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Abstract
A lot of data currently being collected is stored in databases with a relational structure. The
process of knowledge discovery from such data is a more challenging task compared with
single table data. Granular computing, which has successfully been applied to mining data
storable in single tables, is a promising direction for discovering knowledge from relational
data. This paper summarizes some recent developments in the area of application of granular
computing to mining relational data. Four granular computing frameworks for processing
relational data are introduced and compared. The paper shows how each of the frameworks
represents relational data, constructs information granules and build patterns based on the
granules. A generic system that can employ any of the frameworks to discover knowledge
from relational data is also outlined.

Keywords Relational data mining · Granular computing · Information systems ·
Association discovery · Classification

1 Introduction

Many techniques in data mining are usually designed for individual problems such as clas-
sification, clustering, or association discovery. One of the main challenges of this field is,
however, to develop a common theory (Yang and Wu 2006) that encompasses different data
mining tasks. A theoretical unifying framework can provide a concise look at the field of
data mining as well as contribute to improving the process of knowledge discovery.

The problem of developing a unified framework is a more complicated issue if the data
to be mined is stored in databases with a relational structure. Such data is distributed over
multiple tables, and the central issue in the specification of a relational data mining problem
is the definition of a model of the data. Such a model directly determines the type of patterns
that will be considered and thus the direction of the search.
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An example of a framework that unifies data mining tasks performed for data stored in
single table databases is one constructed in the field of granular computing (Skowron and
Stepaniuk 2001). The basic idea underlying the field is the way data is perceived. Many
approaches for data analysis and processing treat attribute values as primitives. One can
observe that for the purposes of identification of subgroups of objects that share the same
features, it is convenient to examine not particular features (i.e. attribute values) of an object,
but objects that have the same feature. In such an approach, a primitive is not an attribute
value but a granule of objects sharing the value.

Much research has been devoted to granular computing in data mining (see, e.g., Bargiela
and Pedrycz 2003; Lin and Zadeh 2004; Lin 2005; Pedrycz et al. 2008; Al-Hmouz et al.
2015; Pal et al. 2015). Therefore, the usefulness of granular computing based approaches to
mining data stored in single tables has become a driving force for adapting this paradigm to
relational data.

The goal of this paper is to summarize and compare recent granular computing frameworks
for processing relational data. The paper shows how each of the four described approaches
presents relational data, defines information granules for relational data, and constructs rela-
tional patterns. Since the frameworks are not equipped with a pattern generation algorithm,
a generic system that shows how a granular computing framework can be used in the whole
process of relational knowledge discovery is introduced.

The remaining sections of this paper are organized as follows. Section 2 introduces to
relational data mining and granular computing. It also provides an overview of approaches
to processing relational data using granular computing tools. Sections 3–6 describe granular
computing frameworks for mining relational data. The comparison and evaluation of the
frameworks are provided in Sect. 7. Concluding remarks are given in Sect. 8.

2 Relational datamining and granular computing

This section provides an introduction to relational data mining and granular computing. It
also reviews granular computing approaches to mining relational data.

2.1 Relational data mining

Multi-relational data mining (MRDM) (Džeroski and Lavrač 2001b) concerns knowledge
discovery from relational databases consisting of multiple relations (tables). MRDM aims to
integrate methods from existing fields applied to an analysis of data represented by multiple
relations; producing new techniques for mining multi-relational data.

MRDM can be treated as an extension of standard data mining to a relational case. One
of relational database tables, called target table, is usually an equivalent of a single table
database used in non-relational data mining. The remaining tables, called background tables,
include additional data directly or indirectly joined with the objects from the target table.
Background tables are useful or even necessary to properly describe target objects or to
distinguish them if they come from different classes.

One can indicate two commonly used frameworks for mining relational data: inductive
logic programming and relational database theory frameworks.

Early approaches for pattern discovery in relational data were defined in an inductive logic
programming (ILP) framework (Džeroski and Lavrač 2001a).
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ILP is a research field at the intersection of machine learning and logic programming. It
provides a formal framework as well as practical algorithms for learning in an inductive way
relational descriptions from data represented by target examples and background knowledge.

In ILP, data and induced patterns are represented as formulas in a first-order language.
Data is stored in deductive databases, where relations can be defined extensionally as sets of
ground facts and intensionally as sets of database clauses. Patterns are typically expressed as
logic programs, i.e., sets of Horn clauses.

In ILP, the pattern structure is determined by the so-called declarative bias. It imposes
some constraints on the patterns to be discovered. Thanks to the bias, one can determine
which relations and how many times may be used in patterns; how to replace a relation
attribute with a variable; what values a relation variable may take, and the like.

An alternative framework (Knobbe 2006; Knobbe et al. 2000) for discovering patterns
in relational data is defined in a relational database theory (RDB). In relational database,
relations are usually defined extensionally as sets of tuples of constants. However, they can
also be defined intensionally as sets of views. Relational patterns discovered in a relational
database can be expressed as SQL queries.

Unlike in the ILP framework, a specification of the pattern structure is not required.
Instead, the patterns are specified by the relationships that occur between the database entities
and are shown by an entity-relationship diagram. Alternatively, a class diagram that is a
part of Unified Modeling Language (UML) (Knobbe et al. 2000) is used to express a bias.
UML class diagram shows how associations (i.e., structural relationships) between given
classes (which correspond to database tables) determine how objects in each class relate to
objects in another class. Moreover, multiplicities of associations are also considered. Such
an association multiplicity provides information how many objects in one class are related
to a single object in another, and vice versa.

To deal with data with a relational structure, MRDM often employs tools from standard
data mining. One of these trends is to upgrade a data mining algorithm to a relational case
(Van Laer and De Raedt 2001). The idea is to preserve as many features of the original
algorithm as possible. It means that the general mechanism of data mining is used directly
(e.g. search strategy, pattern construction method) and only crucial notions are adjusted (e.g.
pattern representation, pattern satisfiability).

Another trend, called propositionalization (Lavrač et al. 1991; Van Laer and De Raedt
2001; Kramer et al. 2001; Kuželka and Železný 2008), is to transform relational data into a
single table and then to use a standard data mining algorithm to discover patterns. They can
alternatively be transformed into a relational form. The crucial task of this approach is to find
essential features over relational data to be used to create attributes of a single table. They can
be constructed using relational techniques such as frequent pattern discovery (Blaťák 2005)
or subgroup discovery (Železný and Lavrač 2006).

MRDM also extends approaches that were not developed in the data mining framework
but were adapted for analyzing data storable in single table databases. Those that have been
considerably employed for mining relational data are graph-based data mining (Washio and
Motoda 2003) and formal concept analysis (Ganter et al. 2005).

2.1.1 Graph-based relational data mining approaches

Relational data can successfully be modeled as graphs (Ketkar et al. 2005). For example,
objects of tables can be encoded as vertices and relationships between the objects as edges.
Relational data graphs can be mined using existing techniques of graph theory.
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The problem of concept discovery in multi-relational data was addressed using a graph-
based approach (Kavurucu et al. 2016). The proposed graph-based concept discovery system
generates disconnected graph structures for each target relation and its related background
knowledge, which are initially stored in a relational database. Then the structures are used
to generate a summary graph, which is finally traversed to find concept descriptors.

Subdue (Cook and Holder 2000) is a system for discovering interesting substructures in
structural data. The discovered substructures are organized into a hierarchical description of
the structural regularities in the data. Having a graph of relational data divided into positive
and negative classes, the system is also able to find a subgraph that summarizes the positive
class distinguishing it from the negative one.

An efficient version of Subdue, a graph-based relational learning algorithm, was proposed
in Guo et al. (2007). The proposal introduces optimizations for reducing the subgraph iso-
morphism computation and the numbers of subgraph isomorphism testing, which are the
major source of complexity in Subdue.

An approach, implemented in the Subdue system, for learning patterns in relational data
represented as a graph is proposed in Holder et al. (2005). These patterns can take the form
of prevalent subgraphs, a hierarchical, conceptual clustering of subgraphs, or a subgraph that
can distinguish positive graphs from negative graphs. The approach was applied in domains
related to homeland security and social network analysis.

2.1.2 Formal concept analysis for relational data mining

Formal concept analysis (FCA) (Ganter and Wille 1999) is a tool to classify a set of objects
that are described by attributes and presented as a formal context, i.e. a triple of a set of objects,
an attribute set, and a binary relation that shows if an object possesses a given attribute. A
concept is defined as a pair of a subset of objects (X ) and a subset of the attribute set (B)
such that each object from X is in the relation with each attribute from B, and vice versa. All
concepts can be hierarchically ordered using a concept lattice.

FCA can be used to construct for relational data a formal context that not only expresses
which objects have which attributes but also shows interactions among objects of different
database tables.

One of the approaches, called relational concept analysis (RCA), relies on extending FCA
to deal with relational data. RCA constructs conceptual abstractions from objects described
by both own properties and inter-object links while dealing with several sorts of objects. RCA
produces lattices for each category of objects and those lattices are connected via relational
attributes that are abstractions of the initial links.

To discover relational concept a relational context family, i.e., a set of formal contexts
whose objects are related by links, was used in Huchard et al. (2007). Formal concepts to
be discovered are characterized by both the shared features of members objects and by their
relations to other formal concepts.

RCA was used in Dolques et al. (2016) to improve knowledge discovery from relational
data. The idea of the approach is to reduce the complexity of relational data and to obtain
relevant results faster by computing less lattices (preferably only the lattices that are of
interest).

RCA was also used in a query-based navigation approach to helps an expert to explore a
concept lattice family (Azmeh et al. 2011).

Other extensions of FCA are described below.
The problem of mining quantitative association rules from amulti-relational database was

considered in Nagao and Seki (2016). To handle numerical data in a precise and efficient way,
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one of the notions of FCA, i.e. closed interval patterns, was used to construct logical con-
junctions with interval constraints. The proposed algorithm returns quantitative association
rules that satisfy given minimum support and confidence.

An extension of FCA which considers links between relational objects of different types
was proposed in Kötters (2011). It uses the notion of linked context family that enables to
reflect the schema of the database to a high degree. Thanks to it a query graph can be refined
to a more informative, summarized view of the underlying data without exposing too much
information at once.

Ferré et al. (2005) relations are introduced using concept lattices and their labeling. The
information from both object and relation contexts is combined in a single concept lattice.
Relational features express properties over objects w.r.t. their related objects and can be used
both for redefining a set of objects, as usual, and for traversing some relation from a set of
objects to another.

Another approach, which has been relatively recently adapted to mine relational data, is
the paradigm of granular computing. This approach will be described in more detail in the
remaining subsections.

2.2 Granular computing

When analyzing data to discover knowledge, regardless of the tool used, we usually aggregate
the objects with common features into the same clusters (i.e., groups). Such clusters can be
treated as information derived from the database, which is, in turn, the basis for the discovery
of knowledge. The clusters can be obtained in a variety of ways depending, among others, on
the task to be performed. Moreover, one can receive many different partitions of the universe,
i.e., families of clusters, for the same task. The choice of the most proper partition can depend
on which solution accuracy of the problem under consideration is sufficient. The challenge
is thus to develop a framework for constructing and processing such clusters of data.

