
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:38
https://doi.org/10.1007/s10458-023-09619-4

1 3

A multi‑scenario approach to continuously learn
and understand norm violations

Thiago Freitas dos Santos1,2 · Nardine Osman1 · Marco Schorlemmer1

Accepted: 25 July 2023 / Published online: 16 August 2023
© The Author(s) 2023

Abstract
Using norms to guide and coordinate interactions has gained tremendous attention in
the multiagent community. However, new challenges arise as the interest moves towards
dynamic socio-technical systems, where human and software agents interact, and interac-
tions are required to adapt to changing human needs. For instance, different agents (human
or software) might not have the same understanding of what it means to violate a norm
(e.g., what characterizes hate speech), or their understanding of a norm might change over
time (e.g., what constitutes an acceptable response time). The challenge is to address these
issues by learning to detect norm violations from the limited interaction data and to explain
the reasons for such violations. To do that, we propose a framework that combines Machine
Learning (ML) models and incremental learning techniques. Our proposal is equipped to
solve tasks in both tabular and text classification scenarios. Incremental learning is used to
continuously update the base ML models as interactions unfold, ensemble learning is used
to handle the imbalance class distribution of the interaction stream, Pre-trained Language
Model (PLM) is used to learn from text sentences, and Integrated Gradients (IG) is the
interpretability algorithm. We evaluate the proposed approach in the use case of Wikipedia
article edits, where interactions revolve around editing articles, and the norm in question is
prohibiting vandalism. Results show that the proposed framework can learn to detect norm
violation in a setting with data imbalance and concept drift.

Keywords  Norm violation · Incremental learning · Pre-trained language models ·
Interpretability · Online communities

Disclaimer: This article presents content (offensive language) that may be disturbing to different
audiences.

 *	 Thiago Freitas dos Santos
	 thiago@iiia.csic.es

	 Nardine Osman
	 nardine@iiia.csic.es

	 Marco Schorlemmer
	 marco@iiia.csic.es

1	 Artificial Intelligence Research Institute (IIIA), CSIC, Barcelona, Catalonia, Spain
2	 Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09619-4&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 2 of 57

1  Introduction

The ability to continuously learn what constitutes norm violation, as understood by a given
community, and detect when such violations happen is essential for any normative sys-
tem that intends to regulate the behavior of its interacting agents (in this work, referred to
as community members). This is especially critical considering that discrimination, hate
speech, and cyberbullying can cause significant harm to individuals and negatively impact
the community experience in online platforms [38, 60, 81]. Thus, our work aims to address
two main challenges. First, to continuously learn what an online community understands
as norm violation by using examples of behaviors depicted as such, gathered either as text
sentences or formalized as a set of features. Second, explain to community members the
parts of their actions associated with norm-violating behavior. To do that, we are inter-
ested in finding and adapting the definition of norm violation as interactions unfold. It is
important to note that not only online communities stand to benefit from this research,
as the challenges we tackle are also of interest to fields in which detecting misbehavior
can prevent infractions (e.g., credit card fraud, personal information leakage, and network
infiltration).

Some interesting approaches to detect norm violation in online communities have
already been proposed, with applications to Wikipedia [8, 104], Software Engineering (SE)
communities [22, 23], Reddit [19] and other communities [46, 64, 106]. However, these
approaches can not continuously update the system used to classify an action as a norm
violation. Consequently, they can not handle the evolution of the community’s view about
what constitutes such violations. This characteristic is fundamental in our work since we
argue that the understanding of a norm violation is dynamic, e.g., what is considered hate
speech may change rapidly as new members are incorporated and interactions unfold. For
Instance, the word “nigger” may be viewed differently as more African Americans join the
community and begin to salute each other using this term. In this context, a normative sys-
tem deployed to govern these interactions must adapt to the current view of the community.
We address this issue by proposing a framework that handles the interactions of an online
community as a stream of actions with an imbalanced class distribution and the presence
of concept drift. In other words, a stream of actions that contain more elements related to
regular behavior than to violation behavior, aggregating to that, changes in how the com-
munity members understand norm violation. Thus, unlike existing approaches, our frame-
work handles the dynamic nature of norm violations in online communities by incorporat-
ing community members’ feedback as the ground truth to continuously adapt to changes in
the meaning1 of norm-violating behavior over time.

Furthermore, previous works in the realm of norms and normative systems have
addressed different challenges that arise in the field, with a series of proposals to han-
dle mechanisms for norm conflict detection [4, 32], norm synthesis [67, 71] and norm
emergence [58, 68, 88]. Additionally, several domains have benefited from this field,
applying the concepts of norms and normative systems to the prevention of discrimina-
tion by Machine Learning (ML) models [25], to the formalization of contracts and laws
[36, 82], and to handling ethical dilemmas and moral values [5, 91]. In this work, we
are particularly interested in supporting normative systems with mechanisms for learn-
ing from interactions and agents’ feedback (human or artificial) to help decide what

1  In this work, the parts of an action (i.e., set of features or words of a sentence) are the elements that indi-
cate the meaning of a violation.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 3 of 57  38

is considered a norm violation. In online communities, interactions are defined by the
actions executed by community members that affect the whole community. For example,
consider editing Wikipedia articles. In this scenario, interactions are the article edits
performed by some members and the subsequent reading of those by others.

Table 1 highlights different scenarios where the formalization of online interactions
may vary depending on the type of violation-detection task. Specifically, while some
tasks only require a set of features to describe an action, others must handle the raw
action input as it takes place due to the complexity of the domain. Thus, we are inter-
ested in building a framework employed in multi-scenario settings, namely tabular and
text-based domains, since these cover a variety of use cases (including detecting vio-
lations in Wikipedia article editing). For instance, fraud discovering and misbehaving
detection formalize an action as a set of features like user engagement and user-user
interaction. While identifying deception writing styles might require mapping the input
to linguistic-based features. These tasks usually benefit from tabular-related approaches.
However, domains like hate speech detection, tackling the spread of fake news over
social media, and adversarial attacks, need solutions that handle natural language sen-
tences directly.

To create our solution, we investigate incremental learning in a framework that can
learn the meaning of norm violation, adapt to changes in community view, and incorpo-
rate feedback from community members in the learning procedure. We depict the rela-
tionship between the components of our framework in Fig. 1. Specifically, this approach
offers the following advantages in our context. First, it continuously updates the base
classifiers using data blocks that arrive sequentially (Sect. 2.2). This embodies in our
framework the ability to adapt to changes in the community view (concept drift), using
only the most recent data to learn the meaning of norm violation and discarding the
need to treat and maintain past information. Second, it facilitates incorporating feedback
from community members as the ground truth about a norm violation. This aligns with
our view that a system’s understanding of norm violation needs to adapt to its users (in
our case, community members).

Additionally, our framework incorporates an ensemble of Feed-forward Neural
Networks (FNNs) with the incremental learning approach to handle class distribution
imbalance in our tabular task context (Sect. 2.1). This is particularly useful when learn-
ing norm violation since this behavior usually happens less frequently than regular
behavior. As for text-related scenarios, our approach incorporates Pre-trained Language
Models (PLMs) [47] (Sect. 2.3). In contrast to FNNs, PLMs do not require an ensemble

Table 1   Examples of tasks that benefit from solutions that handle featurized and/or text datasets

Specifically, we focus on violating behavior in online interactions

Task

Set of features Text

Fraud discovering [9, 50, 95] Hate speech detection [6, 23, 81]
Misbehaving detection [43, 52] Fake news detection [45, 69, 98]
Identify deception writing styles [3, 93] Adversarial attacks [41]
Fake reviews detection [13, 63] Identify AI-generated reviews [1, 62]
Identify authors of violations [75, 94] Style change detection [96, 110]

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 4 of 57

of classifiers. Instead, they can handle imbalanced datasets by encoding language struc-
tures (due to their size) and undersampling the majority class. Furthermore, to learn
specific classification tasks, PLMs fine-tune only the classification head, which is inte-
grated on top of the pre-trained layers of the model.

