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Abstract
In the simplest game-theoretic formulation of Schelling’s model of segregation on graphs, 
agents of two different types each select their own vertex in a given graph so as to max-
imize the fraction of agents of their type in their occupied neighborhood. Two ways of 
modeling agent movement here are either to allow two agents to swap their vertices or to 
allow an agent to jump to a free vertex. The contributions of this paper are twofold. First, 
we prove that deciding the existence of a swap-equilibrium and a jump-equilibrium in this 
simplest model of Schelling games is NP-hard, thereby answering questions left open by 
Agarwal et al. [AAAI ’20] and Elkind et al. [IJCAI ’19]. Second, we introduce two meas-
ures for the robustness of equilibria in Schelling games in terms of the minimum number 
of edges or the minimum number of vertices that need to be deleted to make an equilibrium 
unstable. We prove tight lower and upper bounds on the edge- and vertex-robustness of 
swap-equilibria in Schelling games on different graph classes.

Keywords Schelling’s model of Segregation · Graph games · Modification robustness · 
Equilibrium analysis

1 Introduction

Residential segregation, that is, the occurrence of large separated and homogeneous areas 
inhabited by residents from the same social group, occurs frequently in cities all around 
the world and has thus become a major interest in sociology (see, e.g., [19, 34]). Such 
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segregation patterns have been observed to be problematic, as they can, for example, 
lead to unequal access to healthcare or education [26, 40, 41]. While the reasons for the 
emergence of segregation patterns are likely complex and multi-causal in reality, Thomas 
Schelling proposed a deliberately simplistic random process [37, 38] that models individ-
ual behavior and offers an appealing explanation for why residential segregation can occur 
without any central planner or direct discrimination.

In Schelling’s model, one considers agents of two different types. Each agent is ini-
tially placed uniformly at random on an individual vertex of some given graph (also called 
topology), where an agent is called happy if at least a �-fraction of its neighbors is of its 
type for some given tolerance parameter � ∈ (0, 1] . Happy agents do not change location, 
whereas, depending on the model, unhappy agents either randomly swap vertices with 
other unhappy agents or randomly jump to empty vertices. Schelling [37, 38] observed that 
even for agents with � ∼

1

3
 , segregation patterns (i.e., large connected areas where agents 

have only neighbors of their type) are likely to occur. This observation highlights that the 
individual (local) preferences of moderately tolerant agents can lead to the emergence 
of global segregation patterns and contributes to an appealing and simple explanation of 
why segregation is a major and hard to counter problem in reality. Over the last 50 years, 
Schelling’s model has been thoroughly studied both from an empirical (see, e.g., [17, 22]) 
and a theoretical (see, e.g., [5, 6, 13, 28]) perspective in various disciplines including com-
puter science, economics, physics, and sociology. Most works focused on explaining under 
which circumstances and how quickly segregation patterns occur.

In Schelling’s model it is assumed that unhappy agents move randomly. As this seems 
unrealistic, Schelling games, which are a game-theoretic formulation of Schelling’s model 
where agents move strategically in order to maximize their individual utility, have recently 
attracted considerable attention [1, 7, 20, 25, 29]. However, there is no unified formaliza-
tion of the agents’ utilities in the different game-theoretic formulations. In this paper, we 
study a model of Schelling games which is as simple as possible. Specifically, we assume 
that all agents want to maximize the fraction of agents of their type in their occupied neigh-
borhood and only change their location if they can increase this fraction by their move. 
This model differs from Schelling’s model of segregation in that agents only change their 
location if it is profitable for them and in that all agents want to maximize the homogeneity 
of their neighborhood (implicitly the latter part corresponds to setting the tolerance param-
eter to � = 1 ). Thus, we consider a slightly more realistic, simple adaptation of Schelling’s 
model.

To further locate the model studied in this paper, we now discuss how it relates to 
some previous works on Schelling games. For instance, Chauhan et al.  [20] and Echzell 
et al. [25] assumed that the utility of an agent a depends anti-proportionally on the maxi-
mum of 0 and the difference between the threshold parameter � and the fraction of agents 
of a’s type in the occupied neighborhood of a. As done by Agarwal et  al.  [1] and Bilò 
et  al.  [7], we assume that � = 1 . Along a different dimension, in the works of Chauhan 
et  al.  [20] and Agarwal et  al.  [1], the utility of (some) agents also depends on the par-
ticular vertex they occupy. For instance, Agarwal et al.  [1] assume that there exist some 
agents which are stubborn and have a favorite vertex in the graph which they never leave. 
In our model, as also done before by Bilò et al. [7], Echzell et al. [25], and Kanellopoulos 
et al. [29], we assume that the agents’ behavior does not depend on their specific vertex, so 
there are no stubborn agents.

The main focus in previous works and our work lies on the analysis of certain pure 
equilibria in Schelling games, where it is typically either assumed that agents can swap 
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their vertices or jump to empty vertices; accordingly, an assignment is a swap-equilibrium 
(jump-equilibrium) if no two agents can increase their utility by swapping their position 
(if no agent can increase its utility by jumping to an empty vertex). In realistic scenarios, 
unstable states will only be present for a short time and the system will change until an 
equilibrium is reached. This motivates a study of equilibria, including analyzing their prop-
erties and, more fundamentally, understanding in which situations they exist.1 As the exist-
ence and other specifics of equilibria crucially depend on the underlying topology, a com-
mon approach is to consider different graph classes [7, 20, 29].

1.1  Our contributions

The overall goal of this paper is to better understand the structural properties of equilibria 
and how they depend on the underlying topology in Schelling games. We address this goal 
on two fronts.

In the first, more technical part of the paper, we prove that deciding the existence 
of a jump- or swap-equilibrium in Schelling games where all agents want to maximize 
the fraction of agents of their type in their occupied neighborhood is NP-hard. Notably, 
our technically involved results strengthen results by Agarwal et al. [1], who proved the 
NP-hardness of these problems making decisive use of the existence of stubborn agents 
(which never leave their vertices). Our result suggests that it is challenging to obtain a 
full understanding of the existence and structure of equilibria in general graphs, and in 
particular that graphs with equilibria cannot be easily characterized. However, we show 
one way to circumvent this problem: As soon as each non-degree-one vertex in a graph 
has sufficiently many degree-one neighbors, swap-equilibria can be characterized and 
computed efficiently.

Having analyzed the existence of equilibria, in the second, more conceptual part, we 
introduce a new perspective for the analysis of equilibria in Schelling game: Stability under 
changes. Specifically, we introduce a notion for the robustness of an equilibrium under ver-
tex/edge deletion. We say that an equilibrium has vertex/edge-robustness r if it remains 
stable under the deletion of any set of at most r vertices/edges but not under the deletion 
of r + 1 vertices/edges. Considering the original motivation of modeling residential segre-
gation, it might for example occur that agents move away and leave the city or that certain 
roads or bus routes get shut down. In the context of swap-equilibria on which we focus in 
the second part, the earlier corresponds to deleting the vertex occupied by the leaving agent 
(or all edges incident to it).2 In turn, closing roads or bus routes can be modeled by delet-
ing the corresponding edge. An interesting task now is to find a more “robust” equilibrium 
that remains stable in such a changing environment, as for non-robust equilibria it could be 
that a small change can cause the reallocation of all agents. By studying the robustness of 
equilibria, we also shed further light on how equilibria depend on the underlying topology: 
If an equilibrium is very robust, then this means that its structure is not specific to only one 
distinct graph but contains “generally stable” configurations.

We study the existence of swap-equilibria with a given robustness. We restrict our atten-
tion to swap-equilibria, as for jump-equilibria, the robustness heavily depends on both the 

1 Notably, a substantial part of research in the broader, related area of coalition formation games also 
focuses on the existence and properties of stable outcomes (see the survey of Aziz and Savani [3]).
2 This is because when computing swap-equilibria, unoccupied vertices can never get occupied again and 
are also irrelevant for computing agents’ utilities.
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underlying topology and the specific numbers of agents of each type. Providing meaningful 
bounds on the robustness of a jump-equilibrium is therefore rather cumbersome. In our 
analysis of the robustness of swap-equilibria, we follow the approach from most previous 
works and investigate the influence of the structure of the topology [1, 7] (clearly robust-
ness depends on the underlying topology). That is, we show tight upper and lower bounds 
on the edge- and vertex-robustness of swap-equilibria in Schelling games on topologies 
from various graph classes, summarized in Table 1. We prove that the edge- and vertex-
robustness of swap-equilibria on a graph class can be arbitrarily far apart, as on cliques it 
is always sufficient to delete a single edge to make every swap-equilibrium unstable while 
every swap-equilibrium remains stable after the deletion of any subset of vertices. In con-
trast to this, all of our other lower and upper bounds are the same (and tight) for vertex- and 
edge-robustness and can be proven using similar arguments. We further show that the dif-
ference between the edge/vertex-robustness of the most and least robust equilibrium can 
be arbitrarily large: On paths there exists a swap-equilibrium that can be made unstable by 
deleting a single edge or vertex and a swap-equilibrium that remains stable after the dele-
tion of any subset of edges or vertices. This suggests that on paths (and more generally on 
unstudied graph classes) one should be cautious when dealing with equilibria if robustness 
is important. In contrast to this, on cliques, cycles, and grids, from a robustness perspective 
it does not really matter which equilibrium is chosen.

As an example of a nontrivial graph class where every swap-equilibrium has robustness 
larger than zero, we define �-star-constellation graphs (see Sect. 2.2 for a definition). We 
show that every swap-equilibrium on an �-star-constellation graph has edge- and vertex-
robustness of at least � . Moreover, independent of our robustness notion, we obtain a pre-
cise characterization of swap equilibria on �-star-constellation graphs and a polynomial-
time algorithm for checking whether a swap equilibrium exists on a graph from this class. 
Lastly, we prove that a swap-equilibrium always exists on a subclass of �-star-constellation 
graphs and caterpillar graphs which we call �-caterpillars (see Fig. 1 for an example of a 
2-caterpillar).

Table 1  Overview of robustness values of swap-equilibria for various graph classes

For each considered class, a swap-equilibrium always exists (see Bilò et al. [7] and Echzell et al. [25] and 
Sect.  4.2). Moreover, there exists a Schelling game on a graph from this class with two swap-equilibria 
whose robustness match the depicted lower and upper bound. For bounds marked with † , on a graph from 
this class, an equilibrium with this robustness is guaranteed to exist in every Schelling game with at least 
four agents of the one and two agents of the other type

Edge-robustness Vertex-robustness

Lower bound Upper bound Lower bound Upper bound

Cliques (Ob. 2) 0
†

0
† |V(G)|† |V(G)|†

Cycles (Pr. 4) 0
†

0
†

0
†

0
†

Paths (Th. 4) 0
† |E(G)|† 0

† |V(G)|†

Grids (Th. 5) 0 1 0 1
�-Caterpillars (Pr. 5) � |E(G)|† � |V(G)|†
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1.2  Related work

Most of the works on Schelling games focused on one of three aspects: existence and 
complexity of computing equilibria [1, 7], game dynamics [7, 20, 25], and price of 
anarchy and stability [1, 7, 29]. The first area is closest to our paper, so we review 
some results here. On the negative side, Agarwal et  al.  [1] showed that a jump- and 
swap-equilibrium may fail to exist even on tree topologies and that checking their 
existence is NP-hard on general graphs in the presence of stubborn agents. In Sect. 3, 
we strengthen their result by showing that the problem remains NP-hard in the absence 
of stubborn agents. On a tree, the existence of a jump- and swap equilibrium can be 
checked in polynomial time [1]. On the positive side, Agarwal et  al.  [1] showed that 
a jump-equilibrium always exists on stars, paths, and cycles. Concerning swap-equi-
libria, Echzell et  al.  [25] showed that a swap-equilibrium always exists on regular 
graphs (and in particular cycles). Recently, Bilò et al. [7] proved that a swap-equilib-
rium is guaranteed to exist on paths and grids, and they obtained further results for the 
restricted case where only adjacent agents are allowed to swap.

Lastly, different from the three above mentioned directions, Bullinger et al. [16] and 
Deligkas et  al.  [23] studied the computational complexity of finding assignments in 
which agents are “as happy as possible”, e.g., Pareto-optimal assignments and assign-
ments maximizing the summed utility of all agents. Further, Chan et al. [18] proposed 
a generalization of Schelling games where, among others, multiple agents can occupy 
the same vertex.

Interpreting the neighborhood of an agent as its coalition, Schelling games also 
share characteristics with hedonic games [12, 24], where agents are partitioned into 
disjoint coalitions and each agent has preferences over all possible coalitions it can be 
part of. Schelling games are in particular connected to (modified) fractional hedonic 
games [4, 8, 35], where agents’ utility for a coalition is the average of their utility 
for all individual coalition members, and hedonic diversity games [10, 14], where 
agents are of two different types and the preferences of agents over coalitions are fully 
determined by the fraction of agents of their type in the coalition. The main differ-
ence between hedonic games and Schelling games is that in Schelling games agents are 
placed on a topology so each agent has its own coalition and coalitions may overlap. 
Recently, Bodlaender et al. [9] proposed a model that can be somewhat considered as 
both a generalization of hedonic games and Schelling games: In their model, a set of 
agents with cardinal preferences over each other need to be placed on the vertices of a 
graph and the utility of an agent is its summed utility that it derives from all adjacent 
agents.

Analyzing the robustness of outcomes of decision processes has become a popular 
topic in algorithmic game theory [2, 11, 15, 30, 36, 39]. For instance, in the context 
of hedonic games, Igarashi et al. [27] studied stable outcomes that remain stable even 
after some agents have been deleted and, in the context of stable matching, Mai and 
Vazirani [32, 33] and Chen et al. [21] studied stable matchings that remain stable even 
if the agents’ preferences partly change.
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2  Preliminaries

Let ℕ be the set of positive integers and ℕ0 the set of non-negative integers. For two inte-
gers i, j ∈ ℕ0 with i < j , we denote by [i,  j] the set {i, i + 1,… , j − 1, j} and by [j] the set 
[1, j]. Let G = (V ,E) be an undirected graph. Then, V(G) is the vertex set of G and E(G) 
is the edge set of G. For a subset S ⊆ E of edges, G − S denotes the graph obtained from 
G by deleting all edges from S. For a subset V ′ ⊆ V  of vertices, G[V �] denotes the graph G 
induced by V ′ . Overloading notation, for a subset V ′ ⊆ V  , we sometimes write G − V � to 
denote the graph G induced by V⧵V ′ , that is, G − V � = G[V⧵V �] . For a vertex v ∈ V(G) , 
we denote by NG(v) the set of vertices adjacent to v in G. The degree degG(v) ∶= |NG(v)| 
of v is the number of vertices adjacent to v in G. Lastly, Δ(G) ∶= maxv∈V(G) deg

G(v) is the 
maximum degree of a vertex in G.

