
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2024) 38:6
https://doi.org/10.1007/s10458-024-09635-y

1 3

Landmark‑based distributed topological mapping
and navigation in GPS‑denied urban environments using
teams of low‑cost robots

Mohammad Saleh Teymouri1 · Subhrajit Bhattacharya1 

Accepted: 9 January 2024
© The Author(s) 2024

Abstract
In this paper, we address the problem of autonomous multi-robot mapping, exploration and
navigation in unknown, GPS-denied indoor or urban environments using a team of robots
equipped with directional sensors with limited sensing capabilities and limited computa-
tional resources. The robots have no a priori knowledge of the environment and need to
rapidly explore and construct a map in a distributed manner using existing landmarks, the
presence of which can be detected using onboard senors, although little to no metric infor-
mation (distance or bearing to the landmarks) is available. In order to correctly and effec-
tively achieve this, the presence of a necessary density/distribution of landmarks is ensured
by design of the urban/indoor environment. We thus address this problem in two phases:
(1) During the design/construction of the urban/indoor environment we can ensure that suf-
ficient landmarks are placed within the environment. To that end we develop a filtration-
based approach for designing strategic placement of landmarks in an environment. (2) We
develop a distributed algorithm which a team of robots, with no a priori knowledge of the
environment, can use to explore such an environment, construct a topological map requir-
ing no metric/distance information, and use that map to navigate within the environment.
This is achieved using a topological representation of the environment (called a Landmark
Complex), instead of constructing a complete metric/pixel map. The representation is built
by the robot as well as used by them for navigation through a balanced strategy involving
exploration and exploitation. We use tools from homology theory for identifying “holes”
in the coverage/exploration of the unknown environment and hence guide the robots
towards achieving a complete exploration and mapping of the environment. Our simulation
results demonstrate the effectiveness of the proposed metric-free topological (simplicial
complex) representation in achieving exploration, localization and navigation within the
environment.

Keywords  Mapping · Exploration · Navigation · Multi-robot system · Low-cost · Low-
fidelity sensors · Simplicial complex · Topological mapping

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9139-054X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-024-09635-y&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 2 of 43

1  Introduction

1.1 � Motivation

Consider an unknown, GPS-denied urban/indoor environment in which we send out a
large, fast-moving team of resource-constrained robots with extremely limited sensing
capabilities, with no odometry information, with limited communication bandwidth, and
with no a priori knowledge of the environment. Precise range or bearing measurement to
the landmarks in the environment may not be available. For example, in an urban environ-
ment such landmarks may be wireless routers or 5 G antennae identified by their MAC ids,
allowing simple wireless/5 G receivers to detect only their presence, but not their precise
range. Another example of such landmarks are passive RFIDs that are low-cost, do not
need external power and can be easily installed in an environment. For communication and
distributed exploration and mapping, each robot can potentially transmit only tens of bytes
of data at a time.

For a given onboard sensor model, it is necessary that the landmarks in the environment
be present with sufficient density and in appropriate locations. An urban/indoor environ-
ment can be constructed/designed to aid such teams of robots to effectively explore, map,
localize and navigate in. This is relevant in the context of search and rescue type opera-
tions in such environments where facilities are constructed to aid such operations when
necessary. While the team of robots itself may not have a blueprint of the environment,
they can rely on the structured placement of reliable landmarks to aid with the process of
exploration, mapping and navigation. For instance, in situations like search and rescue mis-
sions, if a building is equipped with sufficient landmarks (beacons) during its construction,
firefighters can use a team of distributed robots to explore the environment and locate sur-
vivors more effectively and safely. Moreover, in hazardous places where the environment
is too harsh for humans to operate (such as in nuclear power plants), having strategically
placed landmarks in the environment allows robots to perform maintenance operations
autonomously.

Without global localization or coordinate charts, our objective is to attain this in a met-
ric-free and coordinate-free manner that does not rely on precise distance or bearing meas-
urements, is fast, robust to errors, and does not require extensive filtering or post-process-
ing in order to compensate for sensing and actuation noise. In this paper we propose the
use of simplicial complexes as the metric-free, coordinate-free topological representations
of the environment. In particular, the robot team constructs an abstract simplicial complex
representation, known as the landmark complex, using the landmarks detected by them as
they navigate through the environment. This is a low-fidelity but correct (homotopically
equivalent) topological representation of the free space (under appropriate assumptions on
the density of landmarks and the coverage attained by the robot team).

1.2 � Related works

While GPS is broadly available to users around the world for localization and navigation,
and so are maps of urban environments, a reliance on such information is not practical in
many contexts. For example, GPS or maps may not be reliably available inside buildings
with thick concrete walls. Since they require complex infrastructure to operate, GPS or
a global map database may not be available for underground or extraterrestrial (such as

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 3 of 43  6

future Lunar or Martian) colonies. In this section we present an overview of existing lit-
erature on mapping, localization & navigation in GPS-denied environments, existing sim-
plicial complex based representations, as well as existing work on landmark placement for
that purpose.

1.2.1 � SLAM and related literature

Most state-of-the-art methods for construction of maps of unknown environments without
localization fall under the SLAM literature and require precise metric information (such as
range or bearing measurements), rely on relatively precise odometry measurements, and in
order to build a complete map, require extensive post-processing for correcting accumu-
lated errors [1, 7, 10, 13, 18, 37]. Such methods usually construct a grid-based coordinate
representation, making the amount of information that need to be shared between robots
extremely large, and a precise transformation between the different robots’ grid maps dif-
ficult to compute [26, 47]. State-of-the-art visual odometry based localization, mapping
and navigation require significant sensing capabilities (such as stereo or monocular cam-
eras) [19, 20, 34, 38, 41] in order to determine relatively precise metric information about
detected features and landmarks in the environment, and focus on precise pose estima-
tion of the robots. Various implementations of SLAM can be found in different industries
nowadays such as self-driving autonomous vehicles [23, 32, 39, 50] and consumer robot
vacuum cleaners [30]. These state-of-the-art methods need meticulous metric measurement
tools like range measuring sensors, relatively precise odometry measurements, and expen-
sive cameras.

Some existing SLAM literature also perform active exploration of the unknown envi-
ronment for map-building using information-driven methods [5, 27, 48, 51]. SLAM, when
combined with active mapping (where robots actively explore the environment to construct
the map), is classified as ASLAM (Active SLAM), and existing work in this area also focus
on constructing high-fidelity metric maps (often as occupancy grid representations), high-
precision pose estimation (through computationally-expensive optimization processes),
and uses active exploration (often frontier-based exploration) [35]. Pure active mapping
(without the problem of simultaneous localization) is usually achieved using grid-based
representations, and multiple robots share the exploration task using Vorinoi partitions, and
is often guided using entropy-based heuristics [3] or deep reinforcement learning based
frontier exploration [29].

We, on the other hand, use topological methods to address the problem where multiple
robots with only on-board limited-range sensors can detect presence of landmarks within
their respective sensing disks (the binary information of whether a landmark is present or
not), but no distance measurements to the landmarks are used. We consider a multi-robot
setup in which a large number of robots need to cooperatively build the topological repre-
sentation of the environment. Without knowing its own location, nor the locations of other
robots in the environment (globally or relative to itself), the robots only communicate to
other robots the identity of the landmarks that they observe—an extremely small amount
of data—which allows the robot team to build the map collectively and in a distributed
fashion. We also perform active exploration of the environment using landmark observa-
tion count as a means to guide the exploration, since in a topological representation as ours
there is no metric embedding of the map for identifying map frontiers. This active explo-
ration strategy also requires us to develop a metric-free navigation algorithm that allows

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 4 of 43

the robots to move within the partially-explored environment using only the landmarks as
reference.

While our method does not intend to match or compete with the metric precision of
high-fidelity state-of-the-art SLAM techniques, the strength of our method lies in the use
of extremely low-fidelity and inexpensive sensing and computational capabilities that
allow the robots to perform mapping, localization and navigation tasks without requiring
such precision. We consider directional sensors on robots such that the binary informa-
tion of existence of a landmark can be detected by a robot in its sensor footprint. This
makes the configuration space in which the robots need to construct the simplicial complex
representation (“landmark complex”) a subset of SE(2). Although we consider constrained
resources for robots, landmarks are assumed to be available in necessary density for the
topological exploration and mapping of the environment. The robots however cannot meas-
ure the bearing or the distance to the landmarks. The only information a robot uses for
local control, is whether a detected landmarks is to its left or to its right side.

Closely related to SLAM literature is an extensive literature on information-driven
exploration. While this body of research does not necessarily assume high-fidelity sens-
ing, they assume the availability of some type of global localization or assume a partially-
known map. For example [4, 12, 40] use location/pose of the robots during exploration of
an unknown environment for building a map. We, on the other hand, assume that no locali-
zation information is available to the robots.

1.2.2 � Simplicial complexes for topological representation

While landmark complex [24, 43, 44], and more generally, simplicial complexes [14–16,
42] have been used for topological representation of environments, most of the existing
work in this field has been for robots with disk-shaped sensor footprints in a planar domain
and only marginally addresses the problem of planning navigation for robots for the con-
struction of the landmark complex. For example, although [24] uses landmark complex as
the topological representation of an environment, the authors do not not explicitly address
the problem of computing robot paths or finding strategies for exploring an environment
using the robots. Robot trajectories in this work are predefined, and the paper focuses
more on theoretical properties of the landmark complex. Although our prior work [44]
does address the problem of exploration for constructing landmark complex, it uses a fron-
tier-based exploration method that is computationally more expensive and requires more
capable sensors (for example, robots needs to know the bearing to the landmarks detected
within their sensor footprints). Furthermore, the sensor model in either of these works are
disk-shaped, and hence the implementations were made with ℝ2 as the robot configura-
tion space. However, in our present work, we consider directional sensors in general, thus
requiring us to consider SE(2) as the robot configuration space. Although [44] does give
some condition on landmark density requirements for disk-shaped sensor footprints, the
paper does not explicitly address the problem of landmark placement in an environment to
ensure that the landmark complex is homotopy equivalent to the environment.

In [15, 16], the authors use an encounter complex for the topological representation of
an environment, where agents keep track of encounters with other agents in disk-shaped
sensor footprints, instead of observing landmarks in the environment. This requires that
a much larger number of agents be used for computing the representation. For example,
[15] uses 250 agents in a simple polygonal/annular environment, while in our method we
can achieve complete exploration of a complex indoor environment using about 4 robots.

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 5 of 43  6

Although an improved metric in [16] allowed exploration with tens of robots, the environ-
ments considered were very simple, with one or two square-shaped obstacles. Also, the
encounter complex use time as an independent coordinate, and hence the complex is usu-
ally much larger in size for similar environments. Furthermore, no active exploration of an
environment is performed for constructing the encounter complex—robots only perform
random walk or wall-following. We, on the other hand, provide systematic algorithms for
exploration in large, complex, indoor environments using robots with directional sensors.
[42] uses noisy global position measurements of robots in a swarm performing random
walk to construct topological representations of simple environments. In our work we do
not rely on the availability of any global position measurement for the robots.

In this paper we address these practical issues concerning the construction and exploita-
tion of a landmark complex representation. We also design navigation algorithms for the
robots constructing the landmark complex representation through exploration of the envi-
ronment as well as for robots exploiting the landmark complex for goal-directed navigation.

1.2.3 � Landmark placement

In this paper we design an explicit algorithm for placement of landmarks in a environ-
ment that would ensure certain density conditions and thus allow effective construction
of the landmark complex for a given sensor footprint for the robots. While the problem of
landmark placement in an environment has been studied in the past, many existing work
assume robot sensor and motion models that are relevant to traditional SLAM-type algo-
rithms. For example, in [8, 36], the authors consider robots with camera-like sensors and
noisy odometer that can detect the pose of landmarks in the robots’ local frame. With such
capable sensors, the authors consider the problem of sparse landmark placement that guar-
antee bounds on location uncertainty. In a related setup, the problem of external sensor
placement in a known environment is considered in [49] such that these sensors, which
are capable of taking noisy measurement of the poses of robots in the environment, can
be used for localization of the robots while minimizing uncertainty. In all these work, the
underlying assumptions about the capabilities of the sensors that detect the landmarks (or
robots) are high, and the other capabilities of the robot (such as odometer, onboard compu-
tational capability for filtering the sensed data) are assumed to be high. Furthermore, while
many of these methods perform optimization to extremize some form of cost function, the
guarantees that such methods give on localization are at best probabilistic.

In contrast, [22] uses a genetic algorithm approach to perform optimization of a cost
function for RB beacon placement, where the evaluation of the cost function is performed
though high-fidelity simulation of radio signal propagation in an environment. While the
scalar cost function is developed to optimize the beacon placement, the optimization is not
directly related to any guarantees and the GA based algorithm does not guarantee a global
optimization of the cost function.

In context of localization using wi-fi network routers, [9] uses a more formal optimi-
zation approach using a least square method, the theoretical/algorithmic formulation of
which assumes an Euclidean domain and isotropic (non-directional) landmark sensing.
Along similar lines, minimization of expected localization error at one (or a finite number
of) points in a (or a sequence of) convex domain(s), is achieved using a gradient descent
of a highly nonlinear optimization objective [28]. Similarly, for mobile robots navigating
along a fixed trajectory, landmark placement along the trajectory is achieved using an itera-
tive approach in [2]. [33] considers a similar error-minimizing optimization process for

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 6 of 43

landmark placement for directional sensors in spatial domains, but in absence of obstacles.
In most of these works, the ability of sensors to measure real-valued quantities (for exam-
ple, range to landmarks) allow the formulation of the said optimization problems in convex
or Euclidean domains.

