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Abstract
Interventions to teach protective behaviors may be differentially effective within an adolescent population. Identifying the 
characteristics of youth who are less likely to respond to an intervention can guide program modifications to improve its 
effectiveness. Using comprehensive longitudinal data on adolescent risk behaviors, perceptions, sensation-seeking, peer 
and family influence, and neighborhood risk factors from 2564 grade 10–12 students in The Bahamas, this study employs 
machine learning approaches (support vector machines, logistic regression, decision tree, and random forest) to identify 
important predictors of non-responsiveness for precision prevention. We used 80% of the data to train the models and the rest 
for model testing. Among different machine learning algorithms, the random forest model using longitudinal data and the 
Boruta feature selection approach predicted intervention non-responsiveness best, achieving sensitivity of 85.4%, specific-
ity of 78.4% and AUROC of 0.93 on the training data, and sensitivity of 84.3%, specificity of 67.1%, and AUROC of 0.85 
on the test data. Key predictors include self-efficacy, perceived response cost, parent monitoring, vulnerability, response 
efficacy, HIV/AIDS knowledge, communication about condom use, and severity of HIV/STI. Machine learning can yield 
powerful predictive models to identify adolescents who are unlikely to respond to an intervention. Such models can guide 
the development of alternative strategies that may be more effective with intervention non-responders.

Keywords Machine learning · HIV prevention · Condom use skills · Self-efficacy · Intervention non-responsiveness · 
Prediction · Precision prevention

Introduction

Adolescent Sexual Risk Behaviors Remain High

Adolescence is characterized by significant physical and 
psychological development and is a prominent developmen-
tal period for experimentation and risk-taking [1]. Sexual 
risk behaviors, including early sexual debut, unprotected 
sex, and sex with multiple partners, place adolescents at 
high risk for negative health outcomes such as unintended 
pregnancy, sexually transmitted infections [STI], and HIV 
[2–5]. Of considerable concern, rates of HIV diagnoses 
have remained stable over the past 20 years for adolescents, 
despite decreasing substantially among all other age groups 
[6]. Many evidence-based HIV prevention interventions 
have been implemented in schools, communities, and clinic 
settings, with measurable effects on condom use, self-effi-
cacy, and behaviors [7]. However, rates of adolescent sexual 
risk behaviors remain high. In 2019, only 54% of sexually 
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active U.S. high school students reported using condoms 
in their most recent sexual encounter [8]. To optimize the 
health outcomes of adolescents and allocate resources to tar-
get this high-risk group for precision prevention efforts [9], 
it is important to understand why and for whom behavioral 
interventions are less effective.

Intervention Programs are Differentially Effective 
for Youth

Several studies demonstrate differential effectiveness of vari-
ous adolescent HIV risk reduction interventions [10, 11]. In 
one study, a sexual health intervention improved condom 
use intention among American Indian adolescent girls aged 
13–15 years who had never had vaginal sex, but was less 
effective among boys, adolescents ages 16–19, and those 
already sexually active [11]. In a clinic-based condom use 
intervention among youth living with HIV found that the 
intervention was differentially effective across three sexual-
risk trajectories [12]. While the intervention was effective in 
reducing unprotected sex among adolescents categorized in 
the “persistent low sexual risk” and “high and growing sex-
ual risk” groups, the intervention was ineffective in a third 
group, that they labeled “delayed high sexual risk” [12].

Few studies have explored non-responsiveness to sex-
ual-risk reduction interventions. Sales et al. studied non-
responsiveness to a clinic-based STI/HIV behavioral inter-
vention among African American adolescent and young 
adult women targeting condom use [13–15]. Non-responders 
more often reported partner or relationship-related issues 
(instability, infidelity), power dynamics, substance abuse, 
and a perceived inability to change their condom use [14]. 
In adjusted analyses, non-responders had higher levels of 
sensation seeking behaviors, a boyfriend at baseline, and a 
physical abuse history [13, 15]. Non-responders also showed 
no significant improvement in partner communication self-
efficacy and reported more fear of condom negotiation [14]. 
Overall, limited research has been conducted on adolescent 
responsiveness to HIV prevention interventions. Identify-
ing the characteristics of youth who are unresponsive to the 
interventions could be helpful in modifying programs to 
improve their effectiveness.