2.1  Schelling games

A Schelling game is defined by a set N = [n] of n ∈ ℕ (strategic) agents partitioned into 
two types T1 and T2 and an undirected graph G = (V ,E) with |V| ≥ n , called the topol-
ogy. The strategy of agent i ∈ N consists of picking some position vi ∈ V  with  vi ≠ vj 
for i, j ∈ N with i ≠ j . The assignment vector v =

(
v1,… , vn

)
 contains the positions of 

all agents. A vertex v ∈ V  is called unoccupied in v if v ≠ vi for all i ∈ N . In the follow-
ing, we refer to an agent i and its position vi interchangeably. For example, we say agent i 
has an edge to agent j if {vi, vj} ∈ E . For an agent i ∈ Tl with l ∈ {1, 2} , we call all other 
agents Fi = Tl⧵{i} of the same type friends of i. The set of i’s neighbors on topology G is 
NG
i
(v) ∶=

{
j ∈ N⧵{i} ∣

{
vi, vj

}
∈E(G)} (note that the neighbors NG

i
(v) of i are different 

from NG(vi) , as NG
i
(v) contains the agents occupying adjacent vertices and as unoccupied 

vertices are disregarded). Further, aG
i
(v) ∶= |NG

i
(v) ∩ Fi| is the number of friends in the 

neighborhood of i in v.
Given an assignment v , the utility of agent i on topology G is:

If the topology is clear from the context, we omit the superscript G.
Given some assignment v , agent i ∈ N , and an unoccupied vertex  v, we denote 

by  vi→v = (vi→v
1

,… , vi→v
n

) the assignment obtained from v where i jumps to v, that is, 
vi→v
i

= v and vi→v
j

= vj for all j ∈ N⧵{i} . A jump of an agent i to vertex v is called profit-
able if it improves i’s utility, that is, ui

(
v
i→v

)
> ui(v) . Note that an agent can jump to any 

unoccupied vertex. For two agents i, j ∈ N with i ≠ j and some assignment v , we define 
v
i↔j = (v

i↔j

1
,… , v

i↔j
n ) as the assignment that is obtained by swapping the vertices of i and 

j, that is, vi↔j

i
= vj , v

i↔j

j
= vi , and vi↔j

k
= vk for all k ∈ N⧵{i, j} . Note that any two agents 

(independent of the vertices they occupy) can perform a swap. A swap of two agents 
i, j ∈ N is called profitable if it improves i’s and j’s utility, that is, ui

(
v
i↔j

)
> ui(v) and 

uj
(
v
i↔j

)
> uj(v) (see Fig. 1 for an example). Note that a swap between agents of the same 

type is never profitable.
An assignment v is a jump/swap-equilibrium if no profitable jump/swap exists. Note 

that a jump-equilibrium is simply a Nash equilibrium for our Schelling game. Moreover, 

uG
i
(v) ∶=

{
0 if NG

i
(v) = �,

aG
i
(v)

|NG
i
(v)|

otherwise.
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note that we are always interested in jump or swap equilibria, implying that we either 
allow agents to swap or to jump but not both. Following literature conventions, in cases 
where we allow agents to swap, we assume that n = |V(G)| , while in cases where we 
allow agents to jump, we assume that n < |V(G)| . 

2.2  Graph classes

A path of length n is a graph G = (V ,E) with V = {v1,… , vn} and 
E = {{vi, vi+1} ∣ i ∈ [n − 1]} . A cycle of length n is a graph G = (V ,E) with 
V = {v1,… , vn} and E = {{vi, vi+1} ∣ i ∈ [n − 1]} ∪ {{vn, v1}} . We call a graph 
G = (V ,E) where every pair of vertices is connected by an edge a clique. For x, y ≥ 2 , we 
define the (x × y)-grid as the graph G = (V ,E) with V = {(a, b) ∈ ℕ × ℕ ∣ a ≤ x, b ≤ y} 
and E = {{(a, b), (c, d)} ∣ |a − c| + |b − d| = 1} . An x-star with x ∈ ℕ is a graph 
G = (V ,E) with V = {v0,… , vx} and E = {{v0, vi} ∣ i ∈ [x]} ; the vertex v0 is called 
the central vertex of the star. We say that a connected graph G = (V ,E) is an �-star-
constellation graph for some � ∈ ℕ0 if it holds for all v ∈ V  with degG(v) > 1 that 
|{w ∈ NG(v) ∣ degG(w) = 1}| ≥ |{w ∈ NG(v) ∣ degG(w) > 1}| + 𝛼 . That is, the graph G 
consists of stars where the central vertices can be connected by edges such that every 
central vertex is adjacent to at least � more degree-one vertices than other central verti-
ces. Thus, an �-star constellation graph consists of (connected) stars forming a constel-
lation of stars, which gives this class its name. An �-caterpillar is an �-star-constel-
lation graph where the graph restricted to non-degree-one vertices forms a path (see 
Fig. 1 for an example). We consider these two classes of graphs because equilibria on 
these graphs exhibit interesting robustness patterns. Note that an alternative view on �
-star-constellation graphs is that we start with some arbitrary underlying graph and then 
add a sufficient number of degree-one vertices to each original vertex for the above con-
dition to be fulfilled.

3  Computing equilibria

This section is split into three parts. In the first (resp., second) part, we show that decid-
ing the existence of a swap (resp., jump) equilibrium is NP-hard. In the third part, we 
give a characterization of and an algorithm for computing swap-equilibria in �-star-con-
stellation graphs, which will be studied in more detail in Sect. 4.

i j

Fig. 1  The displayed graph is a 2-star-constellation graph and a 2-caterpillar. We show a Schelling game 
with |T

1
| = 7 and |T

2
| = 8 . Agents from T

1
 are drawn in light blue and agents from T

2
 in dark red. Let v be 

the depicted assignment. It holds that ui(v) = uj(v) =
1

3
 and ui(vi↔j) = uj(v

i↔j) =
1

2
 . Thus, v is not a swap-

equilibrium, as i and j have a profitable swap (Color figure online)
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Before we start with the presentation of our NP-hardness reductions, we give some 
general overview and problem definitions that apply to both Sects. 3.1 and 3.2. Specifi-
cally, we prove the NP-hardness of the following two problems:

Swap/(Jump)-Equilibrium [S/(J)-Eq]

Input:  A connected topology G and a set N = [n] of agents with 
|V(G)| = n (|V(G)| > n) partitioned into types T1 and T2.

Question:  Is there an assignment v of agents to vertices where no two agents have a 
profitable swap (no agent has a profitable jump)?

We will reduce from variants of this problem with stubborn and strategic agents that 
were proven to be NP-hard by Agarwal et al. [1]. In their model, a strategic agent wants 
to maximize the fraction of agents of its type in its occupied neighborhood (like the 
agents in our definition) and a stubborn agent has a favorite vertex which it never leaves 
(in our definition, such agents do not exist). Formally, Agarwal et al. [1] proved the NP-
hardness of the following problems:

Swap/(Jump)-Equilibrium with Stubborn Agents [S/(J)-Eq-Stub]

Input:  A connected topology G and a set N = [n] = R∪̇S of agents with 
|V(G)| = n (|V(G)| > n) partitioned into types T1 and T2 and a set 
Vs = {si ∈ V(G)|i ∈ S} of vertices, where R is the set of strategic and S the set 
of stubborn agents.

Question:  Is there an assignment v of agents to vertices with vi = si for i ∈ S such that 
no two strategic agents have a profitable swap (no strategic agent has a profit-
able jump)?

 Both known hardness reductions heavily rely on the existence of stubborn agents. We 
show that it is possible to polynomial-time reduce S/J-Eq-Stub to S/J-Eq.

3.1  NP‑hardness of Swap‑Equilibrium

This subsection is devoted to proving the following theorem:

Theorem 1 S-Eq is NP-complete.

To prove that S-Eq is NP-hard, we devise a polynomial-time many-one reduction from a 
restricted version of S-Eq-Stub:

Lemma 1 S-Eq-Stub remains NP-hard even on instances satisfying the following two 
conditions: 

1. No two adjacent vertices are both occupied by stubborn agents.
2. For every vertex v ∉ VS not occupied by a stubborn agent, there exist two vertices 

si, sj ∈ VS adjacent to v occupied by stubborn agents i ∈ T1 and j ∈ T2.
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3. For both types there are at least five strategic and three stubborn agents.

Proof The first restriction follows from the fact that an edge between two stubborn agents 
does not have any effect on the stability of an assignment. Thus, all such edges can always 
be deleted. The other two restrictions follow directly from the reduction by Agarwal 
et al. [1], since, in their reduction, all constructed instances satisfy both properties. To ver-
ify that these properties hold, we give a short description of their construction below. As 
we do not modify the construction, see Agarwal et al. [1] for the respective proof of cor-
rectness and a more detailed description.

The reduction is from CliquE. An instance of CliquE consists of a connected graph 
H = (X, Y) and an integer � , and the question is whether there is a subset X′ ⊆ X of at least 
� vertices such that each pair of vertices from X′ is adjacent in H. Without loss of general-
ity, they assume that 𝜆 > 5 . Given an instance of CliquE, they construct a Schelling game 
with agents N = R∪̇S partitioned into types T1 and T2 on a topology G. R contains � strate-
gic agents of type T1 and |X| + 5 strategic agents of type T2 . Note that we thus have at least 
five strategic agents from each type. The stubborn agents will be defined together with the 
topology.

The graph G consists of three subgraphs G1,G2 and G3 , which are connected by single 
edges. G1 is an extended copy of the given graph H with added degree-one vertices Wv for 
every v ∈ X connected to their original vertex v. The vertices in Wv are occupied by stub-
born agents from both types. G2 is a complete bipartite graph, where one of the partitions is 
fully occupied by stubborn agents from both types. G3 is constructed by adding degree-one 
vertices to a given tree T. For every vertex v ∈ V(T) , at least ten vertices are added, half of 
which are occupied by stubborn agents from T1 and the other half are occupied by stubborn 
agents from T2 . Thus, we have (more than) three stubborn agents of each type. Further-
more, it is easy to see that every vertex not occupied by a stubborn agent is adjacent to at 
least one stubborn agent from each type.   ◻

3.1.1  Idea behind our reduction

Given an instance of S-Eq-Stub on a topology G′ with vertices of stubborn agents VS′ , we 
construct a Schelling game without stubborn agents on a topology G that simulates the 
given game. At the heart of our construction are two ideas:

• We can simulate a stubborn agent by a strategic one after adding sufficiently many 
neighboring auxiliary vertices that are guaranteed to be occupied by friends. Thereby, 
the strategic agent never has an incentive to deviate and in essence becomes stubborn.

• We introduce some asymmetries between the two types to ensure that the above guaran-
tee holds.

Going into more details, to create G, we modify the graph G′ by adding new vertices and 
connecting these new vertices to vertices from VS′ . Moreover, we replace each stubborn 
agent by a strategic agent and add further strategic agents. In the construction, we ensure 
that if there exists a swap-equilibrium v′ in the given game, then v′ can be extended to a 
swap-equilibrium v in the constructed game by replacing each stubborn agent with a stra-
tegic agent of the same type and filling empty vertices with further strategic agents. One 
particular challenge here is to ensure that the strategic agents that replace stubborn agents 



 Autonomous Agents and Multi-Agent Systems            (2024) 38:9 

1 3

    9  Page 10 of 42

do not have a profitable swap in v . For this, recall that, by Lemma 1, we assume that in 
G′ , every vertex not occupied by a stubborn agent in �′ is adjacent to at least one stubborn 
agent of each type. Thus, in v′ each strategic agent i is always adjacent to at least one friend 
and has utility uG�

i
(��) ≥ 1∕Δ(G�) . Conversely, by swapping with agent i, an agent  j of the 

other type can get utility at most uG�

j
(��i↔j) ≤ Δ(G�)−1∕Δ(G�) . Our idea is now to “boost” the 

utility uG
j
(v) of a strategic agent j that replaces a stubborn agent by adding enough degree-

one neighbors only adjacent to vj in G, which we fill with agents of j’s type when extending 
v
′ to v such that uG

j
(v) ≥ Δ(G�)−1∕Δ(G�) ≥ uG

j
(vi↔j).

Moreover, we ensure that if there exists a swap-equilibrium v in the constructed game, 
then v restricted to V(G�) , where some (strategic) agents are replaced by the designated 
stubborn agents of the same type, is a swap-equilibrium in the given game. Note that the 
neighborhoods of all vertices in V(G�)⧵VS� are the same in G and G′ and thus every swap 
that is profitable in the assignment in the given game would also be profitable in v . So the 
remaining challenge here is to design G in such a way that the vertices occupied by stub-
born agents of some type in the input game have to be occupied by agents of the same 
type in every swap-equilibrium in the constructed game. This is achieved by introducing an 
asymmetry between the types in the construction.

3.1.2  Construction

We are given an instance I′ of S-Eq-Stub consisting of a connected topology G′ , a set of 
agents [|V(G�)|] = N� = R�∪̇S� partitioned into types T ′

1
 and T ′

2
 with at least five strategic and 

three stubborn agents of each type, and a set VS� = {si ∈ V(G�) ∣ i ∈ S�} of vertices occupied 
by stubborn agents with each vertex v ∉ VS� being adjacent to two vertices si, sj ∈ VS� with 
i ∈ T �

1
 and j ∈ T �

2
 . We denote the sets of vertices occupied by stubborn agents from T ′

1
 and 

T ′
2
 as VS′

1
 and VS′

2
 , respectively. We construct an instance I  of S-Eq consisting of a topology 

G = (V ,E) and types T1 and T2 as follows.
The graph G (sketched in Fig. 2) is an extended copy of the given graph G′ and contains all 

vertices and edges from G′ . We add three sets of vertices M1,X1 , and M2 as specified below. 

G
p = |T2| − 2

VS1

M1
. . .. . .

X1 |V (G )|2

M2

VS2

. . .. . .

A B

Fig. 2  The constructed topology G. Modifications made to the given graph G′ are colored light blue. Note 
that the vertices in VS�

1

∪ X
1
 and VS′

2

 each form a clique (Color figure online)
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For every vertex v ∈ VS�
2
 , we insert |V(G�)|2 degree-one vertices only adjacent to v and add 

them to M2 . We connect the vertices in VS′
2
 to form a clique. Let

and note that q is an upper bound on the degree of a vertex from VS′
2
 . Further, we define

and note that s > |VS′
1
| . Let X1 be a set of s − |VS�

1
| vertices. Thus, |VS�

1
∪ X1| = s (we use 

this property to introduce the mentioned asymmetry between the two types). We connect 
the vertices in VS�

1
∪ X1 to form a clique. Let

(this choice of p is important to ensure that vertices in VS′
1
 are occupied by agents from T1 in 

each swap-equilibrium of the constructed game). For every vertex v ∈ VS�
1
∪ X1 , we insert 

p degree-one vertices only adjacent to v and add them to M1 . Notably, the neighborhood of 
all vertices in V(G�)⧵VS� is the same in G′ and G.

The set N = T1∪̇T2 of agents is defined as follows. We have |T1| = |T �
1
| + |M1| + |X1| 

agents in T1 and |T2| = |T �
2
| + |M2| agents in T2 . By the construction of X1 above, we have 

that |VS�
1
∪ X1| = q ⋅ (|T �

2
| + |M2| + Δ(G�)) + 1 = q ⋅ (|T2| + Δ(G�)) + 1 . It also holds that 

p = |T �
2
| + |M2| − 2 = |T2| − 2.

3.1.3  Proof of correctness

Let A ∶= M1 ∪ VS�
1
∪ X1 and B ∶= M2 ∪ VS�

2
 (the vertices from A should be occupied by 

agents from T1 , while the vertices from B should be occupied by agents from T2 ). We 
start with showing the (easier) forward direction of the correctness of the reduction:

Lemma 2 If the given instance I′ of S-Eq-Stub admits a swap-equilibrium, then the con-
structed instance I  of S-Eq admits a swap-equilibrium.

Proof Assume that there exists a swap-equilibrium v′ in the given instance I′ with stubborn 
agents. Note that in v′ , the vertices in VS′

1
 and VS′

2
 are occupied by stubborn agents from 

T ′
1
 and T ′

2
 , respectively. We now define an assignment v for the Schelling game I  without 

stubborn agents and prove that it is a swap-equilibrium: In v , the vertices in V(G) ∩ V(G�) 
are occupied by agents of the same type as the agents in v′ . The vertices in X1 are occu-
pied by agents from T1 . For t ∈ {1, 2} , the added degree-one vertices in Mt are occupied by 
agents from Tt . Hence, the vertices in A = M1 ∪ VS�

1
∪ X1 are occupied by agents from T1 

and the vertices in B = M2 ∪ VS�
2
 are occupied by agents from T2 . Note that in v , exactly |T1| 

agents from T1 and |T2| agents from T2 are assigned as we have |T1| = |T �
1
| + |M1| + |X1| 

and |T2| = |T �
2
| + |M2|.

Next, we prove that v is a swap-equilibrium on G in I  by showing that no profitable swap 
exists. We first observe that the utility of an agent i ∈ T1 on a vertex w ∈ M1 ∪ X1 is ui(v) = 1 , 
since NG(w) ⊆ A and all agents in A are from T1 . The same holds analogously for all agents 
on a vertex in M2 . Therefore, the agents on vertices in M1 ∪M2 ∪ X1 cannot be involved in 
a profitable swap. Note further that the utility of any agent on a vertex v ∈ V(G�)⧵VS� is the 
same in v and v′ , as the neighborhood of v is identical in G and G′ and all vertices in the 

q ∶= Δ(G�) + |V(G�)|2 + |VS�
2
|

s ∶= q ⋅ (|T �
2
| + |M2| + Δ(G�)) + 1

p ∶= |T �
2
| + |M2| − 2 > Δ(G�)2
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neighborhood are occupied by agents of the same type in v and v′ . Since v′ is a swap-equilib-
rium, a profitable swap must therefore involve at least one agent i with vi ∈ VS�.