In our setup, on the other hand, because robots have such limited sensing capabilities
(binary detection of whether or not a landmark is visible in a directional sensor footprint)
and no odometry information, the criteria for landmark placement is significantly more
stringent. Furthermore, we explicitly consider the obstacles in the environment and the
occlusion of the landmarks caused by such obstacles. To satisfy the required visibility-
based condition (described in Sect. 3.1), we develop a filtration-based method for the land-
mark placement algorithm. This guarantees that at least one landmark is visible from every
robot pose (and this guarantee is not probabilistic).

1.3 � Contribution and organization

The main contributions of the paper can be broadly classified into three parts: (1) The
development of a filtration-based algorithm for determining placement of landmarks in an
urban/indoor environment during the design/construction of the environment; (2) Design a
set of controllers that would allow a team of robots to perform exploration of the environ-
ment for constructing the Landmark complex representation; (3) Design a set of controllers
that would allow the team of robots to exploit the partially or fully constructed Landmark
complex to perform informed exploration or navigation within the environment.

The novelty of the current work lies in the fact that the sensing and onboard computa-
tion capabilities of the robots is extremely limited (a robot can only detect if a landmark is
present in its directional sensor footprint, and can tell whether it is to its right or to its left).
Our novel topological representation not only allows the collaborative construction of a
topological map, but also allows robots to use it for navigation. While the problem of map-
ping, localization and navigation is solved more precisely using high-fidelity SLAM algo-
rithms that use high-fidelity sensing and computationally-expensive filtering/post-process-
ing, no existing methods is capable of achieving any meaningful mapping or localization
with such limited sensing and computation capabilities as ours. Our novel filtration-based
landmark placement algorithm is suitable for construction of the topological representation
using such limited sensing abilities, and is applicable to indoor, non-convex environments.

The main technical advantage of having low-fidelity sensors on board robots and an
algorithm that needs low-fidelity sensing information is that of robustness. An algorithm
that uses low-fidelity sensors (as in our proposed algorithm) and does not require precise
real-valued measurements (such as range or bearing) is more robust to errors. Real-valued
measurements require constant filtering of the sensed data in order to get rid of the meas-
urement noise. Furthermore, the high-fidelity, real-valued information is incorporated in
mapping and exploration algorithms that construct precise metric maps, and hence such
constructions are highly sensitive to measurement errors, which need to be eliminated
through extensive post-processing. Also, communication of high-fidelity measurements/
information between robots requires high-bandwidth communication channels and requires
reasoning about changes in reference frame between the robots. The robustness of a top-
ological algorithm and the ease of communicating the low-fidelity observations between
robots allows fast deployment of a large number of robots for performing collaborative
exploration and mapping.

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 7 of 43  6

The paper is organized as follows: In Sect. 2 we introduce the basic definitions of
Simplicial Complex and Landmark Complex. In Sect. 3 we describe the filtration-based
algorithm for strategic placement of landmarks in an urban/indoor environment during its
design and construction. Section 4 provides a set of control algorithms for the robots in the
team which they can use to explore an unknown environment for constructing the Land-
mark complex and then exploit the fully- or partially-constructed Landmark complex for
further exploration and navigation. In this section we also use tools from homology the-
ory for detecting “holes” in the exploration and hence develop control algorithms for fill-
ing them. In Sect. 5 we provide detailed simulation results and evaluation of the proposed
algorithms.

2 � Preliminaries

In this section we provide brief definitions of Simplicial Complex and Landmark Complex.

2.1 � Simplicial complexes and simplices

A simplicial complex can be thought of as a higher-dimensional extension of a graph, in
which not only there are 0 and 1-dimensional entities (vertices and edges), but also 2 and
potentially higher dimensional ones (called simplices).

Definition 1  (An abstract Simplicial Complex [25]) An abstract simplicial complex, K ,
constructed over a set V (the vertex set) is a collection of sets Cn, n = 0, 1, 2,⋯ , such that:

i.	� An element in Cn, n ≥ 0 is a subset of V and has cardinality n + 1 (i.e. for all � ∈ Cn ,
𝜎 ⊆ V , |𝜎| = n + 1 . � is called a “n-simplex”), and,

ii.	� If � ∈ Cn, n ≥ 1 , then �−v ∈ Cn−1, ∀v ∈ � . Such a (n-1)-simplex, �−v , is called a
“face” of the simplex � . The simplical complex is the collection K = {C0,C1,C2,⋯}.

In Fig. 1 an example of a simplicial complex is provided. While a graph constitutes of
only two sets (V and E), in this example a simplicial complex with three sets is presented.
In this figure, K = {C0,C1,C2} , where C0 is the set of all the 0-simplices in the complex
(vertex set), C1 is the set of all the 1-simplices in the complex (edge set) and C2 is the set of

Fig. 1   An abstract simplicial
complex consists of simplices
of different dimensions. In this
figure, the simplicial complex
on the right, constructed from
0-simplices, 1-simplices and
2-simplices, depicted individu-
ally on left

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 8 of 43

all the 2-simplices in the complex (representing triangles that connects three vertices). In
this example, the C0 , C1 and C2 are as following:

i.	� C0 = V = {v1, v2,… , v12}.
ii.	� C1 = E = {{v1, v2}, {v1, v3}, {v2, v3},… , {v11, v12}}.
iii.	� C2 = {{v1, v2, v3}, {v2, v3, v9}, {v2, v9, v10}, {v8, v10, v11}}.

2.2 � Landmark complex

A Landmark Complex [24, 44], K , is an abstract simplicial complex, composed of the set
of landmarks observed by a robot navigating in its configuration space. Assuming the envi-
ronment has sufficient landmarks (the precise criteria is described in Sect. 3), a robot’s task
is to collect the information of the landmarks, and create an abstract simplicial complex
which is called Landmark Complex. Every time a robot observes an n-tuple of landmarks,
it inserts the corresponding (n − 1)-simplex constituting of the observed landmarks in Cn−1
(along with all its faces and sub-faces in Ci, i < n − 1 ). The information contained in the
landmark complex can be interpreted to generate a topological map of the environment.

Figure 2 illustrates an example of construction of a landmark complex by 6 observa-
tions with an omni-directional sensor which serves as a topological map of the environ-
ment. In this example, for the first observation point O1 , the robot observes the landmarks
{v1, v2, v11} which corresponds to a 2-simplex in the Landmark Complex. But, whenever a
2-simplex is observed, the lines connecting the pairs of observations will also be considered
as 1-simplices, so in this case there exists 1-simplices, {{v2, v3}, {v2, v4}, {v3, v4}}⊂ C1 ,
and likewise the observed landmarks form 0-simplices as well. This means, every time
that we have an observation forming an n-simplex the lower dimension simplices will be
inserted into the landmark complex. So, after 6 observations the created landmark com-
plex, K = {C0,C1,C2} , is described by the set of 0-simplices, C0 = {v1, v2, v3,… , v11} , the
set or 1-simplices, C1 = {{v1, v2}, {v2, v3}, {v2, v4}, {v3, v4},… , {v10, v11}} , and the set of
2-simplices, C2 = {{v2, v3, v4}, {v4, v5, v6}, {v6, v7, v8}, {v8, v9, v10}, {v11, v1, v2}}.

The Landmark Complex K can be immersed on a plane to create a visual representa-
tion of the topological map as shown in Fig. 2. As visible in the image of K , the landmark
complex captures the obstacle in the environment in terms of a hole in the complex. The
utility of the landmark complex is that it give an effective way of constructing a simpli-
cial representation of the underlying configuration space that is topologically correct (i.e.

Fig. 2   On the left there is an
environment with 11 landmarks
depicted as stars, and the cor-
responding landmark complex
constructed from 6 observations
with an omni-directional sensor
is shown on the right

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 9 of 43  6

topologically equivalent to the underlying configuration space) through a sequence of land-
mark observations only.

2.3 � C̆ech complex or nerve of a covering

Consider a topological space, X (this, in context of this paper will be a subset of the robot
configuration space, C , which in turn will be a subset of ℝ2 or SE(2) depending on whether
the robots’ sensors are omni-directional or not—see Sect. 3.1), and a collection of its sub-
sets A = {Ai}i∈I (where I is the set of indices) that cover X  . We define the C̆ech complex
or the Nerve of the cover [25], N(A) , to be an abstract simplicial complex with a 0-simplex
corresponding to each of the subsets, and a (n − 1)-simplex corresponding to every n-way
overlap of the subsets. Figure 3a shows an example of a Nerve or C̆ech complex of disk-
shaped subsets of ℝ2.

The main utility of the C̆ech complex or Nerve is its use in the Nerve theorem from
algebraic topology [25], which states that if the open cover A of the topological space X
is a good cover1 then the Nerve of the cover is topologically equivalent (homotopy equiva-
lent) to the covered space, X  , without missing any topological information of the space.

The application of the Nerve theorem in context of the landmark complex is discussed
in more details in Sect. 3.2, where it is used to reason about the topology of the space cov-
ered by the domains of visibility of the landmarks. While the topology of the space X may
be difficult to compute without precise geometric embedding of the subsets in A  , the C̆ech
complex or Nerve only requires local information about the overlaps of the subsets.

Fig. 3   Illustration of C̆ech complex versus Landmark Complex for 12 landmarks when the robot sensor
footprints are omni-directions (and hence C ⊆ ℝ

2 ). With sufficient observations, the landmark complex and
the C̆ech complex are equivalent

1  By definition, an open cover, A  , is considered a good cover when not only every nonempty sets of A are
contractible, but every two and three way intersections of those sets are contractible.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 10 of 43

3 � Landmark placement algorithm

The ability to plan and implement strategic landmark placement in the environment allows
faster robot explorations and precise topological mapping of the environment. This is made
possible in urban or indoor environments, which, during their design and construction, can
be built with the planned placement of landmarks. In this section we describe an algorithm
for strategically placing landmarks in an environment in order to attain such objectives.

3.1 � Domain of visibility

We define the workspace, W = ℝ
2 − O , to be the set of all possible landmark locations

(where O is the set of all obstacles in the environment). We define the configuration space,
C , to be the set of all possible configurations of a robot. If robots do not have a direction-
ality in their sensing (i.e., the sensor footprints are disk-shaped), then C = W = ℝ

2 − O .
However, if the robots have directional sensors (e.g., sector of a disk), then the configura-
tion of a robot is determined not only by its position, (x, y) ∈ ℝ

2 − O , but also its heading
� ∈ SO(2) . In that case the configuration space is C = (ℝ2 − O) × SO(2) ⊆ SE(2) (where,
SE(2) = {(x, y, �) | (x, y) ∈ ℝ

2, � ∈ SO(2)} , is the space of all position and orientations/
headings of a directional robot/sensor on a plane).

We also define the visibility domain (or domain of visibility) of a landmark, Dp,S ⊂ C , to
be the set of all robot configurations in which the landmark at location p ∈ W will be visi-
ble to a robot using sensor footprint S ⊂ W . Figure 4a shows a situation where both W and
C are subsets of ℝ2 due to the robot sensor footprints being disk-shaped (i.e., omni-direc-
tional). However, in general, in this paper we will consider robots with directional sensors
(with sensor footprints shaped as a sector of a disk), and accordingly the configuration

Fig. 4   Domain of Visibility: a The domain of visibility of a landmark when there is no directionality in the
sensing, and thus C ⊆ ℝ

2 . The L-shaped dark blue region is an obstacle and occludes line of sight. Hence,
only the robot positions in the light-blue part of the disk-shaped region will be able to see the landmark (red
star), and constitutes the domain of visibility for the landmark. b The domain of visibility of a landmark
when the sensor footprint is directional (sector of a disk) and hence C ⊆ SE(2)

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 11 of 43  6

space C⊆SE(2) . Figure 4b shows the visibility domain of a landmark in SE(2). In this fig-
ure, the workspace W is still ℝ2 representing the possible landmark’s positions.

3.2 � Visibility condition and landmark observation condition

Suppose P = {p1,… , pn} is the set of landmark positions, and D = {Dp,S ⊂ C ∣ p ∈ P} is
the set of landmark visibility domains. The following lemma establishes the density condi-
tion for landmark placement so that D is a cover of C.

Lemma 1  If at least one landmark is visible from every configuration in the configuration
space, then D is a cover of C.

Proof  If D was not a cover of C , then by definition, there would be some point in C which
will not be in any of the visibility domains in D , and hence no landmark will be visible
from that configuration. 	� ◻

The following proposition establishes the density condition for landmark observation so
that the constructed landmark complex, K is a correct representation of the configuration
space, C.

Proposition 1  If the visibility domains of the landmarks, D = {Dp,S ∣ p ∈ P} constitutes a
good cover of the configuration space, C , and if a landmark complex, K , is constructed
using sufficiently dense observation of landmarks (with at least one observation from
∩p�∈QDp�,S for every subset Q ⊆ P such that ∩p�∈QDp�,S is non-empty), then the the land-
mark complex and the configuration space are homotopy equivalent (i.e., K ≅ C).

Proof  The landmark complex constructed by taking an observation from every n-way non-
empty overlap of the domains of visibility (i.e., an observation for every configuration sets
of the form ∩p�∈QDp�,S whenever it is non-empty for some Q ⊆ P ), by definition, is equiva-
lent to the C̆ech complex or Nerve of the covering D (because, in the Landmark complex
there is a (n − 1)-simplex for every observation taken from an n-way overlap of the vis-
ibility domains from which n landmarks are visible, and in the Nerve/C̆ech complex there
is a (n − 1)-simplex corresponding to every n-way overlap of the open sets in D ). That is,
K ≅ N(D) (where N(D) is the C̆ech complex or Nerve of D).

