanation of the

notion of pre-tableaux see (Halpern and Moses 1992).

Now we turn to defining additional properties that will be satisfied by states of pre-

tableaux constructed by Algorithm 1. Firstly, the notion of ½O�þ-expanded set of formulas,

for O 2 fB; Ig, related to fixpoint modalities is needed.

Definition 14 (½O�þ-expanded set of formulas) A set of formulas U � LT is ½O�þ-ex-
panded, with O 2 fB; Ig and G � A, if the following condition is satisfied:

CE If :½O�þGw 2 U, then for all j 2 G, f½O�jw; ½O�j½O�
þ
Gwg � :U and there exists j 2 G

such that either :½O�jw 2 U or :½O�j½O�
þ
Gw 2 U.

Secondly, the notion of ½B�-expanded set of formulas is needed

Definition 15 (½B�-expanded tableau) A ½B�-expanded tableau is a ½B�þ-expanded and ½I�þ-

expanded closed propositional tableau T such that for all j 2 A:

1. If ½B�ju 2 :T and ½O�jw 2 :PTðuÞ, then ½O�jw 2 :T , where O 2 fB;G; Ig.

2. If ½B�ju 2 :T and ½O�þGw 2 :PTðuÞ with j 2 G, then ½O�jw 2 :T and

½O�j½O�
þ
Gw 2 :T , where O 2 fB; Ig.

A ½B�-expanded tableau for a formula u is a minimal ½B�-expanded tableau T such that

u 2 T . Given a formula u we will use BTðuÞ to denote the union of all ½B�-expanded

tableaux for u. Notice that any ½B�-expanded tableau is a maximal consistent subset of

:BTðuÞ. Nodes of a pre-tableau constructed for an input formula u are labelled with

subsets of :ClðuÞ. States are nodes with labels being ½B�-expanded tableaux. This is

required because of axioms 5, BG5 and BI5, associated with operators ½B�j, and is needed

to prevent construction of too long paths in the pre-tableaux.8

Algorithm 1 consists of two stages: the stage of pre-tableau construction and the stage

of marking nodes. In the first stage the algorithm attempts to construct a pre-tableau based

on the input formula. This stage consists of two general steps: the step of state construction

8 Algorithm given in Halpern and Moses (1992) for modal logic KD45n and in Dziubiński et al. (2007) for
the fragment of TeamLog without fixpoint modalities deal with the problem of long paths in the case of
formulas of the form ½B�jw in a different way, by requiring that states are fully expanded modal tableaux,

which contain all the subformulas (possibly negated) of w. This approach would be too strong in our case
and is not necessary. It suffices to require that labels of state are ½B�-expanded tableaux.
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and the step of state successors creation. In the step of state construction labels of internal

nodes are properly extended with new formulas, resulting in new successor nodes, until a

node which is a state is obtained. This step is described in Procedure 2.

The step of state successors creation is described in three Procedures 3, 4 and 5, cre-

ating state successors associated with operators ½B�j, ½G�j and ½I�j, respectively. We will call

these successors Oj-successors, for O 2 fB;G; Ig. A node which is an Oj-successor for

some j 2 A will be called an O-successor. Additionally, a successor created for a formula n
will be called a n-successor. Similar notions can be defined for subsequent states on paths

of the pre-tableau. State t is called a Oj-Successor of state s if t is a descendant of s in the

pre-tableau, there are no states between s and t and t is an Oj-successor. The relations of O-

successor and n-Successor are defined analogously. In the presentation we will also refer to

similar notions of -predecessors and -Predecessors. The following set of formulas are used

in the procedures to define labels of the newly created successors of a state (O 2 fB;G; Ig,

j 2 A and U is a set of formulas)

U:½O�jðwÞ ¼ f�wg [ U½O�j :

The definition of set U½O�j depends on the axioms associated with ½O�:

U½I�j ¼ U=½I�j; U½G�j ¼ ðU=½G�jÞ [ U½I�j ; U½B�j ¼ ðU=½B�jÞ [ ðU u jÞ

and
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U=½O�j ¼ fw : ½O�jw 2 Ug;
U u ½O�j ¼ f½O�jw : ½O�jw 2 Ug;

U u :½O�j ¼ f:½O�jw : :½O�jw 2 Ug;
U u j ¼ ðU u ½B�jÞ [ ðU u ½G�jÞ [ ðU u ½I�jÞ[

ðU u :½B�jÞ [ ðU u :½G�jÞ [ ðU u :½I�jÞ:

Given a state s and its label L(s), we will write L½O�jðsÞ to denote ðLðsÞÞ½O�j and L:½O�jðs;wÞ
to denote ðLðsÞÞ:½O�jðwÞ.
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Procedures 3, 4 and 5 are based on the algorithms described in Halpern and Moses

(1992) which need to be considerably extended to address axioms of TeamLog. Firstly,

they are affected by mixed axioms (see Dziubiński et al. 2007 for the discussion of these

aspects). Secondly they need to deal with existence of fixpoint modalities, to avoid con-

struction of too long or infinite paths. When creating :½O�j½O�
þ
Gn-successor (with O 2

fB; Ig and j 2 G) the sets L½O�jð�Þ for all ½O�þGw-Ancestors are checked. A state t is called a

½O�þGn-Ancestor of state s if t is an ancestor of s and for every state u on the path from t to s

such that u 6¼ s, there exists j 2 G such that u is a :½O�j½O�
þ
Gn-Successor. If the label of a

potential Oj-successor, with O 2 fB; Ig, of a state s is equal to the label of a successor node

n of some ½O�þGw-Ancestor of s which is on the path from t to s, then construction of the

successor of s is blocked by n. This is illustrated in Fig. 2.

To decide whether a node containing a formula of the form :½O�þGn is satisfiable, it has

to be checked whether an appropriate sequence of states can be constructed, that would

indicate that this formula is satisfiable. Since creation of successors for formulas of the

form :½O�j½O�
þ
Gn, with j 2 G, may be blocked by some ancestor node, the decision whether

such an appropriate sequence of states can be constructed may have to be suspended until

the satisfiability of the ancestors is checked. Therefore for each node n there is a set

B(n) associated with it and containing weak ancestors9 that block creation successors of

states in the n-subtree of the pre-tableau (c.f. Fig. 2).10 Whenever a new node n is created

by the algorithm, the associated set of nodes B(n) is set to £.

During the stage of marking nodes, nodes of the pre-tableau are marked either sat,

unsat, or undec. A node n being marked undec indicates that satisfiability of
V
LðnÞ

could not be decided due to existence of a formula of the form :½O�þGw in its label for

which an appropriate sequence of states was not constructed yet. We call such formulas

unresolved in a given node, as defined below. In the definition we refer to a notion of n-

descendant. A node is a n-descendant if it is a n-successor or a descendant of a n-successor

such that there is no state between it and the n-successor.

Definition 16 (Unresolved formula) Let n be a node in a pre-tableau and let :½O�þGw 2
LðnÞ with O 2 fB; Ig. A formula :½O�þGw is unresolved in n if one of the following holds:

• n is an internal node and a :½O�j½O�
þ
Gw-descendant with j 2 G, none of its successors is

marked sat, there exists a successor of n marked undec and BðnÞ 6¼ £,

• n is a state and a :½O�j½O�
þ
Gw-Successor with j 2 G, BðnÞ 6¼ £, none of :½O�k½O�

þ
Gw-

successors of n, with k 2 G, is marked sat and ½O�kw 2 LðnÞ, for all k 2 G.

Notice that if BðnÞ ¼ £, then a node cannot be marked undec. The stage of marking nodes

is described in Procedure 6.

We show first that for any input formula u 2 LT
R2

the algorithm for checking satisfiability

terminates. The usual method of showing that is by showing that the height11 of every node in

the constructed pre-tableau is bounded. In the case of standard modal systems (e.g. Kn, KDn,

9 A weak ancestor of n is either an ancestor of n or n.
10 The n-subtree is a subtree of the pre-tableau with n being its root.
11 Height of a node is the number of nodes on the path from the node to the root of the pre-tableau.
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KD45n) this is shown by showing that modal depth of formulas in subsequent states on paths

of the pre-tableaux is falling with distance from the root. In the case of formulas fromLT
R2

this

approach would not work and we need to find a different parameter of the labels that changes

with distance from the root. The main problem here are the formulas of the form ½O�þGw or

:½O�þGw. This is because if t is an Oj-Successor of s in a pre-tableau constructed by Algo-

rithm 1, then any formula ½O�þGw 2 LðsÞwith j 2 G is in L(t) as well. Similarly with a formula

of the form:½O�þGw 2 LðsÞ, if t is a:½O�j½O�
þ
Gw-Successor of s. Moreover, if additionally u is a

Ok-Successor of t and k 2 G, then for any formula n 2 :BTðwÞ, n 2 :LðtÞ (as it is added

during ½B�-expanded tableau formation) and n 2 :LðuÞ, as ½O�þGw 2 LðuÞ. Thus formulas of

the form ½O�þGw may carry over to the label of the Oj-Successor formulas from :BTðwÞ.
Similarly, they may carry over the formulas ½O�j½O�

þ
Gw and ½O�jw, that are added to the label

during the closed propositional tableau formation.

To analyse the length of sequences of O-Successors in a pre-tableau constructed by

Algorithm 1, we need to separate the formulas in labels of states which are carried by some

other formulas from those which are not carried by any other formula. We will say that a

formula ½O�þGw carries a formula n if n 2 :BTðwÞ or n 2 fClð½O�þGwÞ, where fClð½O�þGwÞ ¼
f½O�jw : j 2 Gg [ f½O�j½O�

þ
Gw : j 2 Gg. Similarly, a formula :½O�þGw carries a formula n if

n 2 :BTðwÞ or n 2 fClð:½O�þGwÞ, where fClð:½O�þGwÞ ¼ :fClð½O�þGwÞ. Given a set of for-

mulas U and a formula n we will say that n is carried by U if there is a formula in U which

carries it.

First we will consider the carried formulas of the form ½O�þHf or :½O�þHf. Notice that in

this case such a formula is carried by some formula ½O�þGw or :½O�þGw if and only if it is in

:PTðwÞ. Given a set of formulas U, let12

GrðUÞ ¼
[

O2fB;Ig
U u ½O�þ
� �

[ U u :½O�þ
� �� �

;

Fig. 2 Creation of :½O�j½O�
þ
Gn-successor of s is blocked by its ancestor n which is a :½O�j½O�

þ
n -successor of

a ½O�þGn-Ancestor t of s. Dotted lines depict sequences of internal nodes (these sequences can be empty, in

which case the starting node coincides with the ending state)

12 The name Gr is from ‘group’, as it selects the formulas starting with modalities ½O�þ related to properties
of groups of agents.
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where

U=½O�þ ¼ fw : ½O�þGw 2 U; for some G 2 PðAÞ n f£gg;
U u ½O�þ ¼ f½O�þGw : ½O�þGw 2 U; for some G 2 PðAÞ n f£gg;

U u :½O�þ ¼ f:½O�þGw : :½O�þGw 2 U; for some G 2 PðAÞ n f£gg:

Let FU : P LT
� �

! P LT
� �

be defined as follows, for W � LT,

FUðWÞ ¼ GrðUÞ n :PT
[

O2fB;Ig
:W=½O�þ

0

@

1

A;

The operator FU, when applied to a set of formulas W, removes from U all the formulas

from GrðUÞ which are carried by W.

Given a set of formulas U and a formula w we will say that w is uncarried in U if w 2 U
and w is not carried by U. We will be interested in sets of formulas which are carry-free,

that is U such that all the formulas in U are uncarried in it. Given i 2 N, let

F
ðiÞ
U ¼

£; if i ¼ 0;

FU F
ði�1Þ
U

� �
; if i[ 0

(

and let F
ð1Þ
U ¼ limi!1 F

ðiÞ
U . As we show below, for any U � LT the limit F

ð1Þ
U exists.
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Lemma 1 For any U � LT, F
ð1Þ
U exists.

Let cGrðUÞ ¼ F
ð1Þ
U , that is

cGrðUÞ ¼ GrðUÞ n :PT
[

O2fB;Ig
:cGrðUÞ=½O�þ

0

@

1

A:

The set cGrðUÞ it the maximal carry-free subset of GrðUÞ containing all the formulas which

are uncarried in GrðUÞ.
Now we turn to the uncarried formulas which are not in GrðUÞ but can ‘carry’ other

formulas to successor labels. These are those formulas in U which are (possibly negated)

formulas of the form ½O�jn. More precisely, we will be interested in those of such formulas

which are not carried by cGrðUÞ nor are elements of fClðUÞ, where

fClðUÞ ¼
S

w2GrðUÞ
fClðwÞ. The set of such formulas is13

IndðUÞ ¼
[

j2A
U u j

 !

n fClðUÞ [ :BT
[

O2fB;Ig
:cGrðUÞ=½O�þ

0

@

1

A

0

@

1

A:

Although the modal depth of cGrð�Þ of labels may not change between O-Successors in the

sequence of states in a pre-tableau constructed by Algorithm 1, there is one more

parameter of these sets that will change. Given a formula w and O 2 fB; Ig, we define a

set14

agðw; ½O�þÞ ¼ G; if w is of the form ½O�þGn or :½O�þGn;
A [ fxg; otherwise;

(

where x 62 A. Given a set of formulas U 6¼ £ and O 2 fB; Ig we define

agðU; ½O�þÞ ¼
T

w2U agðw; ½O�þÞ; if U 6¼ £;

A [ fxg; otherwise:

(

Notice that x 2 agðU; ½O�þÞ implies that there are no formulas of the form ½O�þGn nor

:½O�þGn in U. Also, when formulas are removed from U, then agðU; ½O�þÞ either remains

unchanged or increases.

When analysing how labels of subsequent states change, we will divide them into

subsets (levels) of different modal depth of formulas and then we will look at the sets

ag �; ½O�þ
� �

at different levels. Given a set of formulas U, let Ud ¼ fw 2 U : depðwÞ ¼ dg.

Also, let

ag U; ½O�þ; d
� �

¼ ag Ud; ½O�þ
� �

:

13 The name Ind comes from ‘individual’, as the formulas it selects start with modal operators associated
with individual properties of agents.
14 The name A comes from ‘agents’, because it relates to the sets of agents associated with group
modalities.
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Notice that ag U; ½O�þ; d
� �

is well defined even for d[ depðUÞ. Is it simply A [ fxg then.

Similarly for levels d� depðUÞ at which there are no formulas of the form ½O�þGn nor

:½O�þGn. Notice also, that ag U; ½O�þ; 0
� �

¼ A [ fxg.

The main difficulty in showing the boundaries on the lengths of paths in pre-tableau

constructed by Algorithm 1 is in showing that sequences of B-Successors and I-Successors

are properly bounded. The key lemmas to this result are Lemma 2 and Lemma 3 proven

below. The lemmas give properties of cGrð�Þ and Indð�Þ that follow from modal context

restrictions R1 and R2. In the case of I-successors restriction R1 is assumed only. This

restriction guarantees that if a formula of the form ½O�þHn is carried by a formula ½O�þGw,

then it must be that G \ H ¼ £. Similarly, if a formula of the form ½O�jn is carried by a

formula ½O�þGw, then it must be that j 62 G. Thus if j 2 ag cGrðUÞ; ½I�þ; d
� �

and there are no

formulas of the form ½B�þGw 2 :Ud at levels d[D, then any formula of the form ½I�þHn 2
:U with modal depth 
D must be uncarried in U. Also, if a formula ½I�jn is in :fClðUÞ,
then it must be in :fClðcGrðUÞÞ.

Lemma 2 Let U � LT
R1

and let D
 0 and j 2 A be such that j 2 ag cGrðUÞ; ½I�þ; d
� �

and

x 2 ag cGrðUÞ; ½B�þ; d
� �

, for all d
Dþ 1. Then the following hold:

(i) if ½I�þGw 2 :U with j 2 G and depð½I�þGwÞ
D, then ½I�þGw 2 :cGrðUÞ,
(ii) if depðIndðUÞÞ�D and ½I�jw 2 :U with depð½I�jwÞ
Dþ 1, then

½I�jw 2 :fCl cGrðUÞ
� �

.

The analogous lemma for B-Successors differs from the case of I-Successors in two

aspects. If t is a Bj-Successor of state s, then, by construction of the algorithm,

LðsÞ u j � LðtÞ. For this reason the set IndðUÞ u j rather than the set IndðUÞ is used.

Secondly the lemma has an additional point that requires restriction R2. The point is crucial

for having bounds on the lengths of sequences of B-Successors in the pre-tableau.

Lemma 3 Let U � LT
R1

and let D
 0 and j 2 A be such that j 2 ag cGrðUÞ; ½B�þ; d
� �

and

x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
Dþ 1. Then the following hold:

(i) if ½B�þGw 2 :U with j 2 G and depð½B�þGwÞ
D, then ½B�þGw 2 :cGrðUÞ,
(ii) if depðIndðUÞ u jÞ�D and ½B�jw 2 :U with depð½B�jwÞ
Dþ 1, then

½B�jw 2 :fCl cGrðUÞ
� �

,

(iii) if U � LT
R2

, depðIndðUÞ u jÞ�D, x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
D and

½O�jw 2 :U with O 2 fB;G; Ig and depð½O�jwÞ
Dþ 1, then ½O�jw 2

:fCl cGrðUÞ
� �

and O ¼ B.

In what follows we will concentrate on sequences of B-Successors. The general approach in

the case of I-Successors is similar and easier. In proofs, given in the Appendix, we indicate
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where the differences in proofs for these to cases lie. For the detailed proofs we refer the

reader to Dziubiński (2011). Lemma 3 allows us to analyse the origins of formulas in labels of

Bj-Successors. The corollary below points out the sources of formulas in the successor state

with modal depth not smaller than depðIndð�ÞÞ u j of the predecessor state. Roughly speaking

all such formulas are either added when the label of the successor state is being closed or the

formulas are carried by the uncarried formulas from the label of the predecessor state, or are

uncarried formulas inherited from the label of the predecessor state. The analogous corollary

for I-successors would concern set Indð�Þ instead of depðIndð�ÞÞ u j.

Corollary 1 Let t be an Bj-Successor of state s in the pre-tableau constructed by Algo-

rithm 1 for an input u 2 LT
R1

, with D
 0 such that depðIndðLðsÞÞ u jÞ�D, j 2

ag cGrðLðsÞÞ; ½B�þ; d
� �

and x 2 ag cGrðLðsÞÞ; ½I�þ; d
� �

, for all d
Dþ 1. Then for all w 2
LðtÞ with depðwÞ
D one of the following holds

(i) w 2 LðsÞ u j or

(ii) w 2 fClðLðtÞÞ or

(iii) there exists ½B�þGn 2 :cGrðLðsÞÞ with j 2 G such that w 2 :BTðnÞ or

(iv) w is of the form ½B�þGg with j 2 G and w 2 :cGrðLðsÞÞ or

(v) w is of the form :½B�þGg with j 2 G, w 2 cGrðLðsÞÞ, :½B�j½B�
þ
Gg 2 LðsÞ and t is a

:½B�j½B�
þ
Gg-Successor of s.

We will also need the following auxiliary lemma which will be useful in analysing the

lengths of sequences involving B-successors. The lemma extends a similar one used in the

analysis of the complexity of TeamLog without fixpoint modalities in Dziubiński et al.

(2007).

Lemma 4 Let t be a Bj-Successor of state s in the pre-tableau constructed by Algorithm 1

for an input u 2 LT. Then the following hold for O 2 fB;G; Ig:

1. :½O�jn 2 LðsÞ iff :½O�jn 2 LðtÞ.
2. ½O�jn 2 LðsÞ iff ½O�jn 2 LðtÞ.
3. L½O�jðsÞ ¼ L½O�jðtÞ.
4. L:½O�jðs; nÞ ¼ L:½O�jðt; nÞ.

We are now ready to state the lemma about the bounds on the length of a sequence of B-

Successors with unchanged modal depth of labels in the pre-tableau constructed by Algo-

rithm 1 for some input u. To assess lengths of sequences of B-Successors with unchanged

modal depth of labels, we will show that the sets ag cGrð�Þ; ½B�þ; d
� �

and ag cGrð�Þ; ½I�þ; d
� �

must gradually increase proceeding top down, from d ¼ depðUÞ to d ¼ 1. For this reason we

will need to assess for how long these sets may remain unchanged at different levels. This is

expressed by the following properties of states, for O 2 fB; Ig:

P O1 ag cGrðLðsÞÞ; ½O�þ; d
� �

¼ ag cGrðLðtÞÞ; ½O�þ; d
� �

,

We say that the sequence of states s0; . . .; sm satisfies P O1 if for all 0\k�m, states sk�1

and sk satisfy P O1.
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Additional factor that needs to be taken into account is the set of formulas of the form

:½O�þGn at different levels of the set cGrð�Þ. The following property states that this set

remains unchanged between two states:

P O2 cGrðLðsÞÞ u :½O�þ
� �

d
¼ cGrðLðtÞÞ u :½O�þ
� �

d
.

We say that the sequence of states s0; . . .; sm satisfies P O2, if for all 0\k�m, states sk�1

and sk satisfy P O2.

Lemma 5 The maximal length of sequence of B-Successors with unchanged modal depth

of labels in the pre-tableau constructed by Algorithm 1 for an input u 2 LT
R2

is

�O depðuÞ2jAj
� �

.

Analogous lemma for sequences of I-successors can be shown with restriction R1 only.

Lemma 6 The maximal length of a sequence of I-Successors with unchanged modal depth

of labels in the pre-tableau constructed by Algorithm 1 for an input u 2 LT
R1

is

�O depðuÞ2jAj
� �

.

Now we are ready to prove the lemma on bounds on the height and state height15 of the

pre-tableau constructed by Algorithm 1 for an input formula satisfying modal context

restriction R2. The height is bounded by a polynomial depending on juj, while the state

height is bounded by a polynomial depending on depðuÞ.

Lemma 7 The state height of the pre-tableau constructed by Algorithm 1 for an input

u 2 LT
R2

is �OðdepðuÞ2jAjþ1Þ and its height is �OðjujdepðuÞ2jAjþ1Þ.