Precision Prevention and Machine Learning for HIV 
Risk Prediction

Adolescent HIV risk involves complex behaviors influenced 
by individual, social, environmental, and personal factors 
and their interactions [16], that make some interventions 
more effective for some people than for others. Thus, there 
is growing interest in precision prevention, a term adapted 
from the discipline of precision medicine [17]; its goal is 
to tailor “the right intervention to the right population at 

the right time” [18]. Precision prevention requires under-
standing the diverse, individual needs within our popula-
tion, that can inform the tailoring of appropriate supports 
and resources. With this framework, we explore complex 
longitudinal adolescent behavioral data to identify risk fac-
tors associated with non-response to a behavioral interven-
tion. These data present numerous analytic challenges to 
classical statistical models, including nonlinear depend-
encies and unknown interactions that rarely conform to 
classical statistical assumptions [19]. Traditional statisti-
cal approaches to reduce analytic complexity can obscure 
important non-linearities or interactions [20]. In this con-
text, various machine leaning (ML) algorithms have been 
identified as being potentially more effective for developing 
optimal prediction models. ML algorithms, especially super-
vised learning algorithms, seek models with optimal predic-
tive performance based on pre-specified evaluation criteria 
[21]. ML approaches are well suited to data with multi-level 
potential predictors; its automated strategies (e.g., k-fold 
cross-validation) help guard against overfitting (i.e., build-
ing an excessively complicated model that performs poorly 
in new data) [22].

Existing studies have employed ML to build HIV predic-
tion models to identify patients who are at risk for acquiring 
HIV and thus may benefit from HIV pre-exposure prophy-
laxis and to identify adolescents who are likely to engage 
in HIV risk behaviors (e.g., having multiple sex partners) 
[23–26]. ML has also been used to identify socio-behavioral 
predictors of HIV positivity [27], for predicting uptake of 
HIV testing among substance users [28], and for predicting 
early virological suppression in HIV patients [29]. In sev-
eral studies, ML models have achieved better classification 
accuracy than logistic regression [25, 28]. However, most 
studies employing ML algorithms for prediction rely on 
cross-sectional data [30]. To our knowledge, there has been 
no study employed ML modeling to predict adolescent dif-
ferential intervention response to behavioral interventions, 
particularly using rich longitudinal data.

Theoretical Framework for Adolescent Risk Behavior

We follow Protection Motivation Theory (PMT), a social 
cognitive framework that has been used to investigate vari-
ous risk and protective behaviors, including adolescent HIV 
risk behaviors [31–33]. PMT views the cognitive process 
of behavior change in terms of individual perceived threat 
and coping appraisal, helping to explain why people con-
tinue to engage in unhealthy behaviors, despite understand-
ing the health risks [34]. A maladaptive response such as 
unprotected sex is mediated by a balance between perceived 
rewards (intrinsic rewards, e.g., favorable attitudes or feel-
ings toward sex, and extrinsic rewards, e.g., peer influences) 
and perceived threat from participating in the maladaptive 
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behavior (perceived severity, or negative consequences, such 
as pregnancy or STI/HIV) and vulnerability (likelihood of 
harm from those consequences). An adaptive response (such 
as using a condom) is mediated by balancing the response 
efficacy (the effectiveness of the protective behavior in less-
ening the health threat), self-efficacy (perceived ability to 
adopt the behavior), and the response cost (barriers or incon-
veniences) of performing the behavior. These two appraisal 
pathways combine to form protection motivation (intention) 
to respond to a potential threat in either an adaptive (protec-
tive behavior) or maladaptive (risk behavior) manner [34, 
35].