A field within which frameworks are developed for problem solving by the use of granules
(e.g., clusters of data) is granular computing (GC) (Bargiela and Pedrycz 2003; Pedrycz et al.
2008). This is a relatively new, rapidly growing field of research (see, e.g., Yao et al. 2013;
Pal and Banerjee 2013; Li et al. 2015; Hu et al. 2015; Wilke and Portmann 2016). It can be
viewed as a label of theories, methodologies, techniques, and tools that make use of granules
in the process of problem solving (Yao 2000). Problems recently addressed inGC ranges from
developing theoretical foundations (e.g. Dubois and Prade 2016; Yao 2016; Mendel 2016),
through dealing with uncertainty (e.g. Kreinovich 2016; Ciucci 2016; Livi and Sadeghian
2016), supervised and unsupervised learning (Peters and Weber 2016; Antonelli et al. 2016;
Lingras et al. 2016; Apolloni et al. 2016), to interactive granular computing (e.g. Skowron
et al. 2016; Wilke and Portmann 2016; Apolloni et al. 2016).

A granule is a collection of entities drawn together by indistinguishability, similarity,
proximity or functionality (Zadeh 1997). Therefore, a granule can be defined as any object,
subset, class, or cluster of a given universe. The process of the formation of granules is called
granulation. To clearly differentiate granulation from clustering, the semantic aspect of GC is
taken into account. Therefore, we treat information granulation as a semantically meaningful
grouping of elements based on a given criterion (Bargiela and Pedrycz 2008). An information
granule can be represented by an expression of the form (name, content), where name is the
granule identifier and content is a set of objects identified by name (Stepaniuk 2008).

Granulation can be performed by applying a top-down or a bottom-upmethod. The former
concerns the process of dividing a larger granule into smaller and lower level granules, and
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the latter the process of forming a larger and higher level granule with smaller and lower
level sub-granules (Yao 2005).

One can obtain many granularities of the same universe which differ in their levels. A
granule of high-level granularity, i.e., a high-level granule represents a more abstract concept,
and a low-level granule a more specific one. A basic task of GC is to switch between different
levels of granularity. A more specific level granularity may reveal more detailed information.
On the other hand, a more abstract level granularity may improve a problem’s solution thanks
to omitting irrelevant details.

Information granules are often constructed using approaches that were originally defined
in separation from granular computing. The most frequently used are rough set (e.g. Eissa
et al. 2016; Skowron et al. 2012; Stepaniuk 2008; Pal et al. 2005) and fuzzy set (e.g. Ray
et al. 2016; Kundu and Pal 2015; Pal et al. 2012; Ganivada et al. 2011) approaches.

Rough set theory (Pawlak 1991) was proposed as a mathematical tool to deal with uncer-
tainty in data. The key concept is an approximation space, which, in its simplest form, is a
pair of a universe (a set of objects under consideration) and a relation that divides the universe
into (usually disjoint) subsets. Each of them can be treated as an elementary granule. Any
concept (represented by a subset of the universe) that is not certain, i.e. indefinable using any
union of elementary granules, can be represented by a rough set. This is a pair of the maximal
union of elementary granules included in the concept (lower approximation) and the minimal
union of elementary granules that includes the concept (upper approximation). The lower
and upper approximations include, respectively, objects that certainly and possibly belong
to the concept. New knowledge about the concept can be derived from the approximations.
For example, decision rules constructed based on the lower approximation show features of
objects that certainly belong to the concept, whereas those generated from the upper one
describe objects whose membership in the concept is possible.

Fuzzy set theory (Zadeh 1997) was proposed as an extension of classical set theory by a
generalization of the membership function, which may take not only either 0 or 1 but also
any intermediate value. It enables to define for any element its membership degree to a given
concept, i.e. fuzzy set. Since the membership function can be any function mapping a given
set of elements to [0, 1], a wide range of concepts can be modeled using fuzzy sets. Like in
rough set theory, it is possible to deal with uncertainty in data. An object that not certainly
belongs to defined concepts can be classified based on its membership degree to the concepts.

A granular aspect of fuzzy sets can be seen e.g. when measuring the similarity of elements
of a fuzzy set. Themembership value of an element enables to define thedegree of its similarity
to other elements. Therefore, a fuzzy granule is defined as a clump of fuzzy set elements
drawn together by similarity.

A similarity function can, in turn, be used to form granules based on the elements.

2.3 Granular computing in relational data mining

Rough set theory is one of the main tools of GC, which has relatively often been applied to
relational data.

Yan et al. (2010) the approximation space is defined as a triple of two distinct universes
and binary relation that is a subset of the Cartesian product of the universes. Approximations
are defined for a subset of one of the universes. They include objects from the other universe
that are in the relation with objects of the subset. Such an approach can be viewed as a
generalization of that introduced in Yao (2004) where approximations are defined in a formal
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context that is a triple of the universe of objects, universe of attributes, and a binary relation
between the universes.

Lan andXiangzhi (2007) approximations are defined in an information system that is a pair
of the double universe (the Cartesian product of two particular universes) and the attribute set.
Equivalence classes defined over the double universe are used to construct approximations
of a double universe subset.

Additionally, a constrained version of the information system is introduced. It is a triple
of the double universe, a constraint relation on the universe, and the attribute set.

To handle with data stored in many tables a multi-table information system is proposed in
Milton et al. (2005). The system is a finite set of tables (each table is viewed as an information
system). Approximations are defined for a subset of the universe of one specified table, this is,
the decision table. Elementary sets of a given universe are used to define the approximations.
Indiscernibility of objects from the decision table is defined using the information available
in all the tables of the multi-table information system.

An approach that is not oriented to a particular granular computing tool and can be used
for relational data was introduced in Lin (2008). A relational database can be represented by
a relational granular model which is the pair of the universe (a family of classical sets, called
the family of universes) and the collection of relations on the Cartesian product of sets from
the universe. The sets from the universe correspond to objects of a relational database, and the
relations (of various arities) define constraints for these objects. Some granules considered
in fields such as data mining, web/text mining, and social networks can be modeled into the
relational granular model.

The approaches described above provide useful tools to deal with data stored in a relational
structure; however, they are one task oriented (e.g. dealing with uncertainty in data) or do not
study extensively or at all the problem of constructing information granules for improving
mining relational data.

The remaining part of this paper shows granular computing approaches that are dedicated
to relational data or can be used to processes such a kind of data.

3 Constrained sums of information systems

This section presents the first granular computing framework developed for processing com-
plex data that is applicable to relational data (Skowron and Stepaniuk 2004). In spite of the
fact that the framework was not proposed recently, it is described and used in this paper as a
reference point to better show the development of applications of granular computing tools
for relational data.

The approach can be summarized as follows. Each of the relations under consideration
is represented by an information system (Definition 1). The universe of the system includes
tuples of the relation, whereas the attribute set consists of the names of relation’s attributes. A
set of relations is represented by a sum of information systems (Definition 2). The universes
of particular systems are joined using the Cartesian product, the attribute sets are merged
using the union operations, preserving the distinguishability of attributes having the same
name but coming from different information systems.

To make it possible to express relationships between/among particular universes, the sum
of information systems is constrained (Definition 3). Namely, tuples of the complex universe
(the Cartesian product of particular universes) are filtered according to a given constraint.
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In particular, such a constraint enables to express relationships of a relational database, e.g.
natural join of two or more tables.

Granules in a (constrained) sumof information systems are constructed based on formulas,
i.e. Boolean combinations of descriptors over particular information systems. An atomic
formula is the expression of the form (a, v), where a is an attribute, and v is one of its
possible values. More advanced formulas are constructed recursively using logical operators
(Definition 4). For each formula its semantics is expressed as the set of objects that satisfy the
formula (Definition 5). A pair of a formula and its semantics is treated as a granule (Definition
6).

A granule that comprises a formula constructed using the conjunction operator is seen
as a basic pattern. An atomic component in a pattern may be defined either in a particular
information system or as an element of the constraint of a constrained sum of information
systems (Definition 7).More advanced patterns are formed according to the standard principle
of building data mining patterns (e.g. association or classification rules).

The details of the approach are given in the following subsections.

3.1 Relational data representation

The starting point for constructing a structure for storing complex data is an information
system defined for a single table.

Definition 1 (Pawlak 1991; Information system) An information system is a pair IS =
(U , A), whereU is a non-empty finite set of objects, called the universe, and A is a non-empty
finite set of attributes. Each attribute a ∈ A is treated as a function a : U → Va , where Va
is the value set of a, i.e. a(x) = v where x ∈ U and v ∈ Va .

The structure used to store data is a combination of information systems, each correspond-
ing to one database table.

Definition 2 (Sumof information systems) Let ISi = (Ui , Ai ) for i = 1, . . . , k be information
systems. The sum of ISi (i = 1, . . . , k), denoted by +(IS1, . . . , ISk), is defined by

1. The objects of +(IS1, . . . , ISk) consist of tuples (x1, . . . , xk) of objects from ISi , i.e.
U = U1 × · · · ×Uk .

2. The attributes of+(IS1, . . . , ISk) consist of the attributes of ISi where distinct copies are
made for attributes in common.

To define dependencies among particular systems a constrained sum of information sys-
tems is introduced. It is done using a constraint relation that shows which tuples of objects,
each coming from a different information system, can be considered as a whole, e.g. a cus-
tomer and a product can be joined by a constraint relation that indicates which customer buys
which product.

Definition 3 (Constrained sum of information systems) Let ISi = (Ui , Ai ) for i = 1, . . . , k
be information systems and let R ⊆ U1 × · · · ×Uk be a constraint relation. The constrained
sum of ISi (i = 1, . . . , k), denoted by +R(IS1, . . . , ISk) is defined by

1. The objects of +R(IS1, . . . , ISk) consist of k-tuples (x1, . . . , xk) of objects from R, i.e.
all objects from U1 × · · · ×Uk satisfying the constraint R.

2. The attributes of +R(IS1, . . . , ISk) consist of the attributes of A1, . . . , Ak where distinct
copies are made for attributes in common.
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The system form Definition 2 can be used to represent a database whose tables are con-
nected using the Cartesian product, whereas the system fromDefinition 3 is more suitable for
relational databases where tables are connected using one of the possible joins, e.g. natural
join.

Constraints in a constrained sum of information systems can be defined internally, i.e. by
a Boolean combination of attribute-value descriptors where attributes come from particular
information systems, or externally, i.e. by additional attributes (different than those from the
sum of information systems) that define the relationship between/among particular informa-
tion systems. The information system +R(IS1, . . . , ISk) can also be defined as a subsystem
of +(IS1, . . . , ISk) by imposing on it a constraint being the characteristic function of the
relation R.

3.2 Relational information granule construction

Granules in particular information systems are defined using the following language. Let
Σ(I S) denote the set of formulas, i.e. Boolean combinations of descriptors over an informa-
tion system I S = (U , A). Descriptors are of the form (a in V ) where a ∈ A and V ⊆ Va .