Again, due to the Nerve Theorem we have C ≅ N(D).
As a consequence, K ≅ C . 	� ◻

In Fig. 3, an example is shown for more elaboration.

Corollary 1  If one or more robots perform random walk for a sufficiently long time in a
configuration space, and if the configuration space is connected, then, with a probabil-
ity greater than zero, they will eventually build a landmark complex, K , that is homotopy
equivalent to C.

Proof  Due to a well-known result on random walks [21, 45], random walks in spaces of
dimension 4 or less are guaranteed to visit a point (get arbitrary close to the point) infi-
nitely often with non-zero probability. So in configuration spaces which are subsets of ℝ2
or SE(2), the robot(s) will eventually visit at least one configuration from ∩p�∈QDp�,S (for

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 12 of 43

every subset Q ⊆ P such that ∩p�∈QDp�,S is non-empty) if they are allowed to perform the
random walk for a sufficiently long time, and hence construct the landmark complex as
described in Proposition 1. 	� ◻

3.3 � Landmark placement algorithm using filtration over sensor footprints

In this section an iterative algorithm is presented to place the landmarks such that the Nerve/
C̆ech Complex N(D) covers the entire configuration space C . To this end, we use a filtra-
tion over sensor footprints—if Ss is the true sensor footprint of a robot’s sensor, we define
S1 ⊃ S2 ⊃ ⋯ ⊃ Ss to be a sequence of sensor footprints such that S = {St ⊂ C ∣ 1 ≤ t ≤ s} ,
where St is the sensor footprint to be used at tth iteration.

The overall algorithm is to place a set of new landmarks in the uncovered regions of the
environment at the tth iteration, considering St to be the sensor footprint at that iteration. Start-
ing with a relatively large sensor footprint, S1 , we gradually decrease the size of the footprint
until we attain Ss , while placing landmarks in the uncovered regions in every iteration (Fig. 7
illustrates the idea for disk-shaped sensor footprints). More details of the algorithm are pro-
vided below.

Denote the position of the ith landmarks by pi and let Pt = {pi ∈ W ∣ 1 ≤ i ≤ n} be the set
of all landmark positions at iteration t, where W is the workspace. Furthermore, we define
DPt

,St =
⋃
p∈Pt

Dp,St as the union of all landmarks’ visibility domains, such that DPt
,St ⊂ C . Sup-

pose Ut is the complement of the covered space DPt
,St at tth iteration where Ut = C - DPt

,St and
Ut ⊂ C . At every iteration, the Landmark Placement Algorithm (LPA) detects
Ut

i
, i = 1, 2,… ,m , the ith connected component of the uncovered area Ut at t such that Ut =

m⋃
i=1

Ut
i
 . Suppose Ūt is the set of all the connected components Ūt = {Ut

1
,Ut

2
,Ut

3
,… ,Ut

m
} . In

order to cover Ut
j
 for j = 1, 2,… ,m , LPA places a landmark at pj such that Dpj,S

t covers most of
the Ut

j
 and inserts pj into the Pt . Afterwards LPA will compute the new Ut with newly placed

landmarks and continues the same procedure until Ut = � . In the next iteration, LPA goes to
the next sequence of the sensor footprints, St+1 such that St+1 ⊂ St and DPt

,St+1 ⊂ DPt
,St . Since

the net cover of DPt
,St+1 is smaller than the cover domain with St , new connected components

of uncovered area may open up in the configuration space C . Therefore, new landmark posi-
tions need to be populated in Pt+1 . We start with Pt+1 = Pt and then the LPA process restarts
by identifying the connected components in Ut+1 = C - DPt+1

,St+1.
At the very first iteration, the LPA starts with a relatively large visibility domain,

Dp1,S
1 , placed at the center of the workspace W such that in an obstacle-free environment

Dp1,S
1 ≅ C . In circumstances that the sensor footprint sequence consists of concentric disks

( W = C ⊂ ℝ
2 ), S1 is a big circle where its radius is larger than the diameter of the environ-

ment. During the filtration, the radius of S1 gets decreased until the target sensor footprint Ss
is reached. On the other hand, in case of directional sensor footprints where C ⊂ SE(2) , LPA
starts with a large half disk sensor footprint, S1 , where its radius and the angle of the circular
sector reduces during the filtration until it reaches Ss . Figure 5 shows a sequence of sensor
footprints in SE(2).

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 13 of 43  6

Algorithm 1   Landmark Placement Algorithm (LPA) // Centralized.

Require:
a. Workspace W = R2 - O
b. Configuration Space C
c. Sensor Footprint S = {S1, S2, S3, ..., Ss}

Ensure:
a. Set of all Landmarks’ Position P

1: Initiate Set P0 = {}
2: for t = 1, 2, 3, ..., s do
3: Pt = Pt−1

4: DPt,St =
⋃

p∈Pt

Dp,St

5: Ut = C - DPt,St

6: while Ut �= ∅ do
7: Ūt = detect connected components(Ut)
8: p = Place Landmark(St, Ut

1)
9: Pt ← Pt ∪ p
10: DPt,St =

⋃

p∈Pt

Dp,St

11: Ut = C - DPt,St

12: end while
13: end for
14: return Ps

In Algorithm 1 the Landmark Placement Algorithm (LPA) is presented. LPA takes
the sequence of sensor footprints S as an input, along with the workspace W and con-
figuration space C . At tth iteration, LPA computes the uncovered area Ut (Lines 4 and
5). While the uncovered area Ut is not fully covered with the union of all landmarks vis-
ibility domains DPt

,St , LPA detects the connected components Ūt and places a landmark
at Ut

1
 (Lines 7 and 8) and inserts the placed landmark into the set of all landmarks at tth

iteration Pt (Line 9). Afterwards, the algorithm updates Ut (Lines 10 and 11) and repeats
this process until Ut = �.

Omni-directional Sensor Case: For the case C ⊂ ℝ
2 , we used the pixel based repre-

sentation of the image processing package Open-CV to detect connected components of

Fig. 5   Sensor footprint sequence
for directional sensors (SE(2))

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 14 of 43

the uncovered area. Moreover, the Place_Landmark(St,Ut
1
) function, places a landmark

at the centroid of the Ut
1
 such that the visibility domain of the placed landmark Dpt ,St

covers Ut
1
 as much as possible.

Directional Sensor Case: On the other hand, when C ⊂ SE(2) , LPA detects a pixel based
representation of �-slices for the uncovered region Ut , and for each �-slice, it detects the
connected components Ūt . In other words, the lines 7 through 11 in Algorithm 1 will be
repeated for each �-slice when C ⊂ SE(2) . Moreover, the algorithm finds the centroid of
the �-slice and the Place_Landmark(St,Ut

1
) function places a landmark on a fixed distance

ΔS , away from the computed centroid in the opposite direction of � . The reason of doing
this, is to enable the visibility domain of the placed landmark Dpt ,St to cover the Ut

1
 to the

maximum. In order to find the optimum value of ΔS for minimum number of landmarks
placed in an environment, we tested LPA with different values of ΔS which the results are
presented in Fig. 6. In computing the uncovered space in the configuration space, Ut (line
11 of Algorithm 1), for directional sensors, we also remove points that correspond to poses
closer than a distance of � from workspace boundaries (walls and obstacles). This is to
ensure that certain pathological configurations (configurations in which a robot stands next
to a workspace boundary and directly faces the boundary—see Fig. 8b) are not considered
in order to avoid infinite density of landmarks at the boundary. In practice, for explora-
tion using robots with directional sensors, this elimination of landmark visibility coverage
very close to workspace boundaries is not an issue, since robots can perform short ran-
dom walks whenever they are directly facing a workspace boundary and not observing any
landmark.

Results from LPA: Fig. 7, shows an example over different iterations of LPA to populate
a simple environment with landmarks for C ⊂ ℝ

2 . In this figure, images on each row repre-
sent one iteration on filtration over sensor footprint. Moreover, Fig. 8 shows the same envi-
ronment populated with landmarks using LPA where C ⊂ SE(2) . In Fig. 9, results of per-
forming the Landmark Placement Algorithm on two different complex environments are
shown where C ⊂ SE(2) . Figure 9b, d show the placed landmarks in each environment. It’s
worth noting that with directional sensors ( C ⊂ SE(2) ), a large majority of the landmarks
are boundary landmarks—landmarks that are placed along the workspace boundaries or

Fig. 6   Number of landmarks for
different ΔS values

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 15 of 43  6

(a)

(b)

(c)

(d)

Fig. 7   An example of LPA in ℝ2 with omni-directional sensor footprints (i.e., C ⊆ ℝ
2 ). Each row demon-

strates populating the environment with landmarks for a fixed sensor footprint (from a chosen filtration over
the sensor footprints) at a particular iteration. In the first row sensor footprint is S1 and in the last row it is
the target footprint Ss . The final number of landmarks for this environment is 161

(a) Result of LPA with directional sensor foot-
print (sector of a disk) showing landmarks (red)
and the domains of visibility (overlapping blue
sectors) when θ = 0. Note the higher density
of landmarks along the obstacle and workspace
boundaries.

(b) A robot with directional sensor (orange footprint) facing a
workspace boundary (black). In order for it to be able to see at least one
landmark, even when it is not allowed to get closer than a distance of
ε from the boundary (i.e., the grey region), there needs to be a denser
placement of landmarks (red) at the boundary.

Fig. 8   a Landmark placement algorithm final result for a simple environment with directional sensors
(i.e., C ⊆ SE(2) ). The number of landmarks placed is 378. However, note that most of these landmarks are
boundary landmarks (about 270 landmarks) placed more densely along obstacle/workspace boundaries. b
This is because, with directional sensors (footprints shaped like sectors of disks), there are pathological
robot configurations—configurations in which a robot is very close to a boundary and facing the bound-
ary—in which no landmarks will be visible unless there is a dense set of landmarks at the boundary

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 16 of 43

obstacle boundaries. This is because, with directional sensors (footprints shaped like sec-
tors of disks), there are pathological robot configurations—configurations in which a robot
is very close to a boundary and directly facing the boundary—in which no landmarks will
be visible unless there is a dense set of landmarks at the boundary (Fig. 8b).

Figure 9e, f depict the visual representation of the complete C̆ech complex of the
domains of visibility of all the landmarks, constructed by considering every (x, y, �) robot
positions in the configurations space C ⊆ SE(2).

Guarantees of the LPA: The landmark placement algorithm that we have presented is
particularly meant to handle non-convex domains (with no visibility through obstacles),
with directional sensor footprints that are not necessarily disk-shaped, and the sensing is
a binary measurement rather than real valued (unlike, for example, range measurements).
Hence, we cannot pose this problem as a practical optimization problem, especially since
the environment is complex & highly non-convex, and even if it was possible to pose it as
an optimization problem, such a formulation would involve a large number of integer varia-
bles (due to non-convexity of the environment, and the binary nature of the sensing). Many
of the existing landmark placement algorithms in literature (a large number of which has
been reviewed under Sect. 1.2.3) rely on convexity of the environment and/or real-valued

Fig. 9   Landmark placement algorithm results in complex indoor environments with directional sensors. e,
f Visual representation of the corresponding C̆ech Complexes of the domains of visibility when overlaid/
embedded on the map of the environment (note that the C̆ech Complexe itself is an abstract simplicial com-
plex and does not have a natural embedding—the figures show the embedding for visualization)

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 17 of 43  6

measurements (such as range) to pose the problem as an optimization problem. This natu-
rally provides guarantees in terms of minimization of the optimization objective function.
Our algorithm, on the other hand, is not optimization based. We instead use a filtration
approach for landmark placement in complex nonconvex environments, with directional
sensor footprints and binary measurement. Due to the complex nature of the environment
and the highly restrictive senor model, it is not possible to provide any meaningful closed-
form, theoretical guarantee on the optimality of the landmark placement algorithm.

However, by construction, Algorithm 1 provides completeness guarantee:

Proposition 2  Algorithm 1 terminates only when the necessary condition on landmark den-
sity (as described in Lemma 1) is satisfied. This termination happens in a finite time if the
configuration space, C , is finite-sized.

Proof  Algorithm 1, by construction, keeps placing landmarks until the condition for
Lemma 1 is satisfied. At every placement of a landmark, the complement of the covered
space (i.e., the uncovered space), Ut ⊆ C is reduced by a finite amount (line 11 of Algo-
rithm 1) since the new sensor is placed in a way such that its domain of visibility cov-
ers some previously uncovered parts of C (procedure Place_Landmark in line 8 of Algo-
rithm 1). Since C is finite, the algorithm thus terminates in a finite number of iterations. 	
� ◻

.

4 � Multi robot exploration and navigation

In this section we describe algorithms for constructing the Landmark complex through
exploration of the environment, as well as algorithms for exploiting the constructed Land-
mark complex for informed exploration and navigation within the environment. In our
setup, individual robots make observations and communicate those observations to a cen-
tralized server that maintains and updates the landmark complex, K . Direct computations
involving the Landmark complex thus happen on the centralized server. All other computa-
tions (including making observation, navigation to a local landmark, and stochastic con-
trol) happens on the individual robots.

4.1 � Sensor model

At any instance of time, a robot can detect a landmark, if it falls into the robot’s sensor
footprint. However, the robot cannot measure the bearing or the distance to the landmarks.
The only information a robot has, is whether the detected landmarks are to its left or to
its right side. This is a model for two low cost sensors attached to each side of the robot,
with each sensor being able to detect the presence of a landmark only when it is present
on the sensor’s side of the robot. No other range or bearing information is assumed to be
available.