Aims of the Current Study

This study investigates the effectiveness of ML algorithms 
for predicting adolescent HIV intervention responsiveness. 
We use comprehensive, longitudinal data from the Baha-
mian Focus on Older Youth (“BFOOY”) intervention study, 
a large randomized controlled trial. Our ML models identify 
adolescents who are unlikely to respond to HIV prevention 
interventions. Specifically, in this study, we: (1) developed 
high-performance prediction models for adolescent interven-
tion non-responders by applying ML techniques to complex 
longitudinal data; (2) compared prediction model variants 
to determine the most effective and parsimonious models 
for HIV intervention non-responsiveness; and (3) identi-
fied the factors contributing most to HIV intervention non-
responsiveness. This will enable HIV “precision prevention” 
efforts, targeting high-risk adolescent subgroups.

Materials and Methods

Bahamian Focus on Older Youth (“BFOOY”) Study 
and Data

The data for this study were collected as part of a rand-
omized, controlled trial of a theory-based, HIV prevention 
intervention: Bahamian Focus on Older Youth (“BFOOY”) 
[36]. This study involved youth and their parents from 146 
grade-10 Health and Family Life Education (HFLE) class-
rooms in all eight government high schools on the most 
populated Bahamian island.

BFOOY is an age-appropriate 8-session behavioral pro-
gram, which is an evidence-based, life skills curriculum 
designed to reduce risk-taking behaviors related to HIV/STI 
transmission and teen pregnancy. There were two versions 
of intervention for parents: a parental monitoring interven-
tion entitled “Caribbean Informed Parents and Children 
Together” (CImPACT) and a goal-setting intervention 
(Goal for It [GFI]). CImPACT is a single session interven-
tion including a 22-min educational video filmed in The 

Bahamas which focuses on effective parent-adolescent com-
munication and listening strategies related to difficult topics 
and safe-sex followed by two role-plays for the parent and 
youth, a discussion, and a condom demonstration. GFI is a 
22-min video describing the process of career development, 
followed by a parent–child question and answer period. The 
control condition was the existing Bahamian Health and 
Family Life Education (HFLE) curriculum, which focuses 
on a range of health topics, including a factual presentation 
of HIV and pregnancy prevention and discussions of mar-
riage and parenting. The BFOOY + CImAPCT intervention 
is a 9-session behavioral intervention.

A total of 2564 grade-10 youths were enrolled and fol-
lowed for 24  months over 2008–2011. These students 
were randomly assigned at the level of the classroom to 
one of four intervention conditions: BFOOY + CImPACT, 
BFOOY + GFI, BFOOY only, or HFLE only (see detailed 
description [36]). The core BFOOY intervention was offered 
with and without each of two intervention versions for par-
ents: CImPACT and GFI. Outcomes were assessed on the 
entire sample at 6, 12, 18, and 24 months post-intervention. 
Follow-up rates were high: 84%, 79%, 78%, 78% at 6, 12, 
18 and 24 months, respectively. The mean age of youth at 
baseline was 14.5 years (range 13 to 17 years). Ninety-nine 
percent of youth were of African descent.

Participants completed a self-administered questionnaire, 
requiring ~ 45 min. Detailed information was collected with 
each survey on adolescent risk behaviors, neighborhood risk, 
protection motivation theory (PMT) perceptions, sensation-
seeking, perceived peer risk involvement, parental monitor-
ing, parent-youth communications, depression, behavioral 
intentions, condom use skills and HIV/AIDS knowledge 
with > 50 high-level features and 200 items. (See Supple-
ment Table 1 for assessment features and targets).

Study Outcomes

Intervention non-responsiveness. We predicted non-respon-
siveness (NR) to HIV prevention intervention using two def-
initions: (1) non-responsiveness based on condom use skills 
(NR-Skill): if the condom use skill score is not improved at 
time 5 (24 months post-intervention) compared to baseline 
(Time 1, intervention start), the value is set as 1, and other-
wise, 0; and (2) non-responsiveness based on self-efficacy 
(NR-Efficacy): if the self-efficacy score is not improved at 
time 5 compared to baseline, the value is set as 1, otherwise 
is set as 0. For the few cases (2%) where time 5 scores were 
not available, we used time 4 scores.