Definition 4 (Set of formulas) The set Σ(I S) of formulas is defined recursively by

1. (a in V ) ∈ Σ(I S) for any a ∈ A and V ⊆ Va .
2. If α ∈ Σ(I S), then ¬α ∈ Σ(I S).
3. If α, β ∈ Σ(I S), then α ∧ β ∈ Σ(I S).
4. If α, β ∈ Σ(I S), then α ∨ β ∈ Σ(I S).

Let ||α||I S ⊆ U denote the semantics of a formula α in I S, i.e. the set of objects that
satisfy α.

Definition 5 (Semantics of formulas) The semantics of formulas from Σ(I S) with respect
to an information system I S = (U , A) is defined recursively by

1. ||a in V ||I S = {x ∈ U : a(x) ∈ V }.
2. ||¬α||I S = U \ ||α||I S .
3. ||α ∧ β||I S = ||α||I S ∩ ||β||I S .
4. ||α ∨ β||I S = ||α||I S ∪ ||β||I S .
Definition 6 (Granules in information system, sum of information systems, and constrained
sum of information systems)

1. A granule in I S constructed over a formula α ∈ Σ(I S) is defined by (α, ||α||I S).
2. A granule in +(IS1, IS2) constructed over formulas α ∈ Σ(IS1) and β ∈ Σ(IS2) is

defined by (α ∧ β, ||α||IS1 × ||β||IS2).
3. A granule in +R(IS1, IS2) constructed over formulas α ∈ Σ(IS1) and β ∈ Σ(IS2) is

defined by (α ∧ β, ||α||IS1 × ||β||IS2 ∩ R).

Granules in +(IS1, . . . , ISk) and +R(IS1, . . . , ISk) can be defined analogously to those
from +(IS1, IS2) and +R(IS1, IS2), respectively.

Figure 1 shows two granules constructed based on some formulas α and β (points denoted
by ‘+’ and ‘x’ with ellipses represent the meaning of the granules) and one granule α ∧ β

formed based on them (points denoted by ‘*’ are understood as the join of points ‘+’ and ‘x’
by the × operation).
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Fig. 1 Construction of granules in +(IS1, IS2)

3.3 Relational pattern construction

Patterns in +(IS1, IS2) can be constructed by modeling the constraint R. Such a constraint
forms a subsystem of +(IS1, IS2) that consists of only objects that satisfy the pattern defined
by R.

Let α ∈ Σ(+(IS1, IS2)) denote a constraint defined externally, i.e. using attributes from
outside IS1 and IS2. Such a constraint can show a relation between objects of two universes.
For example if one universe includes characteristics of triangles and the other—circles, then
pairs of triangle and circle can be limited by the constraint to those who hold the condition:
triangle is inscribed in circle.

Definition 7 (Pattern in sum of information systems) Let α = α1 ∧ · · · ∧αn1 ∈ Σ(IS1), β =
β1 ∧ · · · ∧ βn2 ∈ Σ(IS2) and γ = γ1 ∧ · · · ∧ γn3 ∈ Σ(+(IS1, IS2)) where n1, n2, n3 ≥ 0. A
pattern in+(IS1, IS2) is defined by the granule (α∧β ∧γ, ||α||IS1 ×||β||IS2 ∩||γ ||+(IS1,IS2)).

If n1, n2 or n3 equals to 0, it means that no formula from, respectively, IS1, IS2 or+(IS1, IS2)
is used in the construction of a pattern. For example, α, β, and γ impose constraints on the
universe of triangles (IS1), circles (IS2), and pairs of both (+(IS1, IS2)), respectively.

Patterns in +R(IS1, IS2) can be constructed in an analogous way, except that the system
+(IS1, IS2) is initially filtered by the proper constraint R.

Patterns in +(IS1, . . . , ISk) and +R(IS1, . . . , ISk) can be defined analogously to those
from +(IS1, IS2) and +R(IS1, IS2), respectively.

3.4 Illustrative example

The following running examples illustrate the notions introduced in this section.
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Example 1 Given a database for the customers of a grocery store.

Id Age Gender Income Class

Customer
1 30 Male 1500 Yes
2 33 Female 2500 Yes
3 30 Female 1800 No
4 30 Female 1800 Yes
5 26 Female 2500 Yes
6 29 Male 3000 Yes
7 30 Male 1800 No

Id Name Price

Product
1 Bread 2.00
2 Butter 3.50
3 Milk 2.50
4 Tea 5.00
5 Coffee 6.00
6 Cigarettes 6.50

Id Cust_id Prod_id Amount Date

Purchase
1 1 1 1 24/06
2 1 3 2 24/06
3 2 1 1 25/06
4 2 3 1 26/06
5 4 6 1 26/06
6 4 2 3 27/06
7 5 5 2 27/06
8 6 4 1 27/06

1. Relational data representation.
The sum of information systems is +(IS1, IS2), where IS1 = (U1, A1) and IS2 =
(U2, A2) are constructed based on relations customer and product, respectively.
Namely, U1 = {xi : i ∈ Vcustomer.id}, A1 = {customer.age, customer.gender,
customer.income, customer.class}, U2 = {xi : i ∈ Vproduct.id}, A2 = {product.name,
product.price}.
The constrained sum of information systems is +R(IS1, IS2), where R ⊂ U1 × U2 is
defined by the condition: A customer made a purchase. In fact, R is defined by the
purchase table, i.e. R = πcust_id,prod_id(purchase).1

Comment: Due to the limitation of the R relation, only a part of the purchase table is used
in the constrained sum of information systems. To take into account the remaining data
from this table, one can sum three information systems, each corresponding to one table,
and define the relation as followsπcustomer.id,purchase.id,product.id(customer �� purchase ��
product).2 Such a solution enables to reflect the data and relationships from the original
database, but the constructed system is redundant compared with the database.

1 πA(•) is understood as a projection over the attributes from A.
2 rel1 �� rel2 is understood as the natural join of relations rel1 and rel2.
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2. Relational information granule construction.
Consider formulas α = (age in [20, 30]) ∧ (gender in {female}) ∈ Σ(IS1) and
β = (price in [4.00, 12.00]). Information granules in +(IS1, IS2) and +R(IS1, IS2) con-
structed based on α and β are (α ∧ β, {3, 4, 5} × {4, 5, 6}) and (α ∧ β, {(4, 6), (5, 5)}),3
respectively.
Comment: In practice, when the cardinality of R is relatively small, the universe of
+(IS1, IS2) can be filtered by R before the computation of granules in particular uni-
verses of IS1 and IS2.

3. Relational pattern construction.
Consider additional formula γ = (income in (0, 500 ∗ price)) ∈ Σ(+(IS1, IS2)) to
construct the pattern to show women aged between 20 and 30 and the products priced
between 4.00 and 12.00 if the women are able, taking their payments into account,
to buy up to 500 pieces of such products. The pattern α ∧ β ∧ γ in +(IS1, IS2) and
+R(IS1, IS2) are (α ∧ β ∧ γ, {(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 5), (5, 6)})
and (α ∧ β ∧ γ, {(4, 6), (5, 5)}), respectively. The pattern in +R(IS1, IS2) limits the
results to pairs (woman, product) such that woman bought product at least once.
Comment: Formulas defined in Σ(+(IS1, IS2)) should be used to express relation-
ships between descriptive attributes only, since relationships between key attributes are
encoded in the R relation.4

Example 2 The framework is analyzed over a real-life and real-time financial data-base too
estimate its suitability for real problem solving. The database can be used for defining the
credibility of bank clients. The characteristic of a client can be constructed based on them
bank history, e.g. transactions, the loans already granted, the credit cards issued (Fig. 2).

The below analyzes the data representation and information granule construction. The
pattern construction is omitted (it is a direct extension of information granule construction)
and left to the reader.

1. Relational data representation.
Each table, except Disposi tion, can be represented using an information system that
includes the descriptive attributes from the table, objects are identified by the pri-
mary key attribute, and a relationship defined in the table by a foreign key attribute
is expressed using a constraint. For example the Client table is defined by the infor-
mation system ISClient = (UClient , AClient ), where UClient = {xi : i ∈ Vclient−id},
AClient = {bir th−date, gender}, and the constraint RClient specified as a function
RClient : UClient �→ UDistrict , which assigns exactly one district for each client.
The Disposi tion table, which in fact is needed to join tables Client , Account , and
Card , can be replaced with the RDisposi tion function defined as RDisposi tion : UCard �→
UClient × UAccount , which assigns exactly one pair of a client and an account for each
card.

2. Relational information granule construction.
The constrained sum of information systems enables to define, based on descriptive
attributes, a granule for each its component separately as well as for any combi-
nation of the components. For example, we can consider the following elementary
granules: (α, ||α||ISClient ), (β, ||β||ISAccount ), (α ∧ β, ||α||ISClient × ||β||ISAccount ) where

3 To simplify the notations, objects from universes are refereed to by their identifiers only.
4 A key attribute is understood as any attribute (usually primary or foreign key attribute) by which one system
can be joined with another one or with itself. A descriptive attribute is any attribute shows features of object
of a give systems.
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Fig. 2 The financial database (Yu et al. 2006). An arrow denotes one-to-many relationship

α = (gender,male) and β = (frequency,month). The construction of more advanced
granules requires a redefinition. For example to find clients who have a given type of the
card it is needed to filter the RDistrict function.
Comment: The above shows that the construction of a sum of information systems for a
data mining task may be a dynamic process and the final form of the system may depend
on not only the data but also the problem to be solved.

4 Granular association rule approach

The approach described in this section is dedicated to discovering association rules from
complex data (Min et al. 2012).

The approach can be summarized as follows. A relation is represented by an information
system (Definition 1). The universe of the system includes tuples of the relation, whereas the
attribute set consists of the names of relation’s attributes. Two relations are joined using a
many-to-many entity-relationship system (Definition 9). The system is a tuple consisting of
the universes and attribute sets of both information systems and a binary relation over both
universes. The binary relation makes it possible to express the connection between two tables
of a relational database using one of the joins, e.g. natural join, or using an additional table,
i.e. the join table. The system can be generalized to more than two relations.
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Granules in a many-to-many entity-relationship system are constructed based on so-called
representations, which correspond to Boolean combinations of descriptors over two informa-
tion systems (Definition 11).An atomic representation is the expressionof the form (a : a(x)),
where a is an attribute, and a(x) is one of its possible values. More advanced representations
are constructed using the conjunction operator (Definition 10). A granule in a many-to-many
entity-relationship system is a triple of the name of the granule, its representation and the
meaning, which is expressed as the equivalence class that contains objects belonging to the
granule (Definition 8).

Two granules, each of which is seen as a basic pattern, and the binary relation are used
to construct a granular association rule (Definition 12). Four types of this rules are defined
(Definition 13). The type of a rule is determined by the match of its granules (partial or
complete match).

The details of the approach are given in the following subsections.