Besides detecting a norm violation, deployed systems must also provide information on
the reasons behind a decision. Therefore, we investigate interpretability to obtain expla-
nations about an ML model’s inner workings. Here, we are interested in understanding
the words in a text sentence usually associated with norm violation. Since we use PLMs
to solve these tasks, our framework employs the Integrated Gradients (IG) algorithm [97]
to explain the behavior of our transformer-based models (Sect. 2.4). IG provides relevant
words related to norm violation, enabling our framework to tackle two issues. First, it
allows us to adhere to the principles of Responsible AI [10] since we enhance people’s
understanding of our models. Second, it prepares our approach for a future argumentation
process, as information provided by the interpretation step assists users in deliberating and
collaboratively agreeing on the definitions of norm violation.2

Fig. 1   A conceptual framework of our multi-scenario approach. In the ensemble, N indicates the number of
classifiers

2  We envision people to be in control of defining the meaning of their community norms and expect them
to collectively agree on those norms through deliberation and argumentation mechanisms.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 5 of 57  38

The experiments (Sect. 4) describe the implementation of two incremental learn-
ing techniques to train the base classifiers: mini-batch learning and online learning. In
this work, FNNs are the models in the ensemble for tabular tasks. At the same time, we
evaluate text scenarios by comparing two PLMs, DistilBERT and RoBERTa. The use case
is the editing of Wikipedia articles. In this scenario, we detect norm violation either by
formalizing an action (article edit) as a set of features provided by the community (e.g.,
number of profane words, occurrences of alphanumeric characters, etc. [34]) or by treat-
ing the text sentence input directly. An example of a violation is the sentence “the big
lipped,hairbraned,egotistical dirty nigger often defecated”. Results show that the proposed
approaches can learn the meaning of norm violation in an online community with imbal-
anced class distribution (only around 7% of the data correspond to edits with violation) and
in the presence of concept drift (changes in the community view). To formalize an article
edit, we define the tuple (X, y), in which X is the set of features of an action and y ∈ {0, 1}
is its class label, 0 denotes regular behavior, while 1 denotes norm-violating behavior.

This research extends our previous work [33] by (1) incorporating a mechanism to han-
dle violations expressed as text sentences; (2) learning a multi-label task through the iden-
tification of different classes of violating behavior; (3) understanding the words usually
associated with norm violation, specifically determining their relevance to different viola-
tion cases; and (4) comparing two PLMs to analyze their ability to learn in this scenario
and how their architecture impacts the understanding of violating behavior.

The remainder of this paper is divided as follows. Section 2 presents the basic mecha-
nisms used by our proposed framework, described in Sect. 3. Section 4 shows its applica-
tion to the use case of Wikipedia article edits, and Sect. 5 discusses the results. Related
literature is presented in Sect. 6, and we give our conclusions and propose our future work
in Sect. 7.

2 � Background

This section presents the base concepts upon which this work is built. First, we start by
presenting an ensemble strategy to deal with the imbalanced nature of the dataset when
handling a tabular task. Second, we describe the incremental learning approach used to
continuously train the ML models considered in this work. Third, we introduce the concept
of the Pre-trained Language Model (PLM), which is responsible for handling actions as
natural language sentences. Lastly, we describe explainability and its application to under-
standing the classification output of PLMs.

2.1 � Ensemble learning

Dealing with the detection of norm-violating behavior usually leads to cases of imbalanced
datasets. This happens because regular (or expected) behavior is more common than viola-
tions. Thus, solutions that deal with domains in these settings must be equipped to handle
class distribution imbalance. Otherwise, the solutions tend to be biased towards the class
that describes regular behavior (the majority class). To tackle this issue, we use ensemble
learning, which can be defined as the generation and combination of different ML models
(e.g., neural networks, random forest, and logistic regression) to solve a predictive task
[83]. The main idea of this technique is that by combining multiple ML models using a
voting scheme, the errors of a single model will be compensated by the others. Thus the

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 6 of 57

overall performance of the ensemble would be better than the performance of a single com-
ponent [29].

Different ensemble methods can be used to build a classification system. Dong et al.
[29] highlight some important ones, such as Bagging, AdaBoost, and Random Forest. Bag-
ging is an interesting method to deal with the challenge of imbalanced datasets investi-
gated in this work. This technique finds a solution by training different base classifiers in
different subsets of the initial dataset. Then, the ensemble uses majority voting to decide
the final output. As an example, in a binary tabular classification task with an imbalanced
dataset D, it is possible to divide D into two subsets, majority class subset M and minority
class subset P (the number of instances in these sets is represented by |M| and |P| , respec-
tively). In this context, the main goal is to train an ensemble E with n number of balanced
datasets B = {B1, ...,Bn} . Each Bi ∈ B is a dataset with a similar class distribution, and
n = |M| ÷ |P| . In this manner, because the number of instances in P ⊆ D is smaller than the
number of instances in M ⊆ D , subsets in B have size 2 × |P| and are created with |P| non-
overlapping instances from M, while all instances of P are replicated to each subset.

The bagging method, as described above, can be applied to train ML models offline
or in a mini-batch manner. However, this method cannot be used in an online setting (in
which training happens one instance at a time). To solve this issue, modifications to the
bagging procedures are necessary. Thus, Wang et al. [102] present a resampling strategy to
deal with imbalanced datasets for the online case. This strategy considers two approaches,
Oversampling-based Online Learning (WEOB1) and Undersampling-based Online Learn-
ing (WEOB2), with the addition of weight adjustment over time. WEOB1 and WEOB2
work to adjust the learning bias from M to P by resampling instances from these subsets.
Specifically, oversampling increases the number of minority instances, while undersam-
pling decreases the number of majority instances. Like the traditional bagging strategy,
online bagging creates different classifiers and trains them a k number of times by consid-
ering only the current data point. k is defined by the Poisson(� = 1) distribution. As data
becomes available, the � parameter is calculated dynamically according to the imbalance
ratio. In this manner, if there is a new instance in P, then k increases. However, if there is a
new instance in M, then k decreases.

2.2 � Incremental learning

Since we are dealing with online communities, we must consider how data is made availa-
ble. Usually, systems must work with a stream of data that arrives sequentially. In this con-
text, there are different ways to build a framework capable of solving the problem. Tech-
niques differ in how they handle the data stream and, consequently, how the algorithms
are trained. Following this idea, we can separate training techniques into two big groups:
offline and incremental learning.

Offline learning deals with the complete dataset; in this case, it is impossible to update
the trained model. To incorporate new knowledge, an entire training process from the
beginning is necessary [40], which is the main drawback of this approach when we must
handle non-stationary domains. Besides, maintaining and treating all the data for this kind
of learning can be costly and complex (especially when considering data regulations speci-
fied by different entities and legislators) [50].

On the other hand, incremental learning is the technique that addresses the limitations
of offline learning by continuously updating the ML model with new data as it becomes
available. This approach is particularly beneficial in online communities since the models

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 7 of 57  38

must be constantly updated as people interact and a change in understanding emerges. In
this work, we are concerned with mini-batch and online learning. Mini-batch learning cre-
ates and uses small sets of data that arrive continuously to train ML models. Since we only
deal with the most recent instances that compose the present data block of a fixed size, the
process is neither as costly nor as complex as offline learning [50, 54]. Online learning
can be seen as a special case of mini-batch learning, in which the batch size is 1. Thus, as
soon as data is made available, it is possible to update the ML model, discarding the need
to store this data point and consequently avoiding the complexities of data treatment. It is
important to highlight one advantage of mini-batch over online learning regarding stability
properties. Since in online learning, the training procedure only considers one data point
at each time step, the algorithms that implement this concept usually have the poorest sta-
bility when compared to mini-batch algorithms [54] (in Sect. 5 we also demonstrate this
phenomenon).

