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Abstract

Since the initial reports of the Coronavirus surfacing in Wuhan, China, the novel virus cur-
rently without a cure has spread like wildfire across the globe, the virus spread exponen-
tially across all inhabited continent, catching local governments by surprise in many cases
and bringing the world economy to a standstill. As local authorities work on a response
to deal with the virus, the scientific community has stepped in to help analyze and predict
the pattern and conditions that would influence the spread of this unforgiving virus. Using
existing statistical modeling tools to the latest artificial intelligence technology, the scien-
tific community has used public and privately available data to help with predictions. A lot
of this data research has enabled local authorities to plan their response—whether that is
to deploy tightly available medical resources like ventilators or how and when to enforce
policies to social distance, including lockdowns. On the one hand, this paper shows what
accuracy of research brings to enable fighting this disease; while on the other hand, it also
shows what lack of response from local authorities can do in spreading this virus. This is
our attempt to compile different research methods and comparing their accuracy in predict-
ing the spread of COVID-19.
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1 Introduction

The global spread of the Coronavirus disease has become a healthcare concern, but the
rapid mutation of the strain and high infectious rate of the disease has made it a socioeco-
nomic issue for countries worldwide. The World Health Organization (WHO) was alerted
by Chinese officials about dozens of pneumonia-like diseases in Wuhan’s city as a new
celebration was taking place in the country. The centers for disease control and preven-
tion identified a sea market in Wuhan suspected to be a center of the outbreak. By March
of 2020, the disease had spread to major countries across the globe. WHO officially
announced the COVID-19 disease outbreak as a pandemic on 11 March 2020. Figure 1
shows the rapid increases in cases globally (Johns Hopkins University and Medicine 2020).

The infectious nature of the disease and lack of vaccinations created a restriction on
social interactions and economic collapse, overwhelming economic and healthcare systems
everywhere. This created an urgent need to study the virus to curb the spread, find a cure,
and help local authorities all over the world decide on measures to prevent the spread of the
virus. The need is more pronounced to help countries decide how best to open back their
economies and manage healthcare logistics.

It is important to predict—with accuracy and specificity—the spread of COVID-19.
Using existing data, there is a need to forecast trends on the spread of the virus. Many gov-
ernments rely heavily on such predictions to plan their next actions, whether it is to allocate
medical resources or to ease or increase the level of lockdowns.

Considering that this virus has made it really hard to focus on a single mode of trans-
mission, it has become fundamentally important for scientific communities to focus on
various factors that can affect the spread of the disease. One such field of study that could
contribute to the cause and research for the spread of COVID-19 is social media or social
connectivity (Kuchler et al. 2020) and (Guardian 2020). The social connectedness index
discussed in Kuchler et al. (2020) can significantly impact identifying the links between
mass populations from one geographical area to the other. This connectedness identified by
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Fig. 1 Snapshot of the Johns Hopkins University, Coronavirus Resource Centre (June 16, 2020)
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social media can open possibilities to correlate the spread of the disease that depends on
different demographics or geographies.

The remainder of this paper is structured as follows: Sect. 2 discusses the related work
and the contribution of the paper. Section 3 summarizes different research studies identi-
fied to understand the spread of COVID-19, and a tabular form explains the key features
of each paper referred to. Section 4 presents Al and technologies that are contributed to
combating the COVID-19 spreading. Section 5, we highlighted all lessons learned in this
area of study. Section 6 discusses the open research challenges. Finally, Sect. 7 concludes
the paper.

2 Related work and contributions

In the existing state-of-the-arts, there are many surveys and tutorials that are tailored to the
prediction of COVID-19 spreading. These publications vary from more general works to
particular technical reports and explications in the area. For instance, Wynants et al. (2020)
have tried to review and appraise the validity and usefulness of published prediction mod-
els for diagnosing coronavirus disease, the prognosis for infected population, and detecting
increased risk criteria in the general population of becoming infected. This kind of effort
helps future researchers to focus on an area not explored or an area with promising results
to establish a sustainable forecast model.