4.1 Relational data representation

A structure for storing relational data is constructed based on an information system (see
Sect. 3). To construct granules the universe of the system is partitioned according to the
values of selected attributes.

Definition 8 1. An equivalence relation EA′ on the universe U of an information system
I S = (U , A), where A′ ⊆ A, is defined by

EA′ = {(x, y) ∈ U ×U : ∀a∈A′a(x) = a(y)}.
2. An equivalence class that contains an object x ∈ U is defined by

EA′(x) = {y ∈ U : (x, y) ∈ EA′ }.
Relational data is stored in a many-to-many entity-relationship system.

Definition 9 Amany-to-manyentity-relationship system is definedby ES = (U , A, V , B, R)

where (U , A) and (V , B) are information systems, and R ⊆ U × V is a binary relation.

The above system enables to represent data of a relational database consisting of three
tables. The information systems correspond to tables that are in many-to-many relation,
whereas the binary relation can store data from the joining table that is limited to two foreign
keys referring to the remaining tables.

4.2 Relational information granule construction

A granule in a many-to-many entity-relationship system is constructed based on granules
from particular information systems.

Definition 10 (Granule in information system) Given an information system I S = (U , A),
a subset A′ ⊆ A, and an object x ∈ U .

1. A granule in I S is a triple of the form G = (g, i(g), e(g)) where g = (A′, x), i(g) =∧
a∈A′(a : a(x)), and e(g) = EA′(x) are, respectively, the name, the representation, and

the meaning of G.
2. The support of G is supp(G) = |e(g)|

|U | .
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Fig. 3 Construction of granules in ES = (U , A, V , B, R)

Definition 11 (Granule in many-to-many entity-relationship system) Given a many-to-many
entity-relationship system ES = (U , A, V , B, R) and subsets A′ ⊆ A and B ′ ⊆ B. A
granule in ES can be represented by a triple (G1,G2, R1,2), where G1 = (g1, i(g1), e(g1))
and G2 = (g2, i(g2), e(g2)), defined as follows

1. G1: g1 = (A′, x), i(g1) = ∧
a∈A′(a : a(x)), e(g1) = EA′(x);

2. G2: g2 = (B ′, y), i(g2) = ∧
b∈B′(b : b(y)), e(g2) = EB′(y);

3. R1,2 = e(g1) × e(g2) ∩ R.

Figure 3, analogously to the first one, shows the construction of granules based on rep-
resentations i(g1) and i(g2) and the combination of them i(g1) ∧ i(g2). The meaning of a
combined granule is computed in two stages: joining objects from the meaning of granules
i(g1) and i(g2); filtering the set of joined objects according to the give binary relation R.

4.3 Relational pattern construction

The framework provides one type of patterns, i.e. association rule.

Definition 12 (Association rule) Let (G1,G2, R1,2) be a granule in a many-to-many entity-
relationship system ES = (U , A, V , B, R).

1. A granular association rule in ES is defined by the granule

GR = (g, i(g), e(g))

where g = (g1, g2), i(g) = i(g1) ⇒ i(g2), and e(g) = R1,2.
2. The source support is ssupp(GR) = |e(g1)|

|U | .
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3. The target support is tsupp(GR) = |e(g2)|
|V | .

4. The support is supp(GR) = |e(g)|
|U×V | .

5. The confidence is con f (GR) = |e(g)|
|e(g1)×e(g2)| .

Four types are defined for granular association rules. Let R(x) = {y ∈ V : (x, y) ∈ R}.
Definition 13 (Four types of granular association rule) A granular association rule GR in
ES = (U , A, V , B, R) is called:

1. Complete match rule if and only if e(g1) × e(g2) ⊆ R.

– The support of GR is suppc(GR) = ssupp(GR).
– The confidence of GR is con fc(GR) = con f (GR) = 1.

2. Left-hand side partial match rule if and only if ∃x∈e(g1)e(g2) ⊆ R(x).5

– The support of GR is supplp(GR) = |{x∈e(g1):e(g2)⊆R(x)}|
|U | .

– The confidence of GR is con flp(GR) = |{x∈e(G1):e(g2)⊆R(x)}|
|e(g1)| .

3. Right-hand side partial match rule if and only if ∃x∈e(g1)e(g2) ∩ R(x) �= ∅.

– The support of GR is supprp(GR) = ssupp(GR).

– The confidence of GR iscon flp(GR) = min{ |e(g2)∩R(x)|
e(g2)

: x ∈ e(g1)}.
4. Partial match rule if and only if e(g1) × e(g2) ∩ R �= ∅.

– The support of GR with respect to a target confidence threshold tc ∈ (0, 1] is

supp(GR, tc) = |{x∈e(g1): |R(x)∩e(g2)|
|e(g2)| ≥tc}|

|U | .
– The source confidence of GR with respect to tc is scon f (GR, tc) =

|{x∈e(g1): |R(x)∩e(g2)|
|e(g2)| ≥tc}|

|e(g1)| .

A complete rule shows that all objects that satisfy the left-hand side are associated with all
objects that satisfy the right-hand side. A left-hand side partial match rule shows that a part of
objects that satisfy the left-hand side are associated with all objects that satisfy the right-hand
side. A right-hand side partial match rule shows that all objects that satisfy the left-hand side
are associated with a part of objects that satisfy the right-hand side. A partial match rule
shows that a part of objects that satisfy the left-hand side are associated with a part of objects
that satisfy the right-hand side.

For partial match rules additional measure, called target confidence, is defined. Let sc be
the source confidence threshold and let K be integer such that

|{x ∈ e(g1) : |R(X) ∩ e(g2)| ≥ K + 1}|
< sc|e(g1)|

≤ |{x ∈ e(g1) : |R(X) ∩ e(g2)| ≥ K }|
The target confidence of GR with respect to tc is tcon f (GR, sc) = K

|e(g2)| .
Applying the above calculations we can find the biggest natural number K such that each

of sc · 100% of objects that satisfies the left-hand side is associated with at least K objects
that satisfy the right-hand side.

5 The condition can be interpreted in such a way that at least one object that satisfies the left-hand side is
associated with all objects that satisfy the right-hand side, e.g. at least one customer of age 30 buys all kinds
of alcohol.
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4.4 Illustrative example

The following example illustrates the notions introduced in this section.

Example 3 Consider the grocery store database from Example 1.

1. Relational data representation.
The many-to-many entity-relationship system is ES = (U , A, V , B, R) where U =
{xi : i ∈ Vcustomer .id}, A = customer .A, V = {xi : i ∈ Vproduct .id}, B = product .A,
and R = πcust_id,prid_id(purchase).
Comment: Due to the limitation of the R relation (binary relation), only a part of the
purchase table can be used to build the many-to-many entity-relationship system.

2. Relational information granule construction.
Consider granules G1 = (g1, i(g1), e(g1)) and G2 = (g1, i(g1), e(g1)) defined as fol-
lows g1 = ({age, gender}, 3), i(g1) = (age : [20, 30]) ∧ (gender : f emale), e(g1) =
{3, 4, 5} and g2 = (price, 4), i(g2) = (price : [4.00, 12.00]), e(g2) = {4, 5, 6}.6
The information granule in ES constructed based on G1 and G2 is (G1,G2, R1,2)where
R1,2 = e(g1) × e(g2) ∩ R = {(4, 6), (5, 5)}.
Comment: In practice, when the cardinality of R is relatively small, the condition i(g j )

can be checked over R j = π j (R1,2) ( j = 1, 2) only.
3. Relational pattern construction.

Consider the association rule GR = G1 ⇒ G2 = ((g1, g2), i(g1) ⇒ i(g2), R1,2) with
ssup(GR) = 3

7 and tsup(GR) = 1
2 . The rule can be interpreted in the following way:

if a person is a woman aged between 20 and 30, then she buys products priced between
4.00 and 12.00 where 43% of persons are women aged between 20 and 30, and 50% of
products are priced between 4.00 and 12.00.
The association rule is a partial match one, since R1,2 �= ∅. Consider then the target
confidence threshold tc = 0.1. The support and confidence of GR are supp(GR, tc) =
|{4}|
|U | = 0.14 and scon f (GR, tc) = |{4}|

|{3,4,5}| = 0.33.

Let sc = 0.33 be the source confidence threshold. For K = 1 we obtain |∅| <

0.33|{3, 4, 5}| ≥ |{4, 5}|. Hence, target confidence of GR with respect to tc is

tcon f (GR, sc) = 1
|{3,4,5}| = 0.33. The rule with supp(GR, tc) = 0.33 and

tcon f (GR, sc) = 0.33 can be read as: 33% of women aged between 20 and 30 buy
at least 33% of products priced between 4.00 and 12.00.
Comment: Since the many-to-many entity-relationship system is very specialized, then
its any double universe granule is a potential association rule.

Example 4 Analyze the suitability of the framework using the financial database from Exam-
ple 2.

1. Relational data representation.
The data can be represented using a set of many-to-many entity-relationship systems.
For example, for tables Client and Disposi tion the following systems can be used:
ES = (UClient , AClient ,UDisposi tion, ADisposi tion, R) where UClient and AClient are
defined as in Example 2, UDisposi tion = {xi : i ∈ Vdisp−id}, ADisposi tion = ∅, and
R is a relation on UClient × UDisposi tion . Systems for joining each of tables Account

6 The 3 value in the name of g1, i.e. ({age, gender}, 3), may be replaced by any remaining one from e(g1).
Analogously for g2.
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and Card with Disposi tion are constructed in an analogous way. In spite of the fact
that ADisposi tion is empty,UDisposi tion is needed to reflect relationships occurring in the
database.

2. Relational information granule construction.
Each component of a given system with a non-empty attribute set can be used to
define granules. For example, let (G1,G2, R1,2) be a granule defined in ES1 such
that G1 = (g1, i(g1), e(g1)), G2 = (g2, i(g2), e(g2)), g1 = ({gender}, x), i(g1) =
(gender : f emale), g2 = (∅, y), and i(g2) = null.
To construct granules over the set of all systemsweneed to introduce additional operations
enabling a proper communication among the systems. Given many-to-many entity-
relationship systems ES and ES′ such that there exist a system (U , A) that is a subsystem
of both ES and ES′. Granules (G1,G2, R1,2) and (G ′

1,G
′
2, R

′
1,2) defined, respectively,

in ES and ES′ can be joined as follows (G1,G2,G ′
1,G

′
2, R1,2 �� R′

1,2).
For example, consider systems ES (defined as previously) and ES′ = (UAccount ,
AAccount ,UDisposi tion, ADisposi tion, R′)where R′ is a relationonUAccount×UDisposi tion .
Consider also granules (G1,G2, R1,2) (defined as previously) and (G ′

1,G
′
2, R

′
1,2)defined

in ES′ as follows: G ′
1 = (g′

1, i(g
′
1), e(g

′
1)), G ′

2 = G2,g′
1 = ({ f requency}, x),

i(g′
1) = (frequency : month). We obtain a granule (G1,G2,G ′

1,G
′
2, R1,2 �� R′

1,2)

where the relation formed by joining the binary relations has the following schema
R1,2 �� R′

1,2(gender , disp−id, f requency).