Condom-use skills. The Condom-Use Skills Checklist 
[37] assessed understanding of correct condom use. From 
among 16 items, students identified the 8 correct steps. We 
assigned 1 point for each item that was correctly marked 
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(0 = incorrect; a = 0.66), resulting in a summary score of 1 
to 16 for each participant.

Condom-use self-efficacy. We assessed a youth’s self-per-
ceived ability to perform tasks to achieve protection through 
condom use through 5 items (e.g., “I could put on a condom 
correctly”). We measured each response on a 5-point Likert 
scale (1 = strongly disagree; 5 = strongly agree; a = 0.81). A 
composite score was calculated as a mean score across the 
5 items (range 1–5).

Machine Learning for Non‑responsiveness 
Prediction

We formulated the non-responsiveness prediction task as a 
binary classification problem. For each student, the trained 
model was used to predict whether he/she is non-responsive 
to the HIV prevention intervention (NR-Skill = 1 or NR-
Efficacy = 1) using longitudinal data collected at times 1–4. 
Study data were pre-processed, features were extracted, and 
then models were trained and evaluated (Fig. 1).

Data Pre‑processing

Data Cleaning We removed 276 participants from among 
the total number of participants (n = 2564) due to missing 
values on either of the two outcomes (NR-Skill, NR-Effi-
cacy). We also removed participants assigned to the con-
trol group (n = 772), as they could not contribute informa-
tion regarding an intervention that they did not receive. We 
aggregated the values for each subscale (e.g., PMT con-
structs) into a single feature rather than including item-level 
responses. We explicitly encoded all other missing values 
as “-1”, an additional feature dimension to be leveraged in 
model training, which has been shown effective on previous 
studies [38].

Data Normalization Different features (predictors) take dif-
ferent value ranges. To avoid the potential dominant influ-
ence by variables with extreme values on the model training 

process, we applied the common “min–max normalization” 
to code every feature on the same range of [0.0, 1.0].

Feature Extraction

An observation in our dataset represents an individual stu-
dent at a single point in time, which is represented as a list 
(feature vector) of values each corresponding one predictor 
(feature). Data for the mth student at time t is coded as: 
xm

t = (xm1
t, xm2

t, …, xmn
t), where xm

t is the feature vector, and 
xmn

t indicates the feature value for the nth predictor (feature) 
measured at time point t for person m. Our goal is to lever-
age the longitudinal information collected at times 1–4 to 
predict non-responsiveness at the end of the HIV preven-
tion intervention; given a feature vector xm

t, that encodes 
longitudinal information collected at time points 1–4, the 
system will predict whether the student is responsive to the 
intervention at time 5.

To make good use of our longitudinal data, we used three 
types of features in building the classification model. As we 
explain in the next two paragraphs, the classification model 
includes time-variant tagging features as well as temporal 
dynamic features. The latter consists of two subgroups: slid-
ing windows and derivative dynamic features.

Time‑Variant Tagging Features The same predictor is 
attached with different identifiers to distinguish values col-
lected at different times (e.g., Self_efficacy_3 means the 
Self_efficacy score collected at Time 3).

Temporal Dynamic Features 

(a) Sliding windows (SW) features: a sliding window (time 
interval) is characterized by a window size (length in 
follow-up) and the sliding step size (time points). It can 
capture the localized dynamics of the data sequence 
aligned with the window. When the window slides 
from left to right (one step at a time) until it reaches 
the end of the sequence (last follow-up), it can capture 
overlapping dynamic characteristics through the whole 

Fig. 1  Machine learning work-
flow for non-responsiveness 
prediction
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sequence. We applied sliding windows of multiple 
lengths with the sliding step size set as 1. We calculated 
descriptive statistics as features, including the mean 
and standard deviation values of a particular feature 
within each sliding window. Those features are distin-
guished by attaching an affix to their names to indicate 
the corresponding time span of each sliding window. 
For instance, the string “SW_STD_13” affixed in the 
feature name indicates the standard deviation (STD) 
within a sliding window covering Times 1 through 3.