This sensor model is representative of sensors detecting passive RFID-based land-
marks in an environment. RFIDs are low-cost, do not need external power and can be eas-
ily installed in an environment. The state-of-the-art RFID readers can achieve footprints
of several meters [6]. The left and right information can be obtained using two partially

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 18 of 43

shielded RFID readers on each side of each robot that can read RFID tags on the left and
right hemispheres around the robot respectively.

4.2 � Landmark observation

Assuming C ⊂ SE(2) (for directional sensors) and W ⊂ ℝ
2 , at time t the location of ith

robot is denoted by rt
i
= (xi, yi, �i) and Rt = {rt

i
∈ C ∣ 1 ≤ i ≤ N} is the set of all robots’

locations. At each time step, each robot will make an observation to create a simplex from
the observed landmarks. Every time a robot observes an n-tuple of landmarks, it inserts the
corresponding (n-1)-simplex constituting of the observed landmarks in Cn−1 (along with all
its faces and sub-faces in Ci, i < n − 1 ). In Algorithm 2, given the ith robot’s instantane-
ous location, ri = (xi, yi, �i) , the robot detects landmarks falling into its sensor footprint and
stores them in the simplex set S , which is computed on-board the robot based on the obser-
vations. S is then communicated to the centralized server maintaining and updating K . The
subroutine Update_Landmark_Complex(ri) , running on the centralized server, inserts not
only the observed simplex S , but also all of the faces and sub faces of S recursively into
the landmark complex K , maintained as a global variable stored on the centralized server.

Algorithm 2   Make_Observation(ri) // Physical process of taking an observation. Central-
ized update of Landmark Complex, K , using observations.

Require:
a. Robot’s location ri = (xi, yi, θi) // Not used by robot. Only for performing the physical process of observation.
b. Landmark Complex K (Global Variable)

1: Set S = Detect Landmarks(ri) // Physical Process. Landmarks observed by ith robot using onboard sensors.
2: K = Update Landmark Complex(S) // Centralized. Recursively insert simplex S and its faces into K.

In Algorithm 2 it is important to note that the pose of the robot is not known to the
robot. The pose of the robot determines the landmarks observed by the robot, and the pro-
cedure Detect_Landmarks represents that physical process, which uses the pose of the
robot.

4.3 � Robot short‑term‑trajectory (STT) modeling

In this section, a non-holonomic model for generating robot short-term-trajectories is pre-
sented, which can be used for directing the robot towards a specific landmark in its domain
of visibility. This short-term-trajectory generation will be used as a low-level controller for
the different modes of walk described in Sect. 4.4.

Since the location of landmarks and robots are unknown in the environment, our strat-
egy is to generate short paths (short-term-trajectories) described by Dubins curves [17] for
each robot in order to attain a short term control objective. In other words, we modeled the
short-term-trajectories of the robots as arcs of circles with distinct radius � and arc length
s, tangent to the robot’s current orientation (See Fig. 10). Given these two parameters, there
would be two choices of Dubins curves. One makes the robot turn towards its left and
the other one to its right. This binary choice is described by a two-state variable � which
can either be +1 (right turn) or -1 (left turn). Consequently, the short-term-trajectories are
described by three variables, (�, s, �).

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 19 of 43  6

It is notable that � and s are limited to upper bounds and lower bounds. � can assume
value in range of [0, ∞) where � = 0 allowing rotations at the robot’s position and
� = ∞ corresponding to a straight line. However for computational purposes, we assume
a large finite �max as the upper bound on � . Moreover, s can assume value in range of
[0, min{smax, ��}) where smax is a constant value. Choosing the upper bound from the
minimum of smax and �� will avoid arc lengths grater than half a circle. Hence, � will
have a value from [0, �max) and s from [0, min{smax, ��}).

We assume robots can detect obstacles when they are in contact with them. In such
case, if robots collide with an obstacle while executing the short-term-trajectory, they
will turn on their position to acquire a new orientation and resume exploring. Fig-
ure 10 shows an example of robot short-term-trajectory sequence modeled as Dubins
curves. In this example, the position of the ith robot at the tth time step is denoted as
rt
i
 . At each time step, the robot will choose a Dubins curve as the short-term-trajec-

tory and follows the created path to reach the goal. In this case the followed path is
T = {(�1, s1, �1), (�2, s2, �2), (�3, s3, �3)} . In this figure the path (�1, s1, �

�

1
) also can be

found which implies that with a same �1 and s1 there exists two paths. This shows the
importance of �.

4.4 � Modes of walk

In this section we describe different modes of walk that the robots can assume depend-
ing on the desired balance between exploration of the unknown regions of the environ-
ment and exploitation of the partially-constructed Landmark complex. These include
random walk which is the only feasible option when the robots know nothing about
the environment or when the robots are venturing into completely unexplored sections
of the environment. But with a partially-constructed Landmark complex the robots can
exploit it to perform an Informed Systematic Walk for more efficient exploration of the
environment at the frontiers to the unexplored regions. Finally, when the Landmark
complex is mostly complete, we can use tools from homology theory to detect “holes”
in complex (small islands of unexplored regions) and use the robots to perform targeted
exploration of such regions in order to complete the Landmark complex using a Homol-
ogy Informed Walk.

Fig. 10   Robot short-term trajec-
tory modeling: this example,
shows a robot following the
trajectories modeled as Dubins
curves to reach a goal point

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 20 of 43

4.4.1 � Random walk

Since at the beginning of the exploration the Landmark complex is empty and there is no
reference for the robots to use as a guide (recall that the location of landmarks and robots
are unknown), robots need to perform Random Walk (RW) to construct a partial Landmark
complex in order to localize themselves with respect to the observed landmarks. In this
section, a description of the Random Walk algorithm is provided.

To develop a Random Walk, all three variables for generating the robots’ short-term-tra-
jectory (�, s, �) , are randomly chosen with � and s being selected from a uniform probabil-
ity distribution. Therefore, � will be sampled from [0, �max) and s from [0, min{smax, ��}) .
This will enable the robots to choose between a vast variety of paths at each time step. For
instance Fig. 11 shows some of these possible paths. In this figure, in time t, the ith robot is
in rt

i
 and randomly picks one path which in here is (�3, s

�

3
, �

�

3
) and moves to rt+1

i
 . We refer to

a single step of Random Walk as the execution of single short-term-trajectories explained
above.

Algorithm 3   r∗
i
∶= RW_Observe(ri) // Decentralized, on-board each robot.

Require:
a. Robot’s location ri = (xi, yi, θi)

Ensure:
a. Robot’s updated location r∗i = (x∗

i , y
∗
i , θ

∗
i)

1: [ρ, s, β] := UniRand Sample(ρmax, smax)
2: Set J := Generate Path(ρ, s, β)
3: for k ∈ (1, 2, · · · , |J |) do
4: ri ← J [k] // Physical process of executing the planned short-term trajectory. J [k] = (xk

i , y
k
i , θ

k
i) ∈ C

5: Make Observation(ri) // Observe landmarks and communicate observation to central server for updating K.
6: end for
7: return r∗i

The pseudo code in Algorithm 3, describes the Random Walk and Observe subroutine
RW_Observe(ri) . The input to this function is the ith robot’s location ri . It will move the
robot to the new random location r∗

i
 while observing new simplices and updating the land-

mark complex K . In line 1, the variables ( �, s, � ) are sampled randomly from a uniform
probability distribution. The function Generate_Path constructs the corresponding short-
term-trajectory, discretizes it, and returns a set of points, J  , that make up the path in the

Fig. 11   An illustrative example
of Random Walk algorithm. In
this figure, different short-term-
trajectories (STT) have been
shown where STTi is (�i, si, �i)
and STT ′

i
 is (�i, s

�

i
, �

�

i
)

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 21 of 43  6

configuration space C ⊂ SE(2) (Line 2). The ith robot’s location is updated with these con-
figurations, while the robot makes an observation to update K each time along the path
(Lines 3–6). The random sampling of the path parameters, generation of path, execution of
path, and landmark observation happen onboard each robot. The observed landmarks are
then communicated to the centralized server for adding the new simplices to the globally
maintained Landmark Complex, K (Algorithm 2).

4.4.2 � Informed systematic walk

Once the robots have created a partial Landmark complex, they can exploit that informa-
tion to perform a more systematic form of walk which results in faster landmark complex
construction through increased exploration at the boundaries/frontiers of the unexplored
regions.

The key insight behind this mode of walk is to navigate the robots to the landmarks
that are observed fewer times in comparison to other landmarks. Those landmarks cor-
respond to regions that are more likely to have remained unexplored (frontier or boundary
regions). We refer to these landmarks as frontier landmarks. In other words, frontier land-
marks are expected to be the boundaries of the unexplored regions since they are observed
fewer number of times. The Informed Systematic Walk (ISW) is designed to navigate the
robots to the least observed landmarks. Moreover, ISW partitions a set of landmarks based
on the number of robots and navigates each robot to the least observed landmark within
its partition. In following subsections, the descriptions of individual components of ISW
are given.

i. Voronoi partitioning based landmark assignment: Since there are multiple robots, we
used graph search-based Voronoi partitioning to assign landmarks to the robots. In other
words, ISW will partition the environment into cells centered around the robots and assign
the least observed landmark in each cell to the corresponding robot. Unlike [44], where a
frontier in the landmark complex was detected using complex geometric inferences based
on the bearing measurements to landmarks, with even more limited sensing & compu-
tation capabilities and with no bearing measurements, we use observation count as the
means for identifying of potentially unexplored frontiers in the complex for guiding the
exploration.

We construct the graph, G, from the partial Landmark complex, K , built by robots dur-
ing the exploration, such that the vertex set V(G) is the set of 0-simplices and the edge set
E(G) is the set of 1-simplices of the constructed landmark complex. This graph is referred
to as the 1-skeleton of K . We use a Dijkstra type wave front propagation algorithm to con-
struct Voronoi Partitioning on the graph G [3]. In order to do so, we initiate the open list
with the vertices corresponding to the landmarks currently being observed by the robots.
Moreover, the cost on every edge (CG) is chosen to be equal to 1 unit, since, without any
metric/distance information, this is the simplest and most natural choice, and measures the
number of “landmark hops” from the current location of the robot.

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 22 of 43

Algorithm 4   Voronoi Partitioning Algorithm τ ∶= Voronoi(R, G) // Centralized. 

Require:
a. Graph G (with vertex set V(G), edge set E(G) ⊆ V(G)× V (G) and cost function CG)
b. Set of Agents location:
R = {ri ∈ C ⊂ SE(2) | 1 ≤ i ≤ N}

Ensure:
a. The tessellation map τ : V(G) → {1, 2, · · · , N}

1: Initiate g: Set g(v) := ∞,∀v ∈ V(G) //Shortest distances to vertices
2: Initiate τ: Set τ(v) := −1, ∀v ∈ V(G) //Tessellation
3: Detect landmarks for ith robot, {pi,1, · · · , pi,Mi

}, i = 1, 2, · · · , N . //N is the number of robots and Mi is the number
of landmarks observed by each robot

4: for i ∈ {1, · · · , N} do
5: for k ∈ {1, · · · ,Mi} do
6: Set g(pi,k) := 0
7: Set τ(pi,k) := i
8: end for
9: end for
10: Set Q := V(G) //Set of unexpanded vertices
11: while Q �= ∅ do
12: q :=argminq′∈Q g(q′) //Maintained by a heap data structure
13: Set Q = Q− q //Remove q from Q
14: for each {w ∈ NG(q)} do //For each neighbor of q
15: Set g′ := g(q) + CG([q, w]) // Cost function, CG([q, w]), is chosen to be uniform, 1, for all edges
16: if g′ < g(w) then
17: Set g(w) := g′

18: Set τ(w) := τ(q)
19: end if
20: end for
21: end while
22: return τ

The pseudo-code given in Algorithm 4, describes our Voronoi partitioning algorithm
which returns the tessellation map, τ , of landmarks to the robots and is reminiscent of the
Dijkstra’s search algorithm [3, 11]. In line 6 the open list is initiated with the landmarks
observed by the ith robot at current time step for every i = 1, 2,… ,N and in line 7 these
landmarks are assigned a partition identity of i which means the landmark is assigned to
the ith robot. Lines 11 through 21 corresponds to the main loop of the algorithm. With
every iteration, the vertex with minimum g-score [11] in Q (the unexpanded vertices), is
expanded. Furthermore, the algorithm checks for improvement in g-score for the neigh-
boring vertices of the expanded vertex (line 14–20). If the potential g-score of a neighbor
is less than the current one, the algorithm updates the g-score of that vertex and when a
vertex is updated with an improved g-score, the tessellation identity of that vertex also gets
updated (line 18). This computation happens on the centralized server that maintains the
Landmark Complex, K , and hence the 1-skeleton of the complex, G.

Figure 12 depicts Voronoi partitioning and shows the path that the robots need to take in
order to reach the least observed landmark in the corresponding partition.

ii. Dijkstra’s search for shortest path in 1-skeleton: Once the tessellation τ is computed,
each robot finds the landmark within its own partition with least observation count, but
is no more than g_thresh landmark hops away from the current location in G (line 3 of
Algorithm 5). We refer to this landmark as goal landmark. We construct the shortest path
from the robots’ current location to the goal landmark using Dijkstra algorithm on the
graph G. The output of Dijkstra search algorithm is a sequence of landmarks that a robot
need to navigate along. Suppose the sequence of landmarks (path landmarks) for ith robot
is Li = {Si, l1, l2,… ,Gi} . Each robot will use the obtained path landmarks to reach its
assigned goal landmark in its own partition.