Proof For any node n in a pre-tableau constructed by the algorithm jLðnÞj � ð2jAj þ 1Þjuj,
as LðnÞ � :ClðuÞ. Thus the path between any subsequent states s and t can contain at most

ð2jAj þ 1Þjuj � 1 internal nodes. Moreover, for any states s and t such that t is a

descendant of s it must be that depðLðtÞÞ� depðLðsÞÞ.
If s and t are states, such that t is an G-Successor of s, then depðLðtÞÞ\depðLðsÞÞ. Thus

any sequence of states in the pre-tableau can contain at most depðuÞ G-Successors. Also, if

s, t and u are states such that t is an Bj-Successor of s and u is an Ik-Successor of t with

j 6¼ k, then it holds that depðLðuÞÞ\depðLðsÞÞ. By Lemma 4 and construction of the

algorithm, if s, t and u are states such that t is an Bj-Successor of s and u is an Ok-Successor

of t, where O 2 fB;G; Ig, then it must hold that j 6¼ k. By Lemma 6, the maximal length of

a sequence of I-Successors with the same modal depth of labels in a pre-tableau con-

structed by the algorithm is �OðdepðuÞ2jAjÞ. Similarly, by Lemma 5, the maximal length

of a sequence of B-Successors with the same modal depth of labels in a pre-tableau

constructed by the algorithm is �OðdepðuÞ2jAjÞ. Hence any sequence of nodes in the pre-

tableau must be of length �OðjujdepðuÞ2jAjþ1Þ and contains �OðdepðuÞ2jAjþ1Þ states. h

15 State height of a node is the number of states on a path from the root to the node in the pre-tableau.
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Since the height of the pre-tableau constructed by the algorithm for an input formula

u 2 LT
R2

is bounded and the number of successor of any state is bounded as well so we

have the following proposition as a corollary of Lemma 7.

Proposition 3 For any input formula u 2 LT
R2

Algorithm 1 terminates.

For soundness and validity, we show that Algorithm 1 is sound and valid for any formula

u 2 LT for which it terminates. Thus as long as we can show that the algorithm terminates

for a fragment of LT, we have a sound and valid method of checking TeamLog

satisfiability.

Proposition 4 Suppose that Algorithm 1 terminates on a formula u 2 LT. Then u is
satisfiable iff Algorithm 1 returns sat on the input u.

By Proposition 3, Algorithm 1 terminates, so we have the following corollary from

Proposition 4, stating soundness and validity of the algorithm.

Proposition 5 A formula u 2 LT
R2

is satisfiable iff Algorithm 1 returns sat on the input u.

By Lemma 7, Algorithm 1 can be run on a Turing machine using space bounded from

above by a polynomial depending on juj. Thus the TeamLog satisfiability problem for LT
R2

is PSPACE solvable. It is also PSPACE hard as it is PSPACE hard for LT without fixpoint

modalities (Dziubiński et al. 2007). Thus we have the following theorem.

Theorem 2 The TeamLog satisfiability problem for formulas from LT
R2

is PSPACE

complete.

As Lemma 7 and proof of Proposition 4 suggest, bounding modal depth of formulas from

LT
R2

makes the TeamLog satisfiability problem NPTIME complete.

Theorem 3 For any fixed k, if modal depth of formulas from LT
R2

is bounded by k, then the

TeamLog satisfiability problem for them is NPTIME complete.

Proof By Lemma 7 and the construction of TeamLog tableau based on the pre-tableau

constructed by Algorithm 1 presented in Proposition 4, the size of the tableau for a sat-

isfiable formula j is bounded by O ðð2jAj þ 1ÞjujÞdepðuÞ2jAjþ1
� �

. Hence, if modal depth of u

is bounded by k, then the size of the tableau is bounded by O ðð2jAj þ 1ÞjujÞk
2jAjþ1

� �
. This

means that the satisfiability of u with bounded modal depth can be checked by the fol-

lowing non-deterministic Algorithm 7.
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Since tableau T constructed by Algorithm 7 is of polynomial size, so checking if it is a

tableau for u can be realized in polynomial time. This shows that satisfiability of u can be

checked in NPTIME. The problem is also NPTIME complete, as the satisfiability problem

for propositional logic is NPTIME hard. h

6.2 Complexity of LT
R1

The algorithm for checking TeamLog satisfiability of formulas from LT
R1

requires a different

approach since, as Proposition 1 shows, a model for such formulas may contain an expo-

nentially long path. Therefore we modify Algorithm 1, designed for checking the TeamLog

satisfiability of formulas from LT
R1

in polynomial space. The difference lies in using a new

procedure for B-successors creation, specifically for the formulas of the form :½B�j½B�
þ
Gw

with j 2 G. Since the satisfying sequence for such a formula may have exponential length

with respect to the size of the set of formulas, the algorithm using a polynomial space cannot

attempt to construct such a sequence storing it fully in the memory, as it was done in the case

of Algorithm 1. For this reason, the new algorithm constructs a pre-tableau just like Algo-

rithm 1, creating G- and I-successors in the same way, but stopping creation of B-successors

for formulas of the form :½B�j½B�
þ
Gw when certain condition is satisfied. In such case Func-

tion 9 is used for checking if the label of the :½B�j½B�
þ
Gw-successor is satisfiable. If it is

decided by Function 9 that the label of the :½B�j½B�
þ
Gw-successor is not satisfiable, then the

state is marked unsat. Otherwise, the decision on how the state should be marked depends on

the other successors and the same procedure of marking nodes, as the one used in
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Algorithm 1, is applied. The new algorithm is referred two as Algorithm 2, and its formu-

lation differs from the formulation of Algorithm 1 by the procedure of B-successors creation

being replaced with a new one, called Procedure 8.

In the algorithm we are referring to the following sets, defined for a given set of

formulas U � LT and G � A:

U=½B�þG ¼ fw : ½B�þHw 2 U and G � Hg;
U u ½B�þG ¼ f½B�þHw : ½B�þHw 2 U and G � Hg;

U½B�þG ¼ ðU=½B�þGÞ [ ðU u ½B�þGÞ:

Given a formula w, G � A, j 2 G and a set of formulas U such that f½B�jw;wg � U as an

input, Function 9 decides whether the set U:½B�jð½B�þGwÞ is satisfiable or not. To describe

the idea of this algorithm, let W1 and W2 be sets of formulas. Given k 2 A, we say that W1

and W2 are connected with k if W1 u k ¼ W2 u k. Moreover, given a set H � A, we say

that W1 and W2 are H-connected if they are connected with some k 2 H. Let C be a set of

formulas and let SðCÞ be the set of all minimal sets of formulas containing C as a subset

that are ½B�-expanded tableaux. Given H � A, let GHðCÞ ¼ ðV ;EÞ be an undirected graph

such that V consists of all elements W 2 SðCÞ such that Algorithm 2 returns sat on inputV
W and for all ðW1;W2Þ 2 V � V , ðW1;W2Þ 2 E iff they are H-connected. A path in

GHðCÞ is a sequence C0; . . .;Cn of elements of V such that for all 1� i� n, Ci�1 and Ci are

H-connected. The length of path C0; . . .;Cn is n. Given a path C0; . . .;Cn of length n
 1 in

GHðCÞ we call a sequence j1; . . .; jn of elements from H such that for each 1� i� n, Ci�1

and Ci are connected with ji, a sequence associated with path C0; . . .;Cn. If n ¼ 0, then the

sequence associated with the path is the empty sequence e. Given two sets of formulas W0

and W1, we say that W1 is reachable from W0 in GHðCÞ (in n steps) iff there exists a path

C0; . . .;Cn in GHðCÞ such that W0 ¼ C0 and W1 ¼ Cn.

To decide the satisfiability of
V
U:½B�jð½B�þGwÞ, Function 9 checks whether there exist

two sets of formulas fW0;W1g � SððU=½B�þHÞ [ fwgÞ, with

H ¼ ag U u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
, such that

• ðU u jÞ n ððU u ½B�jÞ [ ðU u :½B�jÞÞ � W0 and

• either there exists k 2 H such that Algorithm 2 returns sat on the input
V

W½B�k
1 [ ðU=½B�þHÞ [ f�wg

� �
and W1 is reachable from W0 in GHððU=½B�þHÞ [ fwgÞ

with path C0; . . .;Cn such that if n ¼ 0, then j 6¼ k, and if n
 1, then there exists

jn 2 H n fkg such that Cn�1 and Cn are connected with jn.

• or W1 is reachable from W0 in GHððU=½B�þHÞ [ fwgÞ and there exists k 2 G n H such

that either Algorithm 2 returns sat on the input
V

W½B�k
1 [ U½B�þH[fkg [ f�wg

� �
or

Algorithm 2 returns sat on
V

W½B�k
1 [ U½B�þH[fkg [ fw;:½B�þGw; ½B�kw;:½B�k½B�

þ
Gwg

� �

To check reachability, Function 10 is used. Given sets of formulas U1, W and U2, sets H � A
and F � H, p 2 H and K
 0, Function 10 checks if there exists a set of formulas C 2 SðU1Þ
such that Algorithm 2 returns sat on input

V
C and U2 is reachable from C in GHðU1Þ in at

most 2K � 1 steps with a path C0; . . .;Cn such that if n ¼ 0, then p 62 F and if n
 1, then

there exists jn 2 H n F such that Cn�1 and Cn are connected with jn. The set F with which the

algorithm is called will always be either £ or a singleton. It is used to forbid, in certain sit-

uations, one of the possible connections between the last two sets in the constructed sequence.
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The idea of the algorithm is based on the idea of Savitch’s algorithm for checking

reachability in graph that uses quadratic logarithmic space with respect to |V| (c.f.

Papadimitriu 1994). Notice that all the sets in SððW=½B�þHÞ [ fwgÞ have the same number

of elements and if C 2 SððW=½B�þHÞ [ fwgÞ, then jSððW=½B�þHÞ [ fwgÞj� 2jCj. Thus to

check reachability in GHððU=½B�þHÞ [ fwgÞ it is enough to check whether there is reacha-

bility in at most 2jCj � 1 steps, where C 2 SððW=½B�þHÞ [ fwgÞ.

The procedure of marking nodes remains as in Algorithm 1, however the notion of unresolved

formula used by it is different in the case of formulas of the form :½B�þGw. The modification is

related to the fact that in the case of any :½B�j½B�
þ
Gw-Successor state s and any formula

:½B�k½B�
þ
Gw 2 LðsÞ with k 6¼ j, either the :½B�k½B�

þ
k w-successor of s is created or Function 9 is

used to check the satisfiability of L:½B�k ðs; ½B�þGwÞ. Hence the only situation in which such a

formula can be unresolved is when :½B�j½B�
þ
Gw 2 LðsÞ and all the other formulas from

:fClð½B�þGwÞ appear positively in L(s). Unresolved formula of the form :½B�þGw is defined as

follows.

Definition 17 (Unresolved formula) Let n be a node in a pre-tableau and let

:½B�þGw 2 LðnÞ. A formula :½B�þGw is unresolved in n if one of the following holds:
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• n is an internal node and a :½B�j½B�
þ
Gw-descendant with j 2 G, none of its successors is

marked sat, there exists a successor of n marked undec and BðnÞ 6¼ £,

• n is a state and a :½B�j½B�
þ
Gw-Successor with j 2 G, BðnÞ 6¼ £, ½B�k½B�

þ
Gw 2 LðnÞ, for

all k 2 G n fjg, and ½B�kw 2 LðnÞ, for all k 2 G.

We show first that for any input U � LT
R1

Algorithm 2 terminates. Notice that Lemma 6

stating the bounds on the length of the sequence of I-successors in the pre-tableau holds for

Algorithm 2 as well, as it uses the same procedure of I-successors creation as Algorithm 2.

The procedure of B-successors creation is changed in Algorithm 2 and the following

lemma, stating the bounds on the length of a sequence of B-successors, can be shown.

Lemma 8 The maximal length of sequence of B-Successors with unchanged modal depth

of labels in the pre-tableau constructed by Algorithm 2 for an input u 2 LT
R1

is

�O depðuÞ2jAj
� �

.
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The following lemma states bounds on the state height of a pre-tableau constructed by

Algorithm 2 for an input formula satisfying modal context restriction R1.

Lemma 9 State height of the pre-tableau constructed by Algorithm 2 for an input u 2 LT
R1

is �O depðuÞ2jAjþ1
� �

and its height is �O jujdepðuÞ2jAjþ1
� �

.

The two lemmas above imply that Algorithm 2 terminates for any input satisfying modal

context restriction R1, as stated below.

Proposition 6 For any input u 2 LT
R1

Algorithm 2 terminates.

Algorithm 2 is sound and valid, as stated below.

Proposition 7 A formula u 2 LT
R1

is satisfiable iff Algorithm 2 returns sat on the input u.

The following theorem states lower and upper bounds on the complexity of the TeamLog

satisfiability problem for formulas from LT
R1

. To show the theorem we have to show that

Algorithm 2 can be executed in space polynomial with respect to the size of the input

formula.

Theorem 4 The TeamLog satisfiability problem for formulas from LT
R1

is PSPACE

complete.

The tableau constructed in proof of Proposition 7 can have exponential depth with respect

to the input formula. For that reason an algorithm similar to that used in proof of Theo-

rem 3 for formulas from LT
R2

with modal depth bounded by a constant that works in

polynomial time cannot be used in the case LT
R1

with modal depth of formulas bounded by

a constant. In fact finding such an algorithm may be very difficult, as the satisfiability

problem for formulas from LT
R1

with modal depth bounded by 2 is PSPACE hard, as stated

below.

Theorem 5 The problem of checking TeamLog satisfiability of formulas from LT
R1

with

modal depth bounded by 2 is PSPACE complete.

6.3 Restriction LT
R1ðcÞ

To check TeamLog satisfiability of formulas from LT
R1ðcÞ Algorithm 1 can be used. We will

show that the algorithm terminates on any input from LT
R1ðcÞ and that its state height is

bounded by a polynomial depending on modal depth of the input formula. We start with a
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lemma stating bounds on the length of a sequence of B-Successors with unchanged modal

depth of labels in the pre-tableau.

Lemma 10 The maximal length of sequence of B-Successors with unchanged modal depth

of labels in the pre-tableau constructed by Algorithm 1 for an input u 2 LT
R1ðcÞ is

�O depðuÞ2jAj
� �

.

Notice that the bounds given in Lemma 10 are of the same order as in the case of

restriction R2. However, the constant factor in the case of restriction R1ðcÞ is different. This

factor depends exponentially on c, as all the maximal consistent subsets of the sets of

literals of the form ½O�j with O 2 fG; Ig and j 2 G in direct scope of operators ½B�þG in the

labels of sets may need to be enumerated until the branch expansion stops.

Bounds on the state height of the pre-tableau constructed by Algorithm 1 for an input

formula satisfying modal context restriction R1ðcÞ are stated in the lemma below.

Lemma 11 State height of the pre-tableau constructed by Algorithm 1 for an input u 2

LT
R1ðcÞ is �O depðuÞ2jAjþ1

� �
and its height is �O jujdepðuÞ2jAjþ1

� �
.

Since the size of a pre-tableau constructed by the algorithm for an input formula from

LT
R1ðcÞ is bounded so Algorithm 1 terminates on any input u 2 LT

R1ðcÞ.

Proposition 8 For any input formula u 2 LT
R1ðcÞ Algorithm 1 terminates.

Since Algorithm 1 terminates on any input from LT
R1ðcÞ so, by Proposition 4, it is also

sound and valid for checking the TeamLog satisfiability of formulas from LT
R1ðcÞ, as stated

in the proposition below.

Proposition 9 A formula u 2 LT
R1ðcÞ is satisfiable iff Algorithm 1 returns sat on the input

u.

Moreover, since the state height of the pre-tableau constructed by Algorithm 1 for an input

formula u 2 LT
R1ðcÞ is bounded by a polynomial depending on depðuÞ and c, so the size of

the pre-tableau constructed for u in proof of Lemma 11 on the basis of this pre-tableau has

the size which is bounded by a polynomial depending on juj with the degree depending on

depðuÞ. Thus we have the following theorem, analogous to Theorem 3 for LT
R2

. Proof of

the theorem is analogous to proof of Theorem 3.

Theorem 6 For any fixed k, if modal depth of formulas from LT
R1ðcÞ is bounded by k, then

the TeamLog satisfiability for them is NPTIME complete.
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7 Conclusions

In this paper we presented a family of language restrictions for modal logics for multiagent

systems that can be used to provide NPTIME solvability of the satisfiability problem. The

family of restrictions, called modal context restrictions, generalizes modal depth restric-

tion. We applied two restrictions of this kind to one of existing multiagent formalisms

called TeamLog and studied the complexity of the satisfiability problem of the restricted

language of the formalism.

Like in the case of other modal formalisms for multiagent systems with fixpoint

modalities, such as common beliefs or mutual intentions, the satisfiability problem of

TeamLog is EXPTIME complete even if the modal depth of formulas is bounded by 2. For

this reason a language restriction which would be less forbidding than modal depth

restriction would be needed to reduce the complexity of the problem. In the paper we

introduced three restrictions called R1, R2 and R1ðcÞ. In the case of the least restrictive

one of them, called R1, the problem remains PSPACE hard even if modal depth of for-

mulas is bounded by 2. In the case of the most restrictive one, called R2, combining it with

restricting modal depth of formulas by a constant results in NPTIME completeness of the

satisfiability problem. Since restriction R2 is too strong, at least in situations when aspects

of multiagent systems combining informational and motivational attitudes are specified,

like for example collective intentions and collective commitments, we proposed a

refinement of restriction R1 called R1ðcÞ. Combining this restriction with restricting modal

depth of formula results in NPTIME solvability of the satisfiability problem.

The restrictions of the language studied in this paper do not lead to tractable fragments

of the formalisms considered. However, we were able to find NPTIME complete frag-

ments, even in the case of full TeamLog, which originally has EXPTIME complete sat-

isfiability problem. Two possible approaches could be undertaken to address this issue:

reducing the satisfiability of the NPTIME complete fragments to some other NPTIME

complete problems for which well performing, heuristics based algorithms exist, or

studying further restrictions of the language that could lead to PTIME solvable satisfia-

bility problem. The first of these approaches was successfully used by Kacprzak, Lomuscio

and Penczek in Kacprzak et al. (2004a, 2004b), where model checking of temporal modal

logic is studied. The authors reduce this problem to the problem of satisfiability of

propositional calculus (SAT) and use existing SAT-solvers for it. Applying a similar

approach to the NPTIME complete fragments of TeamLog could be a promising direction

for further research. For the second approach, different language restrictions that were

already studied in the literature could be considered. Firstly, it would be interesting to

investigate the Horn fragment of TeamLog. In Nguyen (2000) Linh Nguyen studied Horn

fragments of various basic multimodal logics and he found out that when modal depth of

formulas is bounded by a constant, then the satisfiability problem is PTIME complete in

the case of several of standard multimodal logics.

Another possibility would be to look at restrictions of propositional operators used in

formulas, following the approach of Bauland et al. (2006) and Bauland et al. (2009) and to

CTL� and CTL in Meier et al. (2008).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123

3112 M. Dziubiński
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Appendix

Proof of Proposition 1 We will use propositional variables q1; . . .; qN to enumerate worlds

of the model. Each world v receives two numbers of length N in binary representation, that

are encoded by the valuation of the formulas ½I�1qj and ½I�2qj. Bits of the first number,

M1ðvÞ, are encoded by the valuations of formulas ½I�1qj, with ½I�1q1 corresponding to the

least significant bit and ½I�1qj being satisfied in ðM; vÞ encoding the value 1 and :½I�1qj
being satisfied in ðM; vÞ encoding the value 0 of bit j of M1ðvÞ. Value of M2ðvÞ is encoded

in analogous way with formulas ½I�2qj.
Let

u ¼ INIT ^ ½B�þf1;2g INC0 ^
N̂�1

j¼1

INC1ðjÞ
 !

^ :½B�þf1;2g
_N

j¼1

:½I�1qj

 !

;

and

INIT ¼
N̂

j¼1

:½I�1qj

 !

^ ½I�2q1 ^
N̂

j 62
:½I�2qj

 !

ð1Þ

INC0 ¼:½I�1q1 !
N̂

j 62
ð½I�1qj $ ½I�2qjÞÞ

 !

ð2Þ

INC1ðiÞ ¼ :½I�1qiþ1 ^
î

j¼1

½I�1qj

 !

!
N̂

j¼iþ2

ð½I�1qj $ ½I�2qjÞ
 

^

:½I�2qiþ1 ^
î

j¼1

½I�2qj

 !

_ ½I�2qiþ1 ^
î

j¼1

:½I�2qj

 ! !! ð3Þ

Notice that juj ¼ OðN2Þ.16 Take any ðM;wÞ such that ðM;wÞ�u. The formula INIT
enforces that the value of M1 at the initial world w is 0, that is M1ðwÞ ¼ ð0; . . .; 0Þ2, and the

value of M2 at the initial world w is 1, that is M2ðwÞ ¼ ð0; . . .; 0; 1Þ2. The formulas INC0

and INC1ðiÞ, for 1� i\N, enforce that at each world v 2 Bþ
f1;2gðwÞ,

M1ðvÞ�M2ðvÞ�M1ðvÞ þ 1. More precisely, the formula INC0 enforces that in the case of

the least significant bit of M1ðvÞ being 0, while the formula INC1ðiÞ enforced that in the

case of the iþ 1 bit being 0 and the bits from i to 1 being 1.

Mixed axioms BI4 and BI5 guarantee that for any world v 2 Bþ
f1;2gðwÞ and any world

16 Formula u could be also constructed with use of operators ½G�1 and ½G�2 instead of ½I�1 and ½I�2.
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u 2 B1ðvÞ, M1ðvÞ ¼ M1ðuÞ and for any world u 2 B2ðvÞ, M2ðvÞ ¼ M2ðuÞ. Thus if there

exists a world u 2 Bþ
f1;2gðwÞ such that M1ðuÞ ¼ ð1; . . .; 1Þ2, then for each 0\x� 2N � 1

there must exist a world v 2 Bþ
f1;2gðwÞ such that M1ðvÞ ¼ x and u 2 Bþ

f1;2gðvÞ. Hence if u is

satisfied in ðM;wÞ, then ðM;wÞ must contain exponentially long, with respect to juj,
sequence of pairwise different worlds.

To see that juj is satisfiable, take the following model

M ¼ ðW ; fOj : j 2 f1; 2g; O 2 fB;G; Ig;ValgÞ, where

• W ¼ fs1; . . .; sKg [ ft0; . . .; tKg [ fv1; . . .; vNg [ fu1; . . .; uNg, where K ¼ 2N � 1,

• B1ðskÞ ¼ fskg and B2ðtkÞ ¼ ftkg, for 1� k�K,

• B1ðtkÞ ¼ fskþ1g and B2ðskÞ ¼ ftkg, for 1� k�K � 1,

• B1ðtKÞ ¼ ftKg, B1ðvkÞ ¼ B2ðvkÞ ¼ fvkg, B1ðukÞ ¼ B2ðukÞ ¼ fukg, for 1� k�N,

• I1ðs1Þ ¼ fw1ð0Þ; . . .;wNð0Þg and I1ðtkÞ ¼ I1ðskþ1Þ ¼ fw1ðkÞ; . . .;wNðkÞg, for all

1� k�K,

• I2ðskÞ ¼ I2ðtkÞ ¼ fw1ðkÞ; . . .;wNðkÞg, for all 1� k�K,

• I1ðvkÞ ¼ B2ðvkÞ ¼ fvkg, I1ðukÞ ¼ I2ðukÞ ¼ fukg, for 1� k�N,

• Gj ¼ £, for j 2 f1; 2g,

• Valðqj; vjÞ ¼ 1, Valðqj; ujÞ ¼ 0, for all 1� j�N, and Valðq; vÞ ¼ 0 on all the remaining

arguments, and

wiðkÞ ¼
vi if the value of i-th bit (counting from the least significant bit) in binary

representation of k is 1

ui otherwise.