5 Generalized related set based approach

This section introduces a framework that uses relational information granules constructed
based on the notion of generalized related set (Hońko 2013a, b).

The approach can be summarized as follows. Each tuple of a relation is represented by a
relational object, i.e. the tuple togetherwith the relation name (Definition 14). An extension of
the standard information system is used to store relational data (Definition 15). The universe
consists of relational objects of all relations of a database. The attribute set includes attributes
of all the relations, preserving the distinguishability of attributes having the same name but
coming from different information systems.

Granules in an extended information system are constructed based on target objects and
the background objects related to them (Definitions 16 and 17). A target object with its related
background objects are generalized: constants that occur in objects are replaced by variables
(Definitions 18 and 19). Such a generalization is an abstract representation of a target object
and shows the relationship between the target object and its related objects. A granule is
defined by a pair of an abstract representation of a target object and the semantics, i.e. the
set of all target objects that possess properties defined in the representation (Definition 20).
Such a granule corresponds to a basic pattern (Definition 21). More advanced patterns are
formed according to the standard principle of building data mining patterns (e.g. association
or classification rules).

The details of the approach are given in the following subsections.

5.1 Relational data representation

To consider objects apart from the tables they belong to, the notion of relational object is
used.
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Definition 14 (Relational object) Given a database relation with the schema R(a1, a2, . . . ,
an). An expression of the form R(v1, v2, . . . , vn) is an object of R if and only if
(v1, v2, . . . , vn) is a tuple of R.

A relational database is represented by a complex information system that is constructed
based on a standard information system (see Sect. 3).

Let

– DT and DB denote, respectively, the sets of target and background relations of database
D (i.e. a set of all relations);

– UDT = ⋃
R∈DT

R and UDB = ⋃
R∈DB

R be, respectively, the set of all target and
background objects of database D

– ADT = ⋃
R∈DT

AR
7 and ADB = ⋃

R∈DB
AR be, respectively, the set of all attributes of

the target and background relations of database D.

The following representation of a relational database is introduced.

Definition 15 (Information system for a relational database) A relational database D =
T ∪ B is represented by an information system ISD = (UD, AD), where

1. UD = UDT ∪UDB is a non-empty finite set of objects, called the universe,
2. AD = ADT ∪ ADB is a non-empty finite set of attributes.

The information system defined above includes objects together with the names of tables
they belong to. Information on table joins is not directly stored in the system. They can be
reconstructed based on metadata on primary and foreign keys.

5.2 Relational information granule construction

In this approach, essential information acquired from the relational data are descriptions of
target objects that are constructed based on the notion of related set (Hońko 2010, 2013a).

Definition 16 (Related object and set)

1. Object o is related to object o′ if and only if there exists a key attribute joining o with o′.8
2. A related set of a target object o, denoted by rlt(o), is a set of background objects directly

or indirectly related to the target object.

In this approach, the key attribute is, in general, understood as an important attribute for
joining tables. It is usually a primary or foreign key. However, in some cases, it can also be
another attribute by which one table can be joined with another table or with itself.

A target object’s description is expressed by a set of background objects joined with the
target object. For a given target object one can usually obtain more than one description,
each of which describes the object with different precision. The objective is to choose an
appropriate description of the target object with respect to a given data mining task. The
precision of the target object’s description (i.e., the related set) can be tuned by its depth
level. To define a related set of a given depth level, Definition 15 is generalized.

7 AR denotes here the set of all attributes of relation R.
8 The tables the objects belong to are not assumed to be different.
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Definition 17 (n-related object and set)

1. Object o0 is n-related to object on if and only if there exist n − 1 objects such that oi is
related to oi+1, where n > 0 and 0 ≤ i ≤ n − 1.

2. The n-th depth level related set of a target object o, denoted by rltn(o), is a set of
background objects, each of which are m-related to object o and m ≤ n.

A related set of a given target object can be viewed as its specific description. In order to
derive relational patterns, the target object’s description is generalized. To obtain a general
description of a target object itself and its related set, they are both generalized.

Definition 18 (Generalized object) Let o = R(v1, v2, . . . , vn) be an object where
(v1, v2, . . . , vn) is a tuple of a relation R. A generalized object o, denoted by ogen , is defined
by

ogen = oσ

where σ = {vi1/t1, vi2/t2, . . . vim /tm} is a substitution such that vi j ∈ {v1, v2, . . . , vn}
( j = 1, . . . ,m, m ≤ n), and ti is either a variable, a list of constants, or symbol “_” if the
component is not important for the consideration.9

Definition 19 (Generalized related set) Let rlt(o) = {o1, . . . , on} be the related set of a
target object o. A generalized related set of a target object o, denoted by rltgen(o), is defined
by

rltgen(o) = rlt(o)σ = {o1σ1, . . . , onσn}
where σ is a substitution, there exists σ0 ⊆ σ such that ogen = oσ0, and σi ⊆ σ (i =
1, . . . , n).

A generalized n-related set is defined in an analogous way.
Related sets can be generalized in a variety of ways (for more details, see Hońko 2010).

A method for generalization can be developed taking into consideration language bias.

Definition 20 A granule in an information system ISD = (UD, AD) is a pair of the form
(g, SEMISD (g)) where

1. g = (ogen, rltgen(o));
2. SEMISD (g)) = (SEMISD (ogen), SEMISD (rltgen(o)));
3. SEMISD (ogen) is the set of target objects that satisfy the descriptor;
4. SEMISD (rltgen(o)), is the set of target objects for each ofwhich there exists a substitution

such that each descriptor under the substitution is satisfied.

The information granules as defined above can be viewed as an abstract representation
of relational data. The accuracy level of the representation can easily be changed by taking
another depth level of the related sets.

Figure 4 shows how the meaning of a granule of the form (ogen, rlt igen(o)) changes
depending on the depth level i . Note that rlt0gen = ∅.

9 The notion of substitution is borrowed from ILP where it is used to constructed Horn clauses based on target
and background examples. For more details, see Džeroski and Lavrač (2001b).
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Fig. 4 Construction of granules in ISD

5.3 Relational pattern construction

Granular patterns introduced in this subsection correspond to standard relational patterns, i.e
relational frequent patterns, relational association and classification rules.

Definition 21 Given information system ISD = (UD, AD). Relational patterns are defined
using information granules as follows.

1. A relational (frequent) pattern α in ISD is represented by the granule (g, SEMISD (g))
where g = (ogen, rltgen(o)) and α ⇔ ∧

x∈{ogen}∪rltgen(o) x . The pattern’s frequency can

be calculated by f reqISD (α) = |SEMISD (rltgen(o))|
|SEMISD (ogen)| .

2. A relational association rule α → β in ISD is represented by the granule (α, β),
where α and β are defined, respectively, by (ogen, rlt ′gen(o)) and (ogen, rltgen(o))

such that SEMISD (rltgen(o)) ⊆ SEMISD (rlt ′gen(o)).10 The meaning of the granule is
SEMISD ((α, β)) = (SEMISD (α), SEMISD (β)).
Since any association rule is constructed based on patterns that are discovered over
the same relation (i.e., both patterns are checked to be satisfied for objects of the
same relation), the meaning of the granule can be written in a simpler form, that
is, SEMISD ((α, β)) = (SEMISD (ogen), SEMISD (rlt ′gen(o)), SEMISD (rltgen(o))). The
rule’s frequency and confidence can be calculated by f reqISD (α → β) = f reqISD (β)

and con fISD (α → β) = f reqISD (β)

f reqISD (α)
, respectively.

3. A relational classification rule11 α ← β in ISD is represented by granule (α, β), where
α and β correspond to ogen and rltgen(o), respectively. The meaning of the granule is

10 Here, rlt ′(o) means a different related set than rlt(o).
11 The reversed direction in rule notation is adapted from relational language (see e.g. Džeroski and Lavrač
2001b).
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SI MISD ((α, β)) = (SEMISD (α), SEMISD (β)). The rule’s accuracy and coverage can

be calculated by accISD (α ← β) = |SEMISD (ogen)∩SEMISD (rltgen(o))|
|SEMISD (rltgen(o))| and covISD (α ←

β) = |SEMISD (ogen)∩SEMISD (rltgen(o))|
|SEMISD (ogen)| , respectively.

5.4 Illustrative example

The notions introduced in this section are illustrated by the following example.

Example 5 Consider the grocery store database from Example 1.

1. Relational data representation.
The database can be represented by the information system ISD = (UD, AD), where
UD = UDT ∪UDB , AD = ADT ∪ ADB are defined as follows:
UDT = {c1, . . . , c7},12 UDB = {p1, . . . , p8, p′

1, . . . , p
′
6},

ADT = {id, age, gender , income, class}, ADB = {p′.id, name, price, p.id , cust_id,

prod_id, amount, date}.
Comment: From the logical viewpoint the construction of the information system varies
depending on the table to be specified as the target one. In practice the information sys-
tem can be always the same, e. g. UD = {c1, . . . , c7, p1, . . . , p8, p′

1, . . . , p
′
6}, and the

target table can be specified at the stage of granule construction.
2. Relational information granule construction.

In order to define conditions on attributes age and gender (as in Examples 1 and 3) and
to store them in related sets, one can use a projection on a copy of table customer as a
background table, i.e. customer ′ = πid,age,gender (customer). Let also c′

i be the i-the
object of relation customer ′.
Consider the target object o = c5 with its related sets rlt1(o) = {c′

5, p7} and rlt2(o) =
{c′

5, p7, p
′
5}. Let σ = {c[1]/A, c[2]/_, c[3]/_, c[4]/_, c[5]/_, c′[1]/A, c′[2]/[20, 30],

p[1]/B, p[2]/A, p[3]/C, p[4]/_, p[5]/_, p′
1/B, p′

2/_, p
′
3/[4.00, 12.00]}.

The generalization of target object o and its related sets using σ are ogen =
c(A, _, _, _, _), rlt1gen(o) = {c′(A, [20, 30], f emale), p(B, A,C, _, _)}, and rlt2gen(o)
= {c′(A, [20, 30], f emale), p(B, A,C, _, _), p′(C, _, [4.00, 12.00])}.
The meaning of the granules (ogen, rlt1gen(o)) and (ogen, rlt2gen(o)) are SEMISD(
(ogen, rlt1gen(o))

)
= ({1, . . . , 7}, {4, 5, 6}) and SEMISD

(
(ogen, rlt2gen(o))

)
=

({1, . . . , 7}, {4, 5}).
Comment: 1. An attribute that is not important for further computations is replaced
with “_”. 2. In practice a target object and its related set can be treated as one set, i.e.
{o} ∪ rlt(o). Thanks to this, a copy of the target object does not have to be added to the
related set to build conditions on target attributes.