Incremental learning approaches, which involve the continuous updating of base models
as new data becomes available, can be useful for investigating problems that involve con-
cept drift, i.e., the change in the view of the community members about what is regular and
violating behavior. It is possible to identify the shift in community behavior by observing
the joint distribution Pt(X, y) over time [56, 101], where x ∈ X is a feature value, y ∈ {0, 1}
is the associated class label that denotes regular or norm-violating behavior, and t the cur-
rent timestamp. Then, to compare two moments in time and detect a possible concept drift,
we refer to the following: Pt(X, y) ≠ Pu(X, y) , where u is a timestamp in the past. Gama
et al. [35] define three ways to categorize concept drift: change in the prior probability
of classes p(y), affecting the ratio between violation and regular behavior; change in the
class conditional probabilities p(X ∣ y) , impacting how violation and regular behavior are
defined; this has an impact on the posterior probabilities of classes p(y ∣ X) , which is a
change in what the community understands as a violation and regular behavior. The latter
leads to real concept drift, which is the definition that interests us in this work.

2.3 � The pre‑trained language model (PLM)

The first part of our proposal focuses on solving tabular classification problems. However,
we aim to broaden the framework’s scope to a more generic solution by incorporating the
ability to solve tasks in text classification scenarios. Different approaches to learning pat-
terns from natural language sentences have been proposed in the literature, ranging from
probabilistic classifiers using TF-IDF [44, 109] and Recurrent Neural Network (RNN) [89]
to transformer-based models, used in this work.

Recently, transformer models have been the primary approach for addressing Natural
Language Processing (NLP) tasks, surpassing previous methods and consistently achiev-
ing the highest performances across various domains [47, 61, 99]. One of the advantages
of the transformer is its ability to process text data by reducing the amount of work needed
in the featurization step [78]. Figure 2 presents the transformer layer architecture and the
advances incorporated, such as the addition of the attention mechanisms and the use of
fully connected FNN layers [105], assembled in a parallelized way to improve computa-
tional performance.

The multi-head attention mechanism enables the transformer model to learn the rela-
tionship between different words in a text sequence by calculating an attention score.
Consider the sentence “Wikipedia is important to society since it is a relevant source of

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 8 of 57

information”. This mechanism iteratively calculates the attention score between all words
in the sentence, thus obtaining the dependency relationship between them [99]. In this spe-
cific instance, “Wikipedia” and “it” present a high attention score since they are related
and represent the same concept. Meanwhile, the words “society” and “it” receive a low
attention score. Besides, the attention mechanism adds context to sentences [99], enabling
the model to differentiate the meaning of words, like the notions of “bank” as a financial
institution and “bank” of a river. To leverage this mechanism, transformer-based models
employ a multi-head strategy, with several attention heads computed in parallel. Here,
words are encoded as embeddings in a vector space (input embedding) and are combined
with the positional encoding, which inserts information about the word’s position in a sen-
tence and allows the model to handle long-range texts [99]. Equation 1 formalizes how
attention is calculated.

Q, K, and V are matrices that represent every word in a sentence and ⊙ is the dot product.
These matrices receive the same input and differ only in their learned weights, acquired by
training in a large-scale dataset. dk is used as a scaling factor and encodes the dimension of
interest [99] between Q and the transpose of K. Finally, the softmax value is combined with
V to obtain the final attention score.

To improve training efficiency, the transformer normalizes the output of the inter-
mediate sub-layers (multi-head attention and feed-forward) [12, 107]. It does that by

(1)Attention(Q,K,V) ← softmax

�
Q⊙ KT

√
dk

�
⊙ V

Fig. 2   The transformer layer, as
proposed by Vaswani et al. [99]

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 9 of 57  38

calculating the distribution statistics (mean and standard deviation) from the addition
of the output of the sub-layers, forwarding the normalized values to the next step. Equa-
tion 2 formalizes this process.

g and b are the gain and bias parameters, respectively. They have the same dimension as
the output of the previous layers and are dynamic terms learned iteratively during the train-
ing process (large-scale datasets). � is the standard deviation and � the mean. x is the previ-
ous layer’s output.

Since the transformer incorporates a point-wise network, each normalized node of
the attention layer is forwarded through the FNN. At this step, the transformer applies
two linear transformations, using the ReLU (Eq. 3) activation function [99]. To formal-
ize the complete step, we present Eq. 4.

ReLU (Eq. 3) executes a non-linear operation that aims to calculate the final value given by
a previous NN layer (z). In Eq. 4, x represents the output of the attention layer, W1 repre-
sents the weights of the first linear transformation, and W2 the second. b1 and b2 are the bias
terms added to both steps.

The architecture described above is the basic block for building a Pre-trained Lan-
guage Model (PLM), a large Deep Neural Network (DNN) used to solve complex NLP
tasks. To create a PLM, multiple transformer layers are stacked and initially trained on
large-scale datasets [105]. Different implementations yield state-of-the-art results, e.g.,
BERT [47], which has around 110 million trainable parameters, RoBERTa [55], around
125 million trainable parameters, and DistilBERT [86], 66 million trainable parameters.
Since we are dealing with large DNNs, it would be impossible to train these models
from scratch to handle each task. Thus, PLMs take advantage of the fine-tuning para-
digm to adapt to specific tasks [31].

The fine-tuning process requires using previously trained implementations and incor-
porating a new FNN layer on top of it, referred to as the classification head. Here, we
are interested in the task of text classification in a violating-behavior setting, i.e., given
a text as input, the model predicts whether the text is violating the norm of the commu-
nity. In this scenario, the transformer layers are used for language representation. These
layers can be applied to any domain since they were trained in large-scale datasets. On
the other hand, the classification head is responsible for the output. Thus it is explicitly
trained only for the task at hand, considering a given domain dataset and the community
requirements, such as the number of output nodes (binary or multi-label tasks) and the
number of instances used for training.

Concretely, our work explores two different PLMs. The first is RoBERTa, built on
top of BERT to improve its implementation by changing the architecture design and
training on a larger dataset, obtaining better performance for different NLP tasks [55].
The second is DistilBERT, which is also built on top of BERT, but it aims to create a
smaller, faster, and cheaper model [86]. Section 5.2 presents the results of RoBERTa
and DistilBERT applied to hate speech detection in Wikipedia article edits.

(2)LayerNorm(x) ←
g

𝜎
⊙ (x − 𝜇) + b

(3)ReLU(z) ← max(0, z)

(4)FFN(x) ← ReLU(x ×W1 + b1) ×W2 + b2

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 10 of 57

2.4 � Interpretability of PLM

Unlike our tabular scenario, text-related tasks do not need a featurization process (encode
text sentences into a set of attributes). Instead, it is possible to manipulate the text directly
[10, 26, 72, 79]. In this context, we incorporate the Integrated Gradients (IG) algorithm
[97] to understand the parts of a text sentence most relevant to the model’s output. IG ena-
bles our framework to gain insights into the inner workings of transformer-based models
by debugging and extracting rules from a DNN [97].

Understanding the internal mechanisms of our model is crucial for the effective interac-
tion of people with a model’s output, which is especially relevant for two main reasons.
First, it is an essential part of our solution to inform community members about violated
norms, allowing people to consider the elements of their actions associated with violating
behavior. Second, we align with the goals of Responsible AI [10], particularly regarding
the transparency of the decision-making process of an ML model.

The literature usually focuses on two interpretability techniques to explain how an ML
model works. First is local interpretability, which involves identifying the words (or fea-
tures) that contributed to the model’s output regarding a specific action. Second is global
interpretability, providing a broader understanding of the model’s inner workings. We
focus here on the local interpretability method since, at this step of our work, providing
community members with information on specific text violations is the primary goal. To
achieve this, IG calculates a word’s contribution by a backward pass through the model,
propagating its relevance from the output to the input [57]. The central assumption of this
algorithm is that the tokens with the highest gradient values present the most substantial
influence on the classification output.

Following the formalization in [57, 97] and considering an NLP task, let x be the sen-
tence formed by a set of tokens xi, i ∈ 1, 2, ...n and x̄ the baseline input represented by a
zero embedding vector. �M(x)

�xi
 is the gradient for token i and M is our transformer-based

model. Theoretically, to obtain the integrated gradients, IG considers a straight-line path
from the baseline x̄ to the input x, computing the gradients at all points of the path [97].
Thus, the integrated gradients come from the accumulation of these individual points.
Equation 5 formalizes the integral calculation.

However, to efficiently compute the integrated gradients, IG approximates IntGrad(xi) by
the Riemann sum method (Eq. 6), which defines a set of finite points (m) along the straight-
line path. r(xi) is the calculated relevance score and m is chosen empirically. Experiments
in [97] suggest around 20-300 points along the path.