8
><

>:

It is easy to see that M is a TeamLog model and that ðM; v0Þ�u. h

Proof (Proposition 2) Most of the proof is very similar to the proof given in Halpern and

Moses (1992) for S5n tableaux (notice that conditions TB O4 and TB O5 are similar to

conditions T4 and T5). In what follows we will focus on fixpoint modalities. For the

detailed proof see the dissertation Dziubiński (2011).

For the left to right direction we have to show how to construct a TeamLog tableaux for

u on the basis of a model for u. Let ðM;wÞ�u where M ¼ W ; fOj : ½O�j 2 Xindg;Val
� �

is a TeamLog model and w 2 W . Consider a model graph T ¼ W; fOj : ½O�j 2 Xindg; L
� �

,

where w 2 LðvÞ iff ðM; vÞ�w. Since u 2 LðwÞ, so it is enough to show that T is a

TeamLog tableau. Since we focus on fixpoint modalities, we will show that for all v 2 W ,

L(v) satisfies conditions Cl and T1 and T2 for the formulas of the form ½O�þGn and :½O�þGn.

For condition Cl let v 2 W and assume that ½O�þGn 2 LðvÞ with O 2 fB; Ig. Then

ðM; vÞ�½O�þGn. Take any u 2 OjðvÞ, for some j 2 G. Then u 2 Oþ
GðvÞ, and so ðM; uÞ�n.

Moreover for any t 2 Oþ
GðuÞ it also holds that t 2 Oþ

GðvÞ, by transitivity of Oþ
G . Hence

ðM; uÞ�½O�þGn. Thus ðM; vÞ�½O�jn and ðM; vÞ�½O�j½O�
þ
Gn, and so ½O�jn 2 LðvÞ and

½O�j½O�
þ
Gn 2 LðvÞ. This shows that condition Cl is satisfied. For condition T1, let v 2 W

and assume that ½O�þGn 2 LðvÞ with O 2 fB; Ig. Then ðM; vÞ�½O�þGn and for any

u 2 Oþ
GðvÞ, ðM; uÞ�n and, consequently, n 2 LðuÞ. Hence condition T1 is satisfied. For

condition T2, let v 2 W and assume that :½O�þGn 2 LðvÞ with O 2 fB; Ig. Then
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ðM; vÞ2½O�þGn and there must be u 2 Oþ
GðvÞ such that ðM; uÞ 2 n. Thus ðM; uÞ��n and

�n 2 LðuÞ. Hence condition T2 is satisfied.

For the right to left implication we need to show how to construct a model for u on the

basis of a TeamLog tableau for u. Let T ¼ W ; fOj : ½O�j 2 Xindg; L
� �

be a TeamLog

tableau for u, so that u 2 LðwÞ for some w 2 W . Consider a Kripke model

M ¼ W ; fO0
j : ½O�j 2 Xindg;Val

� �
, where

Valðp; vÞ ¼
1; if p 2 LðvÞ
0; if p 62 LðvÞ

�

Before defining accessibility relations B0
j, G0

j and I0j, we will introduce a notion that will be

useful here. We will say that states v and u are Bj-connected with a sequence of states

s0; . . .; sm if v ¼ s0, u ¼ sm, m[ 0 and for any 0\j�m, either sj 2 Bjðsj�1Þ or

sj�1 2 BjðsjÞ. We will say that states v and u are Bj-connected if there is a sequence of

states s0; . . .; sm such that v and u are Bj-connected with it.

Relation B0
j is defined as follows. Let �Bj ¼ Bj [ fðv; vÞ 2 W �W : BjðvÞ ¼ £g. Then

ðv; uÞ 2 B0
j iff ðv; uÞ 2 �Bj or there exists s such that v and s are Bj-connected and u 2 BjðsÞ

(notice that it means, in the case of ðv; uÞ 2 Bj or in the latter case, that v and u are Bj-

connected). Relation G0
j is defined as follows. A pair of states ðv; uÞ 2 G0

j iff ðv; uÞ 2 Gj or

there exists s such that v and s are Bj-connected and u 2 GjðsÞ. Relation I0j is defined as

follows. Let �Ij ¼ Ij [ fðv; vÞ 2 W �W : IjðvÞ ¼ £g. Then ðv; uÞ 2 I0j iff ðv; uÞ 2 �Ij [ G0
j or

there exists s such that v and s are Bj-connected and u 2 IjðsÞ.
Showing that M is a TeamLog model (i.e. that all the required properties of accessibility

relations are satisfied) is analogous to the similar proof in Halpern and Moses (1992) for

S5n tableaux and we omit it here. See Dziubiński (2011) for the detailed proof. Second

thing that needs to be shown is that for any w 2 LT and v 2 W , w 2 LðvÞ implies

ðM; vÞ�w. This is done using induction on the length of formulas. Again, most of the steps

is analogous to the similar proof in Halpern and Moses (1992) for S5n the details can be

found in Dziubiński (2011). We restrict attention to the formulas of the form ½O�þGn and

:½O�þGn.

Assume that w ¼ ½O�þGn, with O 2 fB; Ig, and ½O�þGn 2 LðvÞ. Take any u 2 O0þ
G ðvÞ. By

condition Cl, f½O�jn; ½O�j½O�
þ
Gng � LðvÞ, for any j 2 G. Moreover, by simple induction on

the length of sequences over G, it can be shown that that for any u 2 O0þ
G ðvÞ it holds that

fn; ½O�jn; ½O�j½O�
þ
Gng � LðuÞ. Thus, by the induction hypothesis, ðM; uÞ�n and so

ðM; vÞ�½O�þGn. Now let w ¼ :½O�þGn, with O 2 fB; Ig, and :½O�þGn 2 LðvÞ. By condi-

tion TC there exists u 2 Oþ
GðvÞ such that �n 2 LðuÞ. Thus, by the induction hypothesis

and the fact that Oj � O0
j , for all j 2 A, it holds that u 2 O0þ

G ðvÞ and ðM; uÞ��n. Hence

ðM; uÞ2n and ðM; vÞ�:½O�þGn.

We have shown that for any w 2 LT and v 2 W , w 2 LðvÞ implies ðM; vÞ�w, and, in

particular, u 2 LðwÞ implies ðM;wÞ�u, that is u is satisfiable. h
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Proofs associated with termination property of Algorithm 1

Proof (of Lemma 1) Notice that for all i 2 N, F
ðiÞ
U � GrðUÞ and dep FðiÞ� �

� dep GrðUÞð Þ.
We will show first that for all i 2 N, F

ð2iÞ
U � F

ð2ðiþ1ÞÞ
U and

F
ð2iÞ
U \ :PT

[

O2fB;Ig
:Fð2iþ1Þ

U =½O�þ
0

@

1

A ¼ £:

We will use induction on i. For i ¼ 0 the claim is obvious, as F
ð0Þ
U ¼ £. Let i
 1. Since,

by the induction hypothesis, F
ð2ði�1ÞÞ
U � F

ð2iÞ
U , so

:PT
[

O2fB;Ig
:Fð2ði�1ÞÞ

U =½O�þ
0

@

1

A � :PT
[

O2fB;Ig
:Fð2iÞ

U =½O�þ
0

@

1

A

and so F
ð2iþ1Þ
U � F

ð2i�1Þ
U . Since, by the definition of F

ð2iÞ
U ,

F
ð2iÞ
U \ :PT

[

O2fB;Ig
:Fð2i�1Þ

U =½O�þ
0

@

1

A ¼ £

and F
ð2iþ1Þ
U � F

ð2i�1Þ
U , so

F
ð2iÞ
U \ :PT

[

O2fB;Ig
:Fð2iþ1Þ

U =½O�þ
0

@

1

A ¼ £:

This, together with the definition of F
ð2ðiþ1ÞÞ
U , implies that F

ð2ðiÞÞ
U � F

ð2ðiþ1ÞÞ
U .

Since GrðUÞ is finite and, for all i 2 N, F
ðiÞ
U � GrðUÞ and, as we have shown above,

F
ð2ðiÞÞ
U � F

ð2ðiþ1ÞÞ
U , so there exists n 2 N such that for all i[ n, F

ð2iÞ
U ¼ F

2ðiþ1Þ
U .

Secondly, for i 2 N,

F
ð2iþ3Þ
U n Fð2iþ2Þ

U ¼ F
ð2iþ3Þ
U n GrðUÞ n :PT

[

O2fB;Ig
:Fð2iþ1Þ

U =½O�þ
0

@

1

A

0

@

1

A

and since F
ð2iþ3Þ
U � GrðUÞ, so

F
ð2iþ3Þ
U n Fð2iþ2Þ

U ¼ F
ð2iþ3Þ
U \ :PT

[

O2fB;Ig
:Fð2iþ1Þ

U =½O�þ
0

@

1

A:

Thus if F
ð2iþ1Þ
U n Fð2iÞ

U 6¼ £, then

dep F
ð2iþ1Þ
U n Fð2iÞ

U

� �
[ dep F

ð2iþ3Þ
U n Fð2iþ2Þ

U

� �

and since, for all i 2 N, dep FðiÞ� �
� dep GrðUÞð Þ, so there exists n 2 N such that for all

i[ n, F
ð2iþ1Þ
U n Fð2iÞ

U ¼ £. Hence there exists n 2 N, such that FðiÞ ¼ Fðiþ1Þ, for all i[ n,

and so Fð1Þ exists. h
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Proof (Lemma 4) For points 1 and 2 notice first that if :½O�jn 2 LðsÞ, then :½O�jn 2
L½B�jðsÞ and :½O�jn 2 LðtÞ, as t is a Bj-Successor of s. Similarly, if ½O�jn 2 LðsÞ, then

½O�jn 2 LðtÞ, as t is a Bj-Successor of s. This shows the left to right implications of the two

points. For the right to left implication we will show first that ½O�jn 2 :LðtÞ implies

½O�jn 2 :LðsÞ. Assume that there is a formula ½O�jn 2 :LðtÞ. Then one of the following

cases holds:

(i) ½O�jn 2 :LðsÞ,
(ii) there is a formula ½B�jw 2 :LðsÞ such that ½O�jn 2 :BTðwÞ.

If case (i) holds, then the claim holds. If case (ii) holds, then ½O�jw 2 :LðsÞ, as s is a state

and L(s) is a ½B�-expanded tableau.

Now, :½O�jn 2 LðtÞ implies ½O�jn 2 :LðsÞ and it must hold that :½O�jn 2 LðsÞ, as

otherwise it would be ½O�jn 2 LðsÞ and ½O�jn 2 LðtÞ, which would contradict the

assumption that t is a state and L(t) cannot be trivially inconsistent. If ½O�jn 2 LðtÞ, then it

must be that ½O�jn 2 LðsÞ by similar arguments. Hence points 1 and 2 hold. Points 3 and 4

are straightforward implication of points 1 and 2 and the definitions of L½O�jð�Þ, for

O 2 fB;G; Ig. h

Proof (Lemma 2) For point (i) take any formula of the form ½I�þGw 2 :U with j 2 G and

depð½I�þGwÞ
D and suppose that ½I�þGw 62 :cGrðUÞ. Then either there is a formula ½I�þHn 2
:cGrðUÞ or a formula ½B�þHn 2 :cGrðUÞ with ½I�þGw 2 :PTðnÞ. The first case is impossible as

j 2 ag cGrðUÞ; ½I�þ; d
� �

for all d
Dþ 1 and so it must hold that j2H which would violate

modal context restriction R1. The second case is impossible as well since

x 2 ag cGrðUÞ; ½B�þ; d
� �

, for all d
Dþ 1. Hence it must be that ½I�þGw 2 :cGrðUÞ.
For point (ii) take any formula of the form ½I�jw 2 :U with depð½I�jwÞ
Dþ 1. Since

depðIndðUÞÞ�D so ½I�jw 62 :IndðUÞ. Thus either there is a formula ½I�þGn 2 :cGrðUÞ or a

formula ½B�þGn 2 :cGrðUÞ with ½I�jw 2 :BTðnÞ, or ½I�jw 2 :fClðUÞ. The first case is

impossible as j 2 ag cGrðUÞ; ½I�þ; d
� �

for all d
Dþ 1 and so it must hold that j 2 G which

would violate modal context restriction R1.17 The second case is impossible as well, as

x 2 ag cGrðUÞ; ½B�þ; d
� �

, for all d
Dþ 1. Hence it must be that ½I�jw 2 :fClðUÞ. Thus

either there is a formula ½I�þGw 2 :U such that j 2 G or w is of the form ½I�þGn with j 2 G

and w 2 :U. Hence, by point (i), it holds that ½I�jw 2 :fCl cGrðUÞ
� �

. h

Proof (Lemma 3) For point (i) take any formula of the form ½B�þGw 2 :U with j 2 G and

depð½B�þGwÞ
D and suppose that ½B�þGw 62 :cGrðUÞ. Thus either there is a formula ½B�þHn 2
:cGrðUÞ or a formula ½I�þHn 2 :cGrðUÞ with ½B�þGw 2 :PTðnÞ. The first case is impossible as

j 2 ag cGrðUÞ; ½B�þ; d
� �

for all d
Dþ 1 and so it must hold that j 2 H which would

17 Notice that for this argument to hold it is necessary to forbid sequences SIBðGÞ in modal context of
formulas.
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violate modal context restriction R1. The second case is impossible as well since

x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
Dþ 1. Hence it must be that ½B�þGw 2 :cGrðUÞ.
For point (ii) take any formula of the form ½B�jw 2 :U with depð½I�jwÞ
Dþ 1. Since

depðIndðUÞÞ�D so ½B�jw 62 :IndðUÞ. Thus either there is a formula ½B�þGn 2 :cGrðUÞ or a

formula ½I�þGn 2 :cGrðUÞ with ½B�jw 2 :BTðnÞ, or ½B�jw 2 :fClðUÞ. The first case is

impossible as j 2 ag cGrðUÞ; ½B�þ; d
� �

for all d
Dþ 1 and so it must hold that j 2 G

which would violate modal context restriction R1. The second case is impossible as well,

as x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
Dþ 1. Hence it must be that ½B�jw 2 :fClðUÞ. Thus

either there is a formula ½B�þGw 2 :U such that j 2 G or w is of the form ½B�þGn with j 2 G

and w 2 :U. Hence, by point (i), it holds that ½B�jw 2 :fCl cGrðUÞ
� �

.

Before showing point (iii) we will show that if U � LT
R2

and there is a formula of the

form ½I�þGw 2 :U with j 2 G and depð½I�þGwÞ
D, then ½I�þGw 2 :cGrðUÞ (*).

So take any formula of the form ½I�þGw 2 :U with j 2 G and depð½I�þGwÞ
D and sup-

pose that ½I�þGw 62 :cGrðUÞ. Then either there is a formula ½B�þHn 2 :cGrðUÞ or a formula

½I�þHn 2 :cGrðUÞ with ½I�þGw 2 :PTðnÞ. The first case is impossible as j 2

ag cGrðUÞ; ½B�þ; d
� �

for all d
Dþ 1 and so it must hold that j 2 H which would violate

modal context restriction R2. The second case is impossible as well since

x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
Dþ 1. Hence it must be that ½I�þGw 2 :cGrðUÞ.
For point (iii), take any formula of the form ½O�jw 2 :U with O 2 fB;G; Ig and

depð½O�jwÞ
Dþ 1. Since depðIndðUÞ u jÞ�D so ½O�jw 62 :IndðUÞ. Thus either there is a

formula ½B�þGn 2 :cGrðUÞ or a formula ½I�þGn 2 :cGrðUÞ with ½O�jw 2 :BTðnÞ, or

½O�jw 2 :fClðUÞ.
The first case is impossible as j 2 ag cGrðUÞ; ½B�þ; d

� �
for all d
Dþ 1 and so it must

hold that j 2 G which would violate modal context restriction R2. The second case is

impossible as well, since x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
Dþ 1. Hence it must be that

½O�jw 2 :fClðUÞ. Thus O 2 fB; Ig and either there is a formula ½O�þGw 2 :U such that

j 2 G or w is of the form ½O�þGn with j 2 G and w 2 :U. Hence, by point (i) and by (*), it

holds that ½O�jw 2 :fCl cGrðUÞ
� �

. Since x 2 ag cGrðUÞ; ½I�þ; d
� �

, for all d
D, so it must

be that O ¼ B. h

Proof (Corollary 1) Take any w 2 LðtÞ with depðwÞ ¼ d
D. If w 2 fClðLðtÞÞ or

w 2 LðsÞ u j, then the claim holds. Suppose otherwise. Notice that if w was added to L(t)

during ½B�þ-expanded tableau formation, then w must be of the form ½B�kn or :½B�kn.

Moreover, it must be that k 6¼ j as, by Lemma 4, it holds that LðsÞ u j ¼ LðtÞ u j. Hence if

neither w 2 fClðLðtÞÞ nor w 2 LðsÞ u j, then there must be a formula ½B�jn 2 :LðsÞ such

that w 2 :BTðnÞ. By point (ii) or Lemma 3 it holds that ½B�jn 2 :fClðcGrðLðsÞÞÞ. Hence

either there is a formula ½B�þGn 2 :cGrðLðsÞÞ with j 2 G or w is of the form ½B�þGg with
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j 2 G, ½B�þGg 2 :cGrðLðsÞÞ and ½B�j½B�
þ
Gg 2 fClðLðsÞÞ, or w is of the form :½B�þGg with

j 2 G, :½B�þGg 2 cGrðLðsÞÞ and ½B�j½B�
þ
Gg 2 :fClðLðsÞÞ. In the last case it must hold that

:½B�j½B�
þ
Gg 2 fClðLðsÞÞ as otherwise it would be ½B�j½B�

þ
Gg 2 fClðLðsÞÞ and ½B�þGg 2 LðtÞ,

which would contradict the assumption that t is a state and L(t) cannot be trivially

inconsistent. Moreover, in this case it must be that t is a :½B�j½B�
þ
Gg-Successor of s. To see

why assume the opposite. Then there must be a formula ½B�jn 2 LðsÞ such that

½B�þGg 2 :BTðnÞ. As we already observed, it cannot be that n ¼ ½B�þGg. This, together with

the assumption that ½B�þGg 2 :BTðnÞ, implies that n cannot be of the form ½B�þHf. Now, by

point (ii) or Lemma 3, it must be that ½B�jn 2 :fClðcGrðLðsÞÞÞ. Since n cannot be of the

form ½B�þHf, so there must be formula ½B�þHn 2 cGrðLðsÞÞ with j 2 H. But this is impossible,

as it violates modal context restriction R1. h

Proof (Lemma 5) The structure of the proof is as follows. First we prove four claims that

are crucial for the result to hold, then we assess how the length of a sequence of B-

Successors with unchanged modal depth of labels can be bounded. The general idea is as

follows. We show that the sets ag cGrðLð�ÞÞ; ½O�þ; d
� �

for subsequent states in the sequence

must gradually increase at subsequent levels d, starting from the topmost level. This relies

on the following observations. If subsequent states s and t, such that t is a ½B�j-Successor of

state s, satisfy properties PB1, PI1 and PB2 from above some level

D
 depðIndðLðsÞÞ u jÞ, then it must be that j 2 ag cGrðLðtÞÞ; ½B�þ; d
� �

and x 2

ag cGrðLðtÞÞ; ½I�þ; d
� �

at levels d
D (Claim 1). Moreover, in this case the sets

ag cGrð�Þ; ½B�þ; d
� �

and ag cGrð�Þ; ½I�þ; d
� �

can only increase between s and t at the level D

and depðIndðLðtÞÞ n ðLðtÞ u jÞÞ must either be below D or IndðLðtÞÞ n ðLðtÞ u jÞ must be

empty. Also, there can be at most one formula of the form :½B�þGw in cGrðLðtÞÞ at level D or

above, and if there is one, then t must be a :½B�j½B�
þ
Gw-Successor of s (Claim 2). Notice

that since properties PB1, PI1 and PB2 are always satisfied at levels above depðLðs0ÞÞ for

all the sets in the sequence (where s0 is the first state in the sequence), so either they will

have to be satisfied at levels above depðLðs0ÞÞ � 1 starting from the second state in the

sequence or the sets ag cGrðLð�ÞÞ; ½O�þ; d
� �

will have to increase at this level. This

observation applies to lower levels of this set for subsequent states in the sequence and

leads to recurrence Equations (4) and (7) which are used to assess the maximal length of

the sequence. The basis of these recurrence equations is the length of a sequence where

IndðLð�ÞÞ ¼ £ and properties PB1, PI1 and PB2 are satisfied at all levels. In such a case

the only differences in the labels the successor nodes of states get come from formulas in

fCl cGrðLð�ÞÞ
� �

(Claims 3 and 4). By construction of the algorithm, if the labels the suc-

cessor nodes of states are equal, no new successor can be added to the sequence. Since

there can be at most one formula of the form :½B�þGw in cGrðLð�ÞÞ starting from the second

state of the sequence, so these differentiating formulas come from a very restricted set and

we show that within a constant number of steps repetition of the label of the successor node

in the sequence must occur. The detailed analysis of the bounds on the sequence is given

after the claims. Proof of Claim 3 uses the assumption that the input formula satisfies
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restriction R2. For all the remaining claims modal context restriction R1 is a sufficient

assumption.

Claim 1 Let t be an ½B�j-Successor of state s in the pre-tableau constructed by Algorithm 1

for an input u 2 LT
R1

and let D
 depðIndðLðsÞÞ u jÞ. If s and t satisfy properties PI1, PB1

and PB2, for all d[D, then the following hold for all d
D and w 2 LT
R1

with

depðwÞ
D

(i) j 2 ag cGrðLðtÞÞ; ½B�þ; d
� �

,

(ii) x 2 ag cGrðLðtÞÞ; ½I�þ; d
� �

,

(iii) if ½B�þGn 2 :cGrðLðsÞÞ and w 2 :BTðnÞ, then w 62 IndðLðtÞÞ and w 62 cGrðLðtÞÞ.

Claim 2 Let t be an ½B�j-Successor of state s in the pre-tableau constructed by Algorithm 1

for an input u 2 LT
R1

and let D
 depðIndðLðsÞÞ u jÞ be such that s and t satisfy proper-

ties PI1, PB1 and PB2, for all d[D. Then the following hold:

(i) ag cGrðLðsÞÞ; ½B�þ;D
� �

� ag cGrðLðtÞÞ; ½B�þ;D
� �

and ag cGrðLðsÞÞ; ½I�þ;D
� �

�

ag cGrðLðtÞÞ; ½I�þ;D
� �

.