Let Y = VS�
1
∪ X1 if vi ∈ VS�

1
 and Y = VS�

2
 otherwise. Denote the number of degree-one 

neighbors adjacent to vi that were added to G′ in the construction of G by x. By construc-
tion of G, it holds that x ≥ Δ(G�)2 and that the agent i is, among others, adjacent to the 
vertices in Y⧵{vi} and the x ≥ Δ(G�)2 degree-one neighbors (all these vertices are occupied 
by friends). As the only other neighbors of vi need to come from V(G�)⧵VS� , it holds that 
degG(vi) ≤ x + |Y⧵{vi}| + Δ(G�) . Thus, the utility of agent i on vi is:

We now distinguish between swapping i with an agent j with vj ∈ VS� and with 
vj ∈ V(G�)⧵VS� (note that this exhausts all cases as we have already argued above that all 
agents placed on newly added vertices can never be part of a profitable swap). First, con-
sider swapping i with an agent j of the other type with vj ∈ VS� . On vertex vj , agent i can at 
most have Δ(G�) adjacent friends, as all vertices that are connected to vj by edges added in 
the construction (that are, vertices in A or B) are occupied by friends of j.

It holds that degG(vj) ≥ Δ(G�)2 , since vj is adjacent to at least Δ(G�)2 degree-one neigh-
bors. Therefore, the swap can not be profitable, as

Hence, consider swapping i with an agent j of the other type on vj ∈ V(G�)⧵VS� . Recall that 
by Lemma 1 we have assumed that for every vertex v ∉ VS� not occupied by a stubborn 
agent, there exist two adjacent vertices si, sj ∈ VS� occupied by stubborn agents i ∈ T1 and 
j ∈ T2 . Since vj ∈ V(G�)⧵VS� , the agent j is thus adjacent to at least one friend. More pre-
cisely, we have uG�

j
(v�) ≥

1

Δ(G�)
 . As noted above, the neighborhood of vj is identical in G and 

G′ . We therefore have uG
j
(v) = uG

�

j
(v�) . Thus, by swapping with agent j, agent i can at most 

get the following utility uG
i
(vi↔j) ≤

Δ(G�)−1

Δ(G�)
 . It follows that swapping i and j cannot be profit-

able, as:

Summarizing, no profitable swap is possible and v is a swap-equilibrium for the con-
structed Schelling game I  .   ◻

It remains to prove the backwards direction of the reduction. For this, we start by mak-
ing some definitions. Afterwards, we prove in Lemma 3, that in any swap-equilibrium v in 
I  all vertices from M1 ∪ VS�

1
∪ X1 are occupied by agents from T1 and in Lemma 4, that all 

vertices from M2 ∪ VS�
2
 are occupied by agents from T2 . Using this, we conclude the proof 

by proving the backwards direction of the correctness of the reduction in Lemma 5.
Recall that A = M1 ∪ VS�

1
∪ X1 and B = M2 ∪ VS�

2
 . Observe that the subgraph G[A] 

(see Fig.  3a) consists of q ⋅ (|T2| + Δ(G�)) + 1 stars which each have |T2| − 1 ver-
tices. The central vertices of these stars are connected such that they form a clique. As 
q = Δ(G�) + |V(G�)|2 + |VS�

2
| > |VS�

2
| ≥ 3 , note that G[A] consists of at least three 

uG
i
(v) ≥

x + |Y⧵{vi}|

x + |Y⧵{vi}| + Δ(G�)
>

x

x + Δ(G�)
≥

Δ(G�)2

Δ(G�)2 + Δ(G�)
=

Δ(G�)

Δ(G�) + 1
.

uG
i
(v) ≥

Δ(G�)

Δ(G�) + 1
>

1

Δ(G�)
=

Δ(G�)

Δ(G�)2
≥ uG

i
(vi↔j).

uG
i
(v) ≥

Δ(G�)

Δ(G�) + 1
>

Δ(G�) − 1

Δ(G�)
≥ uG

i
(vi↔j)
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stars. Note that V(G)⧵A = (V(G�)⧵VS� ) ∪ B = (V(G�)⧵VS� ) ∪ (M2 ∪ VS�
2
) . The subgraph 

G[V(G)⧵A] (shown in Fig. 3b) is connected, since every vertex in V(G�)⧵VS� is connected 
to a vertex in VS′

2
 (by our assumption concerning I′ from Lemma 1) and the vertices in VS′

2
 

form a clique (by the construction of G). Additionally, all vertices in M2 are adjacent to 
exactly one vertex in VS′

2
 . We start by proving Lemmas 3 and 4, which state that in every 

swap-equilibrium, the vertices in A and B have to be occupied by agents from T1 and T2 , 
respectively.

Lemma 3 In any swap-equilibrium v in I  , all vertices in A are occupied by agents from T1.

Proof For the sake of contradiction, assume that v is a swap-equilibrium in I  where x > 0 
agents from T2 are placed on vertices from A. We distinguish the following three cases 
based on the number of agents from T2 in A and prove that v cannot be stable.

Case 1: x < |T2| − 1

Since all stars in G[A] have |T2| − 1 > x vertices, at least one of the stars has to con-
tain agents from both types. Thus, there exists an agent i ∈ Tt for some t ∈ {1, 2} on a 
degree-one vertex in A with ui(v) = 0 . Since |T2| − x > 0 and |T1| > |A| , there have to be 
agents from both T1 and T2 in G[V(G)⧵A] . As observed before, G[V(G)⧵A] is connected. 
Thus, there exist agents i� ∈ Tt and j� ∈ Tt� with t′ ≠ t in G[V(G)⧵A] that are adjacent and 
hence have ui� (v) < 1 and uj� (v) < 1 . Then, swapping i and j′ is profitable, since we have 
ui(v) = 0 < ui(v

i↔j� ) and uj� (v) < 1 = uj� (v
i↔j� ).

Case 2: x = |T2|

Recall that all stars in G[A] have |T2| − 1 < x vertices. Thus, there have to be agents 
from T2 on at least two stars. Since it also holds that x < 2 ⋅ (|T2| − 1) , there are agents 
from both types on at least one of the stars. Let vj be the central vertex of this star occupied 
by some agent j. There exists an agent i ∈ Tt for some t ∈ {1, 2} on a degree-one vertex 
adjacent to vj with ui(v) = 0 . The agent j is from type Tt′ with t′ ≠ t . As noted before, G[A] 
contains at least 3 stars. Since x < 2 ⋅ (|T2| − 1) , there also have to be agents from T1 on at 

S′
1 ∪X1

|T2| − 2

(a) The subgraph G[A]. Observe that
G[A] consists of q·(|T2|+∆(G′))+1 stars
which each have |T2| − 1 vertices and
that are connected such that the central
vertices form a clique.

V (G′) \ VS′ S′
2 M2

(b) Visualization of the subgraph
G[V (G) \ A]. Note that G[V (G) \ A] is
connected, since every vertex in V (G′) \
VS′ is adjacent to at least one vertex in
S′
2.

Fig. 3  Schematic visualization of the induced subgraphs G[A] and G[V(G)⧵A] . Recall that 
A = S�

1
∪M

1
∪ X

1
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least two of the stars. We make a case distinction based on the types of the agents on cen-
tral vertices in G[A].

First, suppose that all central vertices are occupied by agents from Tt′ . As noted above, it 
holds for both types that agents of this type occupy vertices from at least two stars. Hence, 
there exists an agent i� ∈ Tt on a degree-one vertex adjacent to a central vertex w ≠ vj 
with ui� (v) = 0 . Let j� ∈ Tt� be the agent on w. Then, swapping i and j′ is profitable, since 
uj� (v) < 1 = uj� (v

i↔j� ) and ui(v) = 0 < ui(v
i↔j� ).

Now, consider that all central vertices different from vj are occupied by agents from Tt . 
Then, there exists an agent j� ∈ Tt� with uj� (v) = 0 on a degree-one vertex adjacent to a cen-
tral vertex w ≠ vj that is occupied by an agent from Tt . Swapping i and j′ is profitable, since 
uj� (v) = 0 < 1 = uj� (v

i↔j� ) and ui(v) = 0 < 1 = ui(v
i↔j� ).

Therefore, the central vertices different from vj have to be occupied by agents from both 
types. That is, there exists an agent j� ∈ Tt� on a central vertex vj′ ≠ vj and an agent i� ∈ Tt 
on a central vertex vi′ ≠ vj . We have uj� (v) < 1 , since vj′ is adjacent to vi′ . Then, swapping i 
and j′ is profitable, since uj� (v) < 1 = uj� (v

i↔j� ) and ui(v) = 0 < ui(v
i↔j� ).

Case 3: x = |T2| − 1

If the x agents from T2 occupy vertices from two or more stars, then at least two 
stars contain agents from both types (illustrated in Fig. 4). That is, there exists an agent 
i ∈ Tt1 for some t1 ∈ {1, 2} with ui(v) = 0 on a degree-one vertex adjacent to an agent 
j ∈ Tt�

1
 with t′

1
≠ t1 . The agent j on the central vertex has uj(v) < 1 . Without loss of gen-

erality, assume that t1 = 1 and thus t�
1
= 2 . As argued above, another star has to contain 

agents from both types. Thus, there exists another agent i� ∈ Tt2 for some t2 ∈ {1, 2} with 
ui(v) = 0 on a degree-one vertex adjacent to an agent j� ∈ Tt�

2
 with t′

2
≠ t2 . Again, the agent 

j′ on the central vertex has uj� (v) < 1 . If t2 = 1 , then swapping i and j′ is profitable, as 
ui(v) = 0 < ui(v

i↔j� ) and uj� (v) < 1 = uj� (v
i↔j� ) . Otherwise, if t2 = 2 , then swapping i and 

i′ is profitable, as ui(v) = 0 < 1 = ui(v
i↔i� ) and ui� (v) = 0 < 1 = ui� (v

i↔i� ) . Summariz-
ing, if the x agents from T2 occupy vertices from two or more stars, then v cannot be a 
swap-equilibrium.

Hence, the agents from T2 have to occupy all |T2| − 1 vertices of one of the stars 
in  A. Let agent i ∈ T2 be the agent on the central vertex vi of this star. Observe that 
degG(vi) ≥ (|T2| − 2) + q ⋅ (|T2| + Δ(G�)) , since vi is adjacent to |T2| − 2 degree-one 

Fig. 4  Case 3 in the proof of 
Lemma 3 (there are exactly 
|T

2
| − 1 agents from T

2
 in A) 

where agents from T
2
 occupy two 

or more stars

j j

i ∈ Tt1 i ∈ Tt2

. . . . . .

t1 = t2

j j

i ∈ Tt1 i ∈ Tt2

. . . . . .

t1 = t2
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neighbors and the q ⋅ (|T2| + Δ(G�)) vertices in (VS�
1
∪ X1)⧵{vi} . It follows that agent i ∈ T2 

has utility:

Since x = |T2| − 1 , there is one agent i� ∈ T2 not placed on a vertex from A. As 
noted above, G[V(G)⧵A] is connected. Thus, agent i′ is adjacent to an agent j ∈ T1 
on vj ∈ V(G)⧵A . Recall that V(G)⧵A = (V(G�)⧵VS� ) ∪ (M2 ∪ VS�

2
) . If vj ∈ VS�

2
 , then 

we have degG(vj) ≤ Δ(G�) + |V(G�)|2 + |VS�
2
| . If vj ∈ M2 , then we have degG(vj) = 1 . 

If vj ∈ V(G�)⧵VS� , then we have degG(vj) ≤ Δ(G�) . In any case, it holds that 
degG(vj) ≤ Δ(G�) + |V(G�)|2 + |VS�

2
| = q (q was defined in the construction). Since vj is 

adjacent to vi′ , agent i has at least one adjacent friend after swapping to vj , and its utility is:

Thus, i wants to swap with j. Note that at least one of the at most q neighbors of j 
(specifically, agent i′ ) is not a friend of j. Observe that the neighborhood of the cen-
tral vertex vi consists of |T2| − 2 degree-one neighbors, the q ⋅ (|T2| + Δ(G�)) ver-
tices in (VS�

1
∪ X1)⧵{vi} and at most Δ(G�) neighbors in V(G�)⧵VS�

1
 . Thus, we have 

degG(vi) ≤ q ⋅ (|T2| + Δ(G�)) + |T2| − 2 + Δ(G�) < (q + 1) ⋅ (|T2| + Δ(G�)) . Moreo-
ver, there are at least q ⋅ (|T2| + Δ(G�)) agents of type T1 adjacent to vi (all agents in 
(VS�

1
∪ X1)⧵{vi} ). Therefore, it holds that agent j ∈ T1 has utility:

Hence, swapping i and j is profitable and v cannot be a swap-equilibrium.
Since we have exhausted all possible cases, the lemma follows.   ◻

Next, we prove that all vertices in B have to be occupied by agents from T2.

Lemma 4 In any swap-equilibrium v in I  , all vertices in B are occupied by agents from T2.

Proof By Lemma  3, vertices from A are only occupied by agents from T1 in v . There 
are y ∶= |T1| − |A| = |T �

1
| − |VS�

1
| < |V(G�)⧵VS� | agents from T1 remaining (note that 

the inequality holds because |T �
1
| − |VS�

1
| is simply the number of strategic agents of the 

first type in the given game, whereas |V(G�)⧵VS� | is the total number of strategic agents). 
These together with all agents from T2 occupy vertices in G[V(G)⧵A] . Since it holds that 
y < |V(G�)⧵VS� | , there exists an agent j ∈ T2 with vj ∈ V(G�)⧵VS� . Recall that by Lemma 1 
we have assumed that in our input instance, every vertex not occupied by a stubborn agent 
is adjacent to at least one stubborn agent of each type. Thus, vj is adjacent to vi ∈ VS�

1
 occu-

pied by agent i. It holds that vi ∈ A , hence we have that agent i must be from T1 . The agents 
i and j have ui(v) < 1 and uj(v) < 1.

Suppose there are x agents of type T1 in B in v , with |V(G�)| > y ≥ x > 0 . We prove 
that in this case v cannot be a swap-equilibrium. Observe that the subgraph G[B] consists 
of |VS′

2
| stars where the central vertices form a clique. Each star contains |V(G�)|2 + 1 > x 

vertices. Therefore, at least one of the stars has to contain agents from both types. That is, 

ui(v) ≤
|T2|

(|T2| − 2) + q ⋅ (|T2| + Δ(G�))
<

|T2|

|T2| ⋅ q
=

1

q
.

ui(v
i↔j) ≥

1

q
> ui(v).

uj(v
i↔j) ≥

q ⋅ (|T2| + Δ(G�))

(q + 1) ⋅ (|T2| + Δ(G�))
=

q

q + 1
>

q − 1

q
≥ uj(v).
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there exists an agent i� ∈ Tt for some t ∈ {1, 2} on a degree-one vertex in B with ui� (v) = 0 . 
If t = 1 , then swapping agent i′ and agent j is profitable, since ui� (v) = 0 < ui� (v

i�↔j) and 
uj(v) < 1 = uj(v

i�↔j) . Otherwise, if t = 2 , then swapping agent i′ and agent i is profitable, 
since ui� (v) = 0 < ui� (v

i�↔i) and ui(v) < 1 = ui(v
i�↔i) . Therefore, there exists a profitable 

swap and v cannot be a swap-equilibrium.   ◻

After establishing these two lemmas, we are now able to prove the backwards direc-
tion of the correctness of the reduction:

Lemma 5 If the constructed instance I  of S-Eq admits a swap-equilibrium, then the given 
instance I′ of S-Eq-Stub admits a swap-equilibrium.

Proof Assume there exists a swap-equilibrium v for the constructed instance I′ without 
stubborn agents. We define an assignment �′ and prove that it is a swap-equilibrium for the 
given Schelling game I′ with stubborn agents on G′ . In �′ , a vertex v ∈ V(G�)⧵VS� is occu-
pied by a strategic agent of the same type as the agent on v in v . The vertices in VS′ have to 
be occupied by the respective stubborn agents. Note that by Lemmas 3 and 4, in the swap-
equilibrium v in I  , the vertices in VS′

1
⊆ A and VS′

2
⊆ B have to be occupied by agents from 

T1 and T2 , respectively. Thus, in �′ , all vertices are occupied by agents of the same type as 
in v . Note that in �′ exactly |T ′

1
| agents from T ′

1
 and |T ′

2
| agents from T ′

2
 are assigned, as we 

have |T1| = |T �
1
| + |M1| + |X1| and |T2| = |T �

2
| + |M2| and as proven in Lemmas 3 and 4, 

in v , all vertices from M1 ∪ X1 are occupied by agents from T1 and all vertices from M2 are 
occupied by agents from T2.