Finally, in our use case, after obtaining the relevance score for each token present in the
original text sentence, we follow a two-step process. First, we convey to the community
member (executing an action) the reasons for a model’s output. Section 5.2.3 and “Appen-
dix 2” showcase how this information is presented. Second, we prepare our framework
to provide interpretability data to other community members in a future argumentation

(5)IntGrads(xi) ← (xi − x̄i)⊙ ∫
1

𝛼=0

𝜕M × (x̄ + 𝛼 × (x − x̄))

𝜕xi
× d𝛼

(6)r(xi) ← (xi − x̄i)⊙

m∑

k=1

𝜕M
(
x̄ +

k

m
× (x − x̄)

)

𝜕xi
×

1

m

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 11 of 57  38

process, focusing on discussing the reasons behind a violated norm and gathering the
evolving community views. Subsequently, we use the feedback in this step to update the
trained model, as we envision community members constantly defining the meaning of
norm violations.

3 � The multi‑scenario incremental learning framework

In this section, we present the proposal of our work, a framework capable of learning the
meaning of norm violations through the combination of ensemble and incremental learning
for tabular tasks, and the use of PLMs for text tasks. The main idea is to deploy this frame-
work in a normative system to support the fulfillment of norms, especially when consider-
ing prohibited behavior.

Figure 3 outlines the workflow for deploying our framework. The initial step, Step 0,
involves the continuous training of machine learning models, including the ensemble of
classifiers and the PLM. The framework starts by training with data blocks, and upon com-
pletion of the first block, the model is prepared to detect norm violations. Subsequently,
the system starts monitoring every new action performed in the community (Step 1). In
Step 2, the system can map the action to a set of features defined by the community or
directly handle text input. In the latter scenario, text-processing steps such as correct-
ing words, addressing grammatical errors, and removing non-alpha-numeric characters

Fig. 3   The process in which our solution would be implemented

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 12 of 57

might be performed. Step 3 presents the two distinct paths that the system may execute.
Should the action be detected as a norm violation (Condition 1), the system must execute
a sequence of steps to ensure that the violation is not forwarded to the entire community.
These steps include: (1) rejecting the action (i.e., the action is not executed); (2) informing
the user about the violation and its blocking; (3) providing the reasons for violation detec-
tion, including the specific features or words associated with the violating behavior, allow-
ing for community feedback and the opportunity for correction of our system. Community
feedback can then be used to continuously train the base model (Step 0).

In contrast, if the executed action is not detected as a norm violation (Condition 2), the
action is forwarded to the community. In this case, community members can still provide
feedback due to the possibility of incorrect classification by our model. Besides, the feed-
back incorporates new community views to update the understanding of norm violations
through continuous model training (Step 0).

The following sections delve into the different approaches for implementing our solu-
tion,3 particularly considering some challenges in norm violation detection. For instance,
norm violations often lead to working with imbalanced datasets since detrimental behavior
does not happen as often as regular (or expected) behavior. Thus, when building a solution
to tackle learning in this setting, it is necessary to work with an approach capable of han-
dling imbalance in class distribution. In this research, we investigate the use of ensemble
machine learning to tackle this issue in the tabular scenario while we investigate under
and over-sampling for text-related tasks. We also apply two approaches to continuously
update the base ML models: mini-batch and online learning. Although we use the mini-
batch approach to fine-tune the PLMs, online learning is not feasible due to the size of
these models. As a result, our framework considers only mini-batch learning for text clas-
sification tasks.

3.1 � Mini‑Batch Learning for Tabular Scenarios

As data is made available sequentially, the algorithm starts to build blocks of data with
fixed size n. As soon as a data block contains n data points, the algorithm is ready to start
the training procedure of the ML classifiers. The mini-batch approach explored in this
work (Algorithm 1) builds on top of two incremental ensemble algorithms, the Accuracy
Updated Ensemble (AUE2) [17] and the Dynamic Updated Ensemble (DUE) [54]. The
differences introduced by our approach are: (1) incorporating feedback to emphasize data
points that had their class labels changed by the community; (2) using a replication-based
oversampling technique that randomly replicates minority class instances present in the
current data block instead of using the SMOTE [21] oversampling technique that creates
synthetic minority class samples. Additionally, we define a new metric (number of classi-
fiers) to define the oversampling ratio for the minority instances (Algorithm 1, line 6).

In our case, the majority class M represents expected behavior, while the minority class
P represents norm-violating behavior. Since we define an action as a set of features, we
represent a data point with the tuple (X, y), in which X is the set of features of an action and
y ∈ {0, 1} is its class label. Thus, a data block is defined as Dt = {(X, y)1, ..., (X, y)n} , with
n being the data block size. After the data is pre-processed, the algorithm starts by calcu-
lating the imbalance ratio (Algorithm 1, line 5) between sets Pt and Mt in the current data

3  Source code available at https://​bitbu​cket.​org/​thiago-​phd/​jaamas_​2023/​src/

https://bitbucket.org/thiago-phd/jaamas_2023/src/

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 13 of 57  38

block Dt . Besides, set Mt and set Pt are used to calculate the number of classifiers in the
ensemble st (Algorithm 1, line 6).

To illustrate in more detail how Algorithm 1 works, it is interesting to use an example.
Let us say that initially t = 1 , st = 10 , and the imbalance ratio rt = 0.07 . Then, after some
time, a concept drift is noted at time step t = 5 , with rt changing to 0.03 and st changing to
12. Next, if st > m , the algorithm oversamples set Pt by duplicating all minority instances
(Algorithm 1, line 8), which prompts the update of the best ensemble size (line 9). The
algorithm then checks if the imbalance ratio has changed by some pre-defined factor d in
line 11 (it is worth mentioning that the community members may decide on an appropri-
ate number for this value), computing the number of new classifiers to be included in the
ensemble (line 12). After that, the algorithm incorporates community feedback (line 15) to
present relevant data about the change in the community’s view in the training procedure.
Then, st balanced datasets are created from data block Dt . Each balanced dataset B com-
prises non-overlapping data points from Mt , all data points from Pt , and all feedback data
points from Ft (line 18). Next, the algorithm executes the training procedure for each of the

The Mini-Batch Training procedure.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 14 of 57

st ML base classifiers with the balanced datasets in Bt (line 20). Finally, the current data
block Dt is discarded, and t is incremented.

3.2 � Online learning for tabular scenarios

Algorithm 2 describes the procedure to train the ensemble of classifiers in an online man-
ner, which is built on top of the concepts described by Wang et al. [102] and Montiel et al.
[65]. The first step is to create the ensemble of classifiers E (Algorithm 2, line 1). The
number of base classifiers in E can be defined by the community, from expert knowledge,
or through initial experiments. For each data point pt that is made available (i.e., for each
action in an online community), the algorithm pre-processes pt using the running statistical
values. We are interested in the mean, and the sum of squares since these are used to nor-
malize the incoming data point.

Unlike the mini-batch approach, the training procedure is executed in online learning
as soon as a single data point is made available. However, this characteristic leads to a
different way of calculating statistical values for the pre-processing phase. In this case,
the algorithm must compute running statistical values, updated at each time step and less

The Online Training procedure.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 15 of 57  38

exact than the values calculated using blocks of data [65]. The algorithm uses the following
equations to compute these values:

where �t is the updated running mean at time t for each feature that describes an action,
�t−1 is the last running mean, vt is the new feature value, and nt is the number of data points
encountered until the current time t. With the running mean, it is possible to calculate the
running sum of squares sst:

Since it is impossible to know the data distribution for the complete dataset in online train-
ing, deciding which portions of the data will be used for training as interactions happen
is fundamental. To tackle this, the algorithm checks for concept drift by calculating the
change in the imbalance ratio r (Algorithm 2, line 7). If the difference is bigger than a
defined threshold value, then the desired distribution m is updated, which works to empha-
size the minority class instances.