In essence, in this paper, we have tried to put together an ensemble of studies that take
into account different variables for the spread of the disease. Table 1 illustrates published
papers in the domain of prediction models for COVID-19 spreading. We summarize the
main contributions of this survey as follows:

e This paper reviews recent literature on the prediction of COVID-19 spreading, what
kind of dataset was used for accurate prediction, and then highlighting the research
gaps. This study’s findings present that several parameters will contribute to the spread-
ing of the virus, such as social interactions measured by social networks.

e We have identified crucial applications of Al, and different technologies are being used
to combat COVID-19.

e We have identified research challenges, directions on prediction methods, and Al-ena-
bled technologies to combat the COVID-19 spreading.

This survey can be used as a useful resource for future research directions in prediction
models for COVID-19 spreading. Our intent is to help the scientists and researchers to get
a clear idea of research already done and possibly guide them on how to proceed with their
own studies.

3 Prediction models

Prediction models can be categorized based on machine learning models and mathematical
models, as depicted in Fig. 2. We discuss and detail this categorization here.

In the existing literature, the authors have used different statistical and mathemati-
cal calculations, data models, and Al [as illustrated in Fig. 3 (Pham et al. 2020)] to try
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Fig. 3 Big data and its applications for fighting COVID-19 pandemic

and help and expedite decision-making and logistical planning in healthcare systems.
Whether it is using existing clinical data, biomarkers, traditional medical knowledge, or
weather patterns, they have tried to come up with a way to help with proper arrangement
and utilization of available, and in many cases, limited healthcare resources around the
world. In some cases, they have come up with prediction models that can help clinicians
get an early warning for patient care by a few days to help reduce mortality in COVID-
19 patients. In some other cases, researchers have used Al tools coupled with datasets
covering social behavior or responsiveness of local bodies to the COVID-19 outbreak to
help predict the rate of infections. Below, Fig. 3 (Pham et al. 2020) shows the use of Big
Data in different applications for fighting COVID-19.

Li Yan et al. (2020) focused on using biomarkers obtained via blood samples to be
able to predict severe COVID-19 cases that result in a higher risk of mortality. They
selected the following three biomarkers: lactic dehydrogenase (LDH), lymphocyte, and
high-sensitivity C-reactive protein (hs-CRP) to train machine learning tools in forecast-
ing potential mortality in patients with high accuracy. Furthermore, their trained mod-
els were able to predict worsening cases well in advance, up to 10 days in some cases,
giving medical professionals a fighting chance to change a patient’s treatment. This
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research showcases the use of existing medical knowledge of biomarkers coupled with
Al tools to help forecast severe cases in advance.

Elmousalami and Hassanien (2003) use the time series model to analyze and predict the
spread of COVID-19. Using existing datasets from renowned sources as Johns Hopkins
University, they were able to forecast and, in some cases, validate assumptions related to
the spread of this virus. Key takeaways from their research are:

e In absence of strict lockdown and social distancing policies, rate of spread is exponen-
tial.

e They are able to validate the hypothesis of person-to-person transmission as driver of
exponential spread.

e Compounding of COVID-19 cases is more than 25% in absence of social distancing
practices.

e Lastly, the most important inference is that exponential growth is more because of virus
transmission rather than increased testing rates. This is critical analysis as many coun-
tries have been complacent with enforcing strict guidelines due to the belief that more
tests performed will result in higher number of positive COVID-19 patient identifica-
tion.

Tomar and Gupta (2020) used Long Short-Term Memory (LSTM)—a type of Recurrent
Neural Networks (RNN) method to predict a number of COVID-19 cases in India. Their
analysis showed infection rate in case preventive measures like social distancing and lock-
down were practiced versus the rate if no such measures were in place. Their trained model
[shown in Fig. 4 (Tomar and Neeraj Gupt 2020)] was also able to predict positive and
recovered cases within a certain accuracy range. They deployed a curve fitting technique to
assess the accuracy of their prediction model come up with close results. This tool has the
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potential to help local authorities with forecasting infection and recovery rates, giving them
needed data to prepare for outbreaks and plan the deployment of limited medical resources.