(ii) Either depðIndðLðtÞÞ n ðLðtÞ u jÞÞ\D or IndðLðtÞÞ n ðLðtÞ u jÞ ¼ £.

(iii) There can be at most one formula of the form :½B�þGw 2 cGrðLðtÞÞ with

depð½B�þGwÞ
D. Moreover, if there is such a formula, then :½B�þGw 2 cGrðLðsÞÞ,
:½B�j½B�

þ
Gw 2 LðsÞ and t is a :½B�j½B�

þ
Gw-Successor of s.

Claim 3 Let t be an ½B�j-Successor of s in the pre-tableau constructed by Algorithm 1 for

an input u 2 LT
R1
. If s and t satisfy properties PB1, PI1 and PB2, for all d
 0, and

IndðLðsÞÞ u u ¼ £, then for all k 2 ag cGrðLðtÞÞ; ½B�þ
� �

and w 2 LT
R1

it holds that

(i) w 2 LðsÞ=½B�j implies w 2 LðtÞ=½B�k or :½B�kw 2 fCl cGrðLðtÞÞ
� �

, and

(ii) w 2 LðtÞ=½B�k implies w 2 LðsÞ=½B�j or :½B�jw 2 fCl cGrðLðsÞÞ
� �

.

Claim 4 Let t be an ½B�j-Successor of s in the pre-tableau constructed by Algorithm 1 for

an input u 2 LT
R2
. If s and t satisfy properties PB1, PI1 and PB2, for all d
 0, and

IndðLðsÞÞ u j ¼ £, then for all k 2 ag cGrðLðtÞÞ; ½B�þ
� �

and w 2 LT
R2

it holds that

(i) ½O�jw 2 :LðsÞ implies O ¼ B and ½O�kw 2 :LðtÞ, and

(ii) ½O�kw 2 :LðtÞ implies O ¼ B and ½O�jw 2 :LðsÞ.

Consider a sequence of states s0; . . .; sm such that for any 0\k�m, sk is an Bjk -Successor

of sk�1. Suppose that for any 0\k�m it holds that IndðL sk�1ð ÞÞ u jk ¼ £ and the

sequence satisfies properties PB1, PI1 and PB2 for all d
 0. If cGrðLðs0ÞÞ u :½B�þ ¼ £

then, by Claim 3, the length of such sequence must be � 2. This is because for any

123

3120 M. Dziubiński



j 2 ag cGrðs1Þ; ½B�þ
� �

it holds that L s1ð Þ=½B�j � L s0ð Þ=½B�j1 � L s1ð Þ, L s1ð Þ u j � L s1ð Þ and

there are no formulas of the form :½B�jw 2 L s1ð Þ. Hence L½B�j s1ð Þ � L s1ð Þ and no ½B�j-
Successor of s1 can be created. On the other hand, if j 62 ag cGrðs1Þ; ½B�þ

� �
, then for any

½B�j-Successor s2 of s1, property PB1 will not be satisfied for s1 and s2. If there is more

than one formula of the form :½B�þGw 2 cGr L s0ð Þð Þ, then the length of such sequence must

be � 2 as if it was larger then, by point (iii) of Claim 2, property PB2 would have to be

violated.

Lastly, if cGrðLðs0ÞÞ u :½B�þ ¼ f:½B�þGwg, then the length of the sequence must be

� 2jGj þ 1. To see why, assume the opposite, that is m[ 2jGj þ 1. Notice that, by

point (iii) of Claim 2, for all 0\k�m it must be that cGr L skð Þð Þ u :½B�þ ¼ f:½B�þGwg and

sk must be a :½B�jk ½B�
þ
Gw-Successor of sk�1 with jk 2 G. By Claim 3, for any two states si�1

and sl�1 in the sequence, with i; l�m, it holds that L si�1ð Þ=½B�ji � L sl�1ð Þ=½B�jl [ fwg and

L sl�1ð Þ=½B�jl [ fwg � L si�1ð Þ=½B�ji . Moreover, Claim 4 together with Claim 3 implies that

for any two subsequent states sk�1 and sk, with k\m, L sk�1ð Þ u jk � L skð Þ u jkþ1 [
f½B�jkþ1

wg and L skð Þ u jkþ1 � L sk�1ð Þ u jk [ f½B�jkwg. To see why, consider the first

inclusion and take any n 2 L sk�1ð Þ u jk. By point (i) of Claim 4 it must be that n is either

of the form ½B�jkf or :½B�jkf and ½B�jkþ1
f 2 :L skð Þ. Suppose that the first case holds. Then it

must be that f 2 L sk�1ð Þ=½B�jk and, by the fact that L sk�1ð Þ=½B�jk � L skð Þ=½B�jkþ1
[ fwg,

either ½B�jkþ1
f 2 L skð Þ u jkþ1 or f ¼ w. Suppose now that the second case holds. If

:½B�jkþ1
f 6¼ L skð Þ, then ½B�jkþ1

f 2 L skð Þ and, consequently, f 2 L skð Þ=½B�jkþ1
. Since

L skð Þ=½B�jkþ1
� L sk�1ð Þ=½B�jk [ fwg, so either ½B�jkf 2 L sk�1ð Þ or f ¼ w. The first case is

impossible, as :½B�jkf 2 L sk�1ð Þ, and so it must be that f ¼ w and ½B�jkþ1
w 2 L skð Þ. Since

for any two subsequent states sk�1 and sk, with k\m, L sk�1ð Þ u jk � L skð Þ u jkþ1 [
f½B�jkþ1

wg and L skð Þ u jkþ1 � L sk�1ð Þ u jk [ f½B�jkwg, so the analogous fact holds for any

two states in the sequence (possibly excluding the last state).

If m[ 2jGj þ 1, then there must exist 0\k1\k2\k3 �m such that jk1
¼ jk2

¼ jk3
. By

what we have shown above the sets L
½B�jk1 sk1�1ð Þ, L½B�jk2 sk2�1ð Þ and L

½B�jk3 sk3�1ð Þ may differ

by at most two formulas, w and ½B�jw. Moreover, each of these sets either contains both

these formulas or does not contain w and contains :½B�jw. Thus at least two of the sets

must be equal. But then the :½B�ji ½B�
þ
Gw-successor of one of the states sk1�1, sk2�1 or sk3�1

with i ¼ 1; 2 or 3, respectively, cannot be created, which contradicts the assumption that all

sk1
, sk2

and sk3
are in the sequence. Hence the length of the sequence must be � 2jGj þ 1.

Let G � A, D
 0 and let TG
D denote the maximal length of a sequence of BG-Successors

in the pre-tableau constructed by Algorithm 1 such that

1. properties PB1 and PI1 are satisfied for the sequence for all d
D,

2. property PB2 is satisfied for the sequence for all d[D,

3. for each state s in the sequence depðIndðLðsÞÞÞ�D and

4. there is exactly one formula of the form :½B�þHw 2 cGrðLðsÞÞ with depð½B�þHwÞ[D.

123

Modal context restriction for multiagent BDI logics 3121



Then TG
D � T

jGj
D , where

T
n
m ¼

2nþ 1; if m ¼ 0

4 þ
Pi

i¼1 T
i
m�1; if m[ 0

(

ð4Þ

To show that this inequality holds, we will use induction on D. The fact that TG
0 � 2jGj þ 1

follows from what we have shown above. The fact that TG
D � 4 þ

PjGj
i¼1 T

i
D�1, for D[ 0,

follows from Claims 1 and 2. To see why, notice that by point (iii) of Claim 2, starting

from the second state in the sequence under consideration, property PB2 is satisfied for the

remaining subsequence, for all d
D. Thus, by point (ii) of Claim 2, any subsequence of

the sequence under consideration with depðIndðLðsÞÞÞ remaining unchanged for its every

state s, can have length at most 3. Hence starting from the third state in the sequence

depðIndðLðsÞÞÞ�D� 1.

To assess the length of the remaining part of the sequence, we divide it into parts

marked by the first appearance of a new element j 2 G in the set

ag cGrðLð�ÞÞ; ½B�þ;D� 1
� �

. By doing this we divide the sequence into |G| parts,

P1; . . .;PjGj. A part Pi is a subsequence sj; . . .; sk�1 such that some i’th element of G

appeared for the first time in ag cGrðLðsjÞÞ; ½B�þ;D� 1
� �

and some iþ 1’th element of G

appeared for the first time in ag cGrðLðskÞÞ; ½B�þ;D� 1
� �

. Notice that it may be that for

some state s in the sequence more than one element of G appears for the first time in

ag cGrðLðsÞÞ; ½B�þ;D� 1
� �

. In such cases we can assume that the length of some of the

sequences Pi is 0.

Let Gð1Þ,. . .,GðjGjÞ be the sequence of subsets of G such that GðiÞ is the set of all j that

appear in the sets ag cGrðLðsÞÞ; ½B�þ;D� 1
� �

for s in the sequence Pi. By point (ii) of

Claim 2 and point (i) of Claim 2, x 2 ag cGrðLðsÞÞ; ½I�þ;D� 1
� �

for every state s in the

sequence. Hence the condition PI1 is satisfied for all d
D� 1 and every state of the

sequence. Moreover, by point (i) of Claim 2, starting from the first occurrence of some

j 2 G in ag cGrðLðsÞÞ; ½B�þ;D� 1
� �

we have j 2 ag cGrðLðtÞÞ; ½B�þ;D� 1
� �

for all the

remaining states t of the sequence. Hence the condition PB1 is satisfied for all d
D� 1

on every part Pi of the sequence. Thus the length of a each part Pi is � TGðiÞ

D�1. Hence, by the

induction hypothesis, the length of the sequence consisting of the parts P1; . . .;PjGj with

points 1– 4 being satisfied is �
PjGj

i¼1 T
i
D�1.

To solve 4 we use the following fact (proved in the Appendix).

Fact 1 Let Xn
m be defined as follows, for m
 0 and n
 1:

Xn
m ¼

2nþ 1; if m ¼ 0

Bþ
Pn

i¼1 X
i
m�1; if m[ 0:

�

ð5Þ

Then, for n;m
 1,
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Xn
m ¼ B

nþ m� 1

m� 1

� 	

þ ðnþ 2Þ
nþ m� 1

m

� 	

: ð6Þ

By Fact 1 from (4) we get (for D[ 0)

TG
D � 4

ðjGj þ D� 1Þ!
jGj!ðD� 1Þ! þ ðjGj þ 2Þ ðjGj þ D� 1Þ!

ðjGj � 1Þ!D! ¼ O DjGj
� �

:

Let now SGD denote the maximal length of a sequence of BG-Successors in the pre-tableau

constructed by Algorithm 1 such that points 1– 3 are satisfied for it. Then SGD � S
jGj
D , where

S
n

m ¼
2nþ 1; if m ¼ 0

4 þ T
n
m�1 þ

Pn
i¼1 S

i

m�1; if m[ 0:

(

ð7Þ

Explanation for this equation is similar to that of Eq. (4). The only new thing is T
jGj
D�1 in the

case of D[ 0. It comes from the fact the after two states in the sequence, by point (iii) of

Claim 2 there can be at most one formula of the form :½B�þHn 2 cGrðLðsÞÞD�1. If there is no

such a formula in cGrðLðsÞÞD�1, then, by point (iii) of Claim 2 property PB2 will be

satisfied for the remaining part of the sequence for all d
D, and there can be at most
PjGj

i¼1 S
i

D�1 states in this remaining part. However, if there is exactly one such formula in

cGrðLðsÞÞD�1, then the maximal length of the subsequence in which it remains is bounded

by TG
D�1. After that, there can be no formula of the form :½B�þHn 2 cGrðLðsÞÞD�1 and there

can be at most
PjGj

i¼1 S
i

D�1 states in the remaining part of the sequence.

By Fact 1 from (7) we get (for D[ 0)

SGD � 4 þ TG
D�1

� � ðjGj þ D� 1Þ!
jGj!ðD� 1Þ! þ ðjGj þ 2Þ ðjGj þ D� 1Þ!

ðjGj � 1Þ!D! ¼ O D2jGj
� �

:

Thus the maximal length of a sequence of B-Successors with the same modal depth of

labels is � SA
depðuÞþ1

¼ O depðuÞ2jAj
� �

. h

Proof (Lemma 6) The structure of the proof of Lemma 6 is similar to that of proof of

Lemma 5. Claims analogous to Claims 1–3 are used and an analogue of Claim 4 is not

required. Sets IndðLð�ÞÞ u j are replaced by sets IndðLð�ÞÞ. The details of the proof can be

found in Dziubiński (2011). h

Proof (Claim 1) Take any d
D. Notice that if d[ dep cGrðLðsÞÞ
� �

, then points (i)

and (ii) hold for it. Also if d
 dep cGrðLðsÞÞ
� �

, then, since dep cGrðLðsÞÞ
� �

¼

depðGrðLðsÞÞÞ and dep cGrðLðtÞÞ
� �

¼ depðGrðLðtÞÞÞ, so point (iii) holds for it as well.

For d� dep cGrðLðsÞÞ
� �

we will use induction, starting with maximal value of d. So

suppose that d ¼ dep cGrðLðsÞÞ
� �

. As we observed above, point (iii) holds for d and we
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need to show points (i) and (ii) only. For point (i), assume that j 62 ag cGrðLðtÞÞ; ½B�þ; d
� �

.

Then there must be a formula ½B�þGw 2 :cGrðLðtÞÞ with depð½B�þGwÞ ¼ d and j 62 G. Hence

either there is a formula ½B�jn 2 :LðsÞ, such that ½B�þGw 2 :PðnÞ or there is a formula

½B�jn 2 :LðtÞ such that ½B�þGw 2 :PðnÞ and n was added during ½B�-expanded tableau

formation. The first case is impossible, as depð½B�jnÞ[ dep cGrðLðsÞÞ
� �

and

depð½B�jnÞ[ depðIndðLðsÞÞ u jÞ. The second case is impossible as well, for either ½B�jn 2
:LðsÞ which, as we shown above, is not possible, or there is a formula ½B�jf 2 :LðsÞ such

that ½B�jn 2 :BTðfÞ. This case is impossible by analogous arguments to those used for the

previous case. Thus it must be that j 2 ag cGrðLðtÞÞ; ½B�þ; d
� �

. For point (ii), assume that

x 62 ag cGrðLðtÞÞ; ½I�þ; d
� �

. Then there must be a formula ½I�þGw 2 :cGrðLðtÞÞ with

dep ½I�þGw
� �

¼ d. Hence there must be a formula ½B�jn 2 :LðsÞ such that ½I�þGw 2 :PðnÞ.
Again this is impossible, as depð½B�jnÞ[ dep cGrðLðsÞÞ

� �
and

depð½B�jnÞ[ depðIndðLðsÞÞ u jÞ. Thus it must be that x 2 ag cGrðLðtÞÞ; ½I�þ; d
� �

.

For the induction step, suppose that d\dep cGrðLðsÞÞ
� �

. For point (iii) notice that if

½B�þGn 2 :LðsÞ and f 2 :BTðnÞ and depðwÞ
D, then dep ½B�þGn
� �


 d þ 1. Moreover

since, by point (i), j 2 ag cGrðLðtÞÞ; ½B�þ; d þ 1
� �

so, by property PB1, it holds that j 2

ag cGrðLðsÞÞ; ½B�þ; d þ 1
� �

and so j 2 G. Thus if ½B�þGn 2 cGrðLðsÞÞ, then ½B�þGn 2 LðtÞ and

if :½B�þGn 2 cGrðLðsÞÞ, then ½B�þGn 2 :LðtÞ, by condition PB2. Since j 2 G and

dep ½B�þGn
� �

[ d so, by point (i) of Lemma 3, ½B�þGn 2 :cGrðLðtÞÞ. Hence it must be that

w 62 IndðLðtÞÞ and w 62 cGrðLðtÞÞ.
For point (i) assume that j 62 ag cGrðLðtÞÞ; ½B�þ; d

� �
. Then there must be a formula

½B�þGw 2 :cGrðLðtÞÞ, with depð½B�þGwÞ ¼ d and j 62 G. By the induction hypothesis it holds

that j 2 ag cGrðLðtÞÞ; ½B�þ; d0 þ 1
� �

and x 2 ag cGrðLðtÞÞ; ½I�þ; d0 þ 1
� �

, for all d0 
 d.

Moreover, by properties PI1 and PB1 it holds that j 2 ag cGrðLðsÞÞ; ½B�þ; d0 þ 1
� �

and

x 2 ag cGrðLðsÞÞ; ½I�þ; d0 þ 1
� �

, for all d0 
 d. Thus, by Corollary 1, there exists a formula

½B�þHn 2 :cGrðLðsÞÞ such that ½B�þGw 2 :BTðnÞ (notice that since j 62 G, so neither poin-

t (iv) nor point (v) of Corollary 1 can apply here). Then, by point (iii) it holds that

½B�þGw 62 :cGrðLðtÞÞ, which contradicts our assumptions. Hence it must be that

j 2 ag cGrðLðtÞÞ; ½B�þ; d
� �

.

For point (ii) assume that x 62 ag cGrðLðtÞÞ; ½I�þ; d
� �

. Then there must be a formula

½I�þGw 2 :cGrðLðtÞÞ with depð½I�þGwÞ ¼ d. By arguments similar to those used above, it can

be shown that there must be a formula ½B�þHn 2 :cGrðLðtÞÞ such that ½I�þGw 2 :BTðnÞ,
which contradicts the assumption that ½I�þGw 2 :cGrðLðtÞÞ. Hence it must be that

x 2 ag cGrðLðtÞÞ; ½I�þ; d
� �

. h
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Proof (Claim 2)

Point (i)

For the fact that ag cGrðLðsÞÞ; ½B�þ;D
� �

� ag cGrðLðtÞÞ; ½B�þ;D
� �

assume that the

opposite holds. Then there must exist a formula ½B�þGw 2 :cGrðLðtÞÞ such that

depð½B�þGwÞ ¼ D and ag cGrðLðsÞÞ; ½B�þ;D
� �

*G. Notice that by point (i) of Claim 1 it

holds that j 2 G.

By points (i) and (ii) of Claim 1 and properties PB1 and PI1 it holds that j 2

ag cGrðLðsÞÞ; ½B�þ; d
� �

and x 2 ag cGrðLðsÞÞ; ½I�þ; d
� �

, for all d[D. Thus, by Corollary 1,

either there exists a formula ½B�þHn 2 :cGrðLðsÞÞ such that ½B�þGw 2 :BTðnÞ, or

½B�þGw 2 :LðsÞ.
The first case is impossible, as it implies that j 2 H and so it violates modal context

restriction R1. Thus it must be that the second case holds and, by the fact that j 2 G and by

point (i) of Lemma 3 it must be that ½B�þGw 2 :cGrðLðsÞÞ. But then it must hold that

ag cGrðLðsÞÞ; ½B�þ;D
� �

� G, which contradicts our assumptions. Hence this case is

impossible as well and it must be that ag cGrðLðsÞÞ; ½B�þ;D
� �

� ag cGrðLðtÞÞ; ½B�þ;D
� �

.

For the fact that ag cGrðLðsÞÞ; ½I�þ;D
� �

� ag cGrðLðtÞÞ; ½I�þ;D
� �

notice that, by point (ii)

of Claim 1, it holds that x 2 ag cGrðLðtÞÞ; ½I�þ;D
� �

and so ag cGrðLðtÞÞ; ½I�þ;D
� �

¼

A [ fxg. Hence it holds that ag cGrðLðsÞÞ; ½I�þ;D
� �

� ag cGrðLðtÞÞ; ½I�þ;D
� �

.

Point (ii)

Assume that the opposite holds. Then there exists a formula w 2 IndðLðtÞÞnðLðtÞ u jÞ
with depðwÞ
D. By points (i) and (ii) of Claim 1 and properties PB1 and PI1 it holds

that j 2 ag cGrðLðsÞÞ; ½B�þ; d
� �

and x 2 ag cGrðLðsÞÞ; ½I�þ; d
� �

, for all d[D. Thus, by

Corollary 1, there exists a formula ½B�þHn 2 :cGrðLðsÞÞ with w 2 :BTðnÞ. This is impos-

sible as, by point (iii) of Claim 1, it implies that w 62 IndðLðtÞÞ which contradicts our

assumptions. Hence it must be that either depðIndðLðtÞÞ n ðLðtÞ u jÞÞ\D or

IndðLðtÞÞ n ðLðtÞ u jÞ ¼ £.

Point (iii)

Take any formula :½B�þGw 2 cGrðLðtÞÞ with depð½B�þGwÞ
D. By point (i) of Claim 1 it

must be that j 2 G. By points (i) and (ii) of Claim 1 and properties PB1 and PI1, it holds

that j 2 ag cGrðLðsÞÞ; ½B�þ; d
� �

and x 2 ag cGrðLðsÞÞ; ½B�þ; d
� �

, for all d[D. Thus, by

Corollary 1, either there exists a formula ½B�þHn 2 :cGrðLðsÞÞ such that ½B�þGw 2 :PTðnÞ, or

:½B�þGw 2 cGrðLðsÞÞ, :½B�j½B�
þ
Gw 2 LðsÞ and t is a :½B�j½B�

þ
Gw-Successor of t. The first case

is impossible as j 2 H and it would violate modal context restriction R1. Thus it must be

that the second case holds. This implies, in particular, that there can be at most one formula

of the form :½B�þGw in cGrðLðtÞÞ u :½B�þ with dep :½B�þGw
� �


D. h

Proof (Claim 3) Let k2ag cGrðLðtÞÞ; ½B�þ
� �

. If j ¼ k, then, by Lemma 4, it holds that

L½B�jðsÞ ¼ L½B�kðtÞ and so the claim holds in this case. Suppose that j 6¼ k.
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For point (i), let w 2 LðsÞ=½B�j. Then there exists a formula ½B�jw 2 LðsÞ and, by

point (ii) of Lemma 3, ½B�jw 2 :fCl cGrðLðsÞÞ
� �

. Thus either there exists a formula

½B�þGw 2 :cGrðLðsÞÞ or w is of the form ½B�þGn and w 2 :cGrðLðsÞÞ.
Suppose that the first case holds. If :½B�þGw 2 cGrðLðsÞÞ, then :½B�þGw 2 cGrðLðtÞÞ, by

property PB2. Otherwise ½B�j½B�
þ
Gw 2 LðsÞ, as s is a state and L(s) is a closed propositional

tableau. Thus ½B�þGw 2 cGrðLðtÞÞ, as j 2 G, j 2 ag cGrðLðtÞÞ; ½B�þ
� �

and point (i) of

Lemma 3 applies. Since ½B�þGw 2 :cGrðLðtÞÞ, k 2 ag cGrðLðtÞÞ; ½B�þ
� �

and L(t) is a ½B�-

expanded closed propositional tableau, so either w 2 LðtÞ=½B�k or :½B�kw 2fCl cGrðLðtÞÞ
� �

.