After updating m, the algorithm calculates the rate at which to draw a random value
(Algorithm 2, line 11) for the Poisson distribution. This value determines the sampling
strategy (oversampling or undersampling). For each classifier o ∈ E , the algorithm uses
the Poisson distribution to determine how many times to replicate a data point for training
[102] (line 13). Thus, the larger the imbalance ratio, the larger the number of times that
minority data points are used for training. Although we use the work in [102] to calculate
the resampling rate, future work will investigate the effect of applying alternative strategies
to calculate this value [30].

Lastly, suppose the data point receives feedback from the community (represented by
ft = True , line 16). In that case, the algorithm oversamples pt to emphasize the provided
information and trains all classifiers in the ensemble with pt (Algorithm 2, line 18). Empir-
ical experiments showed that oversampling presents a higher recall performance than the
weighting scheme proposed by the other approaches.

3.3 � Mini‑batch learning for binary text scenarios

Previously, we examined two algorithms that address binary classification tasks involv-
ing tabular data. This section extends our framework to include text classification tasks
for binary and multi-label scenarios. This capability enables our framework to adapt to
online communities’ diverse data structure requirements. As our primary focus is on PLMs
(Sect. 2.3), the online learning approach is unfeasible due to the model’s size, which affects
the update of the network weights and the needed time to complete the fine-tuning process.

Like Algorithm 1, mini-batch for text tasks (Algorithm 3) builds data blocks to continu-
ously update model parameters sequentially. However, one key difference between these
approaches is that Algorithm 3 can handle imbalanced datasets more efficiently just by
undersampling the majority class, not requiring the creation of an ensemble of classifiers.
To achieve that, Algorithm 3 takes advantage of the PLMs’ architecture, which can learn
representations of texts based on previous training and incorporate classification heads to
solve specific tasks [47, 55, 86].

The fine-tuning process of PLMs starts by pre-processing the available text data. The
classification task at hand dictates the necessary steps for this process. For instance, in the

(7)�t ← �t−1 + ((vt − �t−1) ÷ nt)

(8)sst ← sst−1 + (vt − �t−1) × (vt − �t)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 16 of 57

case of detecting hate speech, it may be beneficial to remove non-alphanumeric characters,
as our model considers only the terms in a sentence to determine the violation. Thus, these
characters may not be relevant in this context. Another step that may be necessary is cor-
recting words that are commonly used to bypass automatic detection tools. For example, in
cases where a community member manifests racism, they may employ alternative terms to
refer to African Americans, such as, “nigga”, “n1gga”, and “nigger”. On the other hand,
to detect whether a sentence is violating an expected writing style, removing these char-
acters is detrimental to the model’s performance. Thus, it is necessary to implement task-
specific pre-processing to ensure the efficacy of our framework. This becomes particularly
important when our community contains small datasets, or the interactions happen in a
low-resource language.

Following the pre-processing phase, Algorithm 3 calculates the imbalance ratio (line 3)
to determine if undersampling is required (line 4). The algorithm then applies undersam-
pling considering the established difference between the amount of majority and minor-
ity instances (line 5). The next step (line 7) is to fine-tune the PLM with the data block
for a specified number of epochs. One of the main advantages of PLM is the simplicity
with which we can execute the fine-tuning process. Hence, the complete training process is
more straightforward than Algorithms 1 and 2 as it requires fewer steps to deploy a PLM to
a new task domain.

Lastly, in line 8, as we update the PLM, it is possible to understand the terms usually
associated with violation by calculating a global relevance score based on local interpreta-
tions. The global relevance score of a word ( gri ) is the sum of all local relevance scores,
calculated using integrated gradients. In Eq. 9, k is the number of occurrences of word i in
the dataset, ��(iu, 1) is the calculated relevance score for the uth occurrence of i, regarding
its contribution to class 1, which indicates violating behavior. The framework must only
change the second parameter to 0 to get the relevance scores for the regular class.

(9)gri ←

k∑

u=1

𝖨𝖦(iu, 1)

The Mini-Batch Fine-Tuning procedure of PLMs.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 17 of 57  38

3.4 � Mini‑batch learning for multi‑label text scenarios

In addition to identifying violations (Algorithm 3), our proposed framework can also clas-
sify the specific class of violation present. It is worth noting that a single action may com-
prise multiple violation classes. Thus, the framework must be equipped to handle multi-
label tasks.

For each violation class v ∈ V defined by the community (Algorithm 4, line 2), the
algorithm retrieves the number of instances that belong to that class and compares it to a
fixed minimum number of instances (c) that each violation class must have (line 4). Sup-
pose the data block does not contain the minimum number of class instances v. In that
case, the algorithm oversamples by duplicating all instances belonging to v and uses them
for fine-tuning. This step is crucial as we attempt to maintain a balanced data distribu-
tion between the different violations. Without this step, the model would be prone to bias
towards classes with a larger number of instances, potentially hindering its ability to accu-
rately identify violations in low-represented classes. One limitation of this approach is that
we do not handle the emergence of new violation classes. In this case, we have one PLM
with |V| output nodes, where each output node represents a violation class. Future work
shall investigate the emergence of new violation classes and their incorporation into PLMs.

Line 9 obtains the global relevance score using Eq. 10. The global relevance score ( grv
i
 )

is calculated for each v ∈ V and is based on local interpretations. ��(iu, v) computes the
local relevance score of word i in relation to class v, k is the number of occurrences of i in
the dataset, and u represents a specific instance of i. Calculating grv

i
 enables community

members to understand the words commonly associated with each violation class. This is
particularly relevant because a word may have a relatively low relevance score for one class
yet a high relevance score for another.

(10)grv
i
←

k∑

u=1

𝖨𝖦(iu, v)

The mini-batch fine-tuning procedure for multi-label PLMs.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 18 of 57

4 � Experiments

This section describes how we apply the incremental learning approaches to the use case
of Wikipedia article edits. Here we consider data from Wikipedia in two scenarios (tabular
and text tasks) as we envision our framework deployed in different classification contexts.
This use case is relevant because Wikipedia is an open and collaborative community with
norms to maintain and organize its content [76], including the requirement to use proper
writing style, refrain from removing content, avoid editing wars, and not engage in hate
speech. Given the diverse backgrounds of individuals interacting and contributing to Wiki-
pedia, misunderstandings about what constitutes a norm violation might emerge. In this
research, we focus on violations of the hate speech norm, as this represents a complex and
particularly harmful violation within online interactions.4 In this context, a norm violation
is referred to as “vandalism”.

This work explores a dataset consisting of two parts. First, Wikipedia uses Amazon
Mechanical Turk (MTurk) to classify an article edit either as a violation or not [2], provid-
ing no further information on the nature of the violation. Second, we further annotate each
violation instance with a violation class, focusing on hate speech violations.5 To perform
this annotation, we start by considering the labels from the MTurk process (violation or
regular). Then, we specify additional hate speech classes for the violation edits with mes-
sages that convey attacks to individuals or groups. Usually, these attacks focus on char-
acteristics of people, such as ethnicity, sexual orientation, and social class [73]. Table 2
presents examples of such behavior in Wikipedia. Freitas dos Santos et al. [34] provide a
detailed taxonomy for this task, including information on the relationship between features
and their representation of actions in the tabular scenario. Additionally, at this step, we
manually correct the misspelled insulting words (based on the identified violation classes).

In the Wikipedia dataset, we identify six different classes of hate speech. A single
edit can contain elements of one or more of these classes. As such, we build our frame-
work to address the multi-label classification task. We only solve the multi-label classi-
fication task for text sentences, as the features present in the tabular data do not encode

Table 2   Examples of sentences classified as norm violation (vandalism) in the Wikipedia community and
the specific class of hate speech

“[INDIVIDUAL’s NAME]” is used to mask real people’s names

Sentence Class of hate speech

...he was the mother fuckin dom... Swear

...this is wiki not a forum for retards... Insult and Ableism

...the big lipped,hairbraned,egotistical dirty nigger often defecated... Racism
[INDIVIDUAL’s NAME] also sucks dick for features Sexual Harassment
...HES GAY​YYY​YYY​YYY​Y AND HES A FREAKK... LGBTQIA+ Attack
[INDIVIDUAL’s NAME] was a super mega bitch and she kill the... Misogyny

4  Future work shall focus on solving other kinds of violations.
5  The hate speech annotation is executed by one of our authors, introducing our view on the meaning of
norm violation. It should be noted that the primary goal of this work is to develop a framework capable of
continuously updating its parameters and adequate itself to a specific view present in an online community
(which also contains diverse perspectives and may vary depending on the community in question).