3. Relational pattern construction.
Given patterns α = c′(A, [20, 30], f emale, _, _) ∧ p(B, A,C, _, _) and β = α ∧
p′(C, _, [4.00, 12.00]).
(a) Patterns α and β can be represented, respectively, by granules (ogen, rlt1gen(o)) and

(ogen, rlt2gen(o)).

12 For simplicity purposes, relations customer , purchase, and product are abbreviated to c, p and p′,
respectively. The i-th object of a relation relation is denoted by ri .
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The frequencies of α and β are f reqISD (α) = |SEMISD (rlt1gen(o))|
|SEMISD (ogen)| = 3/7 and

f reqISD (β) = |SEMISD (rlt2gen(o))|
|SEMISD (ogen)| = 2/7.

(b) Consider the association rule α → β. The meaning of the rule is SEMISD (α →
β) = ({1, . . . , 7}, {4, 5, 6}, {4, 5}). The frequency and confidence of α → β are

f reqISD (α → β) = f reqISD (β) = 2/7 and con fISD (α → β) = f reqISD (β)

f reqISD (α)
= 2/3.

(c) Consider also pattern γ = customer(A, _, _, _, yes). Let σ ′ = (σ \ {c[5]/_}) ∪
{c[5]/D}. Hence, we obtain ogen′ = c(A, _, _, _, D).
The classification rule γ ← β can be represented by the granule (ogen′ , rlt2gen(o))
with the meaning SEMISD (γ ← β) = ({1, 2, 4, 5, 6}, {4, 5}). The rule’s accu-

racy and coverage are accISD (γ ← β) = |SEMISD (ogen′ )∩SEMISD (rlt2gen(o))|
|SEMISD (rlt2gen(o))| = 1 and

covISD (γ ← β) = |SEMISD (ogen′ )∩SEMISD (rlt2gen(o))|
|SEMISD (ogen)| = 2/5.

Comment: If the generalization of the target object is most general, i.e. SEMISD (ogen) =
UT , then the meaning of an association rule can be written in a shorter form. For exam-
ple, SEMISD (α → β) = ({1, . . . , 7}, {4, 5, 6}, {4, 5}) is shortened to SEMISD (α →
β) = ({4, 5, 6}, {4, 5}) provided that the universe cardinality is accessible during the
computation of the rule quality.

Example 6 Analyze the suitability of the framework using the financial database from Exam-
ple 2.

1. Relational data representation.
Each database relation is a component of the universe of the information system. For
example the part of the database that concerns tablesClient , Account , and Disposi tion,
assuming the Client is the target table, can be represented by the system ISD = (U , A)

whereUD = UDT ∪UDB = {Client}∪{Account, Disposi tion}, AD = ADT ∪ ADB =
{client−id, bir th−date, gender} ∪{Account .account−id, f requency, date,
disp−id , Disposi tion.account−id, Disposi tion.client−id}.

2. Relational information granule construction.
A granule can be constructed based on any target object and its related set. It can also be
done based on only the database structure and expert knowledge. For example one can
construct a granule using a virtual generalized object ogen = Client(A, B,C) and its
related set rltgen(o) = {Disposi tion(D, E, A), Account(E, F,G)}.
Comment: Since data may change over time, before computing the meaning of a previ-
ously defined granule it is required to update target objects representation, i.e. related
sets.

6 Description language based approach

This section introduces a framework that uses relational information granules constructed
using description languages defined for relational data (Hońko 2014, 2015a).

The approach can be summarized as follows. A relation is represented by an information
system (Definition 1). The universe of the system includes tuples of the relation, whereas the
attribute set consists of the names of relation’s attributes. A set of relations is represented
by a compound information system (Definition 22). The universes of particular systems are
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joined using the Cartesian product, the attribute sets are merged using the union operations,
preserving the distinguishability of attributes having the same namebut coming fromdifferent
information systems.

To make it possible to express relationships between/among particular universes, the
compound information system is constrained (Definition 23). Namely, tuples of the complex
universe (the Cartesian product of particular universes) are filtered according to a given
constraint that is defined using a generalized definition of left outer join. Such a constraint
enables to impose more than one relationship for to tables.

Granules in a (compound) information system are constructed based on formulas, i.e.
Boolean combinations of descriptors over particular information systems. An atomic formula
is the expression of one of the forms: (a, v) (a is an attribute, and v is one of its possible
values); (a, V ) (V is the set of values the attribute may take); (a, a′) (a and a′ are attributes
that join either the same table with itself or different tables) (Definition 24). More advanced
formulas are constructed recursively using logical operators (Definitions 25 and 26). For each
formula its semantics is expressed as the set of objects that satisfy the formula. A pair of a
formula and its semantics is treated as a granule (Definition 27).

A granule that comprises a formula constructed using the conjunction operator is seen
as a basic pattern (Definition 28). More advanced patterns are formed according to the
standard principle of building data mining patterns (e.g. association or classification rules)
(Definitions 29 and 30).

The details of the approach are given in the following subsections.

6.1 Relational data representation

Each table of a database is represented by an information system (see Sect. 3).
The compound information system corresponding to m database tables is defined as fol-

lows.

Definition 22 (Compound information system I S(1,2,...,m))Let ISi = (Ui , Ai )be information
systems, where 1 ≤ i ≤ m and m > 1 is a fixed number. A compound information system
I S(1,2,...,m) is defined by

I S(1,2,...,m) = ×(IS1, IS2, . . . , ISm) =
(

m∏

i=1

Ui ,

m⋃

i=1

Ai

)

. (1)

To allow the connections between tables that occur in the original database or they are
defined by an expert, a constrained version of the compound information system is introduced.

A constraint, denoted by ��Θ , is defined by the left outer join13 on disjunction of the
formulas from Θ . The Θ set can consists of any formulas defined over the information
systems joined by ��. The use of left outer join guarantees that an object from the left
universe is not removed from the database if it does not join to any object from the right
universe.

The constrained compound information system corresponding to m database tables is
defined as follows.

13 A left outer join of tables T1 and T2 is the natural join of them expanded by those objects from T1 that do
not hold the joining condition.
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Definition 23 (Constrained compound information system I SΘ
(1,2,...,m)) A constrained com-

pound information system I SΘ
(1,2,...,m) is defined by

I SΘ
(1,2,...,m) = ��Θ(IS1, IS2, . . . , ISm) =

(

U1 ��Θ U2 ��Θ · · · ��Θ Um,

m⋃

i=1

Ai

)

. (2)

6.2 Relational information granule construction

For each information system that corresponds to a database table a description language is
defined. The language enables to define formulas that are used for constructing information
granules.

Let A = Ades ∪ Akey , where I S = (U , A) is an information system and Ades (Akey)

is the set of descriptive (key) attributes. The descriptive language for I S is denoted by
L I S = LISdes ∪ LISkey . An atomic formula and its negation are defined in L I S by their syntax
and semantics.

Definition 24 (Syntax and semantics of atomic formula L I S = LISdes ∪ LISkey ) The syntax
and semantics of atomic formulas in a language L I S are defined by

1. a ∈ Ades , v ∈ Va ⇒ (a, v) ∈ LISdes and SEMISdes (a, v) = {x ∈ U : a(x) = v};
2. a ∈ Ades , V ⊆ Va ⇒ (a, V ) ∈ LISdes and SEMISdes (a, V ) = {x ∈ U : a(x) ∈ V };
3. α ∈ LISdes ⇒ ¬α ∈ LISdes and SEMISdes (¬α) = U \ SEMISdes (α),
4. a, a′ ∈ Akey ⇒ (a, a′) ∈ LISkey and SEMISkey (a, a′) = {x ∈ U : a(x) = a′(x)};
5. α ∈ LISkey ⇒ ¬α ∈ LISkey and SEMISkey (¬α) = U \ SEMISkey (α).

More advanced formulas are constructed recursively using logical operators such as con-
junction and disjunction. For more details, see Hońko (2015a).

The above-defined language facilitates the construction of formulas that express not only
simple features of objects (i.e. formulas with descriptors of the form (a, v) ∈ LISdes ) but also
relationships between the features (i.e. formulaswith descriptors of the form (a, a′) ∈ LISkey ).

Using any granule description language L , one can define granules of the form
(α, SEM(α)), where α ∈ L .

A description language corresponding to two database tables is constructed as follows.
Let LIS(i, j) = LISi∨ j ∪ LISi∧ j , where each formula of LISi∨ j is constructed over either ISi or
IS j , and LISi∧ j consists of formulas constructed over both ISi and IS j .

Definition 25 (Syntax and semantics of atomic formula in LIS(i, j) ) The syntax and semantics
of atomic formulas in a language LIS(i, j) are defined by

1. α ∈ LISi ⇒ α ∈ LISi∨ j and SEMISi∨ j (α) = SEMISi (α) ×Uj ;
2. α ∈ LIS j ⇒ α ∈ LISi∨ j and SEMISi∨ j (α) = Ui × SEMIS j (α);
3. α ∈ LISi∨ j ⇒ ¬α ∈ LISi∨ j and SEMISi∨ j (¬α) = (Ui ×Uj ) \ SEMISi∨ j (α);
4. a ∈ (Ai )key, a′ ∈ (A j )key ⇒ (a, a′) ∈ LISi∧ j and SEMISi∧ j (a, a′) = {(x, y) ∈

Ui ×Uj : a(x) = a′(y)};
5. α ∈ LISi∧ j ⇒ ¬α ∈ LISi∧ j and SEMISi∧ j (¬α) = (Ui ×Uj ) \ SEMISi∧ j (α).

The above-defined language makes it possible to construct formulas that show features
of pairs of objects from different universes. Furthermore, the formulas can also show the
relationship between the objects themselves (i.e. formulas with a descriptor of the form
(a, a′) ∈ LISi∧ j ).
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A description language can be extended to LIS(m)
defined for a compound information

system IS(m).

Definition 26 (Syntax and semantics of atomic formula in LIS(m)
) The syntax and semantics

of atomic formulas in a language LIS(m)
are defined by

1. α ∈ LISi ⇒ α ∈ LIS(m)
and SEMIS(m)

(α) = U1 × · · · × Ui−1 × SEMISi (α) × Ui+1 ×
· · · ×Um ;

2. α ∈ LIS(i, j) ⇒ α ∈ LIS(m)
and SEMIS(m)

(α) = {(x1, . . . , xi , . . . , x j , . . . , xm) ∈
m∏

k=1
Uk :

(xi , x j ) ∈ SEMIS(i, j) (α)};
3. α ∈ LIS(m)

⇒ ¬α ∈ LIS(m)
and SEMIS(m)

(¬α) = (U1 × · · · ×Um) \ SEMIS(m)
(α).

Since knowledge discovery is focused on selected database tables only, usually one table
(i.e. the target table), the semantics of LIS(m)

is extended by the following

1. α ∈ LIS(m)
⇒ SEMπi

IS(m)
(α) = πAi (SEMIS(m)

(α)), where 1 ≤ i ≤ m;

2. α ∈ LIS(m)
⇒ SEM

πi1,i2,...,ik
IS(m)

(α) = πAi1 ,Ai2 ,...,Aik
(SEMIS(m)

(α)), where 1 ≤
i1, i2, . . . , ik ≤ m and k < m.