(b) Derivative dynamic (DN) features: DN features cap-
ture incremental (decremental) changes in the value of 
an attribute between adjacent time points. By compar-
ing values of adjacent data points in the longitudinal 
sequence, local dynamic changes are captured for each 
attribute. For example, Self_efficacy_DN_34 represents 
the changes of Self_efficacy score between Time 3 and 
4. Dynamic features have been found to be helpful in 
multivariate time series classification [39].

Model Training and Evaluation

Machine Learning (ML) Algorithms We explored four clas-
sic machine learning algorithms for predicting HIV-related 
risk behaviors: Support Vector Machines (SVM); Logistic 
regression (LG); Decision Tree (DT); and, Random forests 
(RF). These algorithms are widely used for classification 
problems, and each has its unique features and advantages. 
SVM employs the “max-margin principle”, to find a clas-
sification boundary such that the data points (from the 
responders/non-responders classes) which are the nearest 
to the boundary can both be separated but also maintain the 
largest possible margin to the boundary. The max-margin 
design of SVM typically leads to good system generaliz-
ability. LG is a simple linear classifier which works by tak-
ing a linear combination of features and applying non-linear 
sigmoid function to it. DT learns a tree structure hierarchi-
cally (through iterative splitting) with the goal of produc-
ing the most homogeneous groups; this is easy to visualize 
and interpret. RF is an ensemble version of DT by aggre-
gating predictions from multiple decision trees for a better 
model, which is more robust against overfitting. Our analysis 
focused on building longitudinal prediction models using 
classic machine learning algorithms. To increase the appli-
cability of the model on data without longitudinal monitor-
ing, we also built and evaluated cross-sectional prediction 
models (including baseline factors only). In addition, our 
machine learning models accounted for intervention group 
assignment and the receipt of Focus on Youth in the Carib-
bean'' (FOYC) intervention in grade 6.

Cost-sensitive Learning We used cost-sensitive learn-
ing [40] to deal with the data imbalance between different 
categories (e.g., Non-responsiveness vs. Responsiveness). 

Specifically, the minority category (the one with fewer 
observations, in this case “non-responsiveness”) was 
assigned a larger weight during model training to miti-
gate the overwhelming influence of the majority category. 
It has demonstrated better performance than up-sampling 
and down-sampling approaches in our previous research 
[41].

Parameter Tuning We employed grid search to choose 
optimal parameters in the tenfold cross validation setting for 
each ML algorithm using the training data. The best param-
eter setting was further validated in the withheld test data.

Feature Selection Feature selection helps the model to 
identify informative variables and eliminate ones that are 
largely redundant, leading to better performance and gen-
eralizability. We explore four feature selection approaches: 
(1) Mutual Information (MI) [42], a filter method to select a 
subset of features based on dependencies among the features 
and target category labels; (2) LASSO [43], an embedded 
method for feature selection and regularization during the 
model training process; (3) Recursive Feature Elimination 
(RFE) [44], a “wrapper” method (evaluates on an external 
machine learning algorithm to identify optimal features) 
to select features by recursively considering smaller and 
smaller sets of features, based on the weights assigned 
to features by an external estimator; and (4) Boruta [45], 
another wrapper method with “all relevant” criteria instead 
of “minimal optimal”, which iteratively removes features 
that are statistically less relevant to the target outcome vari-
able than a random probe.

Evaluation Metrics We used the following evaluation 
metrics: sensitivity, specificity, the area under the receiver 
operating characteristic curve (AUROC), and the area under 
the precision recall curve (AUPRC), which were reported on 
both training data (tenfold cross validation) and testing data.

Experiment Setup and System Development We employed 
the Scikit-Learn (version 0.24.2) [46] toolkit to develop our 
models. The linear kernel (a dot product of two feature vec-
tors in a linearly separable space) was used for SVM in the 
study. We randomly sampled 80% of the data for training, 
holding out the rest for testing.