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 19 of 57  38

relevant information for classifying a violation with a specific hate speech class. Below,
we present a list detailing each of these classes:

•	 Swear - it describes edits that contain foul language;
•	 Insult and Ableism - it considers edits that insult people in general and specifically

people with disabilities [16];
•	 Sexual Harassment - with edits that contain sexual insinuations and harassment [15];
•	 Racism - discrimination targeting people from different ethnicities [48];
•	 LGBTQIA+ Attack - insults targeting people based on their sexual orientation and/

or gender identity [39];
•	 Misogyny - attacks targeting women [37].

To evaluate the performance of our approaches, we design specific experiments for the
different task scenarios. First, considering a domain in which the community has only a
tabular dataset available, we separate the experiments into two phases:

•	 Learn the meaning of norm violation with no concept drift: In this case, the goal is
to evaluate if the proposed algorithms can learn the meaning of norm violation. The
data set contains 32.439 edits, with 2.394 vandalism edits (around 7%) and 30.045
regular edits (around 93%). The dataset is highly imbalanced. We use 10-fold cross-
validation to evaluate the performance. Classification recall is the chosen metric.

•	 Learn the meaning of norm violation with concept drift: In this case, the aim is to
evaluate whether the proposed algorithms can learn the meaning of norm violation
in the presence of concept drift. To do that, we start by separating the complete data-
set D into two subsets, I and F. I contains data used to initially train the ensem-
ble, with 1.197 vandalism edits and 15.022 regular edits, and F contains data that
incorporates the concept drift, with 1.197 vandalism edits and 15.023 regular edits.
This separation is necessary because we aim to demonstrate the algorithms’ ability
to adapt incrementally to new concepts. Thus, we start by training the algorithms
with the subset I. Only when the algorithms process all data points in I, do we start
learning from the changing dataset F. In this experiment, we are particularly inter-
ested in adding concept drift by changing what edits are labeled vandalism (swap
of the class label). Since we do not have real feedback from community members,
we simulate it by changing the dataset as follows: using only the vandalism subset
VF ∈ F , we apply the K-Means clustering algorithm to generate subgroups that con-
tain data points most similar between themselves [49]. From this process, we obtain
four subgroups, G = {0: 618, 1: 442, 2: 117, 3: 20}. The idea of getting these groups
with similar data points is to fulfill the assumption that the feedback is consistent
since we are grouping similar edits. Thus, our interpretation of the results naturally
comes from this consistency. For this experiment, we swap the class label from all
data points ∈ G0 . Then, the class distribution changes, resulting in 15.641 regular
edits and 579 vandalism edits. Consequently, the imbalanced ratio changes as well.

We build the ensemble using the Keras library [24]. Feedforward Neural Network
(FNN) is the base classifier. To compare mini-batch and online learning, the FNN archi-
tecture is the same in both cases. Stochastic Gradient Descent (SGD), with a learn-
ing rate equal to 0.01, is the optimizer and the loss function is the Cross Entropy. The
experiments are executed on a 2.6GHz Intel Core i7-9750 with 16GB of RAM.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 20 of 57

 It is necessary to set specific parameters for the learning algorithms. In mini-batch
learning, the batch size is 512, and the number of epochs is 200. In online learning, the
initial ensemble size is set to 12, the desired distribution is 50% for each class label (regu-
lar and vandalism), the sampling rate is equal to 1, and the change in distribution is 30%.
These values are found empirically (similar to a hyperparameter search) and can affect the
performance of the classifiers.

Unlike the experiment above, we are not investigating concept drift for the second sce-
nario.6 However, we include here a multi-label classification task:

•	 Learn the meaning of norm violation (hate speech) - binary task: In this experiment,
we aim to evaluate the ability of our framework to deal with norm violation in a text
classification task. This step is similar to the first experiment for the tabular classifica-
tion scenario. The difference is that we are interested specifically in hate speech. Thus
our dataset contains 30.684 edits, with 639 hate speech edits (around 2%) and 30.045
regular edits (around 98%). The dataset is highly imbalanced. We use 2x5-fold cross-
validation for the experiments, which is necessary due to the text dataset size. Classifi-
cation recall is the chosen metric.

•	 Learn hate speech class - multi-label task: Here, we aim to evaluate the performance of
our framework to detect the specific hate speech class. Besides the imbalanced dataset
for violation/regular edits, the hate speech classes are also imbalanced. Certain viola-
tion classes occur more often than others. In total, the violation dataset is composed
of 36,47% (233) Sexual Harassment edits, 33,18% (212) Insult and Ableism, 19,72%
(126) Swear, 17,06% (109) LGBTQIA+ Attack, 8,76% (56) Misogyny, and 5,01% (32)
Racism, in a total of 639 violation edits. To guarantee that each fold of the validation
process maintains the data distribution, we apply a stratification step on the multi-label
dataset using the algorithm in [90]. 2x5-fold cross-validation is also used for this exper-
iment. Classification recall for each class is the chosen metric.

To solve text-related tasks, our framework adopts PLMs (Sect. 2.3). Specifically, we
employ RoBERTa and DistilBERT following the Hugging Face implementation [105],
with a batch size of 1024 for the binary classification task and 256 for the multi-layer clas-
sification task. Adam is the optimization algorithm, and focal cross entropy is the loss
function. Learning rate is 10−4.

To optimize the performance of the PLMs, we implement additional parameters. Specif-
ically, we set the maximum input length to 64 words and apply padding to edits that exceed
this length. We base this decision on the observation that most instances in our dataset
fell within this range, allowing us to save computational resources and accelerate the fine-
tuning process. It is essential to highlight that, if required in other communities, our frame-
work uses PLMs that can accommodate text sentences up to the limit of 512 words.

In our framework, we aim not only to classify a task as norm-violating behavior but also
to provide community members with the reasons for such output. Our goal is to integrate
diverse community members by leveraging their mutual understanding. To achieve this,
we use Integrated Gradients (IG) to obtain the relevant words contributing to the viola-
tion classification. These words are then presented to the users, as depicted in the figures

6  The reason is that we do not possess enough data for the hate speech detection case to run such experi-
ments. Hence, for future work, we are investigating cross-community learning. The idea is to obtain a data-
set with hate speech from a different domain and improve upon that with data from our specific environ-
ment.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 21 of 57  38

of Sect. 5 and “Appendix 2”. Additionally, by providing access to this information, other
community members can argue about the inner workings of our framework, supporting a
future agreement process in which the community must collaboratively decide whether an
action is indeed a violation.

The interpretation results for the binary case show which words contribute the most
to the classification of text as being a violation or not (regular text). Each word in an edit
can be relevant for violation classification, relevant for regular classification, or neutral.
In contrast, the multi-label case allows each word to be relevant to 0, 1, or more classes.
For instance, a single word may contribute to the classification of an edit as both racist
and containing swear words. As we are interested in understanding the meaning of norm
violations, the experiments focused only on interpretability data for these cases. Thus, we
consider 639 edits (the complete violation dataset) for interpretability. Finally, we use the
Transformers Interpret library for our experiments.7

5 � Results and discussion

This section presents the results of using an ensemble of FNN to address tabular-related
tasks and PLMs to address text-related tasks, considering the context of Wikipedia arti-
cle edits. In this domain, the community defines norm-violating behavior as “vandalism”.
Additionally, we show words of an edit that contribute to the PLMs’ outputs in binary and
multi-label settings.