Suppose that the second case holds, that is w is of the form ½B�þGn and w 2 :cGrðLðsÞÞ.
Then, by arguments analogous to those used for the first case, it holds that ½B�þGn 2
:cGrðLðtÞÞ and the point holds by the fact that t is a state and L(t) is a ½B�-expanded tableau.

For point (ii) we will show first that ½B�kw 2 :LðtÞ implies ½B�jw 2 :fCl cGrðLðsÞÞ
� �

.

Notice that, by point (ii) of Claim 2, it must be that IndðLðtÞÞ n ðLðtÞujÞ ¼ £ and since

j 6¼ k, so IndðLðtÞÞ u k ¼ £. Now, suppose that ½B�kw 2 :LðtÞ. Since k 2

ag cGrðLðtÞÞ; ½B�þ
� �

so, by point (ii) of Lemma 3, it holds that ½B�kw 2 fCl cGrðLðtÞÞ
� �

. By

points (i) and (ii) of Claim 1 it holds that j 2 ag cGrðLðtÞÞ; ½B�þ
� �

and

x 2 ag cGrðLðtÞÞ; ½I�þ
� �

. Hence, since t is a state and L(t) is a closed, fully expanded and

½O�þ-expanded tableau, so it holds that ½B�jw 2 :fCl cGrðLðtÞÞ
� �

. Then, by Lemma 4, it

holds that ½B�jw 2 :LðsÞ. Moreover, by the fact that j 2 ag cGrðLðtÞ; ½B�þÞ
� �

and x 2

ag cGrðLðtÞÞ; ½I�þ
� �

and by properties PB1 and PI1 it holds that j 2 ag cGrðLðsÞÞ; ½B�þ
� �

and x 2 ag cGrðLðsÞÞ; ½I�þ
� �

. Thus, by Lemma 3, it holds that ½B�jw 2 :fCl cGrðLðsÞÞ
� �

.

Now, let w 2 LðtÞ=½B�k. Then there is a formula ½B�kw 2 LðtÞ and, by what we shown

above, either ½B�jw 2 fCl cGrðLðsÞÞ
� �

and, consequently, w 2 L½B�jðsÞ or

:½B�jw 2 fCl cGrðLðsÞÞ
� �

. h

Proof (Claim 4) Before we start showing points (i) and (ii), notice that, by Claim 1, we

have j 2 ag cGrðLðtÞÞ; ½B�þ
� �

and x 2 ag cGrðLðtÞÞ; ½I�þ
� �

. Moreover, by properties PB1

and PI1, we have also fj; kg � ag cGrðLðsÞÞ; ½B�þ
� �

and x 2 ag cGrðLðsÞÞ; ½I�þ
� �

.

For point (i), let ½O�jw 2 LðsÞ. Since j 2 ag cGrðLðsÞÞ; ½B�þ
� �

and

x 2 ag cGrðLðsÞÞ; ½I�þ
� �

, so, by point (iii) of Lemma 3, ½O�jw 2 :LðsÞ implies O ¼ B and

½O�jw 2 :fCl cGrðLðsÞÞ
� �

. Using arguments similar to those used in proof of Claim 3 it

follows that ½O�jw 2 :fCl cGrðLðtÞÞ
� �

. Now, since k 2 ag cGrðLðtÞÞ; ½B�þ
� �

so ½O�kw 2
fCl cGrðLðtÞÞ
� �

and so ½O�kw 2 :LðtÞ.
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For point (ii), let ½O�kw 2 LðtÞ. As we observed in proof of Claim 3, by point (ii) of

Claim 2, it must be that IndðLðtÞÞ u k ¼ £. Since k 2 ag cGrðLðtÞÞ; ½B�þ
� �

and

x 2 ag cGrðLðtÞÞ; ½I�þ
� �

, so, by point (iii) of Lemma 3, ½O�kw 2 :LðtÞ implies O ¼ B and

½O�kw 2 :fCl cGrðLðtÞÞ
� �

. Since j 2 ag cGrðLðtÞÞ; ½B�þ
� �

, so ½O�jw 2 :fCl cGrðLðtÞÞ
� �

. Thus

½O�jw 2 :LðtÞ and, by Lemma 4, ½O�jw 2 :LðsÞ. h

Proof (Fact 1) To proof the fact we will use induction over m. Suppose that m ¼ 1. Since

Xn
1 ¼ Bþ

Xn

i¼1

Xi
0 ¼ Bþ

Xn

i¼1

ð2iþ 1Þ ¼ Bþ ðnþ 2Þn ¼ B
n

0

� 	

þ ðnþ 2Þ
n

1

� 	

;

so the claim holds for any n
 1. For the induction take m[ 1 and suppose that the claim

holds for m� 1 and any n
 1. Then

Xn
m ¼ Bþ

Xn

i¼1

Xi
m�1 ¼ Bþ

Xn

i¼1

B
iþ m� 2

m� 2

� 	

þ ðnþ 2Þ
iþ m� 2

m� 1

� 	
 �

¼ B
Xn

i¼0

iþ m� 2

m� 2

� 	

þ ðnþ 2Þ
Xn

i¼1

iþ m� 2

m� 1

� 	

¼ B
Xnþm�2

j¼m�2

j

m� 2

� 	

þ ðnþ 2Þ
Xnþm�2

j¼m�1

j

m� 1

� 	

From the properties of binomial coefficients we know that

Xn

j¼k

j

k

� 	

¼
nþ 1

k þ 1

� 	

;

thus

Xn
m ¼ B

nþ m� 1

m� 1

� 	

þ ðnþ 2Þ
nþ m� 1

m

� 	

;

for all n
 1. h

Proofs associated with validity of Algorithm 1

Before proving the validity we need to introduce the following useful notions. Given a

formula :½O�þGw and a model M with a world v in it such that ðM; vÞ�:½O�þGw, we call

any sequence of worlds v0; . . .; vk such that v0 ¼ v, for all 0\l� k it holds that vl 2
Ojlðvl�1Þ and jl 2 G, for all 0\l\k it holds that ðM; vÞ�w and M; vkð Þ�:w, a satisfying

sequence for :½O�þGw in ðM; vÞ. A satisfying sequence for :½O�þGw in ðM; vÞ that has the

minimal length is called a minimal satisfying sequence for :½O�þGw in ðM; vÞ. Given a

formula u we call any pair ðM; vÞ such that ðM; vÞ�u a satisfying pair for u. Given a set

of formulas U with :½O�þGw 2 U we say that ðM; vÞ is a satisfying pair for
V
U with

minimal satisfying sequence for :½O�þGw, if ðM; vÞ�
V
U and a minimal satisfying

sequence for :½O�þGw in ðM; vÞ is minimal over all satisfying pairs for
V
U.

123

Modal context restriction for multiagent BDI logics 3127



Firstly, we will use the following lemma. The proof is straightforward and therefore

omitted (for details see Dziubiński 2011).

Lemma 12 Let n be an internal node in the pre-tableau constructed by Algorithm 1 for

some input formula u 2 LT. For any Kripke model M and a world v in it such that
ðM; vÞ�

V
LðnÞ, there exists a successor m of n such that ðM; vÞ�

V
LðmÞ.

We will also use the following lemma. We omit the proof here as it is mostly technical and

lengthy. The detailed proof can be found in Dziubiński (2011).

Lemma 13 Let U � LT be a ½B�-expanded tableau. Then the following hold:

1. if :½I�þGu 2 U and ðM;wÞ is a satisfying pair for
V
U with minimal satisfying

sequence v0; . . .; vn for ½I�þGu such that n
 2, then M; v1ð Þ is a satisfying pair for
V
U:½I�j1 ½I�þGu

� �
with minimal satisfying sequence v1; . . .; vn for :½I�þGu.

2. if :½B�þGu 2 U and ðM;wÞ is a satisfying pair for
V
U with minimal satisfying

sequence v0; . . .; vn for ½B�þGu such that n
 2, then M; v1ð Þ is a satisfying pair for
V
U:½B�j1 ½B�þGu

� �
with minimal satisfying sequence v1; . . .; vn for :½B�þGu.

One of the main differences in the proof of validity of the algorithm, as compared to

analogous proofs for modal logics without iterated modalities, comes from the possibility

of existence of nodes marked undec in a pre-tableau constructed by the algorithm. The

following lemma is crucial for dealing with nodes that are marked unsat because of an

unresolved formula in their label and existence of successors marked undec.

Lemma 14 Let n be a node in the pre-tableau constructed by Algorithm 1 for some input

formula u 2 LT, with a formula :½O�þGw 2 LðnÞ (where O 2 fB; Ig) unresolved in n.

Suppose also that for any descendant r of n it holds that if r is marked unsat, then
V
LðrÞ

is not satisfiable. If
V
LðnÞ is satisfiable, then BðnÞ 6¼ fng.

Proof We will show first that if n is a node of the pre-tableau,
V
LðnÞ is satisfiable, :½O�þGw

with O 2 fB; Ig is unresolved in n and for each successor r of n, r being marked unsat

implies that
V
LðrÞ is not satisfiable, then for any satisfying pair ðM; vÞ for

V
LðnÞ with

minimal satisfying sequence v0; . . .; vk for :½O�þGw, there exists m 2 BðnÞ n fng and

0\l\k such that M; vlð Þ�
V
LðmÞ. To show that we will use induction over the maximal

distance from n to a descendant leaf of the pre-tableau. Suppose that n is a leaf of the pre-

tableau. Since
V
LðnÞ is satisfiable so L(n) cannot be trivially inconsistent and n must be a

state. Moreover n must be a :½O�j½O�
þ
Gw-Successor, for some j 2 G, and must be marked

undec, as :½O�þGw is unresolved in n. Take any satisfying pair ðM; vÞ for
V
LðnÞ with

minimal satisfying sequence v0; . . .; vk for :½O�þGw. Since n is a state and :½O�þGw is

unresolved in it so, for all j 2 G, ½O�jw 2 LðnÞ. Thus it must be that M; v1ð Þ�w and

M; v1ð Þ�:½O�þGw. This, together with the fact that L(n) is a ½O�þ-expanded tableau, implies

:½O�j1 ½O�
þ
Gw 2 LðnÞ. Since n is a leaf of the pre-tableau so creation of a successor for

:½O�j1 ½O�
þ
Gw must be blocked by some node m and since n is a :½O�j½O�

þ
Gw-successor, for

some j 2 G, so m 2 BðnÞ. By construction of the algorithm it must hold that
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L:½O�j1 n; ½O�þGw
� �

¼ LðmÞ which, by the fact that M; v1ð Þ�:½O�þGw, implies

M; v1ð Þ�
V
LðmÞ. Notice that since ½O�j1w 2 LðnÞ so M; v1ð Þ�w and so it must be that

k[ 1. To see that m 6¼ n, assume the opposite. Then M; v1ð Þ is a satisfying pair for
V
LðnÞ

with v1; . . .; vk being a satisfying sequence for :½O�þGw. Thus we get a contradiction with

the assumption of minimality of v0; . . .; vk and so it must be that m 6¼ n.

For the induction step, suppose that n is not a leaf of the pre-tableau. Take any satisfying

pair ðM; vÞ for
V
LðnÞ with minimal satisfying sequence v0; . . .; vk for :½O�þGw. Suppose

first that n is an internal node. By Lemma 12 there must exist a successor r of n such that

ðM; vÞ�
V
LðrÞ. Since n is marked undec and L(r) is satisfiable, so r must be marked

undec as well and :½O�þGw must be unresolved in r. Moreover, by construction of the

algorithm, it must be that BðrÞ � BðnÞ. Thus, by the induction hypothesis, there is m 2
BðnÞ and 0\l\k such that M; vlð Þ�

V
LðmÞ. Moreover, it must be that m 6¼ n as other-

wise, by similar arguments to those used for the induction basis, we get a contradiction

with the assumption of minimality of v0; . . .; vk.
Suppose now that n is a state. As we argued for the induction basis, n is marked undec,

for all j 2 G it holds that ½O�jw 2 LðnÞ and :½O�j1 ½O�
þ
Gw 2 LðnÞ. By the fact that :½O�þGw is

unresolved in n, either a :½O�j1 ½O�
þ
Gw-successor r of n is marked undec or its creation is

blocked by some ancestor m. In the latter case the claim holds by analogous arguments to

those used for the induction basis. Suppose that the first case holds. Then :½O�þGw is

unresolved in r. Moreover, since ðM; vÞ is a satisfying pair for
V
LðnÞ with a minimal

satisfying sequence v0; . . .; vk for :½O�þGw and ½O�jw 2 LðnÞ, for all j 2 G, so k
 2 and, by

Lemma 13, M; v1ð Þ must be a satisfying pair for
V
LðrÞ with minimal satisfying sequence

v1; . . .; vk for :½O�þGw. Hence, by the induction hypothesis, there must exist m 2 BðrÞ n frg
and 1\l\k such that M; vlð Þ�

V
LðmÞ. By construction of the algorithm m 2 BðnÞ and,

by minimality of v0; . . .; vk, it must be that m 6¼ n.

Now, suppose that n is a node of the pre-tableau with :½O�þGw 2 LðnÞ and satisfying all

the assumptions stated in the lemma. Suppose also that
V
LðnÞ is satisfiable. Then there

exists a satisfying pair for L(n) with minimal satisfying sequence for :½O�þGw and, by what

was shown above, there must exist m 2 BðnÞ n fng and 0\l\k such that

M; vlð Þ�
V
LðmÞ. Hence it must be BðnÞ 6¼ fng. h

Now we are ready to prove Proposition 4 stating validity of the algorithm.

Proof (Proposition 4) For the left to right implication suppose that Algorithm 1 terminates

on the input u 2 LT. Then it must have constructed a finite pre-tableau for that input. We

start by showing, for any node n of the pre-tableau constructed by the algorithm, that if n is

marked unsat, then
V
LðnÞ is unsatisfiable. The proof is by induction on the maximal

length of paths from a node to one of its descendant leaves. If n is a leaf and it is marked

unsat, then it is easy to see that
V
LðnÞ must be unsatisfiable. For the induction step,

suppose that n is a node that is marked unsat and that has at least one successor. Let n be

an internal node. If all successors of n are marked unsat, then, by the induction

hypothesis, for any successor m of n,
V
LðmÞ must be unsatisfiable. Suppose that

V
LðnÞ is

satisfiable. By Lemma 12 there exists a successor m of n such that
V
LðmÞ is satisfiable and

we get a contradiction. Thus
V
LðnÞ must be unsatisfiable in this case. Suppose that there

exists a successor of n which is not marked unsat. Then it must be that all successors of n
are marked either unsat or undec, there exists w 2 LðnÞ such that w is unresolved in n and
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BðnÞ ¼ fng. Hence, by Lemma 14,
V
LðnÞ must be unsatisfiable. Let n be a state. If there

exists a successor of n which is marked unsat, than showing that
V
LðnÞ is straightfor-

ward. Suppose then that none of the successors of n is marked unsat. Then there must

exist a formula :½O�þGw 2 LðnÞ which is unresolved in n and it must hold that BðnÞ ¼ fng.

Hence, by Lemma 14,
V
LðnÞ must be unsatisfiable.

Observe that root of any pre-tableau constructed by the algorithm is marked either

unsat or sat, as it cannot block creation of a successor for any formula of the form

:½O�j½O�
þ
Gw with j 2 G, and so there cannot be any formula which is unresolved in root.

Thus if root in the pre-tableau is not marked sat, then it is marked unsat and u must be

unsatisfiable. Hence if u is satisfiable, then root node must be marked sat and the

algorithm returns sat.

For the right to left implication, assume that Algorithm 1 returned sat on the input u.

Then it constructed a finite pre-tableau N; root; succ; fOj-succ :
�

j 2 A;O 2 fB;G; Igg; LÞ
for u (N is the set of nodes, root is the root, succ and Oj-succ are the successor relations

and L is the labelling function of the pre-tableau). We will show how to construct, on the

basis of this pre-tableau, a TeamLog tableau for u such that the number of states of the

tableau is �ðð2jAj þ 1ÞjujÞs, where s is the state height of the pretableau. Consider a

model graph T ¼ W ; fOj : ½O�j 2 Xindg; LjW
� �

, where W is constructed as follows. In

further part of the proof we will refer to the following set, defined for a given node n:

SðnÞ ¼
fng; if n is a state
S

m2succðnÞ SðmÞ; otherwise;

(

which is the set of states in the subtree of the pre-tableau with the root n that are closest to

n. Notice that n is marked sat if and only if there exists s 2 SðnÞ such that s is marked sat.

Moreover, for any s 2 SðnÞ it holds that LðnÞ � LðsÞ, as labels of successors created during

the steps of propositional tableau formation and ½B�-expanded tableau formation extend the

labels of their predecessors.

We start with W consisting of a state marked sat from SðrootÞ. Then, for each state

w 2 W whose O-Successors were not added to the set yet, we take, for each O-successor

node n of w, a state v 2 SðnÞ which is marked sat (if there is such) or which is marked

undec (otherwise). We proceed like that until leaves of the pre-tableau are reached. Since

each state of the pre-tableau has at most ð2jAj þ 1Þjuj O-successors (as the number of

elements in its label is bounded by ð2jAj þ 1ÞjujÞ, so W has �ðð2jAj þ 1ÞjujÞs elements.

Labelling function L is like in the pre-tableau but restricted to W. Before defining the

accessibility relations, we need to define the set of states associated with nodes blocking

creation of :½O�j½O�
þ
Gn-successors of a given state. Let v be a state with a formula

:½O�j½O�
þ
Gn 2 LðvÞ and suppose that n is a node that blocks creation of a :½O�j½O�

þ
Gn-

successor of v. That is n 2 BðvÞ and there exists a :½O�þGn-Ancestor t of v with n being its

:½O�j½O�
þ
Gn-successor and such that L½O�jðvÞ ¼ L½O�jðtÞ. In such a case we will call any state

u2S(n) a Oj-loop-back state for v. Given a state v 2 W , j 2 A and O 2 fB; Ig let

• LBO
j ðvÞ ¼ u 2 W : u is a Oj-loop-back state for v

� 
.

When constructing the accessibility relations, we will need to properly extend them with

loop back connections. The accessibility relations of T are defined as follows:
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• Bj ¼ Bj-Succ \W �W
� �

[ fðv; uÞ 2 W �W : there exists w 2
W such that fv; ug � Bj-SuccðwÞg [ fðv; uÞ 2 W �W : u 2 LBB

j ðvÞg,

• Gj ¼ Gj-Succ \W �W
� �

[ fðv; uÞ 2 W �W :

there exists w 2 W such that v 2 Bj-SuccðwÞ and u 2 Gj-SuccðwÞg,

• Ij ¼ Ij-Succ \W �W
� �

[ fðv; uÞ 2 W �W : there exists w 2 W such that v 2
Bj-SuccðwÞ and u 2 Ij-SuccðwÞ[ LBI

jðwÞg [ fðv; uÞ 2 W �W : u 2 LBI
jðvÞg,

Since there exists w 2 W such that w 2 SðrootÞ and j 2 LðwÞ so it is enough to show that

T is a TeamLog tableau. Before we show that, notice that the construction above guar-

antees that for any state u 2 W n fwg and any j 2 A it holds that w 62 BjðuÞ (this is because

w is not a B-Successor of any state). If we show that T is a TeamLog tableau, then, by

Proposition 2, it will follow that u is satisfiable. Since all elements of W are states, so they

must be ½B�-expanded tableaux. In showing that the properties of TeamLog tableau, we will

focus on those related to fixpoint modalities (the proof for other properties is similar to the

case without fixpoint modalities given in Dziubiński et al. 2007; Dziubiński 2011). We

will mostly concentrate on condition TC which is related to iterated modalities.

Conditions T1, T2, T4, TG4, TI4, T5, TG5, TI5 and TIG can be shown by arguments

similar to those used in Dziubiński et al. (2007) for TEAMLOG without fixpoint modalities,

as for all u 2 LBO
j ðvÞ it holds that L½O�jðvÞ � LðuÞ and L:½O�j v; ½O�þGn

� �
� LðuÞ, where

:½O�þGn is the formula associated with u in LBO
j ðvÞ. Condition TD for O 2 fB; Ig can also

be shown by arguments similar to those for the case of TeamLog without fixpoint

modalities, with additional argument that if a ½O�j½O�
þ
Gn-successor of some state v 2 W is

not created, then it holds that L½O�jðvÞ � LðvÞ, so that ½O�þGn 2 LðvÞ.
For condition TC, suppose that v 2 W and suppose that :½O�þGw 2 LðvÞ with

O 2 fB; Ig. We will show first that the condition holds for the states that are marked sat

and are :½O�j½O�
þ
Gw-Successors, with some j 2 G. To show this we will use induction on

the maximum distance from the state to its descendant leafs. Suppose that v is a leaf of the

pre-tableau. Since v is a state so L(v) is a ½O�þ-expanded tableau. By condition CE, for all

j 2 G it holds that ½O�jw 2 :LðvÞ. If there was no j 2 G such that :½O�jw 2 LðvÞ then

:½O�þGw would be unresolved in v and v would be marked undec. Hence there must exist

such j 2 G, in which case condition TC follows from condition T2. For the induction step

notice that if there is j 2 G such that :½O�jw 2 LðvÞ then the condition holds, by condi-

tion T2. Otherwise, by condition CE and by the fact that v is marked sat, there must exist

j 2 G such that :½O�j½O�
þ
Gw 2 LðvÞ and :½O�j½O�

þ
Gw-successor of v is created and marked

sat. Hence condition TC holds by the induction hypothesis.

Secondly we will show that condition TC is satisfied for states that are marked undec

and are :½O�j½O�
þ
Gw-Successors with some j 2 G. To show this we will use induction on

MðvÞ ¼ minn2BðvÞsheightðnÞ (where sheightðnÞ is the state height of n), starting from the

minimal value. Let V � W be the set of states such that for each v 2 V , M(v) is minimal.

To show that the condition is satisfied for all v 2 V we will use induction on the maximum

distance from the state to its descendant leafs. Suppose that v is a leaf. By the fact that v is

marked undec and by condition CE, for all j 2 G it holds that ½O�jn 2 LðvÞ and there exists

j 2 G such that :½O�j½O�
þ
Gw 2 LðvÞ. Let mðvÞ ¼ argminn2BðvÞsheightðnÞ and let j 2 G be

such that creation of :½O�j½O�
þ
Gw-successor of v is blocked by m(v). Then there exists

u 2 SðmðvÞÞ such that u 2 OjðvÞ. By construction of the algorithm, m(v) must be a
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:½O�k½O�
þ
Gw-successor with k 2 G. Moreover, by minimality of M(v), BðmðvÞÞ ¼ fmðvÞg

and so m(v) must be marked sat, as it would be marked unsat otherwise. Hence u must be

marked sat as well. Moreover it holds that :½O�þGw 2 LðuÞ and, by what we have shown

above, condition TC is satisfied for it. Hence condition TC is satisfied for v as well. If v is

not a leaf of the pre-tableau, then, by condition CE and by the fact that v is marked undec,

there must exist j 2 G such that :½O�j½O�
þ
Gw 2 LðvÞ. Again we take m(v). If there is j 2 G

such that creation of :½O�j½O�
þ
Gw-successor of v is blocked by m(v), then condition TC is

satisfied by arguments analogous to those used above. Otherwise there must be j 2 G such

that there is a :½O�j½O�
þ
Gw-Successor u of v with mðvÞ 2 BðuÞ and condition TC holds by

the induction hypothesis. For the induction step (of the main induction) suppose that M(v)

is not minimal. Consider the set of states V � W with the same value of M(v). Arguments

here are analogous to those used for the induction basis. The difference lies in the fact that

BðmðvÞÞ 62 fmðvÞg this time, as M(v) is not minimal. However, this implies that there is

m0 2 BðmðvÞÞ such that sheightðm0Þ\sheightðmðvÞÞ and the induction hypothesis applies.