Zhao et al. (2020) use the Maximum-Hasting (MH) parameter estimation method and
the modified Susceptible Exposed Infectious Recovered (SEIR) model to analyze the
spread of COVID-19 in regions depending on how local authorities intervene and what
policies they adopt to curb the spread of this pandemic. The authors study three possible
scenarios to deploy: suppression, mitigation, or mildness in six African countries. In case
of suppression, local authorities maintain tight control and deploy all possible policies to
curb the spread of the virus. South Africa and Senegal fall under this scenario and seem to
be tracking with a controlled infection rate. In the second intervention method, the response
is focused on mitigation of spread rather than curb it. This policy results, as shown by the
models, in a control time that lags behind suppression policy by at least 10 days. African
nations of Algeria, Nigeria, and Kenya show an infection curve aligned with this interven-
tion policy. The last intervention scenario lacks proper mitigation and will result in a dou-
bling of infection rates at a rapid pace. Egypt seems to be on track for an infection rate as
predicted by this policy.

Another study by (Yang et al. 2020), Yang et al. use Susceptible-Exposed-Infectious-
Removed (SEIR) and LSTM models to predict infection rates in China. The SEIR model
predicts the probability of epidemic, its peak, and, more importantly, what would be the
impact of intervention measures. With a certain success rate, they attempt to predict the
impact of delaying intervention leading to a second outbreak/peak. They work on the Long
Short-Term Memory (LSTM) model to predict a new number of infections. Key areas of
improvement in the two models were picking up parameters like correct incubation period,
diagnostics capacity impacting total infected numbers, and seasonal influences like temper-
atures. Yet, the LSTM method showed quite a similarity in data trends with actual reported
data—thus providing a strong prediction model.

Hamzaha et al. (2020) conducted a predictive analysis using the SEIR model and senti-
ment analysis of verified news into positive and negative news. Even though this is not a
new approach, the research study is able to illustrate the findings in a very crisp manner
using data visualizations.

Zou et al. (2020) build upon exiting epidemic models like SIR and SEIR and propose
a new model that takes into account the lack of reporting of COVID-19 cases, resulting
in the inaccuracy of existing models. Their model SuEIR takes into account untested or
unreported cases while predicting the rate of cases (active or deaths) of COVID-19 infec-
tion. They used machine learning methods to train their model. The model (as shown in
Fig. 5 (Zou et al. 2020)) is unique because it doesn’t simply fit the current curve, which is
based only on reported cases. Rather, it infers the number of untested and unreported cases
from the model’s data analysis and uses the inferences to predict how quickly the disease

(1—po Unreported
[ Recovered

s E I R
Susceptible B [ B i ]

Fig.5 Illustration of the SUEIR model. Solid lines represent the transitions of individuals and dashed lines
represent the routes of infection
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will spread. Another key inference from this model is that many folks who are exposed to
COVID-19 may recover or, unfortunately, die without being tested and/or reported. The
biggest challenge to substantiate the findings of this new model will be data. If data is
indeed under—or not reported, this model’s predictions may not be able to be verified.

During the early phases of the COVID-19 outbreak, another model used by Kuefel
(2020) to predict the spread of COVID-19 was Auto-regressive Integrated Moving Aver-
age (ARIMA) model. The time-series model aimed to show the different epidemic phases
of the infections amongst communities, using data available at the time to possibly pre-
dict future spread. Similar to other tried models, the method was unable to compensate for
interventions like non-medical interventions and the impact of testing schemes deployed.

Fanelli and Piazza (2020) use the Mean-field approximation method on COVID-19
data from three hotspots across the world. They can substantiate and establish a prediction
model for a maximum number of infected individuals along with the timing of the peak.
They are further able to show, using simple quantitative models, how containment efforts
can help in reducing the spread. The authors break data into the following four classes: sus-
ceptible, infected, recovered, and deaths (SIRD). Based on their assessment of the dataset
for one region, they are able to establish predictions for other regions as they approach the
peak. The model’s key drawback is that it assumes standard conditions and fails to track
with rapid recovery (decrease in the number of infected cases) and overestimates the num-
ber of deaths when extreme measures like social distancing are used by local authorities to
flatten the curve. The model also fails to incorporate cultural aspects of different regions,
which can impact the infection rate.