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 23 of 43  6

Algorithm 5   Informed Systematic Walk Algorithm i∗ ∶= ISW(R, i, g_thresh) // Central-
ized. 

Require:
a. Set of Agents location: R = {ri ∈ C ⊂ SE(2) | 1 ≤ i ≤ N}
b. Identity of the robot i
c. Landmark Complex K (Global Variable)

Ensure:
a. Identity of the goal landmark i∗

b. Distance to the goal landmark g score

1: Graph G := Construct Graph(K)
2: The tessellation map τ := V oronoi(R, G)
3: i∗ := Least Observed Landmark(τ, i, g thresh)
4: return [i∗, g score]

Algorithm 5 describes our ISW subroutine that returns the identity of a goal landmark
for navigating to. Inputs to this function are the set of robots location R , the identity of the
robot, i, running this function, and a parameter g_thresh . It also uses the global variable K
to construct the graph G (Line 1). In line 2, the algorithm computes the tessellation map τ
by using the Voronoi(R, G) subroutine, described in Algorithm 4. Subsequently, the least
observed landmark (goal landmark), that is not farther than g_thresh landmark hops from
the currently observed landmark, in the ith robot partition is identified as i∗ (Line 3). Later
on, this will be used as an input to the Navigate subroutine (Algorithm 7) to navigate the
robot to the goal landmark when performing an instance if ISW, Since all these computa-
tions require the information about the graph G, which is the 1-skeleton of K , this takes
place on the centralized server. The outputs of ISW are the identity of the ith robot’s goal
landmark i∗ and the shortest distance from the robot to its goal landmark g_score.

iii. Navigation: In order to navigate along the path landmarks Li , the ith robot needs to
generate short-term-trajectories that will take it from one landmark in the sequence into the
next. Suppose the ith robot observed lk in the sequence. In order to navigate to lk+1 , it first
need to make sure lk+1 is within its sensor footprint. Based on our assumption on the sensor
model, a robot cannot measure the bearings or the distance to the landmarks. However, it
has the information on whether lk+1 is to its left or to its right side. Based on this informa-
tion, robot will choose the proper � to create the appropriate short-term-trajectory to navi-
gate towards its goal landmark. � = +1 if lk+1 is to the robot’s right side and � = −1 if lk+1 is
to its left side. However, we sample � and s randomly as before.

Fig. 12   Voronoi Partitioning
around each robot (depicted as
stars). Landmarks with darker
colors imply that they have been
observed more than landmarks
with lighter colors. Landmarks
that are observed fewer number
of times form the boundary are
the ISW target

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 24 of 43

On the other hand, if lk+1 is not visible to the ith robot, few steps of random walk will
be taken in order to find lk+1 . In case that even after taking few steps of random walk, lk+1
was not visible, a new Dijkstra search will be executed to generate new sequence of path
landmarks to the goal.

Figure 13 illustrates an example of how the navigation algorithm works. In this example,
the ith robot is depicted at different time steps. Moreover, Li = {Si, l1, l2, l3, l4,… , l11,Gi}
is the sequence of path landmarks provided by the Dijkstra algorithm, that directs the robot
from starting landmark Si towards the goal landmark Gi . At each time step, robot chooses �
according to the orientation of the nearest path landmark.

Algorithm 6   r∗
i
∶= ESTT_Observe(ri, lk) // Decentralized, on-board each robot.

Require:
a. Robot’s location ri = (xi, yi, θi)
b. Observed landmark lk

Ensure:
a. Robot’s updated location r∗i = (x∗

i , y
∗
i , θ

∗
i)

1: [ρ, s] := UniRand Sample(ρmax, smax)
2: β := Left Right(ri, lk)
3: Set J := Generate Path(ρ, s, β)
4: for k ∈ (1, 2, · · · , |J |) do
5: ri ← J [k] // Physical process of executing the planned short-term trajectory. J [k] = (xk

i , y
k
i , θ

k
i) ∈ C

6: Make Observation(ri) // Observe landmarks and communicate observation to central server for updating K.
7: end for
8: return r∗i

In Algorithm 6, an outline of Execute Short-Term Trajectory and Observation sub-
routine ESTT_Observe(ri, lk) is presented. Similar to RW_Observe(ri) subroutine, this
function also takes the the ith robot’s location ri and returns the updated location r∗

i
 while

observing new simplices and updating the landmark complex K . As described in Algo-
rithm 3, RW_Observe(ri) generates the short-term-trajectories completely randomly by
sampling all (�, s, �) variables from uniform probability distribution. However, in line
2 of ESTT_Observe(ri, lk) subroutine, the Left_Right function takes the observed land-
mark lk and the ith robot’s location ri as inputs and checks whether lk is to the left or right
side of the ith robot and return � = +1 if lk is to the robot’s right and � = −1 if it is to
the left. Nevertheless, � and s are still randomly chosen (Line 1). Afterwards, similar to

Fig. 13   Navigation algorithm: the ith robot uses the path landmarks Li to navigate from Si to Gi

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 25 of 43  6

RW_Observe(ri) , the set of points J in the configuration space C ⊂ SE(2) is generated
by taking the (�, s, �) variables (Line 3). Ultimately, for each configuration in J  , the ith
robot’s location is updated while making observations to update K (Lines 4–7). Like in
Algorithm 3, the computation of of the path parameters, generation of path, execution of
path, and landmark observation happen onboard each robot. The observed landmarks are
then communicated to the centralized server for adding the new simplices to the globally
maintained Landmark Complex, K (Algorithm 2).

Algorithm 7   r∗
i
∶= Navigate(ri, i

∗) // Mostly decentralized, on-board ith robot.

Require:
a. Robot’s location ri = (xi, yi, θi)
b. Identity of the goal landmark i∗

c. Landmark Complex K (Global Variable)
Ensure:

a. Robot’s updated location r∗i = (x∗
i , y

∗
i , θ

∗
i)

1: Initiate Bool successful := false
2: while (!successful) do
3: Initiate Bool executed rw := false
4: Graph G := Construct Graph(K) // Centralized storage of K and computation of G.
5: Set Li := Shortest Path(i∗, G) // Centralized computation of path to landmark i∗.
6: while Li �= ∅ do // Execution of path – decentralized, onboard the robot.
7: Initiate Bool visible := false
8: for j ∈ (|Li|, · · · , 1) do //
9: if Li[j] is visible to ri then
10: ri ← ESTT Observe(ri, Li[j])
11: for k ∈ {1, 2, · · · , j} do
12: Set Li := Li − Li[k]
13: end for
14: visible := true
15: break
16: end if
17: end for
18: if (!visible) then
19: if (executed rw) then
20: break
21: else
22: for q ∈ (1, 2, · · · , σ) do
23: ri ← RW Observe(ri)
24: end for
25: Bool executed rw := true
26: end if
27: end if
28: end while
29: if Li = ∅ then
30: Bool successful := true
31: end if
32: end while
33: return r∗i

In Algorithm 7, the pseudo-code for the Navigate(ri, i∗) subroutine is presented. Inputs
to this function are the position of the ith robot and the identity of the goal landmark i∗ .
In line 5, the function Shortest_Path takes the graph G and goal landmark’s identity i∗ as
inputs and returns the set of path landmarks Li for the ith robot to the goal landmark. In
lines 8 through 17 of the algorithm, ith robot tries to find the furthest landmark in path
landmarks set Li in order to make a shortcut if there is any available (Line 9). Once the
furthest visible landmark in Li is identified (jth path landmark Li[j] ), the algorithm exe-
cutes a short-term-trajectory based on the orientation of the jth landmark by using the
ESTT_Observe(ri, Li[j]) subroutine described in Algorithm 6 (Line 10). This function
moves the ith robot to the next location while making observations along the path to update

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 26 of 43

landmark complex K . Afterwards, all the path landmarks until Li[j] will be removed from
Li (Lines 11–13). However, if none of the path landmarks in Li are visible to the ith robot,
the algorithm will perform few steps (�) of Random Walk (Lines 22–25) and checks for
the visibility of the landmarks in Li one more time. Even if after the execution of Random
Walk none of the remaining path landmarks are visible to the robot, a new Dijkstra search
will be performed to generate new set of path landmarks Li . Most of these computations
happen on-board the ith robot, except for the computation of the path (sequence of land-
marks), which happens in lines 4 and 5.

iv. Interleaving between ISW and RW: A noteworthy point in ISW is to not use it repeat-
edly. Since ISW always navigates the robots to the least observed landmarks, there might be
landmarks with fewer observation count which may be far away from the current frontier
and ISW tries to navigate the robots to them. The g_thresh parameter in ISW (Algorithm 5)
mitigates this by setting a limit on how far the next goal landmark can be. Even then, since
ISW will only increase the landmark’s observation count by one unit, robots may need
to visit the current landmark again soon after they observed the next landmark. In other
words, after observing the least observed landmark, the next step of ISW will leave this
obtained landmark for one that has been observed less. Therefore, the consecutive steps
of ISW will cause robots jumping between different landmarks. On the other hand, since
robots have directional sensors, few observations are needed to capture the simplices which
are connected to that landmark. In order to capture all the landmark’s neighbors, robots
need to approach to the corresponding landmark with different orientations.

Another issue caused by having consecutive ISW is that, the frontier of the simplicial
complex could grow non-uniformly in one particular direction. Essentially, ISW tries to
grow the boundaries and it always do that with the closest landmark. Consequently, after
too many consecutive steps of ISW the boundary will have a horn-like shape as depicted in
Fig. 14. In other words, ISW is only useful for acquiring new frontiers.

Hence, to solve both of these issues, few steps of RW is needed to explore the adjacent
landmarks to ensure they have been observed sufficient number of times before switching
back to ISW. This approach is implemented later in our complete Landmark Complex Con-
struction algorithm (Algorithm 9).

4.4.3 � Homology informed walk

Once the robots have performed RW and ISW, there might still remain some holes in the
constructed landmark complex coverage K due to the insufficient number of observations.

Fig. 14   Too many consecutive
ISW will lead the boundary of
the simplicial complex to grow in
horn-like shape as depicted

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 27 of 43  6

We call them false holes (holes in the Landmark complex due to insufficient exploration—
See Fig. 16a), as opposed to the holes generated in the landmark complex due to the pres-
ence of obstacles. In order to localize them and navigate the robots to these false holes, we
used homology theory to detect 1-simplices that bound them (See Fig. 16d). In the follow-
ing subsections (i.) and (ii.), we briefly describe how existing tools from homology theory
can be used to identify these 1-simplices and navigate robots to them. For more details on
these methods the reader can refer to [14, 25]. In subsection (iii.) we describe our Homol-
ogy-Informed Walk algorithm.

i. Boundary matrices and higher order Laplacian: In order to use the homology theory,
first we need to define the boundary matrices B1 and B2 to be n × m and m × p matrices,
where n, m, and p respectively are the number of 0-simplices, 1-simplices, and 2-simplices.

Fig. 15   A directed simplicial
complex of dimension 2

(a) As shown, there is a false hole in the sim-
plicial complex

(b) The corresponding result after solving the
Laplacian Dynamics

(c) Result after �1-Norm Minimization (d) Result after choosing vertices that bound
the false hole

Fig. 16   The Laplacian Dynamic and �1-norm minimization can localize the holes in the simplicial complex

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 28 of 43

We start with a simple example of how these matrices are constructed. Consider the sim-
plicial complex in Fig. 15. To construct B1 and B2 we assign arbitrary orientation to the 1-sim-
plices and 2-simplices as shown in the figure, and index the 1-simplices, 2-simplices and
0-simplices with natural numbers. The (i, j)th element of B1 matrix, where i is the index of the
vertex and j is the index of the 1-simplex, is 0 when the ith vertex is not one of the ends of the
jth 1-simplex, +1 when jth 1-simplex points towards the ith vertex, and −1 if jth 1-simplex
points away the ith vertex. For instance, in the given example, the first column of B1 , which
corresponds to e1 , has +1 for the (1, 1)th element, −1 for the (2, 1)th element, and the rest are
zero. The matrix B1 is equivalent to the incidence matrix of the graph consisting of the 0-sim-
plices as its vertices and 1-simplices as its edges.

Similarly, the (j, k)th element of B2 , where j is the index of the 1-simplex and k is the index
of the 2-simplex, is 0 when the jth 1-simplex is not adjacent to the kth 2-simplex, +1 when they
are adjacent and their orientations are aligned, and −1 if their orientation do not match. For
instance, in the example of Fig. 15, the (2, 1)th element of B2 is −1 , whereas (4, 1)th and (6, 1)th
elements of B2 are +1 , while the rest are zero. The complete B1 and B2 matrices of the simpli-
cial complex in Fig. 15 are shown below:

These matrices, viewed as linear maps B1 ∶ ℝ
m
→ ℝ

n and B2 ∶ ℝ
p
→ ℝ

m , compute
boundaries of simplices (in case of a 1-simplex this is the difference of the 0 simplices at its
ends, in case of a 2-simplex this is the linear combination of 1-simplces that forms its bound-
ary) and linear combinations of simplices (referred to as chains). Because of the way these
matrices are defined, the following identity holds: B2B1 = 0 – i.e., the boundary of the bound-
ary of a 2-chain is always zero.