Now, we will prove that �′ is a swap-equilibrium on the given G′ . Since stubborn agents 
never swap position, a profitable swap has to involve two strategic agents i ∈ T �

1
 and j ∈ T �

2
 

with vi, vj ∈ V(G�)⧵VS� . However, by construction of G, the neighborhoods of vi and vj are 
identical in G and G′ . Additionally, it holds that in �′ , all vertices are occupied by agents of 
the same type as in v . Since v is a swap-equilibrium on G, swapping i and j cannot be prof-
itable. It follows that �′ is a swap-equilibrium, which completes the proof.   ◻

Note that the membership of S-Eq in NP is trivial, as it is possible to verify that a given 
assignment is a swap equilibrium by iterating over all pairs of agents and checking whether 
swapping the two is profitable. Thus, from Lemmas 2 and 5, Theorem 1 follows:

Theorem 1 S-Eq is NP-complete.

3.2  NP‑hardness of Jump‑Equilibrium

Inspired by the reduction for S-Eq described above, we can prove that deciding the exist-
ence of a jump-equilibrium is NP-hard as well. While the constructions behind both reduc-
tions use the same underlying general ideas, the proof for J-Eq is more involved. The main 
challenge here is that in every assignment some vertices remain unoccupied. For instance, 
we do not only need to prove that only agents from T1 are placed on vertices from A (which 
is more challenging because we have to deal with possibly unoccupied vertices) but also 
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that all vertices from A are occupied. This subsection is devoted to proving the following 
theorem:

Theorem 2 J-Eq is NP-complete.

To prove the theorem, we reduce from a restricted version of J-Eq-Stub as defined in 
the following lemma. To prove hardness for the restricted version, the proof of Agarwal 
et al. [1] for the general version of J-Eq-Stub needs to be slightly adapted.

Lemma 6 Let � = |V(G)| − n be the number of unoccupied vertices in an instance of J-Eq-
Stub. We call an instance of J-Eq-Stub regularized, if the following five properties hold. 

1. For every vertex v ∉ VS not occupied by a stubborn agent, there exist two vertices 
si, sj ∈ VS adjacent to v occupied by stubborn agents i ∈ T1 and j ∈ T2.

2. Every vertex v ∈ VS has degG(v) < 𝜆.
3. Every vertex v ∈ VS is adjacent to a vertex v ∉ VS.
4. It holds that 𝜆 > 0.
5. There are at least two stubborn agents of each type.

J-Eq-Stub remains NP-hard when restricted to regularized instances.
Proof We prove this statement by giving a reduction that is heavily based on the reduction 
by Agarwal et al. [1], which is modified in order to ensure that the constructed instance is 
always regularized. Most importantly, we modify the original construction such that the 
first property holds. All other properties already hold or are trivial to achieve.

We reduce from CliquE. An instance of CliquE consists of an undirected graph 
H = (X, Y) and an integer s. It is a yes-instance if and only if H contains a clique of size s. 
Without loss of generality, we assume that s ≥ 6 . We construct an instance of J-Eq-Stub as 
follows (see Fig. 5):

There are two types T1 and T2 . There are s strategic agents all part of T1 . All other agents 
are stubborn and defined along with the topology.

The topology G = (V ,E) consists of three components G1,G2, and G3 , which are con-
structed as described below.

• To define the graph G1 = (V1,E1) , let Wv be a set of s vertices for every v ∈ X . Out of 
the vertices in Wv , one vertex is occupied by a stubborn agent from T1 and the remain-
ing s − 1 vertices are occupied by stubborn agents from T2 . We set V1 = X ∪

⋃
v∈X Wv 

and E1 = Y ∪
⋃

v∈X{{v,w} ∣ w ∈ Wv} . That is, G1 is an extended copy of the given H, 
where every v ∈ X is adjacent to s degree-one vertices in Wv , which are occupied by 
stubborn agents from both types.

• The graph G2 is a bipartite graph with parts L and R. Let L be a set of s − 2 vertices. 
For every v ∈ L , the set R contains 4s vertices only connected to v. Out of these 4s 
vertices, 2s + 1 are occupied by stubborn agents from T1 and the remaining 2s − 1 
vertices are occupied by stubborn agents from T2.

• In G3 , only three vertices x, y and z are not occupied by stubborn agents. The vertices 
x and y are connected by an edge. The remaining vertices are occupied by stubborn 
agents and defined in the following. First, the vertex x is connected to one degree-
one vertex occupied by a stubborn agent from T1 and two degree-one vertices occu-
pied by stubborn agents from T2 . The vertex y is connected to 41 degree-one vertices 
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occupied by stubborn agents from T1 and 80 degree-one vertices occupied by stub-
born agents from T2 . Finally, z is connected to 5 degree-one vertices occupied by 
stubborn agents from T1 and 7 degree-one vertices occupied by stubborn agents from 
T2.

Lastly, we pick an arbitrary vertex occupied by a stubborn agent from each of the three com-
ponents G1 , G2 , G3 and connect the three vertices to form a clique.

It is easy to verify that the constructed instance is regularized. The correctness of the 
reduction follows analogous to the proof by Agarwal et al. [1]. The only difference is the 
exact utility of agents on G1 , however, the same inequalities still hold.   ◻

In the following, we start by describing the construction of the reduction to prove Theo-
rem 2 before we prove its correctness. The construction is very similar to the one for Theo-
rem 1 from Sect. 3.1. In particular, the sketch from Fig. 2 still applies here. The only major 
difference between the two reductions is that the number of vertices in X1 is different. As a 
consequence, also the number of agents from both types is different than before. For the sake 
of completeness and to avoid possible confusions, we provide the full description of the con-
struction here.

3.2.1  Construction

We are given an instance I′ of J-Eq-Stub consisting of a connected topology G′ , 
a set N� = R�∪̇S� of agents partitioned into types T ′

1
 and T ′

2
 and a set of vertices 

VS� = {si ∈ V(G�) ∣ i ∈ S�} . The agents in R′ are strategic and the agents from S′ are stub-
born agents, with stubborn agent i ∈ S� occupying si ∈ VS� in any assignment. We assume 
that the given instance is regularized and fulfills the properties from Lemma 6. In the follow-
ing, we denote the sets of vertices occupied by stubborn agents from T ′

1
 and T ′

2
 as VS′

1
 and VS′

2
 , 

G1

H
.. .

. . .
s− 1

. . .

. . .s− 2

. . .

2s+ 1
. . .

2s− 1
. . . . . .

L

R

G2

x

y

z

. .
.

. .
.

G3

. .
.

. .
.

Fig. 5  Illustration of the regularized instance constructed in the proof of Lemma 6
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respectively. From this, we construct an instance I  of J-Eq consisting of a topology G = (V ,E) 
and types T1 and T2 as follows.

The graph G (sketched in Fig. 2) is an extended copy of the given graph G′ and contains all 
vertices and edges from G′ . We add three sets of vertices M1,X1 , and M2 as specified below. 
For every vertex v ∈ VS�

2
 , we insert |V(G�)|2 degree-one vertices only adjacent to v and add 

them to M2 . We connect the vertices in VS′
2
 to form a clique.

Next, we define q, which, as argued later, is an upper bound for the degree of a vertex in 
(V(G�)⧵VS�

1
) ∪M2:

Now, we define values s and z, which are important for the correctness (Lemma 9):

Let X1 be a set of z − |VS�
1
| vertices (this is different than in the construction from Theo-

rem 1). We add the vertices X1 to G and connect the vertices in VS�
1
∪ X1 to form a clique. 

Note that it holds that |X1 ∪ VS�
1
| = z , which we use to introduce an asymmetry between the 

two types.
Finally, we define the number p of added degree-one neighbors for vertices in VS�

1
∪ X1 

(again, the choice of p is later used for proving correctness):

For every vertex v ∈ VS�
1
∪ X1 , we add p degree-one vertices only adjacent to v in G and 

add them to M1.
The set of agents N = T1∪̇T2 is defined as follows. We have |T1| = |T �

1
| + |M1| + |X1| 

agents in T1 and |T2| = |T �
2
| + |M2| agents in T2 . By the construction of X1 , we have that:

It also holds that p = |T �
2
| + |M2| − 2 = |T2| − 2 . Let �� ∶= |V(G�)| − |N�| be the 

number of unoccupied vertices in the given instance and � ∶= |V(G)| − |N| the num-
ber of unoccupied vertices in the constructed instance. Note that there are equally 
many unoccupied vertices in the constructed and the given instance, since it holds that 
|V(G)| − |V(G�)| = |M1| + |X1| + |M2| = |N| − |N�| . That is, 𝜆 = 𝜆� < |V(G�)|.

3.2.2  Proof of correctness

Next, we address the correctness of the reduction. We approach the proof in four steps. 
First, we prove in Lemma 7 the forward direction of the correctness. Next, we make some 
basic observations about the constructed graph G. Then, we prove Lemmas 8 to 10, which 
state useful properties of all jump-equilibria in the constructed game. Finally, using these 
lemmas, we prove that the constructed game admits a jump-equilibrium only if the original 
game admits a jump-equilibrium.

We define the sets A,B ⊆ V  as A ∶= M1 ∪ VS�
1
∪ X1 and B ∶= M2 ∪ VS�

2
 . Observe 

that the subgraph G[A] can be partitioned into z stars which each have |T2| − 1 ver-
tices as follows. The vertices in X1 ∪ VS�

1
 are the central vertices and form a clique. 

Each central vertex is adjacent to |T2| − 2 degree-one vertices in M1 . Recall 

q ∶= Δ(G�) + |V(G�)|2 + |VS�
2
|.

s ∶= q ⋅ (|T �
2
| + |M2| + Δ(G�)) + 1,

z ∶= s + |V(G�)| + |M2|.

p ∶= |T �
2
| + |M2| − 2 > |V(G�)|2.

s = q ⋅ (|T �
2
| + |M2| + Δ(G�)) + 1 = q ⋅ (|T2| + Δ(G�)) + 1.
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that z > |V(G�)| ≥ |VS� | > 3 , hence we have at least 3 stars in G[A]. Note that 
V(G)⧵A = (V(G�)⧵VS� ) ∪ B = (V(G�)⧵VS� ) ∪ (M2 ∪ VS�

2
) . The subgraph G[V(G)⧵A] is con-

nected, since every vertex in V(G�)⧵VS� is connected to a vertex in VS′
2
 (by our assumption 

that the given instance is regularized; see Lemma 6) and the vertices in VS′
2
 form a clique 

(by the construction of G). Additionally, all vertices in M2 are adjacent to exactly one ver-
tex in VS′

2
.

We start with showing the (easier) forward direction of the correctness of the reduction:

Lemma 7 If the given instance I′ of J-Eq-Stub admits a jump-equilibrium, then the con-
structed instance I  of J-Eq admits a jump-equilibrium.

Proof Assume that there exists a jump-equilibrium v′ for the given instance I′ with stub-
born agents. Note that in v′ the vertices in VS′

1
 and VS′

2
 are occupied by stubborn agents from 

T ′
1
 and T ′

2
 , respectively. We define an assignment v for the constructed Schelling game with-

out stubborn agents as follows and afterwards prove that it is a jump-equilibrium. In v , the 
occupied vertices in V(G) ∩ V(G�) are occupied by agents of the same type as the agents 
in v′ . If a vertex is unoccupied in v′ , then it is also unoccupied in v . The vertices in X1 are 
occupied by agents from T1 . For t ∈ {1, 2} , the added degree-one vertices in Mt are occu-
pied by agents from Tt . Hence, the vertices in A = M1 ∪ VS�

1
∪ X1 are all occupied by agents 

from T1 and the vertices in B = M2 ∪ VS�
2
 are all occupied by agents from T2 (note that, in v , 

we assigned exactly |T1| agents from T1 and |T2| agents from T2 , as |T1| = |T �
1
| + |M1| + |X1| 

and |T2| = |T �
2
| + |M2|).

Next, we prove that v is a jump-equilibrium on G by showing that no profitable jump 
exists. We first observe that the utility of an agent i on a vertex w ∈ M1 ∪ X1 is ui(v) = 1 , 
since NG(w) ⊆ A and all agents in A are friends of i. The same holds analogously for any 
agent on a vertex in M2 . Therefore, the agents on vertices in M1 ∪M2 ∪ X1 do not want to 
jump to an unoccupied vertex. Furthermore, note that the only unoccupied vertices in v are 
in V(G�)⧵VS� and that the neighborhood of all vertices in V(G�)⧵VS� is identical in G and 
G′ . Therefore, no agent on a vertex in V(G�)⧵VS� can have a profitable jump in v , since this 
jump would then also be profitable in v′ . Thus, in v , a profitable jump can only exist for an 
agent i on a vertex vi ∈ VS� to an unoccupied vertex v ∈ V(G�)⧵VS�.

Let Y = VS�
1
∪ X1 if vi ∈ VS�

1
 and Y = VS�

2
 if vi ∈ VS�

2
 . Denote the number of degree-one 

neighbors of vi that were added to G′ in the construction of G by x. By construction of G, 
it holds that x ≥ Δ(G)2 . The agent i is, among others, adjacent to the vertices in Y⧵{vi} 
and the x ≥ Δ(G�)2 degree-one neighbors, which, by construction of v , are all occupied by 
friends. It holds that degG(vi) ≤ x + |Y⧵{vi}| + Δ(G�) . Thus, the utility of agent i on vi is at 
least:

Now consider an unoccupied vertex v ∈ V(G�)⧵VS� . Recall that as we assume that the given 
instance is regularized (see Lemma 6), for every vertex v ∉ VS� not occupied by a stubborn 
agent, it holds that there exist two adjacent vertices si, sj ∈ VS� occupied by stubborn agents 
i ∈ T �

1
 and j ∈ T �

2
 . Since v ∈ V(G�)⧵VS� , the vertex v is thus adjacent to agents from both T1 

and T2 in A and B, respectively. By construction of G, the neighborhood of v is identical in 
G and G′ . We thus have that degG(v) = degG

�

(v) ≤ Δ(G�) . Since at least one agent adjacent 
to v is not a friend of i, the jump of i to v cannot be profitable in v:

uG
i
(v) ≥

x + |Y⧵{vi}|

x + |Y⧵{vi}| + Δ(G�)
>

x

x + Δ(G�)
≥

Δ(G�)2

Δ(G�)2 + Δ(G�)
=

Δ(G�)

Δ(G�) + 1
.
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To sum up, no profitable jump exists and v is a jump-equilibrium for the constructed 
Schelling game.   ◻

To show the correctness of the backwards direction, we start by showing the following 
lemma, which states that all agents on a degree-one vertex in A or B are adjacent to at least 
one friend and that all central vertices have to be occupied. This property of jump-equilib-
ria is then later used in the proof of Lemmas 9 and 10, where we prove that all vertices in 
A are occupied by agents from T1 and all vertices from B are occupied by agents from T2.

Lemma 8 In a jump-equilibrium v in I  , all agents on a degree-one vertex v ∈ M1 ∪M2 are 
adjacent to a friend and all central vertices w ∈ VS�

1
∪ X1 ∪ VS�

2
 are occupied.

Proof Suppose for the sake of a contradiction that there exists an agent i ∈ Tt for 
some t ∈ {1, 2} on a degree-one vertex v with no adjacent friend in v . Let W be the 
set of vertices of the star which contains v. Recall that every star contains at least 
|V(G�)|2 + 1 ≥ |V(G�)| + 3 ≥ � + 3 vertices. Thus, at least three vertices in W have to be 
occupied. Since i has no adjacent friends, the central vertex w ∈ W is either unoccupied or 
occupied by an agent of the other type. We distinguish these two cases and prove that there 
exists a profitable jump in both cases.

Case 1
First, assume that w is unoccupied. As mentioned above, at least three vertices in W 

have to be occupied by agents. Since w is unoccupied, all occupied vertices are degree-one 
vertices. By the pigeonhole principle, there exist two agents of the same type on degree-
one vertices in W. Both agents have no adjacent friends in v and can increase their utility 
by jumping to w. This concludes the first case and furthermore proves that no central ver-
tex can be unoccupied.