Fig. 4   Overall Recall for the Mini-Batch and Online cases with no concept drift

7  pypi.org/project/transformers-interpret/

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 22 of 57

5.1 � Tabular scenario

5.1.1 � Experiment 1—No concept drift

Figure 4 and Table 3 describe the overall recall score for the algorithms when applied
to the first experiment (no concept drift). The learning curves for both approaches are
similar, and the Wilcoxon Signed-Rank Test (Table 5) attests to this similarity. The null
hypothesis is not rejected. Thus, there is no statistically significant difference between
mini-batch and online learning for overall recall. Although similar in this case, the algo-
rithms differ when explicitly dealing with vandalism instances. Table 4 presents how

Fig. 5   Vandalism Recall for the Mini-Batch and Online cases with no concept drift

Table 3   Summary of mini-batch and online learning performance results applied to the tabular Wikipedia
article edits dataset

The highest performance values are given in bold
Three settings are considered: (1) dataset with no concept drift (Original); (2) dataset with concept drift,
swap of the class label; and (3) dataset with only the data that suffered the change (Re-Label)

Dataset Method Recall±Std Regular recall±Std Vandalism recall±Std

Original Mini-Batch 0.9023±0.0097 0.8971±0.0091 0.9075±0.0219
Online 0.8959±0.0088 0.9297±0.0094 0.8622±0.0164

Concept Drift Mini-Batch 0.8679±0.0280 0.87085±0.0120 0.8651±0.0597
Online 0.8408±0.0259 0.9025±0.0319 0.7792±0.0674

Re-label Mini-Batch 0.8708±0.0120 X X
Online 0.9277±0.0284 X X

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 23 of 57  38

mini-batch learning is faster, requiring less time to complete the training process since
it executes the calculations on a batch of data instead of repeating this process for each
data point individually.

Considering the data in Table 3 and the learning curves in Fig. 5, we can infer that
the mini-batch algorithm outperforms the online algorithm in correctly classifying

Table 4   Summarized comparison
between the training time of
mini-batch and online learning

The best training time is given in bold
The number of processed edits is 512 (batch size)

Measurement Mini-batch±Std Online±Std

Training time (s) 4.0947±0.7032 10.4159±0.9021

Table 5   Summarized comparison
between the recall performance
of mini-batch and online learning

The paired Wilcoxon Signed-Rank Test is used to obtain the P-values.
The learning approaches are compared after the model processes 512
edits. We use the performance results obtained from the cross-valida-
tion procedure. The null hypothesis is that the samples were drawn
from the same distribution. Critical value � = 0.05

Dataset P-values

Overall Regular Vandalism

Original 0.2754 0.0039 0.0058
Concept drift 0.1308 0.0273 0.0371
Re-label 0.0019 X X

Fig. 6   Overall Recall for the Mini-Batch and Online cases in the presence of concept drift

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 24 of 57

vandalism edits. Additionally, the instability properties in the online case are affected
by the training approach (since it considers only one point at a time) and the resampling
strategy used [54, 102, 103].

5.1.2 � Experiment 2—presence of concept drift

The results of the second experiment, depicted in Fig. 6 and Table 3, reveal the overall
recall for the scenario involving concept drift. The mini-batch performs significantly bet-
ter during most parts of training (until around 12.000 processed instances). The reason is
that the introduction of concept drift causes a higher variation and instability in the online
learning algorithm, leading to a slower improvement in performance and a need to process
additional data points to stabilize the learning process. However, towards the end of the
training procedure, both methods have similar overall performance, with no significant dif-
ference (Table 5).

Since we are working with an imbalanced dataset, comparing the results of overall and
vandalism cases is essential, as failure to do so may result in misleading conclusions. In
such a context, the online learning approach prioritizes the classification of the majority
class, leading to an overestimation of performance through increased overall values. Fig-
ure 7 presents the learning curve specifically for vandalism classification, in which mini-
batch significantly outperforms the online approach (Table 5). As in other cases, online
learning is more unstable, suffering from a significant drop in performance as we introduce
concept drift.

Figure 8 presents the recall specifically for the data that suffered the swap of the class
label (which we will refer to as the Re-label dataset in Table 3). When we incorporate
the simulated feedback, the framework’s performance decreases due to introducing new
information. However, as more data becomes available and the framework incrementally

Fig. 7   Vandalism Recall for the Mini-Batch and Online cases in the presence of concept drift

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 25 of 57  38

trains the ML models, the ensemble adapts to the new community view by learning that
specific article edits should no longer be classified as vandalism. Table 5 shows that
the online learning algorithm performs significantly better in this case (however, it still
presents instability properties). The bias towards the majority class impacts the perfor-
mance of the online algorithm since we increase the imbalance ratio by changing the
classification label from vandalism to regular behavior.

To summarize, Table 3 presents performance information of each approach in the
considered datasets, and Table 4 presents the time required for the training proce-
dure, showing that mini-batch learning is more efficient than online learning. Table 5
describes the results of the Wilcoxon Signed-Rank Test, which compares the perfor-
mance of the proposed approaches. The null hypothesis is that the samples were drawn
from the same distribution, and the critical value � = 0.05. Results show that the mini-
batch approach is more suitable for classifying vandalism edits, offering stable perfor-
mance, and adapting quickly to concept drift. In comparison, the online approach pre-
sents a bias toward the majority class and, consequently, in our concept drift case, a
bias toward the changed data. Besides, this approach significantly drops in performance
when classifying vandalism edits. Here, we note the need to investigate further and
explore the effects of different imbalance strategies combined with the incorporation of
community feedback on the algorithm performance since the online approach can learn
the new concept, but at the cost of the performance in the minority class.

Finally, it is possible to conclude that both approaches are suitable for learning the
meaning of norm violation in the context of an online community for the tabular sce-
nario. Mini-batch offers more stability, better performance at vandalism detection, and
faster training since it needs to process a smaller number of instances to solve a task.
On the other hand, online learning offers the flexibility of updating the model as soon as

Fig. 8   Re-Label Recall for the Mini-Batch and Online cases, vandalism edits re-labeled to regular edits

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 26 of 57

data is made available, with no need to maintain and create data blocks while keeping
an acceptable classification performance. Thus, the choice of approach must consider
the community’s requirements.

5.2 � Text scenario

Here we present the results related to the application of RoBERTa and DistilBERT to
detect vandalism in Wikipedia article edits. Additionally, we present the interpretability
results for the binary and multi-label classification tasks.

5.2.1 � Experiment 1—binary classification

Figure 9 shows the graph that describes the recall score (detailed in Table 6) for RoBERTa
and DistilBERT when applied to the vandalism classification task. According to the Wil-
coxon Signed-Rank Test in Table 8, the results show no significant difference between the
two models. However, it is worth noting that RoBERTa presents a high standard devia-
tion, which may be attributed to the small size of the dataset and a large number of train-
able parameters (125 M) in the model. This behavior highlights how the presentation of
data (different runs of the 2x5-folder cross-validation) affects the fine-tuning process and
RoBERTa’s performance. In contrast, DistilBERT (which has approximately 66 M train-
able parameters) presents a more stable performance across the different executions of the
experiments, dealing with a less complex language model architecture that is especially
useful for our small dataset settings.

Figure 10 and Table 6 show the time required to fine-tune RoBERTa and DistilBERT.
We can see a significant difference between the models, with DistilBERT requiring less
time to complete the fine-tuning process. This superiority is attested by the Wilcoxon
Signed-Rank Test, which yields a p-value of 0.0019, indicating a statistically significant
difference at level � = 0.05 . Like the performance case analyzed above, the PLMs’ size
also interferes with training time. DistilBERT is smaller, with fewer parameters. Thus, it

Fig. 9   Vandalism Recall for RoBERTa and DistilBert

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 27 of 57  38

takes less time to complete the whole process. The standard deviation of the results reflects
the limited computational resources available for fine-tuning these models.

Fig. 10   Training time for RoBERTa and DistilBERT to classify vandalism. Binary task

Table 6   Summary of the
performance results of RoBERTa
and DistilBERT applied to the
Wikipedia article edits dataset,
binary task

The highest performance values and best training time are given in
bold
We consider the task of classifying an edit as regular or vandalism
behavior. We also present the total training time in seconds to process
1024 edits (batch size)

Measurement RoBERTa±Std. DistilBERT±Std.

Vandalism recall 0.8741±0.1294 0.9221±0.0380
Regular recall 0.9906±0.0073 0.9946±0.0026
Training time (s) 221.22±42.300 142.54±40.740

Table 7   Summary of the
performance results of RoBERTa
and DistilBERT applied to the
Wikipedia article edits dataset in
the multi-label case

The highest performance values and best training time are given in
bold
Here we consider the task of classifying a vandalism edit specifically
to the class or classes of interest. We also present the total training
time in seconds to process 256 edits (batch size)

Violation RoBERTa±Std. DistilBERT±Std.