In order to compute and reason about 1-cycles (i.e., 1-chains with empty boundaries—
these corresponds to closed loops), the 1st order Laplacian matrix L1 is defined as the follow-
ing m × m matrix,

It is easy to observe that this matrix is positive semi-definite. It can be shown that the
kernel of L1 is spanned by 1-cycles. We are interested in specific elements from the kernel
of L1 which correspond to 1-cycles (a linear combination of 1-simplices that represent a
closed loop) forming tight cycles around the holes in the complex. We use the method out-
lined in [14, 46] for computing such a 1-cycle.

(1)L1 = BT
1
B1 + B2B

T
2

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 29 of 43  6

ii. Laplacian dynamics and �1-norm minimization: In order to identify the 1-cycles that
bound the false holes tightly, we used the method from [14]. The method starts with the com-
putation of an element x ∈ kerL1 using the combinatorial Laplacian flow,

Starting with a randomly generated x(0) ∈ ℝ
m , where m is the number of 1-simplices in

the landmark complex K , the Laplacian flow converges to a x ∈ kerL1 which corresponds
to a linear combination of 1-cycles that bound the 1-dimensional holes as well as 1-cycles
that are trivial (i.e., boundaries of 2-chains)—See Fig. 16b. This is because, in the eigen-
basis of L1 , the components of x corresponding to the non-zero (positive) eigenvalues of L1
decay to zero exponentially fast under the dynamics of (2), while only the component along
the null-space of L1 survive.

In order to get the tightest 1-cycle around a hole we solve the following �1-norm optimi-
zation problem:

where x is the converged solution from the combinatorial Laplacian flow, (2). The �1
norm minimization is a LP-relaxation for an original �0 norm minimization problem [46],
minz∈ℝp ‖x + B2z‖0 . The intuition behind minimization of the the �0 norm of the vector
(the vector x + B2z in this case, which represents a 1-cycle in the same homology class
as x, since adding a boundary of a 2-chain keeps its homology class unchanged) is that it
minimizes the number of non-zero elements in the vector. This corresponds to the 1-cycle
with the least number of 1-simplices (non-zero elements)—in other words, the “tightest”
1-cycle.

To solve this �1 norm minimization problem, a subgradient method is employed [46].

The initial condition used in equation (4) is z0 = 0, z ∈ ℝ
p where p is the number of 2-sim-

plices in the landmark complex K . Moreover, �k is the step size, and by picking a small
enough �k , the converged z gets close to an optimal solution (See Fig. 16c).

iii. HIW algorithm and navigation: The pseudo-code given in Algorithm 8, presents the
outline of the HIW algorithm and navigation.

(2)ẋ(t) = −L1x(t), x(0) ∈ ℝ
m

(3)min
z∈ℝp

‖x + B2z‖1

(4)zk+1 = zk − �kB
T
2
sgn(B2z

k + x)

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 30 of 43

Algorithm 8   Homology_Informed_Walk(R) // Centralized identification of “holes” in
Landmark Complex, K.

Require:
a. Landmark Complex K (Global Variable) with n number of 0-simplices, m number of 1-simplices, and p number of
2-simplices.
b. Graph G (with vertex set V(G), edge set E(G) ⊆ V(G)× V (G) and cost function CG)
c. Set of Agents location: R = {ri ∈ C ⊂ SE(2) | 1 ≤ i ≤ N}

1: Initiate Q = {} //Set of 1-simplices identities
2: Initiate Cc = {} //Global variable of connected components’ identity
3: x∗ := Converged solution of ẋ(t) = −L1x(t)
4: z∗ := argminz∈Rp‖x+B2z‖1
5: Set y = x∗ +B2z∗

6: for i ∈ {1, 2, · · · ,m} do //m is the number of 1-simplices in K
7: if |y[i]| > ζ then //The ith element of vector y
8: Set Q ← Q∪ i
9: end if
10: end for
11: Graph G′ := Construct Graph(Q)
12: Set Cc := Identify Connected Components(G′) //By using Dijkstra algorithm on graph G′

13: for all i ∈ {1, 2, · · · , N} on individual threads do // De-centralized on individual robots.
14: while Cc �= ∅ do
15: Ct := Compute Cost Matrix(R, Cc, G) //Cost matrix of size robots (N) times clusters (M)
16: j∗ := Hungarian Assignment(Ct, i)
17: for k ∈ {1, 2, · · · , w} do //w is the number of 0-simplices in Cc[j∗]
18: ri ← Navigate(ri, Cc[j∗][k])
19: end for
20: Set Cc = Cc− Cc[j∗] //Remove Cc[j∗] from Cc
21: end while
22: end for

In line 3 and 4 of this pseudo-code, x∗ and z∗ respectively are the converged solutions of
Eqs. (2) and (4). In line 6 through 10, the algorithm checks the absolute value of every ele-
ment in vector y = x∗ + B2z

∗ ( y ∈ ℝ
m ), and if it is greater than a computed threshold ( � ),

the identity of that 1-simplex will be inserted to Q . The higher the value of |y[i]| for the ith
1-simplex, it is more likely to be adjacent to a hole. It is notable that � is computed using
the standard deviation of |y[i]|, i = 1, 2,… ,m . Since a large number of elements in vector
y have values close to zero and only a small fraction has absolute values greater than zero
(See Fig. 16c), if we order the elements in vector y by absolute values, we would be able
to see a jump. In order to find the appropriate thresholding value at where the jump occurs,
we use the standard deviation of vector |y[i]|, i = 1, 2,⋯ ,m to compute � , independent
from size of the vector y.

Since we selected the 1-simplices with highest absolute value in vector y, these edges
constitute the tightest 1-cycle that bound holes in the landmark complex K (See Fig. 16d).
Furthermore, since these 1-simplices constitute of connected components surrounding iso-
lated holes, we need to identify each of them. Therefore, we construct graph G′ such that
the vertex set V(G�) and the edge set E(G�) are the 0-simplices and 1-simplices in Q (Line
11). Afterwards in line 12, the function Identify_Connected_Components takes the graph
G′ as an input and by using Dijkstra algorithm on G′ , is able to identify these connected
components. The output of this function is the set Cc where the ith element in the set is
itself a set of 0-simplices corresponding to the ith connected component.

In lines 13–20, each robot will find its own assignment to a connected component and
will navigate to explore and observe the 0-simplices in order to cover the holes. This is exe-
cuted on an individual thread for each robot. In order to assign the connected components
to the robots, we used the Hungarian Algorithm, since it is of cubic complexity [31]. To

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 31 of 43  6

use Hungarian Algorithm, we compute the cost matrix Ct (line 15) which is of size N ×M ,
where N is number of robots and M is the number of connected components. The (i, j)th
element of Ct constitutes of the distance from the ith robot to the jth connected component
and it is computed by running the Dijkstra algorithm on the graph G constructed over the
landmark complex K . Furthermore, in line 16, the Hungarian_Assignment function, takes
the cost matrix Ct and the identity of the robot running this thread as inputs, and returns
the identity of the assigned connected component ( j∗ ). Lines 17–19 of Algorithm 8, navi-
gate the ith robot to each 0-simplices in Cc[j∗] using the function Navigate(ri, i∗) described
in Algorithm 7. Since computation of the 0-simplices adjacent to holes require informa-
tion about the complete simplicial complex, K , lines 1–12 need to be implemented on the
centralized server. However, the Hungarian assignment computation is done by individual
robots separately (on their own individual threads), and each robot uses its own computed
assignment to navigate to its goal landmark using Algorithm 7.

By navigating each robot to these connected components, we explore the regions cor-
responding to the holes in the coverage, hence we are able to cover the false holes much
faster than combined RW and ISW. In Fig. 17 the Hungarian assignment with the corre-
sponding shortest path to the assigned connected component for each robot is depicted.
Results of the HIW algorithm is presented in Fig. 18. In Fig. 18a, 4 robots have performed
combined RW and ISW to construct the simplicial complex. Afterwards, robots switch to
HIW to detect the holes in the simplicial complex. We explain the switching strategy in
detail in Sect. 5, where we experimentally discover the optimal criteria for switching. We
assume that robots are able to detect whether a landmark is adjacent to an obstacle or not.
Therefore by using this information robots are able to distinguish the false holes from the
holes that are corresponding to the obstacles in the environment.

Fig. 17   Hungarian assignments with corresponding shortest paths to the false holes in the simplicial com-
plex. In a some of the false holes and the assigned robots with the shortest paths to each assignment are
shown, and b the corresponding Landmark complex (note that the Landmark complex itself is an abstract
simplical complex. We immerse it in ℝ2 just for the purpose of visualization)

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 32 of 43

4.5 � Landmark complex construction algorithm (LCCA)

So far we have explained necessary concepts and subroutines for the overall Landmark
Complex Construction Algorithm (LCCA​). In this section we put these concepts together
and develop Algorithm 9 for enabling a group of robots to create a Landmark complex
representation of an environment through a balanced strategy of exploration and exploita-
tion. At each time step, each robot will make an observation to create a simplex from the
observed landmarks and to update the landmark complex K . Moreover, this algorithm runs
for each robot on a separate thread (Line 1 through 17).

Algorithm 9   Landmark Complex Construction Algorithm

Require:
a. Set of Agents location:
R = {ri ∈ C ⊂ SE(2) | 1 ≤ i ≤ N}

Ensure:
a. Landmark Complex K

1: for i ∈ {1, 2, 3, · · · , N} on individual thread do // De-centralized, on individual robots.
2: for j ∈ (1, 2, · · · , γ) do
3: ri ← RW Observe(ri) // Involves the physical process of taking an observation and moving robot.
4: end for
5: while rate of growth K ≤ ε1 do
6: i∗ := ISW (R, i, ξ)
7: if ISW counter ≥ η then
8: for k ∈ (1, · · · , δ) do
9: ri ← RW Observe(ri) // Involves the physical process of taking an observation and moving robot.
10: end for
11: ISW counter = 0
12: else
13: ri ← Navigate(ri, i∗) // Involves the physical process of taking an observation and moving robot.
14: ISW counter++
15: end if
16: end while
17: end for
18: while rate of growth K ≤ ε2 do
19: Homology Informed Walk(R)
20: end while
21: return K

Since at the beginning of the exploration, the location of landmarks and robots are
unknown, robots will perform a fixed number of steps ( � ) of RW, to construct a partial

(a) The constructed
simplicial complex Kt

after performing com-
bined RW and ISW

(b) Detected false holes
in the simplicial com-
plex Kt

(c) Fixed simplicial
complex Kt+1 after
performing the first
step of HIW

(d) Detected false holes
in the simplicial com-
plex Kt+1

(e) Final Landmark
complex of the environ-
ment after performing
the second step of
HIW

Fig. 18   Detection and exploration of false holes using HIW (note that the Landmark complex itself is an
abstract simplical complex. We immerse it in ℝ2 just for the purpose of visualization)

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 33 of 43  6

landmark complex in order to localize themselves with respect to the landmarks (Lines 2
through 4). Once robots have created a sufficiently large landmark complex, they switch to
the combined RW and ISW (Lines 5 through 16) until the growth rate of landmark complex
K become less than �1 . Furthermore, RW takes the location of the ith robot running the
thread as an input ( ri ), where ISW will take the set of all robots’ location R and the identity
of the ith robot to find the goal landmark and the distance to it for the ith robot. However,
ISW also uses the established landmark complex K , which is a global variable, to con-
struct graph G for Voronoi partitioning algorithm, described in Algorithm 4, and to find the
g_score to the goal landmark.

During LCCA​, a thereshold of � is used on the distance (in terms of the number of land-
mark hops in G) to the goal landmark to prevent navigating the robots to the far frontier
landmarks back and forth. In addition, LCCA​ interleaves between ISW and RW to avoid
growing the landmark complex non-uniformly as described in Informed Systematic Walk
subsection. To this end, in line 7, the algorithm checks the number of ISWs that have been
performed consecutively. If the counter on consecutive steps of ISW is greater than a fixed
number � , LCCA​ will execute � number of RW (Lines 8 through 10).

At the final stages of the exploration, LCCA​ will switch to Homology Informed Walk,
explained in Algorithm 8. This will enable the robots to locate holes in the landmark com-
plex K and to cover the false holes much faster than ISW and RW. When the growth rate
of the landmark complex K becomes less than �2 , where 𝜀2 < 𝜀1 , the exploration will be
stopped.

The individual threads in this complete algorithm run on the individual robots. How-
ever, in the subroutines IWS, Navigate and Homology_Informed_Walk , since computations
need to be performed in the centrally-maintained Landmark Complex, K , the individual
threads communicate with the centralized server for the necessary computations in order to
received the next target landmark (or sequence of landmarks) that it needs to visit.

5 � Results

5.1 � Landmark placement algorithm

Our proposed Landmark Placement Algorithm (LPA) described in Sect. 3 was imple-
mented in C++ and is available open-source at ����� ∶ ∕∕������.���∕������∕

����������� − ������� − ��� − ����������. The algorithm allows us to design stra-
tegic placement of landmarks in an environment during its design/construction in order
to ensure that at least one landmark is visible to a robot sensor for every configuration in
C ⊂ ℝ

2 (for disk-shaped sensor footprints) or C ⊂ SE(2) (for directional sensors). In Figs. 7
and 8, results for populating a simple environment with landmarks are provided for C ⊂ ℝ

2
and C ⊂ SE(2) respectively. Moreover, Fig. 9 shows the results of Landmark Placement
Algorithm (LPA) on two different complex environments. These environments are popu-
lated with the landmarks where C ⊂ SE(2) . In this figure, the C̆ech complexes of the vis-
ibility domain of the landmarks for these environments are also depicted.