Lastly we will show that condition TC is satisfied for states that are not :½O�j½O�
þ
Gw-

Successors with any j 2 G. By condition CE there must exist j 2 G such that either

:½O�jw 2 LðvÞ or :½O�j½O�
þ
Gw 2 LðvÞ. In the first case, the condition holds by condition T2.

Similarly in the second case, if :½O�j½O�
þ
Gw-successor of v was created. If it was not, then v

must be a Bj-Successor of some state w 2 W and there there exists u 2 OjðwÞ such that u is

a :½O�k½O�
þ
Gw-Successor with k 2 G and :½O�þGw 2 LðuÞ. By what we have shown above,

condition TC is satisfied for u and :½O�þGw and, consequently, it is satisfied for v and

:½O�þGw as well. Hence we have shown that T is a TeamLog tableau for u and that u is

satisfiable. h

Proofs associated with termination property of Algorithm 2

Proof (Lemma 8) Notice that Claims 1–3 shown in proof of Lemma 5 hold in the case of

Algorithm 2 as well and they require modal context restriction R1 only.

Consider a sequence of states s0; . . .; sm in the pre-tableau such that for any 0\k�m, sk
is a Bjk -Successor of sk�1. Suppose that for any 0\k�m it holds that Ind L sk�1ð Þð Þ u jk ¼
£ and the sequence satisfies properties PB1, PB1 and PB2 for all d
 0. If cGr L s0ð Þð Þ u
:½B�þ ¼ £ or there is more than one formula of the form :½B�þGw 2 cGr L s0ð Þð Þ, then the

length of such sequence must be � 2, by the same arguments as those used in proof of

Lemma 5. If cGr L s0ð Þð Þ u :½B�þ ¼ f:½B�þGwg, then the length of the sequence must be

� 2. This is because, by point (iii) of Claim 2, for all 0\k�m it must be that sk is a

:½B�jk ½B�
þ
Gw-Successor of sk�1 with jk 2 G. Suppose that the length of the sequence is [ 2.

By Lemma 4 it must be that j1 6¼ j2 and j2 6¼ j3. Claim 3 implies that

L s0ð Þ=½B�j1
� �

[ fwg ¼ L s1ð Þ=½B�j2
� �

[ fwg, L s1ð Þ=½B�j2
� �

[ fwg ¼ L s2ð Þ=½B�j3
� �

[ fwg

and L s2ð Þ=½B�j3
� �

[ fwg ¼ L s3ð Þ=½B�j3
� �

[ fwg. Since, for all 1� i� 4, si�1 is a state so

L si�1ð Þ is a ½O�þ-expanded tableau and so ½B�jiw 2 :L si�1ð Þ. Notice that if :½B�j2w 2 L s1ð Þ,
then :½B�j2 ½B�

þ
Gw-Successor of s1 would not be created and s2 would not be in the

sequence. Hence it must be that ½B�j2w 2 L s1ð Þ. But then w 2 L s2ð Þ and either ½B�j3w 2
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L s2ð Þ or :½B�j3w 2 L s2ð Þ. In any of these cases :½B�j2 ½B�
þ
Gw-Successor of s2 would not be

created and so s3 cannot be in the sequence, which contradicts our assumptions. Hence the

length of the sequence must be � 2. Using arguments similar to those used in Lemma 5 it

can be shown that the maximal length of a sequence of B-Successors with the same modal

depth of labels is O depðuÞ2jAj
� �

. h

Proof (Lemma 9) The proof is by analogous arguments to those used in proof of Lemma 7,

using Lemma 8 instead of Lemma 5. h

Proof (Proposition 6) In the proof we will use the notion of ½B�þ-depth of a formula

defined below.

Definition 18 (½B�þ-depth) The ½B�þ-depth of a formula u, denoted by dep½B�þ ðuÞ, is

defined inductively as follows:

• dep½B�þðpÞ ¼ 0, where p 2 P,

• dep½B�þð:uÞ ¼ dep½B�þ ðuÞ,
• dep½B�þ u1 ^ u2ð Þ ¼ maxfdep½B�þ u1ð Þ; dep½B�þ u2ð Þg,

• dep½B�þ ½O�ju
� �

¼ dep½B�þ ðuÞ, where O 2 fB;G; Ig and j 2 A,

• dep½B�þ ½I�þGu
� �

¼ dep½B�þ ðuÞ, where G 2 PðAÞ n f£g,

• dep½B�þ ½B�þGu
� �

¼ dep½B�þ ðuÞ þ 1, where G 2 PðAÞ n f£g.

Let U be a finite set of formulas, then

dep½B�þ ðUÞ ¼
0; if U ¼ £

maxfdep½B�þðuÞ : u 2 Ug; otherwise:

(

We will show that the algorithm terminates for any input u 2 LT
R1

using induction on the

pair dep½B�þ ðuÞ and ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

(in lexicographic order). For the

induction basis, suppose that dep½B�þ ðuÞ ¼ 0 (in this case

ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

¼ A [ fxg). Then there are no formulas of the form

½B�þGw 2 :SubðuÞ and Algorithm 2 works like Algorithm 1 on the input u. Thus, by

Proposition 3, Algorithm 2 terminates on the input u. For the induction step, suppose that

dep½B�þ ðuÞ[ 0. By Lemma 9 either Algorithm 2 terminates or Function 9 is called. Since

any call to Algorithm 2 in Function 9 is made with an input n ¼
V
N with N � :SubðuÞ

such that either dep½B�þ ðnÞ\dep½B�þ ðuÞ or dep½B�þ ðnÞ ¼ dep½B�þ ðuÞ and

ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

(ag SubðnÞ; ½B�þ; dep½B�þ ðuÞ
� �

� A so, by the induction

hypothesis, each such call terminates. Thus each call to Function 10 in Function 9 ter-

minates and since the number of calls to Algorithm 2 and Function 10 made in Function 9

is finite, so Function 9 terminates. Hence Algorithm 2 must terminate on the input u, as

Function 9 is called there finitely many times (this is because it is called for the states of

the pre-tableau constructed by Algorithm 2 and the number of these states is finite, as the
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number of successors of any node is finite and, by Lemma 9, the depth of the pre-tableau is

also finite). h

Proofs associated with validity of Algorithm 2

We first show two auxiliary lemmas that will be used in proof of validity. These lemmas

show, essentially, that when the Function 9 is invoked for some state s and its :½B�j½B�
þ
Gw-

successor, then the labels of this successor and subsequent :½B�k½B�
þ
Gw-successors, with

k 2 ag U u ½B�þfjg
� �

[ :½B�þGw
� 

; ½B�þ
� �

, that could follow, would differ on elements

from : LðsÞ u jð Þ n LðsÞ u ½B�j
� �

[ LðsÞ u :½B�j
� �� �� �

only. More precisely, each of

them would include a maximal subset of

: LðsÞ u jð Þ n LðsÞ u ½B�j
� �

[ LðsÞ u :½B�j
� �� �� �

. This justifies the use of Function 9 in

such cases.

Lemma 15 Let s be a state in the pre-tableau constructed by Algorithm 2 for an input

u 2 LT
R1
. Let there be a formula of the form :½B�j½B�

þ
Gw 2 LðsÞ with j 2 G and such that a

:½B�j½B�
þ
Gw-successor of s was not created because of a :½B�k½B�

þ
Gw-Predecessor t of s with

k 6¼ j and such that ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg. Then for any l 2

ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
it holds that LðsÞ u ½B�l � fCl LðsÞ u ½B�þfjg

� �
[

�

f:½B�þGwgÞ.

Proof Suppose that s is like stated in the lemma. We will start by showing that

LðsÞ u ½B�j � fCl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

. To show that we will use induction on the

modal depth of a formula, starting from maximal values. Take any formula of the form

½B�jn 2 LðsÞ and suppose its modal depth is maximal in LðsÞ u ½B�j. Since ðLðsÞ=½B�jÞ [
fwg ¼ ðLðtÞ=½B�kÞ [ fwg and j 6¼ k so either ½B�jn 2 fCl LðtÞ u ½B�þfj;kg

� �
[ f:½B�þGwg

� �
or

there is a formula ½B�kf 2 LðtÞ such that ½B�jn 2 :BTðfÞ. If the first case holds that the

claim is satisfied. Suppose that the second case holds. Since ðLðsÞ=½B�jÞ [ fwg ¼
ðLðtÞ=½B�kÞ [ fwg so either ½B�jf 2 LðsÞ or f ¼ w. The first case is impossible, as it would

contradict the assumption of maximality of depð½B�jnÞ. On the other hand, if f ¼ w, then

½B�kf 2 fClðf:½B�þGwgÞ and since ½B�jn 2 :BTðfÞ so this violates modal context restric-

tion R1. Hence this case is impossible as well.

For the induction step, suppose that modal depth of ½B�jn is not maximal. Like in the

case of the induction basis, ½B�jn 2 LðsÞ implies that either ½B�jn 2
fCl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

or there is a formula ½B�kf 2 LðtÞ such that

½B�jn 2 :BTðfÞ. If the first case holds that the claim is satisfied. Suppose that the second

case holds. Since ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg so either ½B�jf 2 LðsÞ or f ¼ w.

Suppose that the first case holds. Then, by the induction hypothesis,

½B�jf 2 Cl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

. But then ½B�jn 2 :BTðfÞ means that we have a
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violation of modal context restriction R1. Hence this case is not possible. On the other

hand, if f ¼ w, then, as we argued for the induction basis, ½B�kf 2fClðf:½B�þGwgÞ and we

get a violation of modal context restriction R1 again. Hence this case is impossible as well.

Secondly, we will show that LðtÞ u ½B�þfkg � LðsÞ u ½B�þfjg. To see this, take any formula

of the form ½B�þHn 2 LðtÞ with k 2 H. Since t is a state, so L(t) is a closed tableau and so

½B�k½B�
þ
Hn 2 LðtÞ. Thus ½B�þHn 2 LðtÞ=½B�k and, consequently, ½B�þHn 2 LðsÞ (as

LðtÞ=½B�k � LðsÞ). Hence we need to show that j 2 H. Since

ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg, so either ½B�þHn ¼ w or there is a formula

½B�j½B�
þ
Hn 2 LðsÞ. The first case is not possible, as k 2 G and it would lead to violation of

modal context restriction R1. Suppose that the second case holds. Then, by what we have

shown above, it must be that ½B�j½B�
þ
Hn 2fCl LðtÞ u ½B�þfj;kg

� �
[ f:½B�þGwg

� �
. Suppose that

j 62 H. Then it would have to be that either ½B�þHn ¼ w or there is a formula

½B�þH0 ½B�þHn 2 LðtÞ u ½B�þfj;kg. As we have already shown, the first case would lead to vio-

lation of modal context restriction R1. The second case would lead to violation of modal

context restriction R1 as well, as k 2 H0 and k 2 H. Thus it must be that j 2 H and so

½B�þHn 2 LðsÞ u ½B�þfjg.

Now take any formula of the form ½B�ln 2 LðsÞ with

l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
. We will show that it must be that

½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

.

Since ½B�ln 2 LðsÞ, so either

1. there exists a formula ½B�kf 2 LðtÞ with ½B�ln 2 :BTðfÞ, or

2. ½B�ln 2 LðtÞ u k, or

3. ½B�ln 2 fClðLðsÞÞ.
Case 1 Suppose that the first case holds. Since ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg,

so either ½B�jf 2 LðsÞ or f ¼ w. If ½B�jf 2 LðsÞ, then, by what we have shown above,

½B�jf 2fCl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

. Thus either there is a formula ½B�þHf 2 LðtÞ with

fj; kg � H, or there is a formula ½B�þHg 2 LðtÞ with f ¼ ½B�þHg and fj; kg � H. Since

½B�ln 2 :BTðfÞ, so it must be that the first of these cases holds, that is ½B�þHf 2 LðtÞ with

fj; kg � H. Now, since ðLðtÞ u ½B�þfj;kgÞ [ f:½B�þGwg � LðsÞ, so ðLðtÞ u ½B�þfj;kgÞ[

f:½B�þGwg � LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg. Moreover, since l 2 ag LðsÞ u ½B�þfjg
� �

[
�

f:½B�þGwg; ½B�
þÞ, so it must be that l 2 ag LðtÞ u ½B�þfj;kg

� �
[ f:½B�þGwg; ½B�

þ
� �

. Thus l 2
H and we get a violation of modal context restriction R1. If f ¼ w, then we get a violation

of modal context restriction R R1 again. This is because, by the assumption that

l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
, it holds that l 2 G.

Case 2.
Suppose that the second case holds, that is ½B�ln 2 LðtÞ u k. Then it must be that l ¼ k.

Since ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg, so either ½B�jn 2 LðsÞ or n ¼ w. If

½B�jn 2 LðsÞ, then, by what we have shown above, ½B�jn 2 fCl LðtÞ u ½B�þfj;kg
� �

[
�

f:½B�þGwgÞ and, since l ¼ k and LðtÞ u ½B�þfj;kg � LðtÞ u ½B�þfkg, so
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½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

. If n ¼ w, then we also have

½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

.

Case 3. Suppose that the third case holds, that is ½B�ln 2 fClðLðsÞÞ. Then either there is a

formula ½B�þHn 2 LðsÞ with l 2 H or n is of the form ½B�þHf, with l 2 H, and ½B�þHf 2 LðsÞ.
Suppose that the first of these cases, that is ½B�þHn 2 LðsÞ with l 2 H. Then there must be

a formula ½B�kf 2 LðtÞ such that ½B�þHn 2 :PTðfÞ. Since

ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg, so either ½B�jf 2 LðsÞ or f ¼ w. If f ¼ w, then we

get a violation of modal context restriction R1 again. This is because, by the assumption

that l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
, it holds that l 2 G. If ½B�jf 2 LðsÞ, then, by

what we have shown above, ½B�jf 2 fCl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

. Thus either there is

a formula ½B�þF f 2 LðtÞ with fj; kg � F, or there is a formula ½B�þF g 2 LðtÞ with f ¼ ½B�þF g
and fj; kg � F. Consider the first of these cases, that is ½B�þF f 2 LðtÞ with fj; kg � F. Since

ðLðtÞ u ½B�fj;kgÞ [ f:½B�þGwg � LðsÞ, so

ðLðtÞ u ½B�fj;kgÞ [ f:½B�þGwg � LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg. Moreover, since

l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
, so it must be that

l 2 ag LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg; ½B�
þ

� �
. Thus l 2 F and we get a violation of modal

context restriction R1. Consider the second of these cases. Since ½B�þHn 2 :PTðfÞ, so the

only possibility in this case is F ¼ H and n ¼ g, which means that ½B�þHn 2 LðtÞ and

fl; j; kg � H. Thus ½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

in this case.

Suppose that the second of these cases holds, that is n is of the form ½B�þHf, with l 2 H,

and ½B�þHf 2 LðsÞ. Then there must be a formula ½B�kg 2 LðtÞ such that ½B�þHf 2 :PTðgÞ.
Since ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg, so either ½B�jg 2 LðsÞ or g ¼ w. If g ¼ w,

then we get a violation of modal context restriction R1 again. This is because, by the

assumption that l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
, it holds that l 2 G. If

½B�jg 2 LðsÞ, then, by what we have shown above,

½B�jg 2 fCl LðtÞ u ½B�þfj;kg
� �

[ f:½B�þGwg
� �

. Thus either there is a formula ½B�þF g 2 LðtÞ with

fj; kg � F, or there is a formula ½B�þF v 2 LðtÞ with g ¼ ½B�þF v and fj; kg � F. By argu-

ments analogous to those used above, the first of these cases leads to violation of modal

context restriction R1. Consider the second of these cases. Since ½B�þHf 2 :PTðgÞ, so the

only possibility in this case is F ¼ H and f ¼ v, which means that ½B�þHf 2 LðtÞ and

fl; j; kg � H. Thus ½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

in this case.

We have shown that if ½B�ln 2 LðsÞ with l 2 ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
,

then ½B�ln 2 fCl LðtÞ u ½B�þfl;kg
� �

[ f:½B�þGwg
� �

. Since LðtÞ u ½B�þfl;kg � LðtÞ u ½B�þfkg and, as

we have shown above, LðtÞ u ½B�þfkg � LðsÞ u ½B�þfjg, so

½B�ln 2 fCl LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg
� �

. h
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Lemma 16 Let s be a state in the pre-tableau constructed by Algorithm 2 for an input

u 2 LT
R1
. Let there be a formula of the form :½B�j½B�

þ
Gw 2 LðsÞ with j 2 G and such that a

:½B�j½B�
þ
Gw-successor of s was not created because of a :½B�k½B�

þ
Gf-Predecessor t of s with

k 6¼ j and such that ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg. Suppose that w 2 LðsÞ and let

H ¼ ag LðsÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
. Then for any C 2 S LðsÞ=½B�þH

� �
[ fwg

� �
it

holds that :ððLðsÞ u jÞ n ððLðsÞ u ½B�jÞ [ ðLðsÞ u :½B�jÞÞÞ ¼ :ðC u jÞ.

Proof Suppose that s is like stated in the lemma. Take any C 2 S LðsÞ=½B�þH
� �

[ fwg
� �

. For

the left to right inclusion, take any n 2 :ððLðsÞ u jÞ n ððLðsÞ u ½B�jÞ [ ðLðsÞ u :½B�jÞÞÞ.
Then n 2 :LðsÞ and either n 2 :BTðwÞ or there exists a formula ½B�kf 2 LðtÞ such that

n 2 :BTðfÞ. If the first case holds, then n 2 :C. Suppose that the first case does not hold

and that the second case holds. Since ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg so there

exists a formula ½B�jf 2 LðsÞ and, by Lemma 15, f 2 LðsÞ=½B�þH . Thus n 2 :C.

For the right to left inclusion, take any n 2 :ðC u jÞ. Then either n 2 :BTðwÞ or there

exists f 2 LðsÞ=½B�þH such that n 2 :BTðfÞ. If the first case holds, then n 2 :ðLðsÞ u jÞ, as

w 2 LðsÞ, and, by modal context restriction R1, n cannot be of the form ½B�jg nor of the

form :½B�jg. Hence n 2 :ððLðsÞ u jÞ n ððLðsÞ u ½B�jÞ [ ðLðsÞ u :½B�jÞÞÞ. Suppose that the

first case does not hold and that the second case holds. Then there must exist a formula

½B�þHf 2 LðsÞ and since j 2 H and L(s) is a closed tableau, so it must be that ½B�jf 2 LðsÞ.
Then, by the fact that ðLðsÞ=½B�jÞ [ fwg ¼ ðLðtÞ=½B�kÞ [ fwg and LðtÞ=½B�k � LðsÞ, it

holds that f 2 LðsÞ and, consequently, n 2 :LðsÞ. Hence n 2 LðsÞ u j and since, by modal

context restriction R1, n cannot be of the form ½B�jg nor of the form :½B�jg (as j 2 H), so

n 2 :ððLðsÞ u jÞ n ððLðsÞ u ½B�jÞ [ ðLðsÞ u :½B�jÞÞÞ. h

Now we are ready to proof Proposition 7 stating validity of Algorithm 2.

Proof (Proposition 7) For the left to right implication we will use induction on the pair

dep½B�þ ðuÞ and ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

(in lexicographic order). For the induction

basis, suppose that dep½B�þ ðuÞ ¼ 0 (in this case ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

¼ A [ fxg).

Then there are no formulas of the form ½B�þGw 2 :SubðuÞ and Algorithm 2 works like

Algorithm 1 on the input u. Thus, by Proposition 4, if u is satisfiable, then Algorithm 2

returns sat on the input u. For the induction step, suppose that dep½B�þ ðuÞ[ 0. In this

case, like in proof of Proposition 4, we will show, for any node n of the pre-tableau

constructed by the algorithm for input u, that if n is marked unsat, then
V
LðnÞ is

unsatisfiable. Like in the case of proof of Proposition 4 we will use induction on the

maximal length of paths from a node to one of its descendant leaves. Arguments for most

of the cases are like in the aforementioned proof, apart from the case of the nodes with a

formula of the form :½B�j½B�
þ
Gw in their label, for which a :½B�j½B�

þ
Gw-successor was not

created and Function 9 was used to check whether the label of such a successor is satis-

fiable.

So suppose that n is a state of the pre-tableau with a formula of the form :½B�þGw 2 LðnÞ
and suppose that a :½B�j½B�

þ
Gw-successor of n, with j 2 G, was not created and that n was

marked unsat because Function 9 returned unsat on the input L:½B�jðn; ½B�þGwÞ. Since
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Function 9 was used to check the satisfiability of L:½B�jðn; ½B�þGwÞ, so it must be that

f½B�jw;wg � LðnÞ. Suppose that
V
LðnÞ is satisfiable and let ðM; uÞ be such that

ðM; uÞ�
V
LðnÞ. Since :½B�j½B�

þ
Gw 2 LðnÞ and ðM; uÞ�

V
LðnÞ, so there must exist v 2 Bj

such that ðM; vÞ�:½B�þGw. Moreover, it must be that ðM; vÞ�
V
L:½B�jðn; ½B�þGwÞ. Since

ðM; vÞ�:½B�þGw so there must exist a satisfying sequence for :½B�þGw in ðM; vÞ. Let

v0; . . .; vk be minimal such sequence. Let H ¼ ag LðnÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
.

Notice that since j 2 G, so H 6¼ £, as j 2 H. Let 0� l\k be maximal such that for all

1� i� l it holds that ji 2 H. Observe that for all 0� i� l, ðM; viÞ�
V
ðLðnÞ=½B�þHÞ and

ðM; viÞ�w (in the case of v0 this follows from the fact that ½B�jw 2 LðnÞ). Thus, for all

0� i� l, ðM; viÞ�
V

LðnÞ=½B�þH
� �

[ fwg
� �

and for each 0� i� l there exists a set of for-

mulas Ci 2 S LðnÞ=½B�þH
� �

[ fwg
� �

such that ðM; viÞ�
V
Ci. Since

dep½B�þ LðnÞ=½B�þH
� �

[ fwg
� �

\dep½B�þ ðLðnÞÞ so, for all 0� i� l, dep½B�þ Cið Þ\dep½B�þðuÞ.
Hence, by the induction hypothesis, Algorithm 2 cannot return unsat on the input

V
Ci.