Results

Non‑responsiveness Statistics

After data cleaning, there are 1495 and 1514 participants 
included for NR-Skill and NR-Efficacy analysis, respec-
tively. BFOOY dataset demonstrated a good representation 
of both intervention responders (NR-skill 60%; NR-efficacy 
59%) and non-responders NR-skill 40%; NR-Efficacy 41%) 
(supplement Table 2).
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Comparative Results Using Four Machine Learning 
Algorithms

tenfold cross validation (CV) results on the training data 
from 4 algorithms are shown in Table 1, where RF per-
formed best for both NR-Skill and NR-Efficacy across most 
evaluation metrics, yielding AUROC of 0.842 and 0.928, 
AUPRC of 0.795 and 0.923 respectively. LG obtained the 
best sensitivity of 83.19% for NR-Skill, and DT achieved the 
best specificity of 84.37% for NR-Efficacy.

Effects of Longitudinal Modeling (RF)

To better understand how longitudinal data contribute to pre-
dictive accuracy, we developed a “RF-Base” system which 
only used the baseline information at time 1. The impacts of 
using longitudinal data is shown in Table 2. “RF” represents 
the system using longitudinal data (the same as the last row 
in Table 1). For both outcome definitions, RF outperforms 
RF-Base with a large margin (AUROC of 0.842 vs. 0.783 

for NR-Skill, 0.928 vs. 0.901 for NR-Efficacy), despite slight 
lower performance on sensitivity.

Results on Feature Selection

Supplement Table 3 presents results for 4 different feature 
selection approaches (random forests as the final classifier). 
It shows that with less than half of the features, LASSO and 
RFE performs better than or equal to using all the features. 
Boruta can achieve comparable performance with less than 
20 and 40 features (compared with using all the 677 and 702 
features in the “No-FS” settings).

Performance on the Withheld Test Data

We applied the random forests (RF) models with different 
feature selection methods on the withheld test data (Table 3). 
Every feature selection approach showed very good general-
izability; Boruta achieved the best sensitivity (84.25%) and 

Table 1  Predictive performance 
of four machine learning 
models (tenfold CV prediction 
on training data)

Bold indicates the best value per evaluation metric
SVM support vector machines; LG logistic regression; DT decision trees; RF random forests; Sens sensitiv-
ity; Spec specificity; AUROC area under the ROC curve; AUPRC area under the precision-recall curve

NR-Skill NR-Efficacy

Sens (%) Spec (%) AUROC AUPRC Sens (%) Spec (%) AUROC AUPRC

SVM 81.06 65.17 0.812 0.749 84.62 78.55 0.897 0.862
LG 83.19 60.07 0.811 0.747 83.83 79.83 0.901 0.879
DT 82.13 66.42 0.805 0.760 82.24 84.37 0.908 0.912
RF 82.77 67.40 0.842 0.795 85.40 78.41 0.928 0.923

Table 2  Effects of longitudinal 
modeling (tenfold CV 
prediction on training data)

Bold indicates the best value per evaluation metric
RF random forests; RF-Base random forests using baseline features only; Sens sensitivity; Spec specificity; 
AUROC area under the ROC curve; AUPRC area under the precision-recall curve

NR-Skill NR-Efficacy

Sens (%) Spec (%) AUROC AUPRC Sens (%) Spec (%) AUROC AUPRC

RF 82.77 67.40 0.842 0.795 85.40 78.41 0.928 0.923
RF-Base 84.47 52.66 0.783 0.716 86.20 72.29 0.901 0.898

Table 3  Prediction performance 
on the test data using different 
feature selection methods

Bold indicates the best value per evaluation metric
Note number of features selected by each method was optimized on the training data
MI mutual information; LASSO least absolute shrinkage and selection operator; RFE recursive feature elimi-
nation

NR-Skill NR-Efficacy

Sens (%) Spec (%) AUROC AUPRC Sens (%) Spec (%) AUROC AUPRC

MI 82.68 69.19 0.831 0.785 81.74 79.79 0.905 0.899
LASSO 82.68 66.86 0.845 0.814 80.87 78.72 0.906 0.898
RFE 82.68 66.86 0.843 0.813 81.74 79.79 0.903 0.893
Boruta 84.25 66.86 0.845 0.817 80.87 76.06 0.879 0.869
No_FS 82.68 67.44 0.843 0.804 80.87 80.85 0.905 0.897
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AUROC (0.845) for predicting NR-Skill on the test data with 
less than 20 features.