5.2 � Landmark complex construction algorithm

We also implemented the Landmark Complex Construction Algorithm (LCCA) described
in Sect. 4 using C++, and is available open-source at ����� ∶ ∕∕������.���∕������

https://github.com/subh83/Topological-Mapping-and-Navigation
https://github.com/subh83/Topological-Mapping-and-Navigation
https://github.com/subh83/Topological-Mapping-and-Navigation

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 34 of 43

∕����������� − ������� − ��� − ����������. Our implementation is a multi-threaded
one, with each thread emulating a robot, and with limited inter-thread communication to
construct and update the Landmark complex maintained in the cloud (a central server).
In all LCCA​ simulations, unless otherwise specified (such as in Sect. 5.4), we have use 4
robots for easy comparison and consistency. We evaluated the proposed algorithm using
two different complex environments refereed to as the first complex environment and the
second complex environment, using the landmark count and distribution shown in Fig. 9 as
computed by LPA. Results of the Landmark Complex Construction Algorithm is presented
in Figs. 19 and 20 for the first and second complex environments respectively.

5.3 � Effectiveness of ISW Over RW

In order to demonstrate that the Informed Systematic walk (ISW) is effective in achieving
faster exploration compared to a pure Random Walk (RW) approach during the combined
RW and ISW phase of the algorithm (i.e., before HIW is initiated), we executed the LCCA​
with different amount of initial RW steps, � (see Lines 2–4 of Algorithm 9). As is clear
from Algorithm 9, � = 0 implies that there is no initial random walk performed, while an
increasing value of � will imply an increasing proportion of the time spent in the combined
RW and ISW is on performing pure RW. Figure 21a shows the number of iterations required
to complete 85% of the simplicial complex using the combined RW and ISW with differ-
ent value of � . For each value of � we ran 10 experiments, and each data point shows the

(a) observations count: 3000.
Beginning of the combined
RW and ISW

(b) observations count: 7000 (c) observations count: 10000 (d) observations count: 20000

(e) observations count: 30000 (f) observations count: 50000. (g) observations count:
100000. Final result after
combined RW and ISW .

(h) observations count:
180000. Final result after
completing the HIW .

Fig. 19   LCCA in first complex environment (note that the Landmark complex itself is an abstract simplical
complex. We immerse it in ℝ2 and superimpose that on top of a map of the actual environment just for the
purpose of visualization)

https://github.com/subh83/Topological-Mapping-and-Navigation

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 35 of 43  6

average number of iterations required for completing 85% of the simplicial complex for that
value of � . For these experiments we fixed � = 10, � = 10 and � = 5.

Likewise, we varied the amount of interleaved RW as measured by � (see Lines 8–10
of Algorithm 9) and measured the number of iterations required to complete 85% of
the simplicial complex using the combined RW and ISW with different values of � . The
results are shown in Fig. 21b. For each value of � we ran 5 experiments, and each data
point shows the average number of iterations required for completing 85% of the simpli-
cial complex for that value of �.

As clearly demonstrated by the plots of Fig. 21, despite the fluctuations, the overall
trend in the data shows an increasing number of required iterations with an increasing
amount of random walk, indicating that a higher proportion of ISW helps with faster
exploration. However, in general, for the other experiments, we do not set � = 0 though,
since, at a small time-scale, with no initial simplicial complex to work with, ISW alone
tend to have difficulty in constructing an initial simplicial complex. For all the previous
experiments we chose � = 10 . Likewise, for the reasons described in Sect. 4.4.2.iv., we
choose a non-zero � = 5 , to ensure that the ISW is interleaved with RW to avoid robots
creating a horn-like shape of the explored domain.

(a) observations count:
2500. Beginning of the
combined RW and
ISW

(b) observations count:
10000

(c) observations count:
20000

(d) observations count:
40000

(e) observations count:
60000

(f) observations count:
80000. Final results af-
ter exploring 72% of
the 2-simplices by per-
forming combined RW
and ISW

(g) observations count:
100000. Beginning of
the HIW

(h) observations count:
123500. Final result
after completing the
HIW .

Fig. 20   LCCA in second complex environment (note that the Landmark complex itself is an abstract sim-
plical complex. We immerse it in ℝ2 and superimpose that on top of a map of the actual environment just
for the purpose of visualization)

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 36 of 43

5.4 � Effect of changing the number of robots

In order to demonstrate that our LCCA​ scales with the number of robots, we evaluated
the performance of the algorithm with an increasing number of robots, N (note that for
all other LCCA​ simulations we have used N = 4 ). Figure 22 unsurprisingly shows that
with increasing number of robots the number of observations per robot required for
exploration decreases. We used the number of observations per robot (note that the total
observation count will be similar for constructing the 85% of the landmark complex
irrespective of the number of robots) as the metric for comparison because, with our
current multi-threaded implementation of the simulations running on a single computer
processor, the total simulation time (either in terms of seconds or the number of itera-
tions in the central server thread) does not decrease monotonically with the number of

Fig. 21   The number of iterations taken to construct 85% of the simplicial complex in the second complex
environment using combined RW and ISW 

Fig. 22   The average number of
observations per robot decreases
with the number of robots used
in constructing 85% of the
landmark complex in the second
complex environment using the
combined RW and ISW. Each
data point shows the average
value over 10 different simula-
tions with the same number of
robots

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 37 of 43  6

robots. This is because with the increasing number of threads, the processing overhead
for the processor also increases.

5.5 � Role of homology informed walk in LCCA​

To evaluate the role of HIW in improving exploration of the environment, we executed
the LCCA with varying amounts of HIW and recorded the number of observations
required. As a reference/benchmark, we first counted all the 2-simplices in the C̆ech com-
plex of the visibility domain of the landmarks. Then we ran LCCA to construct 98% of
those 2-simplices in the simplicial complex. We ran 5 simulations for each of the com-
plex environments, in which 4 robots performed combined RW and ISW to construct
98%, 97%, 95%, 93% and 91% of the simplices respectively, following which HIW was used
to complete the remaining 0%, 1%, 3%, 5% and 7% respectively of the simplices to reach
the target 98% . Figure 23 shows the results of this experiment. We can deduce that HIW
improves the algorithm by reducing the total number of observations needed, to complete
98% of the total 2-simplices, however its effectiveness starts diminishing beyond a certain
percentage. In fact Fig. 23 suggests that the optimum level of HIW use is to construct the
last 5% of total 2-simplices with HIW.

5.6 � Growth rate based criterion for switching to HIW

Since the total number of 2-simplices is unknown to the robots, we need a strategy for
switching to HIW without using the percentage completion of the simplicial complex.
A useful data that robots have, is the growth rate of the simplicial complex. We define
the growth rate of the simplicial complex (r), equal to the number of the new 2-sim-
plices added to the simplicial complex at each iteration divided by the total number
of 2-simplices that are already existing in the simplicial complex. Figure 24 shows
the growth rate of the simplicial complex with time. As the exploration continues, it
decreases exponentially indicating that the number of new 2-simplices added to the

Fig. 23   Different HIW contribu-
tions on constructing the 2-sim-
plices in the C̆ech complexes
of the visibility domain of the
landmarks, to reach the target
amount for the first and second
complex environments

88825

74446
69098

60987

77678

174235

139423

111036 109364

162366

0% 1% 3% 5% 7%
HIW contribution in constructing 2-simplices

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

O
bs

er
va

tio
ns

Fisrt Environment
Second Environment

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 38 of 43

simplicial complex decreases with time. We experimentally find the optimal value of r
at which the switch to HIW results in completion of the exploration with the minimum
number of observations. To this end, we ran hundreds of simulations for each environ-
ment and recorded the number of total observations, as well as the growth rate value
that the HIW switch happened. The results of these simulations are given in Fig. 25.
The x-axis denotes the growth rate value at which the switch happened and the y-axis
is the total number of observations that robots made to complete the exploration. It
is noteworthy that switching at smaller r corresponds to smaller contribution of HIW
in constructing the simplicial complex. While some HIW does help with completing
exploration with fewer observation, too much of HIW increases the number of obser-
vations. This is expected since the purpose of HWI is to fill holes within the complex,
and not complete exploration when there are unexplored frontiers. In fact, as evident

Fig. 24   Growth rate of the
simplicial complex (r) as a func-
tion of time (measured in terms
of number of iterations in the
central server thread)

First Environment

0 0.002 0.004 0.006 0.008 0.01

Ratio Bins

0

2

4

6

8

10

12

14

N
um

be
r o

f O
bs

er
va

tio
ns

10 4

(a)

Second Environment

0 0.002 0.004 0.006 0.008 0.01

Ratio Bins

0

0.5

1

1.5

2

2.5

3

N
um

be
r o

f O
bs

er
va

tio
ns

10 5

(b)

Fig. 25   The number of the observations required to complete the simplicial complex plotted against the
growth rate vale at which the switch to HIW is performed. As evident, a switch at the growth rate of about
0.004 gives an optimal performance in either of the environments

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 39 of 43  6

from the plots in Fig. 25, a growth rate of about 0.004 is the optimal value at which
switching to HIW minimizes the total observation count.

5.7 � Performance of LCCA with sparse and randomly placed landmarks

The performance of LCCA​ gives asymptotic guarantee on complete construction of the
landmark complex only if the landmarks satisfy the necessary visibility condition (see
Sect. 3.2). This is guaranteed by the Landmark Placement Algorithm (LPA) proposed in
the paper. However, in an environment where the landmarks are sparse and randomly-
placed, the C̆ech Complex of the visibility domains of the landmarks do not form a correct
representation of the configuration space. This is illustrated in the example of Fig. 26a,
where we placed about 50% of the landmarks as suggested by the LPA, but dispersed ran-
domly throughout the second complex environment. As can bee seen from Fig. 26b, the
C̆ech Complex of the domains of visibility have two major issues:

	 i.	 Due to random placement, the landmarks missed some narrow passages, and hence
created multiple disconnected components in the complex, and,

	 ii.	 It also created multiple false holes in the complex that do not correspond to or bound
any obstacles in the environment

As a consequence, LCCA​ has difficulty in constructing the landmark complex because: i.
In the combined RW and ISW phase of the algorithm, the robots are often unable to explore
and discover components of the complex disconnected from (or weakly connected to)
the component that it started in, and, ii. in the HIW phase of the algorithm the robots are
repeatedly driven towards the false holes, which they are unable to fill because the absence
of the necessary landmarks for constructing the the simplices that fill those hole make the
holes intrinsic to the complex that cannot be filled. As a result, upon running LCCA​ with
the landmarks of Fig. 26a, we were able to complete about 86% of the full landmark com-
plex (i.e., the landmark complex had 86% of the 2-simplices in the C̆ech Complex shown in
Fig. 26b) and the final result of LCCA​ is shown in Fig. 26c. At this point HIW was unable
to make any further progress on the exploration, and as can be observed, the false holes
remained un-filled and there are a few disconnected or weakly-connected components of
the complex that remained undiscovered.

(a) Randomly placed landmarks in the
second complex envirnment.

(b) C̆ech Complex constructed by the
visibility domains of the randomly-
placed landmarks.

(c) Landmark complex constructed
uding LCCA. Only about 86% of the
complex shown in (b) was completed,
at which point no further improve-
ment was observed.

Fig. 26   Effect of randomly placed landmarks on the C̆ech Complex and the performance of LCCA​ 

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 40 of 43

The landmark placement algorithm (Algorithm 1) and the landmark complex con-
struction algorithm (Algorithm 9) are intrinsically linked to each other by the neces-
sary landmark density criterion, which depends on the footprint of the sensors onboard
the robots as described in Sect. 3.2. Having landmarks placed in the environment using
a different approach, with less density and/or with fewer number, will unsurprisingly
result in incomplete construction of the landmark complex, which in turn due to viola-
tion of Proposition 1, will not be a topologically-correct (homotopy equivalent) repre-
sentation of the configuration space.

5.8 � Comparison with other methods

Our proposed approach is unique because we assume that each robot has extremely
limited sensing capabilities (only the binary information on whether or not a particular
landmark is visible) and no odometry information. To the best of our knowledge, there
exists no other work that addresses the problem with such limited capability assump-
tions. Most state-of-the-art methods for construction of maps of unknown environ-
ments without localization fall under the SLAM literature and require precise metric
information (such as range or bearing measurements), rely on relatively precise odom-
etry measurements, and in order to build a complete map, require extensive post-pro-
cessing for correcting accumulated errors (see Sect. 1.2.1 for a more detailed literature
review). Any comparison of performance will most certainly prove the existing SLAM
approaches to be more efficient and accurate than our proposed approach. So a fair
comparison with existing state-of-the-art is not possible. However, while our method
does not intend to match or compete with the metric precision of high-fidelity state-of-
the-art SLAM techniques, the strength of our method lies in the use of extremely low-
fidelity and inexpensive sensing and computational capabilities that allow the robots to
perform mapping, localization and navigation tasks without requiring such precision.