Moreover, by transitivity, generalized transitivity, Euclidity and generalized Euclidity of

accessibility relations Bji , for all 0\i� l it holds that Ci�1 u ji ¼ Ci u ji. Hence Cl is

reachable from C0 in GH LðnÞ=½B�þH
� �

[ fwg
� �

. Moreover, by Lemma 16 it holds that

:ððLðnÞ u jÞ n ððLðnÞ u ½B�jÞ [ ðLðnÞ u :½B�jÞÞÞ ¼ :ðC0 u jÞ and, by transitivity, general-

ized transitivity, Euclidity and generalized Euclidity of accessibility relation Bj it must be

that ðLðnÞ u jÞ n ððLðnÞ u ½B�jÞ [ ðLðnÞ u :½B�jÞÞ ¼ C0 u j. Hence ðLðnÞ u jÞ n ððLðnÞ u
½B�jÞ [ðLðnÞ u :½B�jÞÞ � C0.

Now, if lþ 1 ¼ k, then it must be that ðM; vlþ1Þ�:w and so ðM; vlþ1Þ��w. Moreover,

ðM; vlþ1Þ�
V

LðnÞ=½B�þH[fjlþ1g

� �
and ðM; vlþ1Þ�

V
C
½B�jk
l . If jlþ1 2 H, then ðM; vlþ1Þ�n,

where n ¼
V

C
½B�jk
l [ LðnÞ=½B�þH

� �
[ f�wg

� �
and since dep½B�þ ðnÞ\dep½B�þ ðuÞ so, by the

induction hypothesis, Algorithm 2 cannot return unsat on the input n. Notice that if k ¼ 1,

then it must be that jk 6¼ j, as ðM; v0Þ�½B�jw. Notice also that if k
 2, then, by minimality

of v0; . . .; vk, it must be that jk 6¼ jk�1. Thus Function 9 must return sat on the input

L:½B�jðn; ½B�þGwÞ, which contradicts our assumptions. If jlþ1 2 G n H, then, by simple

induction on i, for all 0� i� lþ 1 it holds that ðM; viÞ�
V

LðnÞ u ½B�þH[fjlþ1g

� �
. Hence

ðM; vlþ1Þ�n, where n ¼
V

C
½B�jlþ1

l [ L
½B�þH[fjlþ1g ðnÞ [ f�wg

� 	

. Since either

dep½B�þ ðnÞ\dep½B�þ ðuÞ or dep½B�þ ðnÞ ¼ dep½B�þ ðuÞ and agðSubðuÞ; ½B�þ; dep½B�þ ðuÞÞ �
H(H [ fjlþ1g ¼ agðSubðnÞ; ½B�þ; dep½B�þ ðnÞÞ so, by the induction hypothesis, Algorithm 2

cannot return unsat on the input n. Thus Function 9 must return sat on the input

L:½B�jðn; ½B�þGwÞ, which contradicts our assumptions.

Otherwise, if lþ 1\k, then it must be that jlþ1 2 G n H. By minimality of v0; . . .; vk, it

must be that ðM; vlÞ�½B�jlþ1
w, ðM; vlþ1Þ�w and ðM; vlþ1Þ�:½B�þGw. Hence, it must be that

ðM; vlÞ�:½B�jlþ1
½B�þGw and, by transitivity of Bjlþ1

, ðM; vlþ1Þ�½B�jlþ1
w and

ðM; vlþ1Þ�:½B�jlþ1
½B�þGw. As we observed above, ðM; viÞ�

V
LðnÞ=½B�þH[fjlþ1g

� �
and

ðM; viÞ�
V

LðnÞ u ½B�þH[fjlþ1g

� �
. Moreover ðM; vlþ1Þ�

V
C
½B�jlþ1

l . Thus ðM; vlþ1Þ�n, where

n ¼
V

C
½B�jlþ1

l [ L
½B�þH[fjlþ1g ðnÞ [ fw;:½B�þGw; ½B�jlþ1

w;:½B�jlþ1
½B�þGwg

� 	

. Since either
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dep½B�þ ðnÞ\dep½B�þ ðuÞ or dep½B�þðnÞ ¼ dep½B�þðuÞ and ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

�

H(H [ fjlþ1g ¼ ag SubðnÞ; ½B�þ; dep½B�þ ðnÞ
� �

so, by the induction hypothesis, Algo-

rithm 2 cannot return unsat on the input n. Thus Function 9 must return sat on the input

L:½B�jðn; ½B�þGwÞ, which contradicts our assumptions.

As was pointed out in proof of Proposition 4, root of any pre-tableau constructed by

the algorithm must be marked either unsat or sat and if root is not marked sat, then it

must be marked unsat and u must be unsatisfiable. Hence if u is satisfiable, then root

node must be marked sat and the algorithm must return sat.

For the right to left implication we will show that if Algorithm 2 returns sat on the

input u, then a TeamLog tableau for u can be constructed. More precisely, we will show

that if Algorithm 2 returns sat on the input u, then a TeamLog tableau for u can be

constructed, which has a state w such that u 2 LðwÞ and for no other state u of this tableau

there exists j 2 A such that w 2 BjðuÞ. To show that, we will again use induction on the

pair dep½B�þ ðuÞ and ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

(in lexicographic order).

For the induction basis, suppose that dep½B�þ ðuÞ ¼ 0. Then there are no formulas of the

form ½B�þGw 2 :SubðuÞ, Algorithm 2 works like Algorithm 1 on the input u and TeamLog

tableau for u can be constructed like in proof of Proposition 4. Recall that that construction

guarantees that there exists a state w in that tableau such that u 2 LðwÞ and there is no

other state u in that tableau and no j 2 A such that w 2 BjðuÞ.
For the induction step, suppose that dep½B�þ ðuÞ[ 0 and let

ðN; root; succ; fOj-succ : j 2 A; O 2 fB;G; Igg; LÞ

be the pre-tableau constructed by Algorithm 2 for u. Let

T ¼ ðW; fOj : j 2 A; O 2 fB;G; Igg; LjWÞ

be a model graph constructed on the basis of this pre-tableau like in proof of Proposition 4.

Let V � W be the set of states such that for each v 2 V there is a formula of the form

:½B�j½B�
þ
Gw 2 LðvÞ with j 2 G and such that a :½B�j½B�

þ
Gw-successor of v was not created

because of a :½B�k½B�
þ
Gf-Predecessor u of v, with k 2 G, such that k 6¼ j and

ðLðvÞ=½B�jÞ [ fwg ¼ ðLðuÞ=½B�kÞ [ fwg.

As we remarked above, the construction from Proposition 4 guarantees that there exists

w 2 W such that u 2 LðwÞ and for all u 2 W n fwg and j 2 A, w 62 BjðuÞ.
Notice that conditions T1, T4, T5, TBG4 , TBI4, TBG5, TBI5 and TIG are satisfied

for all the states of T , as the same argumentation as the one used in proof of Proposition 4

will work here. Similarly it can be shown like in proof of Proposition 4 that conditions T2
and TD are satisfied for all the states of T that are not in V. Also, in the case of states from

V and formulas of the form ½G�kn it can be shown like in proof of Proposition 4 that the

condition T2 holds for them. Similarly with states from V, formulas of the form ½I�kn and

conditions T2 and TD. Condition TC also holds for all states of T and formulas of the

form ½I�þHn. The problem are conditions T2 and TD for states from V and formulas of the

form ½B�kn, as well as conditions TC for all states of T and formulas of the form ½B�þHn. To

satisfy these conditions, the model graph T has to be extend at the states from V, so that a

TeamLog tableau for u is created. The extension is by adding B-successors of states from V

for the formulas of the form :½B�j½B�
þ
Gw for which the successors were not created for the
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reasons described above. We will describe the extension for a given state v 2 V and a

formula of the form :½B�j½B�
þ
Gw 2 LðvÞ for which a successor was not created for the

reasons described above, showing that this extension sustains the conditions of TeamLog

tableau listed above, while making the unsatisfied conditions T2, TD and TC satisfied.

Take any v 2 V and :½B�j½B�
þ
Gw 2 LðvÞ with j 2 G for which a :½B�j½B�

þ
Gw-successor

was not created for the reasons described above. Now two cases are possible: either

½B�jw 2 LðvÞ or not. Suppose first that ½B�jw 62 LðvÞ. Then, by the fact that v, being a state,

is a ½B�þ-expanded tableau, it holds that :½B�jw 2 LðvÞ. Let T be extended as follows:

• B0
jðvÞ ¼ BjðvÞ [ fvg.

Notice that since ½B�jw 62 LðvÞ, so w 62 LðvÞ=½B�j and so LðvÞ=½B�j � LðuÞ=½B�k � LðvÞ.
Since it also holds that LðvÞ u j � LðvÞ and :½B�þGw 2 LðvÞ, so L:½B�jðv; ½B�þGwÞ � LðvÞ.
Hence the conditions T1, T4, T5, TBG4 , TBI4, TBG5, TBI5 and TIG are still satisfied

for v after the extension. Also, conditions T2, TD and TC are still satisfied for those states

and formulas for which they were satisfied before the extension. Notice also that after this

extension it still holds that there exists w 2 W such that u 2 LðwÞ and for all u 2 W n fwg
and j 2 A, w 62 BjðuÞ.

Secondly, suppose that ½B�jw 2 LðvÞ. Then Function 9 must have been used to check the

satisfiability of
V
L:½B�jðv; ½B�þGwÞ. Since v, being in W, must be marked sat so Function 9

must have returned sat on the input
V
L:½B�jðv; ½B�þGwÞ. Thus sets of formulas W0 and W1

were found such that fW0;W1g � S LðvÞ=½B�þH
� �

[ fwg
� �

, W1 is reachable from W0 in

GH LðvÞ=½B�þH
� �

[ fwg
� �

(where H ¼ ag LðvÞ u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
) with path

ðC0; . . .;CnÞ and associated sequence j1; . . .; jn such that Algorithm 2 returned sat on each

input
V
Ci, with 0� i� n, and

1. either there exists k 2 H such that Algorithm 2 returned sat on the input
V
N, where

N ¼ W½B�k
1 [ LðvÞ=½B�þH

� �
[ f�wg, in which case the sequence k 6¼ j, if n ¼ 0, and

k 6¼ jn, if n
 1,

2. or there exists k 2 G n H such that Algorithm 2 returned sat on the input
V
N, where

N ¼ W½B�k
1 [ L½B�

þ
H[fkg ðvÞ [ f�wg,

3. or there exists k 2 G n H such that Algorithm 2 returned sat on the input
V
N, where

N ¼ W½B�þk
1 [ L½B�

þ
H[fkg ðvÞ [ fw;:½B�þGw; ½B�kw;:½B�k½B�

þ
Gwg.

Since Algorithm 2 returned sat on the input
V
Ci, for each 0� i� n, and

dep½B�þ Cið Þ\dep½B�þ ðuÞ so, by the induction hypothesis, a sequence ðT 0; . . .; T nÞ of

TeamLog tableaux can be created for each of the subsequent elements of C0; . . .;Cnð Þ.

Fig. 3 Extension of model graph T at v 2 V with tableaux T 0; . . .; T nþ1 constructed by Function 9
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Also, in each of the cases 1 – 3 above, by the induction hypothesis, a TeamLog tableau

T nþ1 can be created for
V
N. In the case 1 this is because dep½B�þ ðNÞ\dep½B�þ ðuÞ, in the

cases 2 and 3 this is because either dep½B�þðNÞ\dep½B�þ ðuÞ or dep½B�þ ðNÞ ¼ dep½B�þ ðuÞ and

agðSubðuÞ; ½B�þ; dep½B�þ ðuÞÞ � H(H [ fkg ¼ agðSubðNÞ; ½B�þ; dep½B�þ ðNÞÞ.
Let W0; . . .;Wnþ1 be the sets of states in the subsequent tableaux T 0; . . .; T nþ1. Also let

Ok, with O 2 fB;G; Ig and k 2 A, be the accessibility relations in those tableaux and let L
be the labelling function in those tableaux. Let w0; . . .;wnþ1 be the sequence of states in

those subsequent tableaux such that
V
Ci 2 LðwiÞ, for each 0� i� n,

V
N 2 Lðwnþ1Þ, and

for each 0� i� nþ 1 it holds that for all u 2 Wi n fwig and j 2 A, wi 62 BjðuÞ. By the

induction hypothesis such sequence of states exists. Let T be extended as follows (where

j0 ¼ j, jnþ1 ¼ k and Xjð:½B�þGwÞ ¼ f½B�jw;:½B�j½B�
þ
Gw;:½B�

þ
Gwg for j 2 G) (see Fig. 3 for

illustration of this extension):

• B0
jðvÞ ¼ BjðvÞ [ fw0g.

• B0
ji
ðwiÞ ¼ BjiðwiÞ [ fwig, for 0� i� n.

• B0
jiþ1

ðwiÞ ¼ Bjiþ1
ðwiÞ [ fwiþ1g, for 0� i� n.

• B0
jiþ1

ðwiÞ ¼ Bjiþ1
ðwiÞ [ fwi;wiþ1g, for 0� i� n.

• L0ðwiÞ ¼ LðwiÞ [ ðLðvÞ u ½B�þHÞ [fClðLðvÞ u ½B�þHÞ [ Xjið:½B�
þ
GwÞ [ Xjiþ1

ð:½B�þGwÞ, for

0� i� n� 1.

• L0ðwnÞ ¼ LðwnÞ [ ðLðvÞ u ½B�þHÞ [fClðLðvÞ u ½B�þHÞ [ Xjnð:½B�
þ
GwÞ, if the case 1 or 2

holds.

• L0ðwnÞ ¼ LðwnÞ [ ðLðvÞ u ½B�þHÞ [fClðLðvÞ u ½B�þHÞ [ Xjnð:½B�
þ
GwÞ [ Xjnþ1

ð:½B�þGwÞ, if

the case 3 holds.

• L0ðwnþ1Þ ¼ Lðwnþ1Þ [ LðvÞ u ½B�þH[fkg

� �
[fCl LðvÞ u ½B�þH[fkg

� �
.

Like in the case of the previous extension, conditions T1, T4, T5, TBG4 , TBI4,

TBG5, TBI5 and TIG are still satisfied for v after the extension described above. Con-

dition TIG is not affected by the extension, as it adds an Bj-successor of state v only.

Condition T1 could be affected in the case of formulas of the form ½B�jn 2 LðvÞ only. Take

any such formula. By Lemma 15 it holds that

LðvÞ u ½B�j � fCl LðvÞ u ½B�þfjg
� �

[ f:½B�þGwg
� �

. Hence if ½B�jn 2 LðvÞ, then either ½B�jn ¼

½B�jw or there exists a formula ½B�þT f 2 LðvÞ such that ½B�jn 2 fClð½B�þT fÞ. Thus n 2
LðvÞ=½B�þH
� �

[ fwg [ f½B�þT fg and since Lðw0Þ 2 S LðvÞ=½B�þH
� �

[ fwg
� �

, so n 2 L0ðw0Þ and

so condition T1 is satisfied for v and ½B�jn. Like in the case of Condition T1, Condition T4

could be affected in the case of formulas of the form ½B�jn 2 LðvÞ only. Take any such

formula. As we argued above either ½B�jn ¼ ½B�jw or there exists a formula ½B�þT f 2 LðvÞ
such that ½B�jn 2 fClð½B�þT fÞ. In either case ½B�jn 2 L0ðw0Þ and condition T4 is satisfied for

v and ½B�jn. Also Condition T5 could be affected in the case of formulas of the form

½B�jn 2 L0ðw0Þ only. Take any such formula. By modal context restriction R1, ½B�jn 62
:BTðfÞ for any f 2 LðvÞ=½B�þH

� �
[ fwg. Hence ½B�jn 62 Lðw0Þ and it must be that

½B�jn 2 L0ðw0Þ n Lðw0Þ. Since L0ðw0Þ n Lðw0Þ � LðvÞ, so ½B�jn 2 LðvÞ and condition T5 is

satisfied for v and ½B�jn. Conditions TBG4 and TBI4 are satisfied because, by construction

of the algorithm, it holds that ðLðvÞ u jÞ n ððLðvÞ u ½B�jÞ [ ðLðvÞ u :½B�jÞÞ � Lðw0Þ. For

conditions TBG5 and TBI5 notice that since, by construction of the algorithm, ðLðvÞ u

123

Modal context restriction for multiagent BDI logics 3141



jÞ n ððLðvÞ u ½B�jÞ [ ðLðvÞ u :½B�jÞÞ � Lðw0Þ so, by Lemma 16,

ðLðvÞ u jÞ n ððLðvÞ u ½B�jÞ [ ðLðvÞ u :½B�jÞÞ ¼ Lðw0Þ u j. Thus these conditions are satis-

fied for v as well. Notice also that after this extension it still holds that there exists w 2 W
such that u 2 LðwÞ and for all u 2 W n fwg and j 2 A, w 62 BjðuÞ.

All the newly added states satisfy conditions of TeamLog tableau. To see this take any

T i with 0� i� nþ 1. Notice first that the extended label L0ðwiÞ is not trivially inconsistent.

This is because LðwiÞ 2 S LðvÞ=½B�þH
� �

[ fwg
� �

and by modal context restriction R1 it

cannot contain any of the formulas extending it to L0ðwiÞ. Moreover, L0ðwiÞ is a closed

propositional tableau, as LðwiÞ and L0ðwiÞ n LðwiÞ are closed propositional tableaux. The

labels of all the other states of T i remain unchanged. For the remaining conditions of

TeamLog tableau, notice first that the only state of T i that could be affected by the

extension is wi. This is because, by the induction hypothesis, there is no other state u of T i

such that wi 2 OlðuÞ, for any O 2 fB;G; Ig and l 2 A. Hence we need to show that the

remaining conditions of TeamLog tableau are satisfied for states wi, for all 0� i� nþ 1. In

showing the conditions, the following observation will be useful: for all 0� i� n and any

formula of the form ½B�ln 2 :L0ðwiÞ with l 2 H it must be that ½B�ln 62 :LðwiÞ. For take

any such formula and suppose that ½B�ln 2 :LðwiÞ. Then there must be a formula f 2
LðvÞ=½B�þH
� �

[ fwg such that ½B�ln 2 :BTðfÞ, which is impossible by modal context

restriction R1.

We will consider two cases separately: i ¼ nþ 1 and 0� i� n. Suppose first that

i ¼ nþ 1. Notice that L0ðwnþ1Þ 6¼ Lðwnþ1Þ only in the case 1, when jnþ1 2 H. Thus if

jnþ1 62 H, then the conditions of TeamLog tableau are satisfied for wnþ1 in T nþ1, as it is not

affected by the extension. Suppose that jnþ1 2 H. Then the only formulas that could be

affected by the extension are formulas from

L0ðwnþ1Þ n Lðwnþ1Þ ¼ fCl LðvÞ u ½B�þH[fkg

� �
¼ fCl LðvÞ u ½B�þH

� �
. Notice that for any formula

of the form ½B�ln 2 :L0ðwnþ1Þ with l 2 H it must be that ½B�ln 62 :Lðwnþ1Þ. For take any

such formula and suppose that ½B�ln 2 :Lðwnþ1Þ. Then there must be a formula f 2
L
½B�jnþ1 ðwnÞ [ f�wg such that ½B�ln 2 :BTðfÞ. This is impossible, as, by the observation

above, L
½B�jnþ1 ðwnÞ ¼ £ and ½B�ln 2 :BTð�wÞ would violate modal context restric-

tion R1. Since there are no formulas of the form ½B�ln 2 Lðwnþ1Þ so, by construction of

tableau T nþ1, Blðwnþ1Þ ¼ £, for all l 2 H, as no successor of a state can be created for a

formula that is not in the label of the state. Thus condition T1 is satisfied for all formulas

from L0ðwnþ1Þ n Lðwnþ1Þ. Condition TD is satisfied for all the formulas from

L0ðwnþ1Þ n Lðwnþ1Þ, as L0ðwnþ1Þ n Lðwnþ1Þ � L0ðwnþ1Þ. Conditions T4 and T5 are satisfied

for all the formulas from L0ðwnþ1Þ n Lðwnþ1Þ, as Blðwnþ1Þ ¼ £, for all l 2 H. The

remaining conditions of TeamLog tableau are not applicable to any formula from

L0ðwnþ1Þ n Lðwnþ1Þ, and so all the conditions of TeamLog tableau are satisfied for wnþ1.

Secondly, suppose that 0� i� n. Condition T1 is satisfied for wi and any formula from

LðwiÞ in T i and the only formulas for which it could be affected after the extension are

formulas from L0ðwiÞ n LðwiÞ and formulas the form ½B�jln 2 L0ðwiÞ with l 2 fi; iþ 1g. As

we observed above, for any formula of the form ½B�ln 2 :L0ðwiÞ with l 2 H it must be that

½B�ln 62 :LðwiÞ. Hence, by construction of tableau T i, BlðwiÞ ¼ £, for all l 2 H, as no

successor of a state can be created for a formula that is not in the label of the state. This,

together with the fact that ðL0ðwiÞ n LðwiÞÞ=½B�l � L0ðwiÞ, for all l 2 H, implies that con-

dition T1 is satisfied for wi, for all 0� i� n� 1. In the case of i ¼ n, condition T1 is

satisfied by the fact that L½B�k ðwnÞ � Lðwnþ1Þ, fClðLðvÞ u ½B�þHÞ=½B�k ¼ L½B�
þ
H[fkg ðvÞ and, in

123

3142 M. Dziubiński



the case 3, w 2 Lðwnþ1Þ. Condition TD is satisfied for wi and any formula from LðwiÞ in

T i and the only formulas for which it could be affected after the extension are formulas

from L0ðwiÞ n LðwiÞ. In the case of formulas of the form ½B�jiþ1
n 2 L0ðwiÞ n LðwiÞ the

condition is satisfied by the fact that wiþ1 2 Bjiþ1
ðwiÞ and by condition T1. In the case of

the remaining formulas of the form ½B�ln 2 L0ðwiÞ n LðwiÞ, it must be that l 2 H and since

for any l 2 H it holds that fClðLðvÞ u ½B�þHÞ=½B�l � L½B�
þ
H ðvÞ � LðwiÞ and w 2 LðwiÞ so the

condition is satisfied for all 0� i� n� 1. Then only formulas in L0ðwiÞ for which condi-

tions T4 and T5 could be affected after the extension are formulas of the form ½B�jiþ1
n. If

0� i� n� 1, then such formulas must be elements of L0ðwiÞ n LðwiÞ and

L0ðwiþ1Þ n Lðwiþ1Þ, as ji 2 H, and since ðL0ðwiÞ n LðwiÞÞ u ½B�jiþ1
¼ ðL0ðwiþ1Þ n Lðwiþ1ÞÞ u

½B�jiþ1
in this case, so the condition is satisfied. Suppose that i ¼ n and jnþ1 2 H. Then

L0ðwnÞ extends LðwnÞ according to the case 1 and Lðwnþ1Þ is like in this case as well.