Sajadi et al. (2020) worked on the premise that many diseases display seasonal patterns.
They studied climate data with the intent to establish correlation in regions that have simi-
lar climate setup and come up with a model to predict possible new locations based on the
similarity of climate with the current COVID-19 hotspots. Key findings from their data
analysis suggest hotspots be concentrated in a 30-50° N' latitude corridor, with low aver-
age temperatures, low specific and absolute humidity. The key caution called out for the
prediction model is that while it establishes a very strong correlation of COVID-19 hot-
spots with latitude, temperature, and humidity, there needs to be caution in establishing
absolute correlation of COVID-19 spreading in areas with these climatic factors. The key
reason is the lack of human factors like intervention, other climatic factors like cloud cover,
and viral factors like a mutation of the virus, which can lead to the unpredictability of the
model.

Mollalo et al. (2020) utilized spatial models coupled with multiple socioeconomic
data factors to try to explain the variation of COVID-19 in the United States (USA);
based on geographic modeling. Again, their intent was to use well-established GIS
toolsets to help explain the distribution of COVID-19. They started with identifying
35 socioeconomic, behavioral, environmental, topographic, and demographic factors.
They used five different models (3 global and two local) to finally zone in the follow-
ing four variables: median household income, income inequality, percentage of nurse
practitioners, and percentage of black female population, which provided an explanation
for geographical spread and variability of COVID-19 in the USA. Unlike some other
studies, their model didn’t significantly impact environmental factors like temperature
and air quality on the distribution of COVID-19. This is an important point, as many
studies have suggested the impact of temperature conditions to contribute to the spread
of COVID-19 in certain parts of the world, especially in Asia. Their findings on income
equality and median income lend further credence to a higher rate of COVID-19 spread
amongst folks belonging to lower-income groups. The authors acknowledged data
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availability, especially county level, as a limitation that hindered further development
of their analysis from an accuracy standpoint. Another limiting factor the impact of how
stringently the local authorities implemented lockdown procedures. Given the lack of
uniformity, it was difficult to isolate or model this particular factor. The authors also
didn’t focus on pre-existing conditions in their analysis, which has been considered a
contributor to the spread of COVID-19. Still, the local model MGWR (multiscale geo-
graphically weighted regression) performed consistently and helped introduce GIS data/
tools to help predict or explain the variation of the spread of COVID-19.

Kuchler et al. (2020) used aggregated (anonymized) data from Facebook; of two early
hotspots in an attempt to establish a correlation between socially connected people on
Facebook, leading to the spread of COVID-19 in such areas. They came up with a math-
ematical equation for social connectedness index—which establishes a relationship of
spread to areas with social ties to these hotspots. The premise is that individuals connected
across two regions via a social platform like Facebook can predict the potential spread of
COVID-19 to new regions as people from the hotspot potentially move or are in physical
contact with people from these new regions. In yet another attempt, the local government
has tried to use aggregated mobile phone data to zoom in on hotspots and, in some cases,
using prediction techniques to anticipate where the next hotspot may emerge or help with
much-needed ‘contact tracing’ (Zhao et al. 2020). While the results show a possible cor-
relation that can be used as one of many ways to predict possible patterns of the spread of
COVID-19, the social connectedness index reflects relative probability and, in many cases,
may not establish actual correlation. The authors themselves admit that their work is in its
infancy and requires more work.

Furthermore, this may still be considered as a proof of concept and not an epidemiologi-
cal model. Also need to be taken into consideration is that it’s a social media account, and
people do tend to input incorrect information; thus, it is possible that data may be flawed
if user profiles are incorrect, thus providing incorrect numbers. Another possible challenge
in using data from social platforms or mobile phones could be the threat of invasion of pri-
vacy. Many users may opt-out or not be open to sharing their whereabouts.