Case 2
Second, we consider the case where w is occupied by an agent j ∈ Tt� with t′ ≠ t . Note 

that both |T1| > |W| and |T2| > |W| , thus there are agents from both types in G[V(G)⧵W] . 
Next, we argue that G[V(G)⧵W] is connected. Let Y = A if W ⊆ A and Y = B otherwise. It 
is easy to see that G[V(G)⧵Y] is connected (as argued for G[V(G)⧵A] above and analogous 
for G[V(G)⧵B] ). The connected subgraph G[Y⧵W] consists of the remaining stars in Y⧵W , 
where the central vertices form a clique. Note that there is at least one vertex x ∈ VS� in 
Y⧵W , since by Lemma 6, we have assumed that there are at least two stubborn agents of 
each type. Furthermore, by Lemma 6, we have assumed that x ∈ VS� is adjacent to a vertex 
y ∈ V(G�)⧵VS� in G[V(G)⧵Y] . Thus, as G[V(G)⧵Y] and G[Y⧵W] are each connected and 
connected by an edge, G[V(G)⧵W] is connected.

First, suppose that there is no unoccupied vertex in V(G)⧵W , which implies that there 
need to be unoccupied vertices in W. Then, there are two adjacent agents i� ∈ Tt and j� ∈ Tt� 
in G[V(G)⧵W] . It holds that uj� (v) < 1 . Agent j′ can increase its utility to 1 by jumping to 
any unoccupied vertex in W.

Therefore, there has to exist at least one unoccupied vertex in G[V(G)⧵W] . If one of 
the unoccupied vertices in G[V(G)⧵W] is adjacent to an agent in Tt , then agent i ∈ Tt can 
increase its utility by jumping to this vertex. Thus, the unoccupied vertices in G[V(G)⧵W] 
can only be adjacent to agents in Tt′ and unoccupied vertices. Since G[V(G)⧵W] is 

uG
i
(vi→v) ≤

Δ(G�) − 1

Δ(G�)
<

Δ(G�)

Δ(G�) + 1
≤ uG

i
(v).
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connected, there exists an unoccupied vertex w′ that is adjacent to at least one agent in Tt′ 
on a vertex in G[V(G)⧵W] . Note that agent j on the central vertex in W has uj(v) < 1 , since 
j ∈ Tt� is adjacent to i ∈ Tt . Hence, agent j can increase its utility by jumping to w′ , where j 
is only adjacent to friends.   ◻

Next, we prove that all vertices in A are occupied by agents from T1.

Lemma 9 In every jump-equilibrium v in I  , every vertex in A is occupied by an agent from 
T1.

Proof We prove this lemma by splitting it into Claims 1 and 2. First, we prove that there 
are no agents from T2 in A. Then, we prove that all vertices in A are occupied.

Claim 1 In every jump-equilibrium v in I  , no vertex from A is occupied by an agent from T2
.

Proof of Claim Recall that by the construction, we have that 
|T1| ≥ |A| = |X1 ∪ VS�

1
| ⋅ (|T2| − 1) = z ⋅ (|T2| − 1) = (s + |V(G�)| + |M2|) ⋅ (|T2| − 1)  . 

Thus, even if all vertices in V(G)⧵A = (V(G�)⧵VS�
1
) ∪M2 are occupied by agents from T1 , 

there are at least s ⋅ (|T2| − 1) agents from T1 in A. Since each star in A contains |T2| − 1 ver-
tices, there have to be agents from T1 on at least s stars. By Lemma 8, it holds that at least s 
central vertices are occupied by agents from T1.

Now suppose there are x > 0 agents from T2 in A. We distinguish the following three 
cases based on the value of x (see Fig.  6) and prove in each case that v cannot be a 
jump-equilibrium.

Case 1: x < |T2| − 1

Recall Lemma 8, which states that no agent on a degree-one vertex in A has no adjacent 
friend in a jump-equilibrium. Thus, there exists an agent i ∈ T2 on a central vertex in A. Let 
S be the set of vertices of the star which contains vi . Since it holds that x < |T2| − 1 = |S| , 
not all vertices in S can be occupied by agents from T2 . By Lemma 8, these vertices have to 
be unoccupied. Summarizing, there exists an unoccupied degree-one vertex w ∈ S adjacent 
to the central vertex occupied by i ∈ T2 (note that an agent from T2⧵{i} would get utility 
1 from jumping to w. However, as there exist unoccupied vertices, we cannot be sure that 
there exists an agent with utility smaller than 1 on a vertex from V(G)⧵NG(w).

Next, we upper-bound the utility of agent i. Note that i ∈ T2 is adjacent to all other 
central vertices in A, of which at least s = q ⋅ (|T2| + Δ(G�)) + 1 are occupied by agents 
from T1 . It therefore holds that:

Since x < |T2| and |T1| ≥ |A| , there are agents from both types in V(G)⧵A . Furthermore, 
recall that G[V(G)⧵A] is connected. Now consider a path between two arbitrary agents 
from T1 and T2 in G[V(G)⧵A] . If there are two adjacent agents i� ∈ T1 and j� ∈ T2 on this 
path, then it holds that uj� (v) < 1 and jumping to w is profitable for j′ . Thus, no such two 
agents can exist. However then, there exists an unoccupied vertex w′ on the path that is 
adjacent to an agent in T2 . Note that degG(w�) ≤ Δ(G�) + |V(G�)|2 + |VS�

2
| = q . Jumping to 

w′ is profitable for agent i:

ui(v) ≤
|T2|

q ⋅ (|T2| + Δ(G�)) + 1 + |T2|
<

1

q
.
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Case 2 x = |T2|

Since 2 ⋅ (|T2| − 1) > x > |T2| − 1 , the agents from T2 occupy vertices on at least two 
stars in A, but cannot occupy all vertices of these stars. With Lemma  8, there exists an 
unoccupied degree-one vertex w adjacent to a central vertex occupied by an agent from T2 . 
Now consider an agent i ∈ T2 on another central vertex in A not adjacent to w. We have that 
ui(v) < 1 , since i is adjacent to agents from T1 on other central vertices. Then, agent i can 
increase its utility to 1 by jumping to w.

Case 3 x = |T2| − 1

Again, by Lemma 8, at least one of the central vertices in A has to be occupied by an 
agent i ∈ T2 . Furthermore, if there are agents from T2 on two or more stars, then there 
exists an unoccupied degree-one vertex adjacent to a central vertex occupied by an agent 
from T2 and an agent from T2 on another central vertex with utility less than 1. Analogous 
to Case 2, such an assignment cannot be a jump-equilibrium. Therefore, the |T2| − 1 agents 
from T2 occupy all vertices of one star in A. We denote the set of vertices of this star by S.

All central vertices in A and B have to be occupied by Lemma 8. Note that there is only 
one agent from T2 outside of A. This agent cannot occupy a degree-one vertex in B, since 
it would have no adjacent friends on such a vertex. If it occupies a central vertex in B, then 
there are agents from T1 with no adjacent friends on degree-one vertices in this star (recall 
that at least three vertices of each star have to be occupied). Both possibilities contradict 
Lemma 8. Hence, this agent occupies a vertex in V(G�)⧵VS� and all central vertices in B are 
occupied by agents from T1.

Next, we argue that both A and B are fully occupied in this case. First, suppose there 
exists an unoccupied vertex w in A. By Lemma 8, w has to be a degree-one vertex. Further-
more, since all |T2| − 1 agents from T2 in A fully occupy one star, w is adjacent to a central 
vertex occupied by an agent from T1 . Then, an agent from T1 on a central vertex in A not 
adjacent to w can increase its utility to 1 by jumping to w. If there is an unoccupied degree-
one vertex w in B, then this vertex is adjacent to a central vertex occupied by an agent from 
T1 (recall that all central vertices in B are occupied by agents from T1 ). Then again, any 
agent from T1 on a central vertex in A has a profitable jump to w. Thus, both A and B are 
fully occupied and all � unoccupied vertices are in V(G�)⧵VS�.

ui(v
i→w�

) ≥
1

q
> ui(v).

A

s T1-neighb.

G[V (G) \ A]

w

(1) x < |T2| − 1.

A

(2) x = |T2|.

A G \ VS

w

B

(3) x = |T2| − 1.

Fig. 6  Claim 1: If there are x > 0 agents from T
2
 in A, then a profitable jump exists
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Now consider the central vertex vi ∈ S of the star in A occupied by the agents from T2 . 
Recall that as our given instance is regularized (see Lemma  6) we can assume that 
degG

�

(v) < 𝜆 for all v ∈ VS� in our input instance. In our construction, we only add edges 
within A to a vertex in A. Hence, as all � unoccupied vertices need to be from V(G�)⧵VS� , 
there exists an unoccupied vertex w in G� − VS� which is not adjacent to vi . If w is adjacent 
to an agent in T2 , jumping to w is profitable for agent i, as, with an argument analogous to 
Case 1, we get that:

Hence, w is not adjacent to any agent from T2 . Recall that as we assume that our input 
instance is regularized (see Lemma 6), in the input instance, for every vertex v ∉ VS� not 
occupied by a stubborn agent, there exist two adjacent vertices si, sj ∈ VS� occupied by 
stubborn agents i ∈ T �

1
 and j ∈ T �

2
 . Thus, since w ∈ V(G�)⧵VS� , the vertex w is adjacent to a 

central vertex in B, which is occupied by an agent from T1 . Then again, any agent from T1 
on a central vertex in A can increase its utility to 1 by jumping to w. This concludes Case 3. 
Since we have exhausted all possible cases, Claim 1 follows.   ◻

Next, we prove the second part of Lemma  9 by proving that all vertices in A are 
occupied.

Claim 2 In every jump-equilibrium v in I  , every vertex in A is occupied.

Proof of Claim Suppose there exists an unoccupied vertex v ∈ A . Again, by Lemma 8, v has 
to be a degree-one vertex and by Lemma 8 and Claim 1 v needs to be adjacent to a vertex 
occupied by an agent from T1 . Note that |T2| > |V(G�)| , therefore by Claim 1 there have to 
be agents from T2 in B (as there are no agents from T2 in A). By Lemma 8, this implies that 
a central vertex in B is occupied by an agent from T2 . Since we also have that |T1| ≥ |A| , 
there are agents from T1 outside of A. If there is an agent from T1 in B, there also exists an 
agent i ∈ T1 on a central vertex in B. We have that ui(v) < 1 , since i is adjacent to the cen-
tral vertex occupied by an agent from T2 . However, agent i can then increase its utility to 
1 by jumping to v. Hence, all remaining agents from T1 not in A are in V(G�)⧵VS� . Since all 
central vertices in B have to be occupied, there are agents from T2 on all central vertices in 
B.

Now consider an arbitrary agent i ∈ T1 in V(G�)⧵VS� . Since we assume the given instance 
to be regularized (see Lemma 6), i is adjacent to a central vertex in B, which is occupied by 
an agent from T2 . We thus have ui(v) < 1 . Agent i can increase its utility to 1 by jumping to 
v, which completes the proof.   ◻

With Claims 1 and 2, Lemma 9 follows.   ◻

Next, we prove the following analogous claim for B, where we show that all vertices 
in B are occupied by agents from T2.

Lemma 10 In every jump-equilibrium v in I  , every vertex in B is occupied by an agent 
from T2.

Proof Again, we prove this claim by dividing it into Claims 3 and 4.

ui(v
i→w) ≥

1

q
> ui(v).
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Claim 3 In every jump-equilibrium v in I , no vertex from B is occupied by an agent from T1.

Proof of Claim Since by Lemma  9 A is fully occupied by agents from T1 , there are 
y ∶= |T1| − |A| < |V(G�)| agents from T1 outside of A. Suppose there are agents from T1 
in B. By Lemma 8, there exists a central vertex v ∈ B which is occupied by an agent from 
T1 . Furthermore, since y < |V(G�)|2 , there exists an unoccupied degree-one vertex adjacent 
to v. Note that |T2| ≥ |B| . As not all vertices in B are occupied by agents from T2 , there 
exists an agent j ∈ T2 on a vertex in V(G�)⧵VS� . Since the given instance is regularized (see 
Lemma 6), this agent is adjacent to a central vertex in A. Let i� ∈ T1 be the agent on this 
central vertex. We have ui� (v) < 1 , since i� ∈ T1 is adjacent to j ∈ T2 . Then, jumping to v is 
profitable for agent i′ , since ui� (v) < 1 = ui� (v

i�→v) .   ◻

Claim 4 In every jump-equilibrium v in I  , every vertex in B is occupied.

Proof of Claim Suppose there exists an unoccupied vertex v ∈ B . By Lemma 8, the vertex 
v is a degree-one vertex. Since all central vertices have to be occupied and by Claim 3, B 
only contains agents from T2 , the vertex v is adjacent to a central vertex occupied by an 
agent from T2 . It holds that |T2| ≥ |B| . Since at least one vertex in B is unoccupied, there 
exists an agent i ∈ T2 on a vertex in V(G�)⧵VS� . We have that ui(v) < 1 , since i is adja-
cent to a central vertex in A (by our assumption that the given instance is regularized; see 
Lemma 6), which is occupied by an agent from T1 by Lemma 9. Agent i can increase its 
utility to 1 by jumping to v.   ◻

Lemma 10 follows from Claims 3 and 4.   ◻

Finally, we prove the correction of the backwards direction of the construction, i.e., that 
the input Schelling game with stubborn agents admits a jump-equilibrium only if the con-
structed Schelling game without stubborn agents admits a jump-equilibrium:

Lemma 11 If the constructed instance I  of J-Eq admits a jump-equilibrium, then the given 
instance I′ of J-Eq-Stub admits a jump-equilibrium.

Proof Assume that there exists a jump-equilibrium v in the constructed instance I  . We 
define an assignment �′ on G′ for the given instance I′ with stubborn agents as follows 
and afterwards prove that it is a jump-equilibrium. In �′ , an occupied vertex v ∈ V(G�)⧵VS� 
is occupied by a strategic agent of the same type as the agent on v in v . If a vertex is 
unoccupied in v , then it is also unoccupied in v′ . The vertices in VS′ have to be occupied 
by the respective stubborn agents. Note that by Lemmas  9 and 10, in v , the vertices in 
VS′

1
⊆ A and VS′

2
⊆ B have to be occupied by agents from T1 and T2 , respectively. Thus, 

in �′ , all occupied vertices are occupied by agents of the same type as in v . Note that in 
�
′ we have assigned exactly |T ′

1
| agents from T ′

1
 and |T ′

2
| agents from T ′

2
 as it holds that 

|T1| = |T �
1
| + |M1| + |X1| and |T2| = |T �

2
| + |M2| and by Lemmas 9 and 10 we know that 

in v all vertices from M1 ∪ X1 are occupied by agents from T1 and all vertices from M2 are 
occupied by agents from T2.

Next, we prove that v′ is a jump-equilibrium in the given Schelling game. Since the 
agents on vertices in VS′ are stubborn, only agents on vertices in V(G�)⧵VS� can have a 
profitable jump. However, all unoccupied vertices are in V(G�)⧵VS� in both v and v′ and 
the neighborhood of vertices from V(G�)⧵VS� is the same in G and G′ . A profitable jump 
for an agent on a vertex in V(G�)⧵VS� to an unoccupied vertex from V(G�)⧵VS� in v′ would 
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therefore also be a profitable jump in v , thereby contradicting that v is a jump-equilibrium. 
Thus, �′ is a jump-equilibrium.   ◻

Note that the membership of J-Eq in NP is trivial, as it is possible to verify that a given 
assignment is a jump equilibrium by iterating over pairs of occupied vertices and unoccu-
pied vertices and checking whether the jump of the agent from the occupied vertex to the 
unoccupied vertex is profitable. Thus, from Lemmas 7 and 11, Theorem 2 follows:

Theorem 2 J-Eq is NP-complete.