The syntax and semantics of L I SΘ
(m)

are defined in the same way as in Definition 26.

It is enough to replace IS(i, j), IS(m), and the × operation with I SΘ
(i, j), I S

Θ
(m), and the ��Θ

operation, respectively.

Definition 27 A granule in a compound information system IS(m) is a pair (α, SEMIS(m)
(α))

where α ∈ LIS(m)
.

A granule in a constrained compound information system IS(m) is defined analogously.
Figure 5, analogously to that from Sect. 4, shows granules constructed based on formulas

(a, v) and (a′, v′) and and its combination that is restricted by an additional formula (b, b′)
defining how to join two information systems.

6.3 Relational pattern construction

Granular patterns introduced in this subsection correspond to standard relational patterns.
More advanced granular patterns can be found in Hońko (2015b).

Let IS(m) = ×(IS1, IS2, . . . , ISm) be a compound information system.

Definition 28 (Frequent pattern)

1. A pattern in IS(m) is an expression of the form α = α1 ∧ · · · ∧ αk ∈ LIS(m)
, where k ≥ 1.

2. The frequency of α is f reqIS(m)
(α) = |SEMIS(m)

(α)|
|U(m)| .14

3. The frequency of α with respect to ISi (1 ≤ i ≤ m) is f reqπi
IS(m)

(α) = |SEM
πi
IS(m)

(α)|
|Ui | .

Definition 29 (Association rule)

1. An association rule in IS(m) is an expression of the form α → β ∈ LIS(m)
, where α and

β are patterns in IS(m), and they have no common descriptor.

14 U(m) denotes the universe of IS(m).
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Fig. 5 Construction of granules in IS(i, j)

2. The frequency and confidence of α → β are f reqIS(m)
(α → β) = f reqIS(m)

(α ∧β) and

con fIS(m)
(α → β) = f reqIS(m)

(α∧β)

f reqIS(m)
(α)

, respectively.

3. The frequency and confidence of α → β with respect to ISi (1 ≤ i ≤ m) are

f reqπi
IS(m)

(α → β) = f reqπi
IS(m)

(α ∧β) and con f πi
IS(m)

(α → β) = f req
πi
IS(m)

(α∧β)

f req
πi
IS(m)

(α)
, respec-

tively.

A classification rule is defined as a special case of an association rule.

Definition 30 (Classification rule)

1. A classification rule15 in IS(m) is an association rule α → β ∈ LIS(m)
such that β is the

decision descriptor.

2. The accuracy and coverage of α → β are accIS(m)
(α → β) = f reqIS(m)

(α∧β)

f reqIS(m)
(α)

and

covIS(m)
(α → β) = f reqIS(m)

(α∧β)

f reqIS(m)
(β)

, respectively.

3. The accuracy and coverage of α → β with respect to ISi (1 ≤ i ≤ m) are accπi
IS(m)

(α →
β) = f req

πi
IS(m)

(α∧β)

f req
πi
IS(m)

(α)
and covπi

IS(m)
(α → β) = f req

πi
IS(m)

(α∧β)

f req
πi
IS(m)

(β)
, respectively.

For a compound information system I SΘ
(m) = ×(IS1, IS2, . . . , ISm) relational patterns are

defined in an analogous way.

15 Here, the notation of classification rule is not reversed since it is an expansion of a standard classification
rule.
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6.4 Illustrative example

The following example illustrates the notions introduced in this section.

Example 7 Consider the grocery store database from Example 1.

1. Relational data representation.
The compound information system is IS(3) = ×(IS1, IS2, IS3), where IS1, IS2, and
IS3 are constructed based on relations R1 = customer , R2 = purchase, and R3 =
product , respectively.
The constrained compound information system is I SΘ

(3) = ��Θ(IS1, IS2, IS3), where
Θ = {(R1.id, R2.cust_id), (R2.prod_id, R3.id)}, and U1 ��Θ U2 ��Θ U3 =
{(1, 1, 1), (1, 2, 3), (2, 3, 1), (2, 4, 3), (3, null, null), (4, 5, 6), (4, 6, 2), (5, 7, 5),
(6, 8, 4), (7, null, null)}.
Comment: 1. In spite of the fact that a compound system is an ordered tuple of particular
information systems, the order is not essential for data representing and mining. 2. In
the constrained compound information system the formulas (R1.id, R2.cust_id) and
(R2.prod_id, R3.id) correspond to one-to-many relationships between tables customer
and purchase, and purchase and product, respectively.

2. Relational information granule construction.
Consider the languages LIS(3) and L I SΘ

(3)
and formulas defined in these languages

α = (age, [20, 30]) ∧ (age, f emale) ∧ (R1.id, R2.cust_id) ∈ LIS(3) , L I SΘ
(3)

and

β = α ∧ (R2.prod_id, R3.id) ∧ (price, [4.00, 12.00]) ∈ LIS(3) , L I SΘ
(3)
. The seman-

tics of α and β in IS(3) and I SΘ
(3) are SEMIS(3) (α) = {(4, 5), (4, 6), (5, 7)} × U3,

SEMIS(3) (β){(4, 5, 6), (5, 7, 5)} and SEMI SΘ
(3)

(α) = {(4, 5, 6), (4, 6, 2), (5, 7, 5)} and
SEMI SΘ

(3)
(β) = {(4, 5, 6), (5, 7, 5)}.

Information granules corresponding to formulas α, β in IS(3) and I SΘ
(3) are (α,

SEMIS(3) (α)), (β, SEMIS(3) (β)) and (α, SEMI SΘ
(3)

(α)), (β, SEMI SΘ
(3)

(β)).

Comment: The condition (R1.id, R2.cust_id) can be omitted inαwhen it is considered in
L I SΘ

(3)
, namely the formula α = (age, [20, 30])∧ (age, f emale) is equivalent to α since

it is automatically filtered by (R1.id, R2.cust_id) that is included inΘ . Analogously for
β.

3. Relational pattern construction.
Consider the system I SΘ

(3).

(a) The frequency of pattern α (w.r.t. IS1) is f reqI SΘ
(3)

(α) = |{(4,5,6),(4,6,2),(5,7,5)}|
|U1 ��ΘU2 ��ΘU3| =

3/10 ( f reqπ1

I SΘ
(3)

(α) = |{4,5}|
|U1| = 2/7). The frequency of pattern β (w.r.t. IS1) is

f reqI SΘ
(3)

(β) = |{(4,5,6),(5,7,5)}|
|U1 ��ΘU2 ��ΘU3| = 1/5 ( f reqπ1

I SΘ
(3)

(β) = |{4,5}|
|U3| = 1/2).

(b) The frequency and confidence of association rule α → β (w.r.t. IS1) are
f reqI SΘ

(3)
(α → β) = f reqI SΘ

(3)
(β) = 1/5 and con fI SΘ

(3)
(α → β) =

|{(4,5,6),(5,7,5)}|
|{(4,5,6),(4,6,2),(5,7,5)}| = 2/3 ( f reqπ1

I SΘ
(3)

(α → β) = f reqπ1

I SΘ
(3)

(β) = 1/2 and

con f π1

I SΘ
(3)

(α → β) = |{4,5}|
|{4,5}| = 1).

(c) Consider also formula γ = (class, yes) ∈ L I SΘ
(3)

with the semantics SEMIS(3) (γ ) =
{(1, 1, 1), (1, 2, 3), (3, null, null), (4, 5, 6), (4, 6, 2), (5, 7, 5), (6, 8, 4)}.
The accuracy and coverage of classification rule β → γ (w.r.t. IS1) are accI SΘ

(3)
(β →
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γ ) = |{(4,5,6),(5,7,5)}|
|{(4,5,6),(5,7,5)}| = 1 and covI SΘ

(3)
(α → γ ) =

|{(4,5,6),(5,7,5)}|
|{(1,1,1),(1,2,3),(3,null,null),(4,5,6),(4,6,2),(5,7,5),(6,8,4)}| = 2/7 (accπ1

I SΘ
(3)

(α → γ ) =
|{4,5}|
|{4,5}| = 1 and covπ1

I SΘ
(3)

(α → γ ) = |{4,5}|
|{1,2,4,5,6}| = 2/5).

Comment: The particular information systemwith respect towhich the quality of a pattern
(e.g. frequency) is computed is usually the one corresponding to the target table.

Example 8 Analyze the suitability of the framework using the financial database from Exam-
ple 2.

1. Relational data representation.
Each database table is represented by one information system. Each relationship between
two tables is represented by an expression of attribute-attribute pair. For example the part
of the database that concerns tables Client , Account , and Disposi tion can be repre-
sented by the system I SΘ

(3) = ��Θ(IS1, IS2, IS3), where IS1, IS2, and IS3 are constructed
based on relations R1 = Client, R2 = Account , and R3 = Disposi tion, respectively,
and Θ = {(R1.client−id, R3.client−id), (R2.account−id, R3.account−id)}.

2. Relational information granule construction.
The data representation enables to construct granules using any attribute-value condi-
tion as well as attribute-attribute one. For example one can consider a granule defined
by the formula (gender ,male) ∧ (R1.client−id, R3.client−id) ∧ (R2.account−id,

R3.account−id) ∧ (freaquency,month) ∈ L I SΘ
(3)
, which can be shortened to

(gender,male) ∧ (freaquency,month) if we are also interested in clients who satisfy
the first condition but not the second one.

7 Discussion

This section analyzes important stages of the construction of a granular computing framework
for mining relational data. It also discusses how to use a granule computing framework for
building a complex system for mining relational data.

7.1 Comparative study

For simplicity’s sake the frameworks fromSects. 3, 4, 5 and6will be referred to as F1, F2, F3
and F4, respectively.

1. Relational data representation.
To enable the application of granular computing tools, relational data should be trans-
formed into a typical data structure used in this paradigm, e.g. information system. The
original data structure components essential for constructing patterns such as table names
and joins should be preserved during the database transformation. They can be stored as
metadata or used directly in the data representation construction.
Framework F1 aims at analyzing data that comes from multiple standard information
systems. The systems can be considered independently to one another (sum of informa-
tion systems) as well as there can be taken in to account a relation joining the systems
(constrained sum of information systems). This data representation makes F1 a proper
approach for solving problems in the multi-agent system environment.
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Framework F2 is dedicated to analyzing data stored in a double universe. It is assumed
that both universes interact with each other, which is expressed by a relation joining the
universes. One can observe that this data structure can be considered as a special case
of that from F1. Namely, the database in F2 is that from F1 limited to two information
systems that are joined by a characteristic function. Such a data structure can be used to
encodes data used in recommender systems.
Framework F3 is oriented to analyze of target objects in the context of additional knowl-
edge hidden in tables joined (in)directly with the target data. Therefore, the goal of
framework F3 is to transform data stored in multiple tables into one collective informa-
tion system with the distinguished target objects. This structure can be useful in building
a decision support system, where the decision is made for target objects based on addi-
tional data.
Framework from F4 enables to store data from a typical relational database in the form of
information systems (each corresponds to one database table) that can be joined according
to relations occurring in the original database as well as by additional ones defined by an
expert. The data structure without joins (compound information system) corresponds to
the sum of information systems, whereas the structure with joins (constrained compound
information system) can, on the one hand, be considered as a special case of the con-
strained sum of information systems that is specialized for typical relational databases,
and on the other hand, as its extension, since multiple connections (corresponding to
outer joins) of two tables can be defined at once. The structure enables to deal with mul-
tiple standard information systems that interact to one another (e.g. multi-agent system)
as well as to focus on one particular system in the context of the remaining ones (e.g.
decision support system).