Likewise, for a meaningful comparison with an alternative method for landmark
placement there needs to be a meaningful metric for comparison. Existing algorithms
for landmark placement, for example [22, 28], solve optimization problems and the
landmark placement is achieved to minimize a real-valued objective/cost function that
is intricately linked to the specific problem setup and sensing model that those works
use. There is no doubt that the result of such landmark placement algorithms will thus
minimize their respective objective functions and our proposed landmark placement
algorithm will not minimize those same objective functions. However, our proposed
landmark placement algorithm serves a completely different purpose altogether—our
landmark placement algorithm (LPA) is meant to ensure that our proposed landmark
complex construction algorithm (LCCA) can construct the correct Landmark Com-
plex representation of the environment with the extremely limited sensing capabilities
(binary information of whether or not a landmark is present in a directional sensor
footprint) onboard each robot. The two algorithms are thus co-designed. In our setup,
we cannot pose the landmark placement problem as a practical optimization problem,
especially since the environment is complex and highly non-convex, and even if it was
possible to pose it as an optimization problem, such a formulation would involve a
large number of integer variables (due to non-convexity of the environment, and the
binary nature of the sensing), and will be completely different from the optimization

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 41 of 43  6

problems in existing work. Instead, we use a filtration-based algorithm for landmark
placement.

5.9 � Conclusion

In this paper we consider the problem of multi-agent landmark-based mapping, explora-
tion and navigation in a localization-free (GPS-denied) environment with extremely lim-
ited sensing capabilities and limited computational resources. Each robot can sense the
binary information of whether or not a landmark is present in its directional sensor foot-
print, and for the purpose of navigation is able to sense if the landmark is to the left or
right of the robot. For mapping with such limited sensing capability we use a topological
representation of the environment called Landmark Complex. This metric-free representa-
tion constructed using the binary information of presence of landmarks in robots’ sensing
domains is robust to sensory noise, requires little onboard computational capability, and
is amiable to easy distributed construction using multiple agents. The mapping and explo-
ration algorithm thus developed is called Landmark Complex Construction Algrothm
(LCCA). In order to correctly and effectively construct the said landmark complex, the
presence of a necessary density/distribution of landmarks in an urban/indoor environment
can be achieved during the construction of the environment. To that end, our proposed
Landmark Placement Algorithm (LPA) uses a novel filtration-based approach to ensure
that at least one landmark is visible from every sensor configuration in the environment.

Acknowledgements  This work was partially supported by the National Science Foundation under Grant
No. CCF-2144246.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Angeli, A., Filliat, D., Doncieux, S., & Meyer, J.-A. (2008). Fast and incremental method for loop-
closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.

	 2.	 Beinhofer, M., Müller, J., & Burgard, W. (2013). Effective landmark placement for accurate and reli-
able mobile robot navigation. Robotics and Autonomous Systems, 61(10), 1060–1069.

	 3.	 Bhattacharya, S., Ghrist, R., & Kumar, V. (2014). Multi-robot coverage and exploration on Riemann-
ian manifolds with boundary. International Journal of Robotics Research, 33(1), 113–137. https://​doi.​
org/​10.​1177/​02783​64913​507324

	 4.	 Bhattacharya, S., Michael, N., & Kumar, V. (2010). Distributed coverage and exploration in unknown
non-convex environments. In Proceedings of 10th international symposium on distributed autonomous
robotics systems (pp. 1–3). Springer.

	 5.	 Carrillo, H., Dames, P., Kumar, V., & Castellanos, J. A. (2015). Autonomous robotic exploration using
occupancy grid maps and graph slam based on Shannon and Renyi entropy. In 2015 IEEE interna-
tional conference on robotics and automation (ICRA) (pp. 487–494).

	 6.	 Casati, G., Longhi, M., Latini, D., Carbone, F., Amendola, S., Del Frate, F., Schiavon, G., & Marrocco,
G. (2017). The interrogation footprint of rfid-uav: Electromagnetic modeling and experimentations.
IEEE Journal of Radio Frequency Identification, 1(2), 155–162.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0278364913507324
https://doi.org/10.1177/0278364913507324

	 Autonomous Agents and Multi-Agent Systems (2024) 38:6

1 3

 6   Page 42 of 43

	 7.	 Castellanos, J. A., Montiel, J. M., Neira, J., & Tardós, J. D. (1999). The spmap: A probabilistic frame-
work for simultaneous localization and map building. IEEE Transactions on Robotics and Automation,
15(5), 948–952.

	 8.	 Chen, Y., Hafez, O. A., Pervan, B., & Spenko, M. (2020). Landmark augmentation for mobile robot
localization safety. IEEE Robotics and Automation Letters, 6(1), 119–126.

	 9.	 Chen, Y., Francisco, J.A., Trappe, W. and Martin, R.P. (2006). A practical approach to landmark
deployment for indoor localization. In 2006 3rd annual IEEE communications society on sensor and
Ad Hoc communications and networks (Vol. 1, pp. 365–373). IEEE.

	10.	 Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (slam): Toward
exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17(2),
125–137.

	11.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms.
Cambridge: MIT Press.

	12.	 Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D, & Leutenegger, S. (2020). Fast frontier-
based information-driven autonomous exploration with an mav. In 2020 IEEE international confer-
ence on robotics and automation (ICRA) (pp. 9570–9576). IEEE.

	13.	 Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). Monoslam: Real-time single camera
slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

	14.	 Derenick, J., Kumar, V., & Jadbabaie, A. (2010). Towards simplicial coverage repair for mobile
robot teams. In 2010 IEEE international conference on robotics and automation (pp. 5472–5477).

	15.	 Dirafzoon, A., & Lobaton, E. (2013). Topological mapping of unknown environments using an
unlocalized robotic swarm. In 2013 IEEE/RSJ international conference on intelligent robots and
systems (iros) (pp. 5545–5451).

	16.	 Dirafzoon, A., Betthauser, J., Schornick, J., Benavides, D., & Lobaton, E. (2014). Mapping of
unknown environments using minimal sensing from a stochastic swarm. In 2014 IEEE/RSJ interna-
tional conference on intelligent robots and systems (pp. 3842–3849).

	17.	 Dubins, L. (1957). On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79, 497.

	18.	 Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part i. IEEE
Robotics & Automation Magazine, 13(2), 99–110.

	19.	 Engel, J., Schops, T., & Cremers, D. (2014). Lsd-slam: Large-scale direct monocular slam. In D.
Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision - ECCV 2014 (pp. 834–849).
Springer.

	20.	 Engel, J., Stückler, J., & Cremers, D. (2015). Large-scale direct slam with stereo cameras. In 2015
IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1935–1942). IEEE.

	21.	 Erdos, P., & Taylor, S. J. (1960). Some intersection properties of random walk paths. Acta Math-
ematica Academiae Scientiarum Hungaricae, 11(231), 218.

	22.	 Falque, R., Patel, M., & Biehl, J. (2018). Optimizing placement and number of rf beacons to
achieve better indoor localization. In 2018 IEEE international conference on robotics and automa-
tion (ICRA) (pp. 2304–2311). IEEE.

	23.	 Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). Svo: Fast semi-direct monocular visual odometry.
In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 15–22). IEEE.

	24.	 Ghrist, R., Lipsky, D., Derenick, J., & Speranzon, A. (2012). Topological landmark-based naviga-
tion and mapping. University of Pennsylvania, Department of Mathematics, Tech. Rep, 8.

	25.	 Hatcher, A. (2001). Algebraic topology. Cambridge Univ. Press.
	26.	 Howard, A. (2006). Multi-robot simultaneous localization and mapping using particle filters. The

International Journal of Robotics Research, 25(12), 1243–1256.
	27.	 Ila, V., Porta, J. M., & Andrade-Cetto, J. (2009). Information-based compact pose slam. IEEE

Transactions on Robotics, 26(1), 78–93.
	28.	 Jourdan, D. B., & Roy, N. (2008). Optimal sensor placement for agent localization. ACM Transac-

tions on Sensor Networks (TOSN), 4(3), 1–40.
	29.	 Junyan, H., Niu, H., Carrasco, J., Lennox, B., & Arvin, F. (2020). Voronoi-based multi-robot auton-

omous exploration in unknown environments via deep reinforcement learning. IEEE Transactions
on Vehicular Technology, 69(12), 14413–14423.

	30.	 Knight, W. (2015). The roomba now sees and maps a home. MIT Technology Review.
	31.	 Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2(1–2), 83–97.
	32.	 Lategahn, H., Geiger, A., & Kitt, B. (2011). Visual slam for autonomous ground vehicles. In 2011

IEEE international conference on robotics and automation (pp. 1732–1737).

Autonomous Agents and Multi-Agent Systems (2024) 38:6 	

1 3

Page 43 of 43  6

	33.	 Lei, Z., Chen, X., Tan, Y., Chen, X., & Chai, L. (2022). Optimization of directional landmark deploy-
ment for visual observer on se (3). IEEE Transactions on Industrial Electronics, 24, 5994–6003.

	34.	 Liu, S., Guo, P., Feng, L., & Yang, A. (2019). Accurate and robust monocular slam with omnidirec-
tional cameras. Sensors, 19(20), 4494.

	35.	 Lluvia, I., Lazkano, E., & Ansuategi, A. (2021). Active mapping and robot exploration: A survey.
Sensors, 21(7), 2445.

	36.	 Magnago, V., Palopoli, L., Passerone, R., Fontanelli, D., & Macii, D. (2019). Effective landmark
placement for robot indoor localization with position uncertainty constraints. IEEE Transactions on
Instrumentation and Measurement, 68(11), 4443–4455.

	37.	 Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). Fastslam: A factored solution to the
simultaneous localization and mapping problem. In Proceedings of the AAAI national conference
on artificial intelligence (pp. 593–598). AAAI.

	38.	 Munguia, R. & Grau, A. (2007). Monocular slam for visual odometry. In 2007 IEEE international
symposium on intelligent signal processing (pp. 1–6). IEEE.

	39.	 Mur-Artal, R., Montiel, J. M., & Tardos, J. D. (2015). Orb-slam: A versatile and accurate monocular
slam system. IEEE Transactions on Robotics, 31(5), 1147–1163.

	40.	 Pimentel, J. M., Alvim, M. S., Campos, M. F., & Macharet, D. G. (2018). Information-driven rapidly-
exploring random tree for efficient environment exploration. Journal of Intelligent & Robotic Systems,
91(2), 313–331.

	41.	 Quan, M., Piao, S., Tan, M., & Huang, S.-S. (2019). Tightly-coupled monocular visual-odometric slam
using wheels and a mems gyroscope. IEEE Access, 7, 97374–97389.

	42.	 Ramachandran, R. K., Wilson, S., & Berman, S. (2017). A probabilistic approach to automated con-
struction of topological maps using a stochastic robotic swarm. IEEE Robotics and Automation Letters,
2(2), 616–623.

	43.	 Ramaithitima, R. (2019). Sensor-based topological coverage and mapping algorithms for resource-
constrained robot swarms. University of Pennsylvania. Ph.D. thesis.

	44.	 Ramaithititima, R., Bhattacharya, S. (2018). Landmark-based exploration with swarm of resource con-
strained robots. In: Proceedings of IEEE international conference on robotics and automation (ICRA).

	45.	 Revesz, P. (2013). Random walk in random and non-random environments. World Scientific.
	46.	 Tahbaz-Salehi, A., & Jadbabaie, A. (2010). Distributed coverage verification in sensor networks with-

out location information. IEEE Transactions on Automatic Control, 55(8), 1837–1849.
	47.	 Thrun, S., & Liu, Y. (2005). Multi-robot slam with sparse extended information filers. Robotics

Research (pp. 254–266).
	48.	 Valencia, R., & Andrade-Cetto, J. (2018). Active pose slam. In Mapping, planning and exploration

with pose SLAM (pp. 89–108). Springer.
	49.	 Vitus, M. P., & Tomlin, C. J. (2011). Sensor placement for improved robotic navigation. Robotics Sci-

ence and Systems, 6, 217.
	50.	 Zhao, J., Huang, Y., He, X., Zhang, S., Ye, C., Feng, T., & Xiong, L. (2019). Visual semantic land-

mark-based robust mapping and localization for autonomous indoor parking. Sensors, 19(1), 161.
	51.	 Zhou, W., Miro, J. V., & Dissanayake, G. (2008). Information-driven 6d slam based on ranging vision.

In 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 2072–2077). IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Mohammad Saleh Teymouri1 · Subhrajit Bhattacharya1 

 *	 Subhrajit Bhattacharya
	 sub216@lehigh.edu

	 Mohammad Saleh Teymouri
	 mot317@lehigh.edu

1	 Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015,
USA

http://orcid.org/0000-0001-9139-054X

	Landmark-based distributed topological mapping and navigation in GPS-denied urban environments using teams of low-cost robots
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related works
	1.2.1 SLAM and related literature
	1.2.2 Simplicial complexes for topological representation
	1.2.3 Landmark placement

	1.3 Contribution and organization

	2 Preliminaries
	2.1 Simplicial complexes and simplices
	2.2 Landmark complex
	2.3 C̆ech complex or nerve of a covering

	3 Landmark placement algorithm
	3.1 Domain of visibility
	3.2 Visibility condition and landmark observation condition
	3.3 Landmark placement algorithm using filtration over sensor footprints

	4 Multi robot exploration and navigation
	4.1 Sensor model
	4.2 Landmark observation
	4.3 Robot short-term-trajectory (STT) modeling
	4.4 Modes of walk
	4.4.1 Random walk
	4.4.2 Informed systematic walk
	4.4.3 Homology informed walk

	4.5 Landmark complex construction algorithm (LCCA)

	5 Results
	5.1 Landmark placement algorithm
	5.2 Landmark complex construction algorithm
	5.3 Effectiveness of ISW Over RW
	5.4 Effect of changing the number of robots
	5.5 Role of homology informed walk in LCCA​
	5.6 Growth rate based criterion for switching to HIW
	5.7 Performance of LCCA with sparse and randomly placed landmarks
	5.8 Comparison with other methods
	5.9 Conclusion

	Acknowledgements
	References