Tuli et al. (2020a), in their paper, worked on improving the Weibull distribution model.
While using ML techniques and iterative weighting strategy, they came up with a ‘Robust
Fitting’ technique. It showed improved predictions over the Gaussian predictions. Like
any other model, the key constraints were that it could not account for lockdown restric-
tions being lifted or virus mutations that may change the speed of the spread. Tuli et al.
(2020b) further tried to improve their approach by combining the Weibull method with
LSTM. They demonstrated much better results of this new approach when compared to the
ARIMA, LSTM, and other variants. Their research demonstrated that hybrid approaches
were best able to use epidemic data and then apply ML techniques to smooth over outli-
ers, train to respond to shifting trends that may influence the spread, density of spread, and
fluctuations in data—to come up with the best forecasts.

Zheng et al. (2020) used State Transition Matrix Model (STM) to predict the inflection
point (IFP) in three countries: South Korea, Italy, and Iran. They used data available in the
first quarter of 2020 to draw inferences and provide three scenarios. The researchers were
able to predict, for Italy and South Korea, the total confirmed and increment of confirmed
cases during the months of April and May. This kind of prediction at the time and still is
a valuable tool for countries and local authorities to plan for the inflection point and help
formulate containment strategies.

Shahid et al. (2020) have compared several prediction models used. They produced
model rankings—from good performance to the lowest, which were: Bi-LSTM, LSTM,
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GRU, SVR, and ARIMA. This helps the researchers and authorities to focus on a model
that may produce the best predictive results; to help plan for containment.

Car et al. (2020) used a dataset operated by the Johns Hopkins University Center for
Systems Science and Engineering (JHU CSSE) and supported by the ESRI Living Atlas
Team and the Johns Hopkins University Applied Physics Lab (JHU APL) (Johns Hop-
kins 2020). Data contained information of coronavirus patients—infected, recovered, and
deceased—based on their location.

This dataset though a time-series dataset, was transformed into a regression dataset and
used to train an artificial neural network (ANN) (Hui et al. 2020). The aim was to achieve a
worldwide model of the maximal number of patients across all locations in each time unit.
Post-training and cross-validation of the model, R2 scores dropped to 0.94 for confirmed,
0.781 for recovered, and 0.986 for deceased patient models. This showed high robustness
of the deceased patient model, good robustness for confirmed, and low robustness for the
recovered patient model. Figure 6a and b show the performance of the model for infected
patients while comparing real and predicted data.

In another vein, to predict how the coronavirus is spreading and how the lockdown area
could be predicted in crowded areas, Maghdid et al. (2004) propose a new model predic-
tion based on using K-means clustering algorithm. The model on a server has been imple-
mented to receive the participant users’ location information periodically and send back
the prediction status to the users. The main aim of the model is to avoid un-necessary lock-
down areas and consequently mitigate the economic crisis. Applying the lockdown area
due to spreading coronavirus COVID-19 via most of the countries across the globe has a
negative impact on economic issues. Several experiments, scenarios, and hypotheses have
been conducted and analyzed to prove the validity of the prediction model. Figure 7 shows
an example of the result model prediction for two different scenarios in the Denver area
Aspen and area in Colorado-USA.

The study for the spread of COVID-19 is still in its infancy, and the above parapherna-
lia of studies shows that there is a multitude of factors affecting its spread and mutation.
Table 1 presents a comparison of different methods and models. It offers a quick glance at
salient features of each method we studied, and it can help further the process for different
scientists.

4 Al and technologies to fight COVID-19 pandemic

As the world shutdown due to COVID-19, a clear need was felt on what would need to be
done to safely re-open. This is where technology has stepped in with solutions to fight this
pandemic. Some key areas contributing are Internet of Things (IoT), Mobile Apps, Arti-
ficial Intelligence (AI), and Autonomous technology (vehicles, robots, unmanned aerial
vehicles).