2. Relational information granule construction.
Since the notion of granule is not, by itself, strictly defined, constructions of information
granules for the same data may vary. A common feature is that a transformation of data
into a granule form provides a new higher-level representation. Namely, it includes some
information derived from data. The crucial task is, therefore, to use a granular representa-
tion that provides essential information for further processing, i.e. knowledge discovery.
In F1, an information granule in the (constrained) sum of information systems is con-
structed as a combination of granules defined for each particular information system. A
constraint used in the (constrained) sum of information systems serves as a filter that
retains granules that are valid in the system.
In F2, an information granule is constructed in an analogous way. Namely, granules of
two particular systems of a many-to-many entity-relationship system are combined and
further filtered by the relation joining the two systems. An information granule of F2
can be considered as a special case of that from F1 not only due to the dependency
between the data structures of both frameworks but also by the fact that granules in F2
are constructed using the conjunction operator only.
In F3, an information granule is constructed based on the general description (i.e. gener-
alized related set) of one target object. Such a granule corresponds to target objects that
have the same descriptions as the object used during granule construction. In contrast to
the remaining frameworks, F3 uses relational language to express granules, thanks to
this, granules themselves express not only features that occur in particular tables but also
connections among the tables.

123



Recent granular computing frameworks for mining relational… 2735

The way of construction of an information granule in F4 is similar to that in F1. Namely,
granules defined for each particular information system are used to construct a granule
in the whole system. However, filtering of combinations of granules is done in another
way. Thanks to extending the attribute-value language, connections among tables are
explicitly shown in the construction of granules.

3. Relational pattern construction.
The task of information granule construction can be seen as an intermediate step in the
transformation of data into knowledge. A general granular representation of relational
data can facilitate the process of discovering patterns of different types. Information
granules can be viewed as components for constructing patterns. Namely, each granule
shows some properties and is associated with objects sharing them. Therefore, informa-
tion granules can directly be used or adapted to construct a pattern descriptor.
The basis for discovering relational patterns in F1 such as association or classification
rules is the construction of elementary patterns understood as conjunctions of conditions
defined in particular information systems. Such patterns can be treated as information
granules in the (constrained) sum of information systems that are adapted to a given data
mining task. A condition of a pattern can be constructed twofold: based on an attribute
of a particular information system, or based on attributes that can join two systems (sum
of information systems) or additionally filter granules that relate to two systems (con-
strained sum of information systems).
Association rules in F2 are constructed based on granules from two tables and on the
relations between them. In terms of the construction, rules can be seen as a special case of
patterns defined in F1. However, their meaning makes them a different being. Advanced
similarity measures (partial and complete match) enable to interpret the meaning of gran-
ules in a variety of way.
In F3 granules can be seen as elementary patterns, and they are used to construct proper
ones, i.e. patterns of a required quality. Information granules in F3 enable to construct
patterns expressed in relational language. Namely, the syntax of granules is defined using
relational language, therefore, information granules can easily be transformed into stan-
dard relational patterns.
Like in F3, information granules in F4 form a basis for constructing proper patterns.
They are defined in an extended attribute-value language, thanks to this they are more
similar to propositional ones. However, thanks to using the language richer than the
attribute-value one, essential connections among tables are preserved and patterns can
directly be applied to relational data.

In spite of the fact the all the frameworks were defined in a general granular comput-
ing environment, they are considerably influenced by rough set theory. Namely, all of them
use information system—the typical rough set data structure—for storing relational data.
Furthermore, three of them (i.e. F1, F2, and F4) apply an indiscernibility relation to form
granules, whereas the remaining one divides the universe into possibly overlapping gran-
ules (similarity relation), i.e. an object may belong to different granules constructed using
generalized related sets.

Table 1 summarizes the above-described approaches in terms of the data type to be mined,
the language used to express knowledge, the data mining task to be performed, and the
dedicated application.
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Table 1 Characteristics of granular computing based frameworks for mining relational data

Framework

Data type

F1 Propositional database; relational database where join tables links two
tables only

F2 Many-to-many case where the join table consists of two foreign keys
only

F3 Relational database

F4 Propositional database, relational database

Language

F1 Attribute-value language

F2 Attribute-value language

F3 Relational language

F4 Extended attribute-value language

Task

F1 Hierarchical modeling of complex pattern

F2 Association discovery

F3 Multi-task (association discovery, classification, clustering)

F4 Multi-task (association discovery, classification, clustering)

Application

F1 Multi-agent system based problem solving, e.g. failure diagnosis of the
space robotic arm

F2 Recommender system, e.g. cold-start system

F3 General-purpose, e.g. building a decision support system

F4 General-purpose, e.g. building a decision support system

7.2 Towards building a granular computing based system formmining relational
data

Each of the four frameworks can be used to build a granular computing based system for
mining relational data (granular-relation data mining system for short). Such a system can
include three modules as shown in Fig. 6.

1. Control module.
This module is entirely constructed using knowledge provided by an expert. It includes
standard components of the process of knowledge discovery such as language bias (e.g.
information on relations that can be used and how can be used during pattern generation),
search bias (e.g. the maximal depth level to be used during pattern generation), validation
bias (e.g. quality of patterns). All the biases can be defined using a relational language.

2. Model module.
This module is entirely constructed based on a given granular computing framework. It
takes as the input a relational data model, uses a granular representation of the data (see
steps relational data representation and relational information granule construction), and
finally returns a granular representation of relational patterns (see step relational pattern
construction).
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Fig. 6 A schema of a granular-relation data mining system

3. Engine module.
This module is partially constructed based on a given granular computing framework
and partially by adapting data mining tools. The first component (granular representation
generator) uses a method for forming information granules based on relational data.
This process is only navigated by the language bias. The second component (granular
pattern generator) uses a method for forming patterns based on information granules as
well as adapts a pattern generation algorithm to induce required patterns. This process is
navigated by both: pattern generation strategy provided by the used algorithm, and the
search and validation biases.

Theproposed schema showson ageneral level the incorporation of a granular framework to
awhole system.The stage of transforming relational data into granular representation is in fact
performed in each framework two-step: transformation of relational data into an information
systembased structure andgeneration of information granules from the transformed relational
data. It means that a part of language bias instructions can be used at the intermediate step, e.g.
some unneeded relations can be omitted during the construction of the information system
based structure.

Furthermore, search bias instructions do not have to be associated with the stage of pattern
generation only. Some of them can be used at the previous stage, depending on how refined
a granule representation is to be generated. For example, in F3 the limitation of depth level
is used during the construction of information granules. However, the level is possible to be
additionally limited during the generation of patterns themselves.
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Fig. 7 A schema of transformation a non-relational approach into the granular-relation data mining system

The scheme given in Fig. 6 suggests that the granular-relation data mining system is
devoted to data mining tasks that require the generation of patterns (e.g. frequent pattern
and association rule discovery, decision rule discovery). However, granular representation
generated under the system can be also used for other types of tasks, e.g. clustering. Namely,
granular pattern generation and granular patterns can be generalized to a granular result
generation, and granular results, respectively. For example, we could adapt a clustering
algorithm to operate on information granules and to produce higher level granules, i.e. clusters
of information granules.

Despite the fact that the system is defined based on the four previously described granular
computing frameworks it can be also used to redefine or expand other datamining approaches
such as those based on graph or formal concept analysis.

A data mining approach can be transformed into a granular-relation data mining system
according to the scheme given in Fig. 7.

The transformation can be done for a datamining approach of any stage, i.e. non-relational,
relational, granular, or granular-relational. The particular stages can be obtained using the
following methodologies:

– Non-relational → relational Upgrading a data mining algorithm to a relational case (Van
Laer and De Raedt 2001).

– Non-relational → granular Constructing a granule description language (Skowron and
Stepaniuk 2001).

– relational → granular-relational Constructing a relational granule description language
(Hońko 2015a).

– Granular → granular-relational Upgrading a granular data mining framework to a rela-
tional case (Hońko 2014).

For example, to transform the approaches described in Sects. 2.1.1 and 2.1.2, which are
relational ones, we mainly need to apply a granulation procedure (relational → granular-
relational). Granules in graph can be defined based of vertices, edges, or both (see, e.g.
Chiaselotti et al. 2016). For instance, a set of vertices can be partitioned into subsets (ele-
mentary granules) according to a given a relation showing indiscernibility of vertices. In
formal concept analysis an elementary granule can be formed based on a concept, i.e. the
extension of the granule is the set of objects of the concept, whereas the intension is defined
by the attributes of the concept (see, e.g. Yao 2001).
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8 Concluding remarks

This paper has introduced and discussed recent developments in constructing granular com-
puting frameworks for mining relational data. The frameworks unify the way the data and
patterns are expressed and specified. They also partially standardize the process of discover-
ing patterns from the data. Namely, the patterns can directly be obtained from the information
granules or constructed based on them. In conjunction with pattern generation algorithms
controlled by expert knowledge, they can build a complex system for mining relational data.

The frameworks can be summarized as follows.

1. Constrained sums of information systems.
It is intended to mine complex data that is structured as separate universes, which can
alternatively interact with one another (e.g. multi-agent system). The interaction can
be defined using any relation over the universes. The framework can produce patterns
expressed in an attribute-value language with additional expressions showing interac-
tions.

2. Granular association rule approach.
It is dedicated to mine associations occurring between two universes that are dependent
on each other (e.g. recommender systems). The dependency is expressed using a char-
acteristic function. It can be viewed a specialized version of the first approach in terms
of data representation and pattern expression.

3. Generalized related set based approach.
It is oriented toward constructing essential descriptions of target objects (e.g. descriptions
distinguishing objects from different classes) using background knowledge that is hidden
in tables directly or indirectly joined with the target one (e.g. decision support system).
Patterns in this approach are expressed in the native language, i.e. relational one.

4. Description language based approach.
It is a modified version of the first approach and is dedicated to mine data coming from
typical relational databases (e.g. decision support system). Patterns are expressed in an
extended attribute-value language that enables to define conditions on two key attributes
(i.e. attribute-attribute condition).

From the theoretical viewpoint the introduced frameworks fill the gap between two
research areas: relational data mining and granular computing. Unlike other existing
approaches, they comprehensively define relational data, information, and knowledge in
the context of granular computing.

In practice, the approaches provide more unified frameworks for mining relational data.
The common granular representation of data is the basis for performing different relational
data mining tasks.
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