3.3  Swap equilibria in α‑star constellation graphs

In Sect. 4.2, which focuses on the robustness of swap-equilibria, we will study �-star-
constellation graphs as an example for a graph class where swap-equilibria are very 
robust (when they exist). Recall that these are graphs for which each vertex v ∈ V  with 
degG(v) > 1 has � more degree-one neighbors than non-degree-one neighbors, i.e., 
|{w ∈ NG(v) ∣ degG(w) = 1}| ≥ |{w ∈ NG(v) ∣ degG(w) > 1}| + 𝛼 . However, this graph 
class is also interesting in terms of computing equilibria, as it turns out that while swap-
equilibria might fail to exist on these graphs there exists a characterization that gives 
rise to a polynomial-time algorithm. Thus, informally speaking, by extending a graph 
by adding a sufficient number of degree-one vertices (together with some agents to put 
on these vertices), we can make the problem of deciding the existence of an equilibrium 
tractable. Moreover, �-star-constellation graphs present one of the most complex graph 
class for which the polynomial-time solvability of deciding the existence of an equilib-
rium has been shown so far.

We start by observing that swap-equilibria on �-star-constellation graphs may fail to 
exist. Specifically, there is no swap-equilibrium in a Schelling game with |T1| = 5 and 
|T2| = 7 on the 1-star-constellation graph depicted in Fig. 7. Notably, to the best of our 
knowledge the graph from Fig. 7 is the first known graph without a swap-equilibrium 
that is not a tree.

Proposition 1 A Schelling game on an �-star-constellation graph G may fail to admit a 
swap-equilibrium, even if G is a split graph, that is, the vertices of the graph can be parti-
tioned into a clique and an independent set.

Proof Consider the Schelling game with |T1| = 5 many agents of type T1 and |T2| = 7 many 
agents of type T2 on the graph G from Fig. 7, which consists of three 3-stars whose cen-
tral vertices form a clique. Observe that as all stars in G consist of four vertices and nei-
ther |T1| = 5 nor |T2| = 7 are divisible by four, in any assignment v , there exists a degree-
one vertex occupied by an agent i ∈ Tl such that the adjacent central vertex is occupied by 
an agent j ∈ Tl� of the other type with l ≠ l′ . Let v ≠ v′ be the other two central vertices. 
We make a case distinction based on whether the agents on the degree-one vertices adja-
cent to v and v′ have the same type as their respective neighbor on the central vertex. If 
this is the case, then since we have |T1| < 8 and |T2| < 8 , the vertices v and v′ cannot be 
occupied by agents of the same type. Assume by symmetry, without loss of generality, 
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that an agent j� ∈ Tl� occupies vertex v and an agent i� ∈ Tl occupies vertex v′ . Then, we 
have uj� (v) < 1 and swapping i and j′ is profitable, as it holds that ui(v) = 0 < ui(v

i↔j� ) and 
uj� (v) < 1 = uj� (v

i↔j� ).
Otherwise, there is an agent on a degree-one vertex that has a different type than the 

agent on the adjacent central vertex v or v′ . This implies that there is an agent j′ ≠ j from Tl′ 
with uj� (v) < 1 . Then, similarly to the case above, swapping i and j′ is profitable.   ◻

On the positive side, we can precisely characterize swap-equilibria in Schelling 
games on �-star-constellation graphs.

Theorem 3 Let G be an �-star-constellation graph with � ∈ ℕ0 and let v be an assignment 
in some Schelling game on G. The assignment v is a swap-equilibrium if and only if at least 
one of the following two conditions holds. 

1. Every vertex v ∈ V(G) with degG(v) = 1 is occupied by an agent from the same type as 
the only adjacent agent in v.

2. There exists an agent i ∈ Tl for some l ∈ {1, 2} such that all other agents i� ∈ Tl⧵{i} are 
only adjacent to friends in v.

Proof First, we prove that any assignment that fulfills at least one of the two conditions 
is always a swap-equilibrium. Let v be an assignment satisfying the first condition, that 
is, every v ∈ V  with degG(v) = 1 is occupied by an agent from the same type as the agent 
on the only adjacent vertex in v . Thus, for all i ∈ N with degG(vi) = 1 , we have ui(v) = 1 . 
No such agent i can be involved in a profitable swap. Recall that by definition of G, we 
have |{w ∈ NG(v) ∣ degG(w) = 1}| ≥ |{w ∈ NG(v) ∣ degG(w) > 1}| + 𝛼 for all v ∈ V  with 
degG(v) > 1 . Since all agents on vertices adjacent to vj with degree one are friends, we 
have uj(v) ≥

1

2
 for all j ∈ N with degG(vj) > 1 . Now, consider an agent j ∈ Tl and an agent 

j� ∈ Tl� of the other type l′ ≠ l on vertex vj′ with degG(vj� ) > 1 . If we swap j and j′ , we have 
uj(v

j↔j� ) ≤
1

2
≤ uj(v) . Thus, no profitable swap is possible and v is a swap-equilibrium.

Now, we consider an assignment that fulfills the second condition. Let v be an assign-
ment such that there exists an agent i ∈ Tl for one of the types l ∈ {1, 2} such that all other 
agents i� ∈ Tl⧵{i} of type Tl are only adjacent to friends. Assume without loss of generality 
that l = 1 . For all i� ∈ T1⧵{i} , we have ui� (v) = 1 . Similarly, for all j ∈ T2 with vj ∉ NG(vi) , 
we also have uj(v) = 1 . Hence, only agent i ∈ T1 and an agent j� ∈ T2 with vj� ∈ NG(vi) can 
have a profitable swap. However, after swapping i and j′ , agent i ∈ T1 is only adjacent to 
agents from T2 and has ui(vi↔j) = 0 . Therefore, no profitable swap is possible.

Fig. 7  There is no swap-equilibrium in a Schelling game with |T
1
| = 5 and |T

2
| = 7 on this 1-star-constella-

tion graph
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Next, we will argue that any assignment v for which both conditions do not hold cannot 
be a swap-equilibrium. Thus, in assignment v , there exists an agent i ∈ N with degG(vi) = 1 
such that the only adjacent agent is of the other type. Assume without loss of generality 
that i ∈ T1 . Additionally, for both types there exist two agents x, x� ∈ T1 with x ≠ x′ and 
y, y� ∈ T2 with y ≠ y′ such that {vx, vy} ∈ E and {vx� , vy� } ∈ E . We have ui(v) = 0 . Further-
more, since degG(vi) = 1 , at least one of the agents y, y� ∈ T2 has to be positioned outside 
of the neighborhood of vi . Assume without loss of generality that vy ∉ NG(vi) and thus also 
x ≠ i . Then, swapping i and y is profitable: We have ui(v) = 0 < ui(v

i↔y) , since i is adjacent 
to x in vi↔y . It also holds that uy(v) < 1 = uy(v

i↔y) , since y ∈ T2 is adjacent to x ∈ T1 in v 
and the only neighbor of y in vi↔y has the same type as y. Hence, the assignment v cannot 
be a swap-equilibrium.   ◻

The characterization of swap-equilibria from Theorem 3 also yields a polynomial-time 
algorithm (using dynamic programming for SubSEt Sum) to decide for a Schelling game on 
an �-star-constellation graph whether it admits a swap-equilibrium.

Corollary 1 For a Schelling game on an �-star-constellation graph with � ∈ ℕ0 , one can 
decide in polynomial time whether a swap-equilibrium exists.

Proof Recall that one can think of an �-star-constellation graph G as a collection of stars 
with additional edges between the central vertices of the stars. We define the star-parti-
tion S(G) of G as the partitioning of V(G) into these stars, that is, S(G) contains one set 
for each vertex v ∈ V(G) with degG(v) > 1 which consists of v and all vertices w ∈ NG(v) 
with degG(w) = 1 . We note that the star-partition is unique and can be easily computed 
in polynomial time. Next, observe that there exists an assignment v on G that meets the 
first condition from Theorem 3 if and only if S(G) can be partitioned into two sets A and 
B such that �

⋃
S∈A S� = �T1� and �

⋃
S∈B S� = �T2� . Deciding this reduces to solving an 

instance of subset sum with integers bounded by n, which can be solved in O(n2) by using 
dynamic programming. To decide whether an assignment v fulfilling the second condi-
tion exists we compute, for each vertex v ∈ V  , the connected components C1,… ,Cm of 
G[V(G)⧵{v}] and check whether the components can be partitioned into two subsets A 
and B such that �

⋃
C∈A V(C)� = �T1� − 1 and �

⋃
C∈B V(C)� = �T2� or �

⋃
C∈A V(C)� = �T1� 

and �
⋃

C∈B V(C)� = �T2� − 1 . Again, this can be solved by using dynamic programming 
in O(n2) time.   ◻

Interestingly, Theorem  3 can also be used to show that there is a subclass of �-star-
constellation graphs, namely �-caterpillars, on which a swap-equilibrium always exists. 
Consider a Schelling game on an �-caterpillar G with w1,… ,w

�
 being the non-degree-one 

vertices forming the central path ( {{wi,wi+1} ∣ i ∈ [� − 1]} ⊆ E(G) ). It is easy to construct 
a swap-equilibrium v on G by assigning for each i ∈ {1,… ,�} agents from T1 to wi and to 
adjacent degree-one vertices, until all agents from T1 have been assigned; in which case the 
remaining vertices are filled with agents from T2 . As v fulfills Condition 2 from Theorem 3, 
v is a swap-equilibrium (see Proposition 5 for a more detailed discussion and proof).
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4  Robustness of equilibria

Having established in Sect. 3 that deciding the existence of an equilibrium is NP-hard, we 
now introduce the concept of robustness of an equilibrium. We consider both the robust-
ness of an equilibrium with respect to the deletion of edges and with respect to the deletion 
of vertices, where deleting a vertex also implies deleting the agent occupying the vertex 
from the Schelling game.

Definition 1 For a Schelling game I on a graph G, an equilibrium v in I is r-edge-robust 
(r-vertex-robust) for some r ∈ ℕ0 if v is an equilibrium in I on the topology G − S for all 
subsets of edges S ⊆ E(G) (for all subsets of vertices S ⊆ V(G) ) with |S| ≤ r . The edge-
robustness (vertex-robustness) of v is the largest r ∈ [0, |E(G)|] ( r ∈ [0, |V(G)|] ) for which 
v is r-edge-robust (r-vertex-robust).

Note that given an equilibrium v that becomes unstable after deleting r edges/vertices, 
deleting further edges/vertices can make v stable again, as any assignment is stable if we 
delete all edges/vertices. That is why in Definition 1 we require that v is stable for all S 
with |S| ≤ r and not only for all S with |S| = r.

We focus on the robustness of swap-equilibria. While for jump-equilibria the introduced 
concepts are also meaningful, already obtaining lower and upper bounds on the robustness 
of a jump-equilibrium on a single fixed graph is problematic, as the robustness of a jump-
equilibrium significantly depends on the number of unoccupied vertices. For instance, if 
the number of agents of both types is small, on most graphs the agents can be placed such 
that all agents are only adjacent to friends making the equilibrium quite robust.

Note that as we restrict our attention to swap-equilibria, deleting agents and vertices is 
equivalent, as in this context a once unoccupied vertex can never become occupied again 
and is also irrelevant for computing utilities. Thus, all our results on vertex-robustness also 
apply to the robustness with respect to the deletion of agents. However, when analyzing 
jump-equilibria one would have to distinguish the two and consider the robustness of a 
jump-equilibrium with respect to the deletion of agents (but not vertices) and the deletion 
of vertices (and the agents occupying them).

4.1  First observations

We start by observing that if for one type there exists only a single agent, then there never 
is a profitable swap. Hence, in this case, every assignment trivially is a swap-equilibrium 
of edge-robustness |E(G)| and vertex-robustness |V(G)| . That is why, in the following, we 
assume that min{|T1|, |T2|} ≥ 2 . Further, if we consider vertex-robustness, then in case 
that |T1| = 2 and |T2| = 2 , after deleting an agent from one type the other agent from this 
type will always have zero utility and cannot be part of a profitable swap, implying that any 
swap-equilibrium has vertex-robustness |V(G)| . Thus, in the following, considering vertex-
robustness, we assume that |T1| ≥ 3 and |T2| ≥ 2.

Focusing on edge-robustness for a moment, only the deletion of edges between agents 
of the same type has an influence on the stability of a swap-equilibrium. This is stated 
more precisely in the following proposition.
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Proposition 2 Let v be a swap-equilibrium for a Schelling game on topology  G. Let 
S ⊆ E(G) be a set of edges such that v is not a swap-equilibrium on G − S . Then, 

(1) S contains at least one edge between agents of the same type.
(2) v is also not a swap-equilibrium on G − S� , where S′ ⊆ S is the subset of edges from S 

that connect agents of the same type.
(3) For every set A ⊆ {{vi, vj} ∈ E(G) ∣ i, j ∈ T1 ∨ i, j ∈ T2} of edges between agents of the 

same type, v is also not a swap-equilibrium on G − (S ∪ A).

Proof We start by proving statement (i). Let S be a set of edges between agents of different 
types. Consider the game I on topology G − S and assume for the sake of contradiction that 
v is not a swap-equilibrium, that is, there exist agents i ∈ T1 and j ∈ T2 that want to swap. 
We therefore have uG−S

i
(v) < uG−S

i
(vi↔j) and uG−S

j
(v) < uG−S

j
(vi↔j).

On the original topology G, it holds that uG
i
(v) ≥ uG

i
(vi↔j) , because v is a swap-equi-

librium on G. Since all of the edges in S are between agents of different types, no edges 
to friends of i are deleted in G − S and it therefore holds that uG

i
(v) ≤ uG−S

i
(v) . Hence, we 

have:

Consider the vertex vj that is occupied by agent j ∈ T2 in assignment v . Since all of the 
edges in S are between agents of different types, the only edges incident to vj that have been 
deleted in G − S are edges to agents in T1 . Therefore, uG−S

i
(vi↔j) ≤ uG

i
(vi↔j) . This contra-

dicts Eq. (1) and completes the proof of the first statement.
We now turn to statement (ii). Assume for the sake of contradiction, that v is a swap-

equilibrium on G − S� . Notice that X = S⧵S� only contains edges between agents of dif-
ferent types. Hence, we can apply the first statement to the fact that v is a swap-equilib-
rium on G − S� and get that v is a swap-equilibrium on G − (S� ∪ X) = G − S , leading to a 
contradiction.

Lastly, we consider statement  (iii). Let i ∈ T1 and j ∈ T2 be a pair of agents that has 
a profitable swap on G − S in v . We will now argue that the swap is also profitable on 
G − (S ∪ A) . Consider the vertex vi that is occupied by agent i. Since A only contains edges 
between agents of the same type, we only delete edges to friends of i in the neighborhood 
of vi . Hence, the utility of agent i in v on topology G − (S ∪ A) is at most as high as the 
utility on G − S . In the neighborhood of vj , we only delete edges to agents in T2 . Therefore, 
the utility of i after swapping to vj on G − (S ∪ A) has to be at least as high as on G − S . 
By symmetry, the same holds for agent j. Hence, the swap is profitable and v is also not a 
swap-equilibrium on G − (S ∪ A) .   ◻

For vertex-robustness, one can similarly observe that only deleting a vertex occupied 
by an agent a adjacent to at least one vertex occupied by a friend of a can make a swap-
equilibrium unstable.

Next, note that the utility of an agent only depends on its neighborhood. Thus, whether 
two agents i and j have a profitable swap in G − S only depends on the edges/vertices inci-
dent/adjacent to vi and vj in S. Combining this with the observation that no profitable swap 
can involve an agent on an isolated vertex, it follows that if a swap-equilibrium cannot be 
made unstable by deleting 2 ⋅ (Δ(G) − 1) edges/vertices, then it cannot be made unstable by 
deleting an arbitrary number of edges/vertices:

(1)uG
i
(vi↔j) ≤ uG

i
(v) ≤ uG−S

i
(v) < uG−S

i
(vi↔j).
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Observation 1 Let v be a swap-equilibrium for a Schelling game on G. If v is 
2 ⋅ (Δ(G) − 1)-edge-robust, v has edge-robustness |E(G)| and if v is 2 ⋅ (Δ(G) − 1)-vertex-
robust, v has vertex-robustness |V(G)|.

The simple fact that the utility of an agent only depends on its neighborhood leads to 
a polynomial-time algorithm to determine whether a given swap-equilibrium v has edge-
robustness r ∈ ℕ0 : We simply iterate over all pairs of agents  i and j and check whether 
we can delete at most r edges between vi and adjacent vertices occupied by friends of 
i and between vj and adjacent vertices occupied by friends of j such that the swap of  i 
and j becomes profitable (note that the stability of v only depends on the number of such 
deleted edges in the neighborhood of each agent, not the exact subset of edges).3

Proposition 3 Given a Schelling game with n agents, a swap-equilibrium v , and an integer 
r ∈ ℕ0 , one can decide in O(n2 ⋅ r) time whether v is r-edge/vertex-robust.