Al technology has stepped-in significantly to spearhead research of COVID-19 data and
help with predictions. Al tools are being used to come up with detection, diagnosis, and
prediction. They have gone further to help forecast the impact of different measures that
local authorities can take and how best to establish a medical response to the rising of
COVID-19 infections. Al tools have also helped forecast the socio-economic impact of this
virus, highlighting at-risk groups and economic impact across the globe.

Pre-COVID, IoT devices had already taken off in households. Post-COVID, they
continue to showcase their value in even more ways. With global medical treatment
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Fig. 6 a Infection rate data comparison, b Infection trend comparison

restrictions, IoT-enabled devices like Thermometers, Smart-wearable devices, and
remote connection technologies have enabled telehealth. Patients are able to avail medi-
cal guidance from the confines of their homes and not have to visit a doctor’s office or a
hospital. While keeping patients safe from getting infected, these technologies are also
helping to ease pressure on the already stretched medical staff.
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Fig. 7 The results of lockdown prediction model for two different scenarios

In the past decade, smartphone use has continued to rise globally. While enabling many
underprivileged sections across the world, they have also led to commoditizing services via
mobile apps. Mobile apps have brought many services to the household. They have further
helped with the fight against COVID-19. Many private and public entities have come up
with apps to share information related to this virus across the globe. Mobile apps have
played a crucial role in contact tracing, a crucial tool needed to fight against the spread
of COVID-19. In recent work, authors in (Maghdid et al. 2003) proposed a new frame-
work to diagnose the coronavirus COVID-19 using onboard smartphone sensing data via
multi-sensors technologies including camera, microphone, accelerometers, and fingerprint-
temperature sensors. The proposed framework doesn’t need any extra hardware, and it is
working under the running application on the smartphone. Thus, such a solution enables
doctors to use the application on their smartphones to diagnose the disease in a short time
and at a lower cost in comparison to other exciting solutions.

Autonomous vehicular technology (vehicles, robots, unmanned aerial vehicles)
also plays an important role in the fight against this virus. Their use has grown rapidly
to address the need to deliver products (groceries, medical supplies, and other essential
goods) without personal contact, enable surveillance to help curfew enforcement, spray-
ing of disinfectants, and establish mobile temperature detection in open or large areas like
malls, and hospitals. Figure 8 shows the Al and technologies to confront the COVID-19
pandemic.

Kumar et al. (2020) used the latest innovations in Al and Drone technology to propose
a suite of applications in support of fighting COVID. Their proposals range from using the
technology to enable indoor and outdoor monitoring, observations, sanitization, and data
collection. Their solution expands the use of the Internet of Medical Things (IoMT) using
Al-based algorithms, networking, cloud, and storage solutions. Overall, they pitch a com-
prehensive medical solution. They, however, note the limitations in real-life uses and adop-
tion, which depend upon further development in programming and protocols to expand
usage.
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Singhal et al. (2020) expounded on how using digital technologies, educational institutions
adapted to the COVID lockdown. Their research suggested an iterative and evidence-based
active learning process that was able to help students keep up with their studies and showed
improved performance and satisfaction rates. While more research may be needed, this paper
demonstrated how compulsions due to COVID lockdown might introduce long-term changes
in how we conduct our day-to-day life, including something as traditional as education. This
can potentially act as a positive disrupter in technical educational techniques, bringing in
game-changing solutions that improve teachers’ ability to deliver and for students to receive
knowledge.
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5 Lessons learned

This paper shows different models which are successfully used in predicting the spread
of the virus. Considering that the study for the diseases is still in its infancy, using logical
parameters and accurate values for calculations can help with reasonable predictions.

e Multiple studies have conducted their research with ideal conditions for data analysis.
They have not factored in the impact of social distancing, lockdown controls, typi-
cal human social behavior that may lead to inaccuracy in predicting the spread of this
virus.

e Many papers have also assumed typical scenarios of how COVID-19 may have started
or spread in certain regions. Furthermore, they seem to have assumed typical symp-
toms as indicators of the spread of COVID-19. This may lead to false-positive in the
dataset if patients that are not infected by the virus are tagged as having this virus.