Hence L0ðwnÞ n LðwnÞ ¼ L0ðwnþ1Þ n Lðwnþ1Þ and the conditions are satisfied. Suppose that

i ¼ n and jnþ1 62 H. Then the conditions are satisfied for formulas from LðwnÞ and

L
½B�jnþ1 ðwnÞ. For the remaining formulas, take any formula of the form

½B�jnþ1
n 2 L0ðwnÞ n LðwnÞ. If ½B�jnþ1

n 2fCl LðvÞ u ½B�þH
� �

, then ½B�jnþ1
n 2

fCl LðvÞ u ½B�þHufjnþ1g

� �
and, consequently, ½B�jnþ1

n 2 L0ðwnþ1Þ, as LðvÞ u ½B�þHufjnþ1g �
Lðwnþ1Þ and Lðwnþ1Þ is a closed tableau. Otherwise it must be that ½B�jnþ1

n ¼ ½B�jnþ1
w and

L0ðwnÞ is constructed according to the case 3. Then ½B�jnþ1
n 2 L0ðwnþ1Þ, as ½B�jnþ1

w 2
Lðwnþ1Þ in the case 3. On the other hand, take any formula of the form

½B�jnþ1
n 2 L0ðwnþ1Þ n L½B�jnþ1 ðwnÞ. If ½B�jnþ1

n 2 L
½B�þH[fjnþ1g ðvÞ, then ½B�jnþ1

n 2 L0ðwnÞ, as

L
½B�þH[fjnþ1g ðvÞ � L0ðwnÞ. Otherwise, it must be that ½B�jnþ1

n ¼ ½B�jnþ1
w and L0ðwnÞ is con-

structed according to the case 3, in which case ½B�jnþ1
n 2 L0ðwnÞ. Hence conditions T4

and T5 are satisfied for wn. Conditions TBG4, TBI4, TBG4 and TBG5 are applicable at

wi to formulas from LðwiÞ only and since LðwiÞ u jiþ1 ¼ Lðwiþ1Þ u jiþ1, as Ci and Ciþ1 are

connected with jiþ1, so the conditions are satisfied. Condition TIG holds at wi as it cannot

be affected by the extension. Condition T2 holds for all the formulas from LðwiÞ and the

only formulas from L0ðwiÞ n LðwiÞ to which it is applicable are :½B�ji ½B�
þ
Gw and

:½B�jiþ1
½B�þGw. If 0� i� n� 1, then the condition is satisfied for both of these formulas as

:½B�þGw 2 L0ðwiÞ, :½B�þGw 2 L0ðwiþ1Þ, wi 2 B0
ji
ðwiÞ and wiþ1 2 B0

jiþ1
ðwiÞ. If i ¼ n, then the

condition is satisfied for :½B�ji ½B�
þ
Gw, as :½B�þGw 2 L0ðwiÞ and wi 2 B0

ji
ðwiÞ. If

:½B�jnþ1
½B�þGw 2 L0ðwnÞ, then the case 3 must hold and the condition is satisfied, as in this

case :½B�jnþ1
½B�þGw 2 Lðwnþ1Þ. Condition TC holds for all formulas from LðwiÞ and the

only formula from L0ðwiÞ n LðwiÞ to which it is applicable is :½B�þGw. Since wnþ1 2
B0
G
þðwiÞ and either �w 2 L0ðwnþ1Þ or :½B�þGw 2 Lðwnþ1Þ and since condition TC is sat-

isfied for wnþ1, so there must exist u 2 B0
G
þðwnþ1Þ with �w 2 LðuÞ and u 2 B0

G
þðwiÞ.

Thus condition TC is satisfied for wi.

Let T 0 be the tableau extending T at all states from V in the way described above. In

particular the set W 0 of worlds of T 0 extends W with all new worlds added for each state

v 2 V and each formula of the form :½B�j½B�
þ
Gw 2 LðvÞ for which the extension described

above was made. We will show that the extended model graph T 0 is a TeamLog tableau for

u. As we argued above, the extension from T to T 0 sustains all the conditions of TeamLog
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tableau that were already satisfied for states of T . Also, the conditions of TeamLog tableau

are satisfied for all newly added states. Hence what remains to be shown are conditions T2

and TD at states from V as well as condition TC for formulas of the form ½B�þGw.

For conditions T2 and TD take any state v 2 V . The only formulas from L(v) for which

condition T2 is not satisfied in T are formulas of the form :½B�j½B�
þ
Gw for which suc-

cessors were not created by the algorithm for the reasons described above. Since for any

such formula B0
jðvÞ extends BjðvÞ with a new state u such that :½B�þGw 2 LðuÞ, so condi-

tion T2 must be satisfied for that formula and v in T 0. For condition TD, take any formula

of the form ½B�jn 2 LðvÞ such that condition TD is not satisfied for it and for v in T . Then

there must be a formula of the form :½B�j½B�
þ
Gw for which successors were not created for

the reasons described above, in which case B0
jðvÞ extends BjðvÞ with a new state u and since

condition T1 is satisfied for v, so condition TD is satisfied for v and ½B�jn.

What remains to be shown is that condition TC is satisfied in T 0 for all states from W

and formulas of the form :½B�þGw. So take any state v 2 W and any formula of the form

:½B�þGw 2 LðvÞ. If there is j 2 G such that :½B�jw 2 LðvÞ, then condition TC is satisfied for

:½B�þGw and v by the fact that condition T2 is satisfied for v. Suppose then that for all

j 2 G, :½B�jw 62 LðvÞ. We will show first that condition TC holds for those of such states

which are :½B�k½B�
þ
Gw-Successors with some k 2 G. Notice first that no state of T which is

a :½B�k½B�
þ
Gw-Successor can be marked undec. For assume the opposite and suppose that

v 2 W is such a state. Suppose also that v is a :½B�k½B�
þ
Gw-Successor of some state u with

k 2 G. Let n be the :½B�k½B�
þ
Gw-successor of u on the path from u to v. Then, by con-

struction of the algorithm, it must be that :½B�k½B�
þ
k w 2 LðvÞ, a successor could not be

created for it and for each descendant m of u on the path from u to v, n 2 BðmÞ. Moreover,

for all l 2 G n fkg it must be that ½B�l½B�
þ
Gw 2 LðvÞ. Since this is true for any :½B�k½B�

þ
Gw-

Successor of u which is marked undec and which is a descendant of n, so it must be that

BðnÞ ¼ fng. Moreover, since v 2 W , so there cannot be any state in SSðnÞ which is marked

sat. But then, by construction of the algorithm, n would have to be marked unsat and,

consequently, u would have to marked unsat as well and it could not be that u 2 W . This

contradicts the assumption that v 2 W . Hence v must be marked sat. Now, to show that

condition TC holds for :½B�k½B�
þ
Gw-Successors v 2 W such that for all j 2 G,

:½B�jw 62 LðvÞ, we will use induction on the maximal distance from states to descendant

leaves of T . For the induction basis suppose that v is a leaf of T and a :½B�k½B�
þ
Gw-

Successor with k 2 G. Since v is a state, so L(v) must be a ½B�þ-expanded tableau and since

for all j 2 G, :½B�jw 62 LðvÞ, so there must exist j 2 G such that :½B�j½B�
þ
Gw 2 LðvÞ. Since v

is a leaf of T , so it must be that a successor for :½B�j½B�
þ
Gw could not be created, and since

v cannot be marked undec, so it must be that v 2 V . Then, by construction of T 0, there

must exist u 2 B0ðvÞ with :½B�þGw 2 LðuÞ. Moreover, since :½B�jw 62 LðvÞ, so u 62 W and,

as we showed above, condition TC is satisfied for it and for :½B�þGw. Hence there must

exist t 2 B0
G
þðuÞ such that �w 2 LðtÞ. Since t 2 B0

G
þðvÞ, so condition TC is satisfied for v

and ½B�þGw. For the induction step suppose that v is not a leaf of T . If v 2 V , then the

condition TC is satisfied for v and ½B�þGw by the same arguments as those used for the

induction basis. Otherwise, there must exist j 2 G such that :½B�j½B�
þ
Gw 2 LðvÞ and a

successor of v was created for it (recall that v cannot be marked undec). By construction of
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T , there must exists u 2 BjðvÞ such that :½B�þGw 2 LðuÞ and, by the induction hypothesis,

condition TC is satisfied for u and :½B�þGw. Hence, by analogous arguments to those used

for the induction basis, condition TC is satisfied for v and :½B�þGw as well. Thus we have

shown that show that condition TC holds for :½B�k½B�
þ
Gw-Successors v 2 W such that for

all j 2 G, :½B�jw 62 LðvÞ. For the case of states of T which are not :½B�k½B�
þ
Gw-Successors

with any k 2 G, arguments analogous to those used in proof of Proposition 4 can be used to

show that condition TC is satisfied for them and :½B�þGw as well.

Thus we have shown that if Algorithm 2 returns sat on input u, then a TeamLog

tableau for u can be constructed which implies, by Proposition 2, that u is satisfiable. h

Proof (Theorem 4) The problem of TeamLog satisfiability of formulas without fixpoint

modalities is PSPACE hard. Hence the problem of TeamLog satisfiability of formulas from

LT
R1

is PSPACE hard.

To show that the problem is in PSPACE, we will show that Algorithm 2 can be run by a

deterministic Turing machine using polynomial space with respect to juj. To show that we

will use induction on the pair dep½B�þ ðuÞ and ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

(in lexico-

graphic order). For the induction basis, suppose that dep½B�þ ðuÞ ¼ 0 (in this case

ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

¼ A [ fxg). Then there are no formulas of the form

½B�þGw 2 :SubðuÞ and Algorithm 2 works like Algorithm 1 on the input u. Thus, by

Theorem 2, it can be run by a deterministic Turing machine using polynomial space with

respect to juj. For the induction step, suppose that dep½B�þ ðuÞ[ 0 (in which case

ag SubðuÞ; ½B�þ; dep½B�þ ðuÞ
� �

� A). To check the satisfiability of u a pre-tableau is con-

structed and the decision with regard to the satisfiability is made on the basis of how the

root of this pre-tableau is marked. Since the decision on how each node is marked in this

pre-tableau depends on the nodes on the path from this node to the root of the pre-tableau

and how descendants of this node are marked, so for deciding how the root node should be

marked, the pre-tableau could be traversed in depth first search like manner. By Lemma 9,

the depth of the pre-tableau constructed by Algorithm 2 is �OðjujdepðuÞ2jAjþ1Þ. To mark

some of the leaves of the pre-tableau constructed by Algorithm 2, Function 9 may be

called. Each such call requires polynomial space. To see this, let w, G, j and U be the input

for such call. Then U � :ClðSubðuÞÞ and so jUj � ð2jAj þ 1Þjuj ¼ OðUÞ. The algorithm

enumerates the elements of SðU=½B�þHÞ, where H ¼ ag U u ½B�þfjg
� �

[ f:½B�þGwg; ½B�
þ

� �
is

a subset of G. To enumerate these elements a pre-tableau is constructed with the root

labelled with U=½B�þH and then all the states that could be obtained from this set are

enumerated. To enumerate these states depth first search method could be used, so that

�OðjujÞ memory would be needed to remember each path leading from the root to a state.

For each such a state it is checked whether its label is satisfiable, which can be done in

polynomial space, as dep½B�þ ðnÞ\dep½B�þðuÞ, where n is the conjunction of formulas in the

states, and the induction hypothesis applies. Next for each such a state reachability to some

other element of a graph G U=½B�þH
� �

[ fwg
� �

is checked, and this requires using Func-

tion 10 recursively, with depth of recursion �OðjujÞ. Function 10 enumerates elements of

S U=½B�þH
� �

[ fwg
� �

, which requires �OðjujÞ memory. Additionally, the satisfiability of

the labels of these states is checked and since dep½B�þ ðnÞ\dep½B�þ ðuÞ, where n is the
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conjunction of formulas in the label of a state, so, by the induction hypothesis, each such

call requires polynomial space. Notice also that the upper bound on the number of steps of

reachability can be stored using OðjujÞ space. Thus Function 10 uses polynomial space

with respect to juj. Lastly, after checking reachability for a given state from S U=½B�þH
� �

,

Function 9 checks the satisfiability of some properly constructed sets of formulas obtained

from the label of the state. Since for each such a set of formulas dep½B�þ ðnÞ\dep½B�þ ðuÞ or

dep½B�þ ðnÞ ¼ dep½B�þ ðuÞ and ag SubðuÞ; ½B�þ; dep½B�þðuÞ
� �

(ag SubðnÞ; ½B�þ; dep½B�þ ðnÞ
� �

,

where n is the conjunction of the formulas in the set (c.f. proofs of Proposition 6 and

Proposition 7), so, by the induction hypothesis, each such call uses at most polynomial

space with respect to juj. Hence each call to Function 9 requires polynomial space with

respect to juj Thus the satisfiability of u can be decided by a deterministic Turing machine

using space of polynomial size with respect to juj. Hence the problem of TeamLog sat-

isfiability of formulas from LT
R1

is in PSPACE. h

Proof (Theorem 5) The problem is in PSPACE by Theorem 4. To show hardness we will

construct a formula uI
T 2 LT

R1
with depðuÞ ¼ 2 whose models encode the computation of a

given polynomial space bounded deterministic Turing machine T on the input I. The

constructed formula uI
T will be satisfiable if and only if the computation of T on I ter-

minates in accepting state. A deterministic Turing machine is a tuple

T ¼ ðQ;R;C; d;B; q0; qA; qRÞ, where

• Q is a finite set of states,

• q0 2 Q is the starting state,

• qA 2 Q is the accepting state,

• qR 2 Q is the rejecting state,

• C is a finite worktape alphabet,

• R � C is a finite input alphabet,

• B 2 C n R is the blank symbol,

• d : Q� C ! Q� C� f�1; 0; 1g is the transition function.

Let T be a deterministic Turing machine and I be its input and suppose that during its

computation on I, T uses �MðjIjÞ cells of the worktape, where |I| denotes the size of I. To

define the formula uI
T we will first define three formulas that describe the initial config-

uration of the machine, a valid configuration of the machine and a valid transition of the

machine. To define the formulas we will use the following propositional symbols:

• axi , where x 2 C and 1� i�MðnÞ, to indicate that the symbol in the i’th cell of the

worktape is x;

• sqi , where q 2 Q and 1� i�MðnÞ, to indicate that the current state is q and the head of

the machine is at the i’th cell of the worktape.

A configuration of the machine will be encoded by valuations of formulas ½I�kaxi and ½I�ks
q
i ,

where k 2 f1; 2g, x 2 C, q 2 Q and 1� i�MðjIjÞ. This way two configurations of the

machine are encoded at any world v of a TeamLog model, one by valuations of the

formulas with operator ½I�1 and another one by the formulas with operator ½I�2 at this world.

We will refer to them by C1ðvÞ and C2ðvÞ, respectively.

Firstly, the initial configuration is when the head is at the first cell of the machine and

the input is written in the first |I| cells of the machine, while the remaining MðjIjÞ � jIj cells

are filled in with blanks. The formula describing the initial configuration is called INITI . At
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any given world v of a TeamLog model it holds that if INITI is satisfied there, then C1ðvÞ
encodes the initial configuration of the machine T on input I.

INITI ¼ ½I�1s
q0

1 ^
n̂

i¼1

½I�1a
Ii
i ^

M̂ðjIjÞ

i¼nþ1

½I�1aB
i : ð8Þ

Secondly, a formula stating that both C1 and C2 encode valid configurations is defined. The

formula is called CONFIGT and it is a conjunction of the two formulas below. The first of

these formulas states that in each cell from 1 to M(|I|) exactly one symbol from C is put.

The second of these formulas states that that the machine is in exactly one state and the

head is positioned at exactly one cell from 1 to M(|I|). At any given world of a TeamLog

model it holds that if CONFIGT is satisfied there, then C1ðvÞ and C2ðvÞ represent valid

configurations of T.

^

k2f1;2g

M̂ðjIjÞ

i¼1

_

x2C
½I�kaxi ^

^

y2Cnfxg
:½I�ka

y
i

0

@

1

A ð9Þ

^

k2f1;2g

_MðjIjÞ

i¼1

_

q2Q
½I�ks

q
i ^

M̂ðjIjÞ

i¼1

^

q2Q
½I�ks

q
i !

^

r2Qnfqg
:½I�ksri

0

@

1

A

0

@

1

A ð10Þ

Thirdly, transitions of the machine are described by a formula TRANST , which is a

conjunction of the two formulas below. At any given world v of a TeamLog model it holds

that if TRANST is satisfied there, then either C1ðvÞ and C2ðvÞ encode the same configu-

ration of T or C2ðvÞ encodes the configuration succeeding the configuration encoded by

C1ðvÞ in the run of the machine T on the input I.

M̂ðjIjÞ

i¼1

^

x2C

^

q2Q
½I�1axi ^ ½I�1s

q
i

� �

!
M̂ðjIjÞ

j¼1;j 6¼i

^

z2C
ð½I�1azj $ ½I�2azj Þ ^ ½I�2axi ^ ½I�2s

q
i

� �
_ ½I�2a

d2ðq;xÞ
i ^ ½I�2s

d1ðq;xÞ
iþd3ðq;xÞ

� �� �
 !

ð11Þ

M̂ðjIjÞ

i¼1

^

x2C

^

q2Q
½I�2a

d2ðq;xÞ
i ^ ½I�2s

d1ðq;xÞ
iþd3ðq;xÞ

� �

!
M̂ðjIjÞ

j¼1;j 6¼i

^

z2C
ð½I�1azj $ ½I�2azj Þ ^ ½I�1a

d2ðq;xÞ
i ^ ½I�1s

d1ðq;xÞ
iþd3ðq;xÞ

� �
_ ½I�1axi ^ ½I�1s

q
i

� �� �
 !

ð12Þ

Let uI
T be defined as follows:

18 Formula uI
T could be also constructed with use of operators ½G�1 and ½G�2 instead of ½I�1 and ½I�2.
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uI
T ¼ INITI ^ ½B�0þf1;2g CONFIGT ^ TRANSTð Þ ^ :½B�þf1;2g :

_MðjIjÞ

i¼1

½I�1s
qA

i

 !

; ð13Þ

where ½B�0þGu is an abbreviation for u ^ ½B�þGu .18 Notice that the size of uI
T is polynomial

with respect to |I|. To see that the if uI
T is satisfiable, then T accepts the input I, suppose that

ðM;wÞ�uI
T . Then C1ðwÞ encodes the initial configuration of T on the input I, at all worlds

v 2 Bf1;2g
þðwÞ, C1ðvÞ and C2ðvÞ encode valid configurations of T and either C1ðvÞ and

C2ðvÞ encode the same configuration or the configuration encoded by C2ðvÞ succeeds the

configuration encode by C1ðvÞ in the run of the machine T on the input I. Moreover, there

exists u 2 Bf1;2g
þðwÞ such that C1ðuÞ encodes a configuration at accepting state of T. The

computation of T on I that leads to that configuration can be read from the path leading

from w to u. For any two subsequent states v1 and v2 on this path, such that v2 2 RBjðv1Þ
with j 2 f1; 2g, by generalized transitivity it holds that Cjðv1Þ and Cjðv2Þ encode the same

configuration. Hence the configurations encoded by C1 at the subsequent worlds on the

path represent states of the run of T on the input I with the possibility that at some worlds

not transitions is performed or preceding states of the machine are restored. After removing

such states from the sequence, a sequence of configurations C1 can be obtained that

represents the whole run accepting run of T on the input I. On the other hand suppose T
accepts the input I. Then we could construct a TeamLog model containing a sequence of

worlds connected alternately by accessibility relations B2 and B1 such that at every second

state of this sequence the configurations of the machine encoded by C1 are the subsequent

configuration of the run of T on the input I. This shows that T accepts I if and only if uI
T is

satisfiable. Thus we have shown that the problem of TeamLog satisfiability for formulas

from LT
R1

with modal depth bounded by 2 is PSPACE hard and since it is also in PSPACE,

so it is PSPACE complete. h

Proofs associated with checking TeamLog satisfiability for LT
R1ðcÞ

Proof (Lemma 10) Claims 1–1 shown in proof of Lemma 5 hold in the case of u 2 LT
R1ðnÞ,

as they require modal context restriction R1 only.

Consider a sequence of states s0; . . .; sm in the pre-tableau such that for any 0\k�m, sk
is an Bjk -Successor of sk�1. Suppose that for any 0\k�m it holds that IndðLðsk�1ÞÞ u jk ¼
£ and the sequence satisfies properties PB1, PI1 and PB2 for all d
 0. If cGrðLðs0ÞÞ u
:½B�þ ¼ £ or there is more than one formula of the form :½B�þGw 2 cGrðLðs0ÞÞ, then the

length of such a sequence must be � 2, by the same arguments as those used in proof of

Lemma 5. If cGrðLðs0ÞÞ u :½B�þ ¼ f:½B�þGwg, then the length of the sequence must be

� 2cþ1jAj þ 1. Arguments here are similar to those used in proof of 5 for analogous case.

Suppose that the length of the sequence m[ 2cþ1jAj þ 1. Then there exists

0\k1\ � � �\k2cþ1þ1 �m such that jk1
¼ � � � ¼ jk

2cþ1þ1
. By Claim 3 the subsequent sets

L
:½B�jki ðski�1; ½B�þGwÞ differ on the elements from Zjk1

[ fwg only, where

Zjk1
¼ : Lðsk1�1Þ u ½I�jk1

� �
[ Lðsk1�1Þ u ½G�jk1

� �
[ f½B�jk1

wg
� �

. Moreover, each of these

sets contains a maximal subset of Zjk1
as a subset and contains w if and only if it contains
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½B�jk1
w. Hence there are 2

Zjk1

�
�
�
�
�
�=2

such different sets and, by modal context restriction R1ðcÞ,

Zjk1

�
�
�

�
�
�� 2ðcþ 1Þ. Thus there must exist 1� i0\i� 2cþ1 such that

L
:½B�jki0 ðski0 �1; ½B�þGwÞ ¼ L

:½B�jki ðski�1; ½B�þGwÞ. But then, by construction of the algorithm,

the :½B�jki ½B�
þ
Gw-successor of ski�1 cannot be created and so ski cannot be in the sequence,

which contradicts our assumptions.

Using arguments similar to those used in Lemma 5 it can be shown that the maximal

length of a sequence of B-Successors with the same modal depth of labels is

O depðuÞ2jAj
� �

. Moreover, 2cþ1 contributes to the factor of depðuÞ2jAj
. h

Proof (Lemma 11) Proof is by analogous arguments to those use in proof of Lemma 7,

using Lemma 10 instead of Lemma 5. h
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