Proof We describe in detail how to solve the problem for edge-robustness. For vertex-
robustness, an analogous approach can be used. Recall the definition of ai(v) as the number 
of friends adjacent to agent i in v and let bi(v) ∶= |Ni(v)| − ai(v) be the number of agents 
of the other type in the neighborhood of i. We define 1i,j = 1 if the agents i and j are neigh-
bors and 1i,j = 0 otherwise.

We solve the problem using Algorithm 1 for which we prove the correctness and run-
ning time in the following: First, we prove that Algorithm  1 outputs yes if v is r-edge-
robust and no otherwise. Assume that v is r-edge-robust. It therefore holds for all i ∈ T1 
and j ∈ T2 and S ⊆ E(G) with |S| ≤ r that swapping i and j is not profitable in G − S . 
Hence, it holds that the swap of i and j is not profitable if we delete x edges between vi and 
vertices that are occupied by friends of i and y edges between vj and vertices that are occu-
pied by friends of j for all x, y ∈ ℕ0 with x + y ≤ r and x ≤ ai(v) and y ≤ aj(v) . After delet-
ing these edges, the utilities of i and j are given by u�

i
(v) =

ai(v)−x

|Ni(v)|−x
 and u�

j
(v) =

aj(v)−y

|Nj(v)|−y
 . 

Swapping positions results in utility u�
i
(vi↔j) =

bj(v)−1i,j

|Nj(v)|−y
 for i and u�

j
(vi↔j) =

bi(v)−1i,j

|Ni(v)|−x
 for j. 

Notice that we subtract 1i,j = 1 in the numerator if i and j are adjacent, since the vertex pre-
viously occupied by i or j in v is occupied by the other agent of a different type in vi↔j . 
Since, by our assumption, v is r-edge-robust, it has to hold that u�

i
(v) ≥ u�

i
(vi↔j) or 

u�
j
(v) ≥ u�

j
(vi↔j) . Hence, Algorithm 1 outputs yes.

Assume that v is not r-edge-robust. Then, there exists a pair of agents i, j ∈ N and a 
set of edges S ⊆ E(G) with |S| ≤ r such that the swap involving i and j is profitable on 
G − S . Note that, as argued before, we only have to consider deleting edges to friends in 
the neighborhoods of i and j. Therefore, there exist w, z ∈ ℕ0 with w + z ≤ r , w ≤ ai(v) and 
z ≤ aj(v) such that swapping i and j is profitable after deleting w edges to adjacent friends 
of i and z edges to adjacent friends of j. As proven in Proposition 2, deleting additional 
edges between i and friends of i and j and friends of j cannot make v stable again. Thus, 
it holds for all w�, z� ∈ ℕ0 with w ≤ w� ≤ ai(v) and z ≤ z� ≤ aj(v) that swapping i and j is 
profitable after deleting w′ edges to adjacent friends of i and z′ edges to adjacent friends of 
j. Thus, in Algorithm 1 with x = w and y = min{r − x, aj(v)} ≥ z , we have u�

i
(v) < u�

i
(vi↔j) 

and u�
j
(v) < u�

j
(vi↔j) and therefore return no.

3 A very similar algorithm can also be used for determining the robustness of jump-equilibria. Instead of 
iterating over pairs of vertices, we need to iterate over all pairs of agents and unoccupied vertices.
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Next, we analyze the running time. We first iterate over all pairs of agents i ∈ T1 and 
j ∈ T2 that can potentially be involved in a profitable swap, the number of pairs is upper-
bounded by n2 . For each pair, we iterate over at most r possible values for x from min{r, a} 
to zero. All other operations are simple arithmetic operations that can be computed in con-
stant time (assuming we precomputed all |Ni(v)| and ai(v) in linear time), hence our algo-
rithm runs in O(n2 ⋅ r) time.   ◻

Note, however, that finding a swap-equilibrium whose vertex- or edge-robustness is as 
high as possible is NP-hard, as we have proven in Theorem 1 that already deciding whether 
a Schelling game admits some swap-equilibrium is NP-hard.

4.2  Robustness of equilibria on different graph classes

In this subsection, we analyze the influence of the topology on the robustness of swap-
equilibria. We first analyze cliques where each swap-equilibrium has edge-robustness 
zero and vertex-robustness |V(G)| . Subsequently, we turn to cycles, paths, and grids and 
find that there exists a swap-equilibrium on all these graphs with edge-robustness and 
vertex-robustness zero. For paths, we observe that the difference between the edge/vertex-
robustness of the most and least robust equilibrium can be arbitrarily large. Finally, with �
-star-constellation graphs for � ∈ ℕ0 , we present a subclass of graphs on which all swap-
equilibria have at least edge/vertex-robustness �.
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4.2.1  Cliques

We start by observing that on a clique every assignment is a swap-equilibrium. From this 
it directly follows that every swap-equilibrium has vertex-robustness |V(G)| , as deleting a 
vertex from a clique results in another clique. In contrast, each swap-equilibrium can be 
made unstable by deleting one edge. Thereby, the following observation also proves that 
the difference between the edge- and vertex-robustness of a swap-equilibrium can be arbi-
trarily large:

Observation 2 In a Schelling game on a clique G with |T1| ≥ 2 and |T2| ≥ 2 , every swap-
equilibrium v has edge-robustness zero and vertex-robustness |V(G)|.

Proof It remains to prove that the edge-robustness is always zero. Let i ≠ j ∈ T1 , 
e ∶= {vi, vj} ∈ E(G) , and l ∈ T2 . As G is a clique, it holds that uG

i
(v) =

|T1|−1

|T1|+|T2|−1
 and 

uG
l
(v) =

|T2|−1

|T1|+|T2|−1
 . Swapping i and l is profitable in v on G − {e} for both i and l, as

  ◻

4.2.2  Cycles

For a cycle G, we can show that in a swap-equilibrium v , every agent is adjacent to at least 
one friend. Then, picking an arbitrary agent i ∈ T1 that has utility 1∕2 in v and deleting i’s 
neighbor from T1 or the edge between i and its neighbor from T1 makes v unstable.

Proposition 4 In a Schelling game on a cycle G with |T1| ≥ 2 and |T2| ≥ 2 , every swap-
equilibrium  v has edge-robustness zero. For |T1| ≥ 3 and |T2| ≥ 2 , every swap-equilib-
rium v has vertex-robustness zero.

Proof First, we show that, if |T1| ≥ 2 and |T2| ≥ 2 , then each agent is adjacent to at least one 
friend in a swap-equilibrium v . For the sake of contradiction, assume without loss of gen-
erality that there exists an agent i ∈ T1 that has ui(v) = 0 . Let i� ≠ i ∈ T1 be a different agent 
from T1 with ui� (v) ≤

1

2
 (such an agent needs to exist, as we assume that |T1| ≥ 2 , |T2| ≥ 2 , 

and that G is a cycle). We now distinguish two cases. If i′ is adjacent to an agent j ∈ T2 
who is also adjacent to i, then swapping i and j is profitable, as ui(vi↔j) =

1

2
> 0 = ui(v) 

and uj(vi↔j) =
1

2
> 0 = uj(v) . Otherwise, let j ∈ T2 be an agent from T2 adjacent to i′ . Then, 

swapping i and j is profitable, as ui(vi↔j) ≥
1

2
> 0 = ui(v) and uj(vi↔j) = 1 >

1

2
≥ uj(v).

Let w1,… ,wl be a maximal subpath of vertices occupied by agents from T1 and let 
i ∈ T1 be the agent occupying w1 and j ∈ T1 be the agent occupying wl in v . By the above 
argument it holds that l ≥ 2 . Since we have at least two agents from T2 , agent i on w1 and 
agent j on wl need to be adjacent to agents i� ∈ T2 and j� ∈ T2 , respectively, with i′ ≠ j′.

u
G−{e}

i
(vi↔l) =

|T1| − 1

|T1| + |T2| − 1
>

|T1| − 2

|T1| + |T2| − 2
= u

G−{e}

i
(v) and

u
G−{e}

l
(vi↔l) =

|T2| − 1

|T1| + |T2| − 2
>

|T2| − 1

|T1| + |T2| − 1
= u

G−{e}

l
(v).
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We first consider edge-robustness. Let S ∶= {{w1,w2}} . On G − S , agent i 
and agent j′ have a profitable swap, as they are not adjacent and thus it holds that 
uG−S
i

(vi↔j� ) ≥
1

2
> 0 = uG−S

i
(v) and uG−S

j�
(vi↔j� ) = 1 >

1

2
≥ uj� (v).

We now turn to vertex-robustness. Let S ∶= {w2} . If l ≥ 3 , then j has not been 
deleted and again swapping i and j′ is profitable, as uG−S

i
(vi↔j� ) ≥

1

2
> 0 = uG−S

i
(v) and 

uG−S
j�

(vi↔j� ) = 1 >
1

2
≥ uj� (v) . Otherwise, if l = 2 , as G is a cycle and |T1| ≥ 3 , there needs 

to exist an agent p ∈ T1⧵{i, j} that is adjacent to an agent q ∈ T2 . By our observation from 
above that each agent in v needs to be adjacent to at least one friend, it follows that q ≠ i′ and 
q ≠ j′ . This implies that q and i have a profitable swap, as uG−S

i
(vi↔q) ≥

1

2
> 0 = uG−S

i
(v) 

and uG−S
q

(vi↔q) = 1 >
1

2
≥ uq(v) .   ◻

4.2.3  Paths

Next, we turn to paths and prove that every Schelling game on a path with sufficiently 
many agents from both types has an equilibrium with edge-/vertex-robustness zero and one 
with edge-robustness |E(G)| and vertex-robustness |V(G)| . This puts paths in a surprisingly 
sharp contrast to cycles. The reason for this is that on a path, we can always position the 
agents such that there exists only one edge between agents of different types, yielding a 
swap-equilibrium with edge-robustness |E(G)| and vertex-robustness |V(G)| . This is not 
possible on a cycle.

Theorem 4 For a Schelling game on a path G with |T1| ≥ 4 and |T2| ≥ 2 , there exists a 
swap-equilibrium v that has edge-robustness and vertex-robustness zero and a swap-equi-
librium v′ that has edge-robustness |E(G)| and vertex-robustness |V(G)|.

Proof Let  V(G) = {w1,… ,wn} and E(G) = {{wi,wi+1} ∣ i ∈ [n − 1]} . In v , vertices  w1 
and w2 are occupied by agents from T1 , vertices w3 to w|T2|+2

 are occupied by agents from 
T2 , and the remaining |T1| − 2 ≥ 2 vertices are occupied by agents from T1 (see Fig. 8 for 
a visualization). As all agents have at most one neighbor of the other type and at least 
one neighbor of the same type, for each pair i, j of agents of different types it holds 
that ui(vi↔j) ≤ 1∕2 ≤ ui(v) . Thus, v is a swap-equilibrium. Further, after deleting the edge 
between w1 and w2 or deleting the vertex w1 , swapping the agent on w2 with the agent on 
w|T2|+2

 is profitable. It follows that v has edge-robustness and vertex-robustness zero.
In v′ , the agents from T1 occupy the first |T1| vertices and agents from T2 the remaining 

vertices. Let S ⊆ E(G) or S ⊆ V(G) and consider G − S . As for j ∈ [|T1| − 1] ∪ [|T1| + 2, n] , 
in G − S , the agent on wj got deleted, has no neighbor, or is only adjacent to friends, it can 
never be involved in a profitable swap. Further, swapping the agent on w|T1|

 and the agent 
on w|T1|+1

 can also never be profitable, since after the swap none of the two is adjacent to a 
friend. Thus, v′ is a swap-equilibrium on G − S .   ◻

If max{|T1|, |T2|} ≤ 3 , which is not covered by Theorem 4, then in every swap-equilib-
rium the path is split into two subpaths and agents from T1 occupy one subpath and agents 
from T2 occupy the other subpath. As argued in the proof of Theorem 4, such an assign-
ment has edge-robustness |E(G)| and vertex-robustness |V(G)|.
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4.2.4  Grids

We now turn to grids, which besides paths have been most often considered in the con-
text of Schelling’s segregation model. For both vertex- and edge-robustness, using some 
more involved arguments, we show that every swap-equilibrium has either robustness one 
or zero. Moreover, we prove that there exists an infinite class of Schelling games on grids 
admitting a swap-equilibrium with robustness zero and one with robustness one.

To prove that every swap-equilibrium on a grid has edge-robustness and vertex-robustness 
at most one, we first define the concept of frames of a grid (this notion also appears in the anal-
ysis of the price of anarchy of swap-equilibria on grids in the work of Bilò et al. [7]). Let G 
be an (x × y)-grid with V(G) = {(a, b) ∈ ℕ × ℕ ∣ a ≤ x, b ≤ y} . We refer to the set B(G) of 
vertices in the top row, bottom row, left column and right column as border vertices (formally, 
B(G) = {(a, b) ∈ V(G) ∣ a ∈ {1, x} or b ∈ {1, y}} ). The first frame F1 of G is the set of border 
vertices. The second frame F2 of G is the set of border vertices of the grid that results from delet-
ing the first frame from G. Further, for all i > 1 , the frame Fi of G is the set of border vertices of 
the grid that results from deleting the frames F1,… ,Fi−1 from G.

Theorem 5 

1. In a Schelling game with min(|T1|, |T2|) ≥ 4 on an (x × y)-grid with min(x, y) ≥ 4 , the 
edge- and the vertex-robustness of any swap-equilibrium is at most one.

2. In a Schelling game with |T1| = |T2| on an (x × y)-grid with x ≥ 4 being even and y ≥ 2 , 
there exists a swap-equilibrium v with edge- and vertex-robustness zero and a swap-
equilibrium v′ with edge- and vertex-robustness one.

Proof In the following, let G be an (x × y)-grid. We start by proving the first statement.

1. Edge- and Vertex-Robustness at Most One
For the sake of contradiction, assume that there exists a swap-equilibrium v which is 

2-vertex-robust or 2-edge-robust. By induction over the frames of G, we show that all ver-
tices have to be occupied by agents from one type in v , which contradicts that we have at 
least four agents from both types.

Base Case. First, consider the frame F1 and assume for the sake of contradiction that there 
are agents from both types on vertices from F1 . Then, there exist agents i ∈ T1 and j ∈ T2 on 
adjacent vertices from F1 . Note that i has at most three neighbors. Let i� ∈ T1 be an agent from 
T1 that is not placed on a vertex from N(vi) ∪ {vi} and let j� ∈ T2 be an agent from T2 which 
is not placed on a vertex from N(vi) ∪ {vi} (such vertices exist as there exist four agents per 
type, |N(vi) ∪ {vi}| ≤ 4 , and for both types at least one of its agents is placed on a vertex from 

w1 w2

i ∈ T1

w3 w|T2|+2

j ∈ T2

w|T2|+3 wn. . . . . .

|T2| ≥ 2 |T1| − 2 ≥ 2

Fig. 8  The swap-equilibrium with robustness zero from Theorem  4. After deleting {w
1
,w

2
} ∈ E(G) or 

w
1
∈ V(G) , swapping i and j is profitable
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N(vi) ∪ {vi} ). Since G is an (x × y)-grid with x, y ≥ 4 , there exists a path from vi′ to vj′ that does 
not visit a vertex from N(vi) ∪ {vi} . Given that the two endpoints of the path are occupied by 
agents of different types, on this path, there need to be agents i�� ∈ T1 and j�� ∈ T2 that are placed 
on adjacent vertices on this path and not on a vertex from N(vi) ∪ {vi} . Now, if we remove the 
at most two vertices in N(vi)⧵{vj} or the corresponding edges from vi to these vertices, then i 
has utility zero and neither vi′′ nor vj′′ has been deleted. Thus, swapping i and j′′ is profitable, as 
ui(v) = 0 < ui(v

i↔j�� ) and uj�� (v) < 1 = uj�� (v
i↔j�� ).

Induction Step. Assume that it holds for some � ∈ ℕ , that all Fk with k ≤ � are occupied 
only by agents from T1 (without loss of generality).