e There have been some novel approaches used in papers we researched.

e Zou et al. (2020), in their paper, considered unreported and untested cases to train
their AI model. If their predictions are true, the inference that can be drawn from
the research is that many patients who may recover or die from COVID-19 may go
unaccounted for, skewing the overall infection/death rates.

e In another unique approach, Kuchler et al. (2020) used data from a widely used
social media platform to establish a relationship between people who are socially
connected to the possibility of spreading the virus in regions where these socially
connected people reside.

e Lastly, Mollalo et al. (2020) utilized spatial models and socio-economic data to
establish viral spread patterns amongst certain sections of society.

¢ Eliminating the unknowns and replacing them with strong, scientifically-based data can
result in models that can help with accurate predictions and increasing the confidence
level of regulatory authorities and the public in following recommendations to curb the
spread of COVID-19.

e Al and other technologies can be used as an important tool in a fight for a diagnosis, a
fight against the spread, and eventually designing a robust cure for COVID-19.

e The work is done by Tuli (2020b) and Shahid (2020) in establishing prediction models
and comparing much-used approaches ultimately lays the groundwork for research that
can help create a robust forecast model to track and predict the spread of COVID-19. It
is pretty clear that Weibull-based Long-Short-Term-Memory (W-LSTM) and Bi-direc-
tional long short-term memory (Bi-LSTM) models so far performed better with regards
to be being closely fitted and being trained to produce forecast data with a higher level
of accuracy.

6 Open research challenges

While the use of IoT, cloud computing, and the latest IT-based technologies enabled effec-
tive, fast, reliable, and scalable solutions in the fight against COVID-19, they also open
up exploiting existing vulnerabilities with these technologies to be used by hackers and
adversaries for malicious intents. Our hope is that the accuracy and reliability of these
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technologies, along with increased adoption for COVID-19 related research, may act as a
catalyst in further improving them.

It is also pretty clear that the accuracy of predictions will heavily depend on the ade-
quacy of the available. However, due to limited coverage of the data collected, the data-
driven model may not perform satisfactorily; if applied to a new epidemic with different
characteristics. Furthermore, in most cases, the models did not consider the effects of dif-
ferent control strategies, and hence the rate of forecast varied from actual infection rates.
This may be an open area of focus for future research so as to widen the coverage of pos-
sible progression profiles and incorporate the effects of different control measures on the
epidemic progression profile.

7 Conclusion

In this paper, we have tried to compile a broad array of research that different teams have
undertaken globally to explain the spread of COVID-19 from a multitude of angles, using
data made available by public and private establishments. While some research has vali-
dated the trends seen during the early spread of this virus, others have built upon and fore-
casted this virus’s future spread. Significant effort has been put into explaining the factors
that may help control the spread or ’flatten the curve.” The paper explores the use of Al and
other technologies in fighting COVID-19. Serious effort has also been invested in using
’data-driven analysis to dispel speculation related to COVID-19. Some articles (Hamzaha
2020) during the initial global outbreak used publicly available data to try not only to put
predictions regarding the potential spread patterns but also examined social media posts to
call out the prevalent public sentiment on the origin and containment efforts. The publica-
tions were helpful to the policymakers not only from assessing the political and economic
influence of the virus spread; but also cautioned them on opinions or speculations forming
amongst communities. Assessment of multiple models and studies (Wynants et al. 2020)
showed the high risk of bias and creating over-optimistic estimates/forecasts and extreme
cases, even misleading interpretation of available data. The reason for bias was found to
mainly be due to the nonrepresentative selection of control patients, exclusion of certain
patient types, and model overfitting.

While a lot of work has been done to come up with the best model that can improve the
accuracy of the forecasts, it is pretty clear that active effort is still needed to continue to
source the latest data, train the models to factor in non-epidemic constraints; so that predic-
tions are able to assist medical and governmental agencies in coming up with a fighting
chance to control, contain and hopefully eliminate this epidemic.
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