Model Interpretation

We extracted the 20 most important features learned by the 
machine learning model using two approaches: the model 
coefficient value (left) and the SHAP value (right) (Fig. 2). 
Among those top 20 features, 17 of them are shared by both 
of the approaches, despite different ranking order. The model 
coefficient value captures “Extrinsic_reward_cdm_DN_12”, 
“communicate_total_4”, “neighborhood_total_DN_13” 

while the SHAP value captures “Response_efficacy_cdm_2”, 
“comm_condomSTD_3”, “Severity_std_SW_STD_14”.

Figure 3 shows the summary plot (left) and aggregated 
waterfall plot (right) on the training data based on SHAP 
values. The summary plot indicates positive and negative 
relationships of the top 20 predictors with the target vari-
able, and each dot represent one individual sample in the 
training data. Red dots on the right side or blue dots on the 
left side indicate positive correlations. The deviation from 
the zero SHAP value indicates the larger impact in model 
decision making. It demonstrates that “SELF_EFFICACY” 
is the most important feature followed by “Response_cost” 

Fig. 2  Top 20 features identified by the machine learning model

Fig. 3  Impact of Top 20 features on model’s decision
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and “HIV_AIDS_KNOW” (refer to Discussion section for 
more details). The aggregated waterfall plot shows the accu-
mulative interpretation of the model with top 20 important 
features, which shows those 20 features contribute more than 
90% of the model reasoning process.

In addition to providing global interpretation of the 
trained model, we used individual water plots to explain 
the decision-making process for each individual student on 
the testing data as shown in Fig. 4. It shows why a case 
receives its prediction impacted by different predictors. It 
starts with the bottom of a waterfall plot and adds (red) or 
subtracts (blue) the values to get to the final prediction. We 
can see that the same predictor (newSELF_EFFICACY_1) 
can affect the decision positively (left plot) or negatively 
(right plot). Also, for each individual, the top contributing 
predictors may be different.

Discussion

To our knowledge, this is the first study to explore differ-
ent machine learning algorithms in predicting adolescent 
non-responsiveness to an evidence-based HIV intervention 
using comprehensive longitudinal data. Four supervised 
machine learning models were developed, and their per-
formance compared. Although all four of the models had 
fairly high accuracy, the random forest (RF) model showed 
the highest overall performance for predicting intervention 
non-responsiveness. The RF model also showed high predic-
tive accuracy on the withheld testing data, indicating good 
generalizability with future similar samples. Our approach 
allowed us to identify several significant predictor variables 
for intervention non-responsiveness.

Our dataset had a good representation of both interven-
tion responders (~ 60%) and non-responders (~ 40%). We 
compared four machine learning models for their predictive 
performance with hyperparameter optimization. Our experi-
ments show that Random Forest consistently outperforms 
other three models, yielding a AUROC of 0.93 for NR-Effi-
cacy and 0.84 for NR-Skill in the cross-validation setting 
on the training dataset, with good sensitivity of 83% and 
85% respectively. Other machine learning models involv-
ing trees and regression algorithms performed with an aver-
age AUROC of 0.90 (NR-Efficacy) and 0.81 (NRI-Skill). 
Our experiments showed that longitudinal characteristics 
played an important role in improving the system’s predic-
tion performance based on both AUROC and AUPRC. We 
tried different feature selection approaches to identify salient 
features before model training, and it was observed that with 
less but more important features, the system can achieve 
comparable or better performance on both training data and 
unseen test data. This shows that it is feasible to identify a 
limited number of features that are robustly associated with 
adolescent intervention responsiveness which can facili-
tate model interpretation and inform effective intervention 
implementation.