We now show that then F
�+1 also needs to be only occupied by agents from T1 . We do 

so by showing that if there are agents from the other type T2 in F
�+1 , then there exists a 

profitable swap after deleting at most two vertices or at most two edges. We assume that 
|F

�+1| ≥ 4 . If |F
�+1| < 4 , then we have already reached a contradiction, since all other 

frames are occupied by agents from T1 only, but there are at least four agents from T2 
that have to be positioned.

First, suppose that there are only agents from T2 in F
�+1 . Let i ∈ T2 be the agent in the 

bottom-left corner of F
�+1 . Formally, let i ∈ T2 with vi = (a, b) ∈ F

�+1 such that it holds 
for all other (a�, b�) ∈ F

�+1 that a′ ≥ a and b′ ≥ b . Note that i is adjacent to at least two 
agents of type T1 in F

�
 and has at most two adjacent friends. Thus, after deleting at most 

two vertices or edges, we have that ui(v) = 0 . As |F
�+1| ≥ 4 , there exists another agent 

i� ∈ T2 in F
�+1 outside of the neighborhood of i. Agent i′ is adjacent to an agent j ∈ T1 in 

F
�
 . It holds that uj(v) < 1 . Then, swapping i and j is profitable, since uj(v) < 1 = uj(v

i↔j) 
and ui(v) = 0 < ui(v

i↔j) . Hence, there have to be agents from T1 in F
�+1.

Next, suppose for the sake of contradiction that there are agents from both types in F
�+1 . 

Then, there exists an agent i ∈ T2 in F
�+1 that is adjacent to an agent from T1 on a vertex also 

in F
�+1 . Note that agent i is adjacent to at least two agents of the other type (the adjacent agent 

from T1 in F
�+1 and some agent in F

�
 ) and thus has at most two adjacent friends. Moreover, i 

has at most four neighbors. Let j ∈ T1 be an agent which is not adjacent to i and not placed on 
a corner-vertex of the grid (such an agent exists as the frame F1 of the (x × y)-grid with x, y ≥ 4 
is fully occupied by agents from T1 ). Furthermore, let i� ∈ T2 be an agent from T2 that is not 
adjacent to i (such an agent exists as |T2| ≥ 4 and two of the five vertices in N(vi) ∪ {vi} are 
occupied by agents from T1 ). Note that i′ has to be placed on a vertex in a frame Fj with j > � 
(and thus, in particular, cannot be placed on a corner-vertex of the grid). As G is an (x × y)-grid 
with x, y ≥ 4 and neither vj nor vi′ is a corner-vertex, there exists a path from vj to vi′ that does 
not go through N(vi) ∪ {vi} . Given that the two endpoints of the path are occupied by agents 
of different types, on this path, there need to be agents i�� ∈ T2 and j�� ∈ T1 that are placed on 
adjacent vertices on this path and not on a vertex from N(vi) ∪ {vi} . Now, if we remove the at 
most two vertices adjacent to vi occupied by friends of agent i (or the corresponding edges), then 
i has utility zero and neither vi′′ nor vj′′ has been deleted. Thus, swapping i and j′′ is profitable, as 
ui(v) = 0 < ui(v

i↔j�� ) and uj�� (v) < 1 = uj�� (v
i↔j�� ) . Thus, the induction step follows.

2. Equilibria With Tight Robustness
Let I be a Schelling game with |T1| = |T2| on a grid G with x ≥ 4 columns and 

y ≥ 2 rows and x being even. Note that y divides |T1| (and |T2| ), as |T1| = |T2| , 
|T1| + |T2| = x ⋅ y , and x is even.

We start by defining the assignment v as follows. The first column is occupied by 
agents from T1 , the following columns up to column x

2
+ 1 are occupied by the agents 

from T2 and the remaining agents from T1 are placed on columns x
2
+ 2 to x.



Autonomous Agents and Multi-Agent Systems            (2024) 38:9  

1 3

Page 37 of 42     9 

We now show that v is a swap-equilibrium. Observe that it holds for all agents i ∈ T2 
that ui(v) ≥

1

2
 . An agent j ∈ T1 has at most one neighbor in T2 . Therefore, agent i could 

achieve at most ui(vi↔j) =
1

2
≤ ui(v) by swapping with an agent j ∈ T1 . Thus, no profit-

able swap exists.
As regards the robustness, note that in v , there exists an agent i ∈ T1 on the vertex at the 

top of the first column with only one adjacent friend i� ∈ T1 . If we now either delete vertex 
vi′ or the edge {vi, vi� } , then agent i and agent j ∈ T2 at the bottom of column x

2
+ 1 , who 

has utility less than 1 in v , have a profitable swap. It follows that v has edge- and vertex-
robustness zero.

Next, we construct an assignment v′ with edge- and vertex-robustness one: The agents 
from T1 occupy the first x

2
 columns and the agents from T2 are placed on the remaining 

columns. We now argue that v′ is a swap-equilibrium: Observe that only the agents on col-
umns x

2
 and x

2
+ 1 have a utility of less than 1. Therefore, only these agents can be involved 

in a profitable swap. Consider some agent i ∈ T1 from column x
2
 . Since x

2
≥ 2 , we have 

ui(v
�) =

2

3
 if i occupies the vertex on the top or bottom of the column and ui(v�) =

3

4
 other-

wise. If i swaps with some agent j from column x
2
+ 1 , then ui(��

i↔j) ≤
1

3
 if vj is the vertex 

at the top or bottom of the column and ui(��
i↔j) ≤

1

4
 otherwise. Hence, no profitable swap 

involving an agent from T1 exists and thus v′ is a swap-equilibrium assignment.
We now show that v′ has edge- and vertex-robustness 1. We have already argued above 

that no swap-equilibrium can be 2-edge-robust or 2-vertex-robust. To show that v′ is 
1-edge-robust (1-vertex-robust), consider deleting an edge e ∈ E(G) (a vertex v ∈ V(G) ). 
From Proposition 2, we know that deleting an edge between agents of different types can-
not make v′ unstable. Therefore, we only consider edges between agents of the same type.

Still, only the agents on columns x
2
 and x

2
+ 1 can have utility less than 1 after the 

deletion of e (v) and can therefore be candidates for profitable swaps. Let vi be inci-
dent to e (adjacent to v in G). If vi is on the top or bottom of column x

2
 (or x

2
+ 1 ), then 

u
G−{e}

i
(v�) = u

G−{v}

i
(v�) =

1

2
 . Otherwise, we have uG−{e}

i
(v�) = u

G−{v}

i
(v�) =

2

3
 . However, by 

swapping with some agent  j of the other type, agent i can get at most uG−{e}
i

(��i↔j) =
1

3
 . 

Therefore, the swap cannot be profitable and v′ is 1-edge-robust and 1-vertex-robust and 
hence has edge- and vertex-robustness 1.   ◻

4.2.5  ̨ ‑Star‑constellation graphs

Lastly, motivated by the observation that on all previously considered graph classes there exist 
swap-equilibria with zero edge-robustness and on all considered graph classes except cliques 
there exist swap-equilibria with zero vertex-robustness, we investigate �-star-constellation 
graphs, a generalization of stars and �-caterpillars. Recall that an �-star-constellation graph con-
sists of stars where the central vertices can be connected by edges such that every central vertex 
is adjacent to at least � more degree-one vertices than other central vertices.

We prove that every swap-equilibrium in a Schelling game on an �-star-constellation 
graph is �-vertex-robust and �-edge-robust. Recall that we have already seen in Sect. 3.3 
that swap-equilibria can be characterized and efficiently computed on these graphs.

Theorem 6 In a Schelling game on an �-star-constellation graph for � ∈ ℕ0 , every swap-
equilibrium v is �-edge and �-vertex-robust.
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Proof Let v be a swap-equilibrium on an �-star-constellation graph  G for some � ∈ ℕ0 . 
We make a case distinction based on whether or not there exists an agent i on a degree-one 
vertex adjacent to an agent j of the other type in v . If this is the case, then assume without 
loss of generality that i ∈ T1 and j ∈ T2 and observe that it needs to hold that all agents 
j� ∈ T2⧵{j} are only adjacent to friends, as otherwise  j′ and i have a profitable swap. Now 
consider the topology G − S for some subset S ⊆ E(G) or some subset S ⊆ V(G) . Then, for 
all j� ∈ T2⧵{j} , agent j′ cannot be involved in a profitable swap in G − S , as j′ got deleted, 
is only adjacent to friends, or placed on an isolated vertex. Moreover, there also cannot 
exist a profitable swap for j, as no agent from T1 is adjacent to an agent from T2⧵{j} . Hence, 
v is |E(G)|-edge-robust and |V(G)|-vertex-robust.

Now, assume that all agents on a degree-one vertex are only adjacent to friends in v and 
consider the topology G − S for S ⊆ E(G) or S ⊆ V(G) with |S| ≤ � . Note that, in G − S , 
only agents i ∈ T1 and j ∈ T2 with degG(vi) > 1 and degG(vj) > 1 and degG−S(vi) ≥ 1 and 
degG−S(vj) ≥ 1 can be involved in a profitable swap, since all other agents either occupy an 
isolated vertex or are only adjacent to friends in G − S . For vertex-robustness, it addition-
ally needs to hold that vi, vj ∉ S . Since G is an �-star-constellation graph and we delete 
at most � edges or � vertices, it holds that both vi and vj are adjacent to at least as many 
degree-one vertices as non-degree-one vertices in G − S . By our assumption, the agents 
on degree-one vertices adjacent to vi are friends of i and the agents on degree-one vertices 
adjacent to vj are friends of j. Hence, swapping i and j cannot be profitable, as uG−S

k
(v) ≥ 1∕2 

and uG−S
k

(vi↔j) ≤ 1∕2 for k ∈ {i, j} .   ◻

4.2.6  ̨ ‑Caterpillars

Recall that we have pointed out in Sect. 3.3 that there is a subclass of �-star-constellation 
graphs, namely �-caterpillars, on which a swap-equilibrium always exists. Let w1,… ,w

�
 

be the vertices on the central path of the considered �-caterpillar. Then, to construct an 
equilibrium v , we can simply assign for each i ∈ {1,… ,�} agents from T1 to wi and to 
adjacent degree-one vertices, until all agents from T1 have been assigned. It is easy to see 
that v has edge-robustness |E(G)| and vertex-robustness |V(G)| . Notably, this assignment 
somewhat resembles the swap-equilibrium with edge-robustness |E(G)| and vertex-robust-
ness |V(G)| on a path from Theorem 4. In contrast, extending the swap-equilibrium with 
robustness zero on a path from Theorem 4 such that all agents on degree-one vertices are 
of the same type as their only neighbor, in some Schelling games on �-caterpillars, it is 
possible to create a swap-equilibrium with edge- and vertex-robustness only �:

Proposition 5 For a Schelling game on an �-caterpillar with � ∈ ℕ0 , there is a swap-equi-
librium with edge-robustness |E(G)| and vertex-robustness |V(G)| . For every � ∈ ℕ0 , there 
is a Schelling game on an �-caterpillar with a swap-equilibrium with edge-robustness and 
vertex-robustness �.

Proof We start with the first part of the proposition. Consider a Schelling game on an �
-caterpillar G with w1,… ,w

�
 being the non-degree-one vertices forming a path and 

{{wi,wi+1} ∣ i ∈ [� − 1]} ⊆ E(G) . It is easy to construct a swap-equilibrium v by assign-
ing for each i ∈ {1,… ,�} agents from T1 first to wi and then to the degree-one vertices 
adjacent to wi , until there are no remaining unassigned agents from T1 . In this case the 



Autonomous Agents and Multi-Agent Systems            (2024) 38:9  

1 3

Page 39 of 42     9 

remaining vertices are filled with agents from T2 . By Theorem 3, v is a swap-equilibrium 
(as it satisfies the second condition). Note that in v there exists only one agent from T1 , say 
i ∈ T1 , who is adjacent to an agent from T2 . Let S ⊆ E(G) be a subset of edges or a subset 
of vertices S ⊆ V(G) of arbitrary size. We now argue that v is a swap-equilibrium on G − S . 
First, note that i is still the only agent from T1 who is adjacent to an agent from T2 in v on 
G − S . For all i� ∈ T1⧵{i} , we have uG−S

i�
(v) = 1 or vi′ is an isolated vertex. Similarly, for 

all j ∈ T2 with vj ∉ NG−S(vi) , we also have uG−S
j

(v) = 1 or vj is an isolated vertex. Hence, 
only agent i ∈ T1 and an agent j� ∈ T2 with vj� ∈ NG−S(vi) can have a profitable swap. 
However, after swapping i and j′ , agent i ∈ T1 is only adjacent to agents from T2 and has 
uG−S
i

(vi↔j) = 0 . Therefore, no profitable swap is possible and v has edge-robustness |E(G)| 
and vertex-robustness |V(G)|.

Let us now come to the second part of the proposition. For � ∈ ℕ0 let G be an �-cat-
erpillar with w1,… ,w4 being the non-degree-one vertices forming the central path with 
{{wi,wi+1} ∣ i ∈ [3]} ⊆ E(G) . For i ∈ {1, 4} , wi is adjacent to � + 1 degree-one vertices, 
and for i ∈ {2, 3} , wi is adjacent to � + 2 degree-one vertices. We consider the Schelling 
game on G with |T1| = 2 ⋅ (� + 1) and |T2| = 2 ⋅ (� + 2) . Let v be the assignment where 
agents from T1 occupy the 2 ⋅ (� + 1) vertices from the stars with central vertices w1,w4 and 
the agents from T2 occupy the 2 ⋅ (� + 2) vertices from the stars with central vertices w2,w3 . 
Note that v fulfills the first condition from Theorem 3 and is thus a swap-equilibrium which 
is by Theorem 6 �-vertex-robust and �-edge-robust. To show that v has edge-robustness � 
it remains to specify a set of � + 1 edges whose deletion make v unstable (that is, v is not 
� + 1-edge-robust). Let S be the set of � + 1 edges containing all edges between w1 and its 
degree-one neighbors. Then, on G − S , swapping agent i ∈ T1 on w1 and agent j ∈ T2 on w3 
is profitable, as uG−S

i
(v) = 0 < uG−S

i
(vi↔j) and uG−S

j
(v) < 1 = uG−S

j
(vi↔j) . To show that v has 

vertex-robustness � , let S be the set of w1 ’s degree-one neighbors. Then similar as above, 
on G − S , swapping i ∈ T1 on w1 and agent j ∈ T2 on w3 is profitable.   ◻

5  Conclusion

We proved that even in the simple variant of Schelling games where all agents want to 
maximize the fraction of agents of their type in their occupied neighborhood, deciding 
the existence of a swap- or jump-equilibrium is NP-complete. Moreover, we introduced a 
notion for the robustness of an equilibrium under vertex or edge deletions and proved that 
the robustness of different swap-equilibria on the same topology can vary significantly. In 
addition, we found that the minimum and the maximum robustness of swap-equilibria vary 
depending on the underlying topology.

There are multiple possible directions for future research. First, independent of properties 
of the given graph, in our reduction showing the NP-hardness of deciding the existence of a 
swap- or jump-equilibrium, we construct a graph that is not planar and has unbounded maxi-
mum degree. The same holds for graphs constructed in the reductions from Agarwal et al. [1] 
for showing NP-hardness in the presence of stubborn agents. Thus, the computational complex-
ity of deciding the existence of equilibria on planar or bounded-degree graphs (properties that 
typically occur in the real world) in Schelling games with or without stubborn agents is open. 
Second, Bilò et al. [7] recently introduced the notions of local swap (jump)-equilibria where only 
adjacent agents are allowed to swap places (agents are only allowed to jump to adjacent verti-
ces). To the best of our knowledge, the computational complexity of deciding the existence of a 
local swap- or jump-equilibrium is unknown even if we allow for stubborn agents. Third, while 
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we showed that on most considered graphs swap-equilibria can be very non-robust, it might be 
interesting to search for graphs guaranteeing a higher equilibrium robustness; here, graphs with a 
high minimum degree and/or high connectivity seem to be candidates. Fourth, besides looking at 
the robustness of equilibria with respect to the deletion of edges or vertices, one may also study 
adding or contracting edges or vertices. Fifth, instead of analyzing the robustness of a specific 
equilibrium, one could also investigate the robustness of a topology regarding the existence of 
an equilibrium. Lastly, for an equilibrium, it would also be interesting to analyze empirically or 
theoretically how many reallocations of agents take place on average after a certain change has 
been performed until an equilibrium is reached again.
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