The many covariates investigated for the prediction mod-
els represented different domains including socio-demo-
graphics, various types of risk behaviors, neighborhood 
risk, peer influence, parental monitoring and communica-
tion, depression, and PMT constructs. Among the seven 
PMT constructs, self-efficacy and response cost are the most 
important predictors for intervention non-responsiveness. 
Youth who reported high level of self-efficacy at baseline are 
more likely to be intervention “non-responders” due to the 
ceiling effect [47], because youth with high initial scores on 

Fig. 4  Waterfall plots to explain model’s decision-making process for two individual participants
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self-efficacy have little or no improvements in self-efficacy 
or condom use skills which are highly correlated with each 
other. Response cost is positively associated with interven-
tion non-responsiveness, because adolescents’ perception 
of barriers to condom use (inconvenience, reduced sexual 
pleasure) is negatively related to condom use skills and self-
efficacy [48]. On the other hand, response efficacy is nega-
tively associated with intervention non-responsiveness [49]. 
Increases in vulnerability and parental monitoring are posi-
tively associated with intervention non-responsiveness. This 
may be because parents increase their monitoring efforts 
due to their children’s engagement in sexual risk behaviors 
(unprotected sex).

Although using longitudinal data improved predictive 
performance, it may not be available as it is hard to col-
lect. To increase the applicability of the model on data with-
out longitudinal monitoring, we evaluated cross-sectional 
prediction models. The RF model based on baseline data 
exhibited promising prediction accuracy, although it under-
performs the RF model developed that used data collected 
after longitudinally. This finding is important because it sug-
gests that public health research can apply machine learning 
methods on baseline data to identify “high-risk” adolescents 
who are likely to engage in HIV risk behaviors or who are 
unlikely to respond to the intervention. As data continue to 
accumulate (more waves of longitudinal data), the prediction 
model can be renewed using longitudinal data to improve 
its prediction accuracy. As efficient machine learning algo-
rithms can help identify adolescents who are less responsive 
to the interventions in real time, an intensive and targeted 
intervention can be developed and delivered to them. Dis-
semination efforts targeting subgroups of youth with char-
acteristics associated with non-responsiveness to a specific 
intervention could enhance the program’s impact.

This study has some limitations. First, the data used in 
this study are from Bahamian high school students (grade 
10–12 youth). Although our model demonstrated good gen-
eralizability within this population, external evaluations are 
warranted to further understand how the ML algorithms and 
important predictors generalize to other adolescent popula-
tions. Second, we did not compare our ML prediction mod-
els with a sophisticated traditional statistical approach. This 
is because there are complex interactions among individual, 
peer, family and neighborhood risk factors, and collineari-
ties and nonlinear relationships among these factors in our 
rich data. Traditional analytic methods are ill-equipped to 
analyze such complex data. Further, several studies showing 
that ML models result in higher classification accuracy than 
logistic regression have already been conducted [30, 33]. 
Third, there are approximately 40% non-responders, which 
include 17.2% of “inconsistent responders” whose scores 
increased but then relapsed by the end of follow-up period. 
In this study we combined non-responders and inconsistent 

responders to create a relatively balanced data for machine 
learning modeling. We will explore alternative definitions 
of non-responsiveness to capture short-term responders in 
the future work.

Conclusions

Our study addressed an understudied area, the intersection 
of machine learning and HIV prevention. Different machine 
learning models have been developed to predict intervention 
non-responsiveness. Our study demonstrates that machine 
learning can yield powerful predictive models to identify 
adolescents who are unlikely to respond to an intervention, 
which establishes a foundation for future efforts to develop 
alternative targeted interventions for high-risk adolescents 
(precision HIV prevention). Machine learning HIV predic-
tion has the potential to inform significant improvements in 
HIV prevention. Our framework provides a methodologic 
basis for harnessing the predictive power of machine learn-
ing for HIV prevention.
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