Swear 0.7475±0.1140 0.8180±0.1047
Insult and ableism 0.7802±0.1172 0.7553±0.0886
Sexual harassment 0.8367±0.0662 0.8131±0.0759
Racism 0.6285±0.2054 0.7523±0.1594
LGBTQIA+ Attack 0.8854±0.0580 0.8670±0.0797
Misogyny 0.7242±0.1271 0.5811±0.1838
Training time (s) 294.50±30.134 136.97±10.922

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 28 of 57

Table 8   Summarized comparison
between the recall performance
of RoBERTa and DistilBERT

The Wilcoxon Signed-Rank Test is used to obtain the P-values. The
null hypothesis is that the samples were drawn from the same distribu-
tion. Critical value � = 0.05

Dataset P-values

Regular Violation

Complete 0.1309 0.6250
Swear X 0.1134
Insult and ableism X 0.4316
Sexual harassment X 0.3571
Racism X 0.0632
LGBTQIA+ attack X 0.4055
Misogyny X 0.0407

Fig. 11   Recall scores for the violation classes: Swear, Insult and Ableism, Sexual Harassment, Racism,
LGBTQIA+ Attack, and Misogyny

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 29 of 57  38

5.2.2 � Experiment 2—multi‑label classification of vandalism

This section presents the evaluation of RoBERTa and DistilBERT applied to the multi-
label classification task. We aim to categorize vandalism considering the six classes
mapped for hate speech in Wikipedia, e.g., Swear, Insult and Ableism, Sexual Harassment,
Racism, LGBTQIA+ Attack, and Misogyny. In the investigated use case, hateful content
can attack different individuals and groups at the same time. For instance, in a single sen-
tence, a community member can utter insults based on a person’s ethnicity and sexual ori-
entation. Thus, our proposed framework must be able to identify when these violations
occur simultaneously.

Figure 11 presents the recall scores (detailed in Table 7) for each class in the context
of our use case, which involves handling only vandalism data. As each class consists of
a small number of edits, our approaches exhibit a higher variation in the recall scores for
the 2x5-fold cross-validation experiments. Concerning performance values, the learning
curves for both PLMs are similar, attested by the Wilcoxon Signed-Rank Test (Table 8).
The only significant difference is the Misogyny class, in which RoBERTa outperforms Dis-
tilBERT. This class occurs in only 8,76% of the violation instances and presents the lowest
performance score for both models, especially for DistilBERT. To address this issue, future
work shall focus on cross-community learning to enhance the model’s performance by lev-
eraging the fine-tuning process with data from different communities.

Finally, Fig. 12 shows the training time needed for the multi-label task. Similar to the
binary case, the DistilBERT model has a significantly faster fine-tuning process, as attested
by the Wilcoxon Signed-Rank Test with a p-value of 0.0019 (below the critical value
� = 0.05 ). We use a batch size of 256 vandalism edits for the multi-label, trained over three
epochs. On a smaller scale, the same behavior regarding the spread in training time, as seen
for the binary case, can also be observed here.

Fig. 12   Training time for RoB-
ERTa and DistilBERT to classify
the violation classes. Multi-label
task

Fig. 13   The local interpretation of a specific edit considering the DistilBERT model in the multi-label case.
The label considered is SWEAR. The relevance score is calculated using Integrated Gradient (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 30 of 57

5.2.3 � Interpretability—binary and multi‑label cases

This experiment investigates which words of an edit affect the output of the PLMs. For
that, we present three different pieces of information. One describes the relevant words
for a specific vandalism edit, as depicted in Figs. 13 and 14. Our framework calculates
the relevant values using the Integrated Gradients (IG) algorithm (Sect. 2.4). The second
describes a summarization of words usually associated with a specific (Swear) violation
class and their frequency in our complete training dataset, as depicted in Figs. 15 and 16.8
Lastly, Figs. 17 and 18 present the summarization of words usually associated with vandal-
ism behavior in general. The sum of scores considers the local relevance calculated using
IG. With this, we aim to give an overall view of the meaning of hate speech in our domain.9

To describe local interpretation, we analyze Figs. 13 and 14 for DistilBERT and RoB-
ERTa, respectively. The vandalism class considered here is Swear.10 For local interpreta-
tions, the stronger the green shade, the higher the highlighted word’s relevance score. On
the other hand, the stronger the shade of red, the more significant the influence of the high-
lighted word on decreasing the vandalism confidence (classification as non-Swear).

One crucial aspect is that the relevance of certain words may vary depending on the
model. Let us consider the word “man” in Figs. 13 and 14. For RoBERTa, it is relevant to
the model’s classification. However, for DistilBERT, this word has no importance since it
contains a neutral score. There are two main reasons for this variation. First, while RoB-
ERTa prioritizes performance accuracy, DistilBERT was built to be smaller, faster, and
cheaper. Hence, their architectures differ, and individual words affect the classification
results differently. Second, they employ different tokenization processes and vocabularies,
influencing how each PLM encodes words in the input layer. For instance, in DistilBERT’s
tokenization process, the word “nerd” is split into two “ne” and “rd”. In contrast, RoB-
ERTa’s tokenization handles the complete word with no modification. This difference is
especially critical for our hate speech use case since these PLMs do not initially map most
terms associated with this behavior.

Besides local interpretations, it is also interesting to describe the summary of words
related to specific hate speech classes. As discussed earlier, each edit may contain more
than one vandalism class (people may express hatred towards various groups or individu-
als). Therefore, it is essential to understand the words associated with each hate speech

Fig. 14   The local interpretation of a specific edit considering the RoBERTa model in the multi-label case.
The label considered is SWEAR. The relevance score is calculated using Integrated Gradients (Sect. 2.4)

8  “Appendix 1” presents the relevance score for all the other vandalism classes.
9  To clarify, the sum of scores is not a global interpretation of our model but rather a summary of local
interpretations.
10  “Appendix 2” presents local interpretability examples for all other vandalism cases.

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 31 of 57  38

class. Figures 15 and 16 present the terms with the highest sum of relevance score for the
Swear class. From the top 20 relevant words, DistilBERT and RoBERTa disagree on six.
Additionally, some relevant words do not align with our understanding of the Swear class,
such as “307” and “s”. Identifying these words demonstrates another advantage of incor-
porating interpretability. With this information, community members have a visualization
tool to identify when a model follows faulty logic since it considers influential words that
are not coherent with their understanding.

Fig. 15   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is Swear. Besides, we also present the frequency in which a word
appears in the dataset used for training. The relevance score is calculated using IG (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 32 of 57

The last part of our interpretation is in Figs. 17 and 18. These graphs summarize the
words usually associated with vandalism behavior for the binary classification task. As
expected for hate speech in general, the words in the community dataset are insulting
and related to cyberbullying. Both models consider similar words relevant for detecting
vandalism. However, they disagree on the assessment of six of them. This discrepancy

Fig. 16   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is Swear. Besides, we also present the frequency in which a word
appears in the dataset used for training. The relevance score is calculated using IG (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 33 of 57  38

in scores (higher or lower) does not necessarily indicate a lack of relevance. Instead,
it reflects the differences in the internal mechanisms (different numbers of transformer
layers and embeddings) of the PLMs. For instance, in DistilBERT, the word with the
highest global sum of relevance scores is “gay”, while RoBERTa presents “fuck” with
the highest scores. These findings highlight how the two PLMs solve this task.

Fig. 17   The global sum of relevance score for the top 20 words considering the DistilBERT model.
Besides, we also present the frequency in which a word appears in the dataset used for training. The rel-
evance score is calculated using Integrated Gradients (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 34 of 57

6 � Literature review

This section presents related work to the research reported in this paper. Specifically, we
cite literature focusing on detecting detrimental behavior in online communities using
Machine Learning (ML). The idea is to present different approaches that deal with this
issue in other communities, highlighting the importance of research in the field. For exam-
ple, Risch and Krestel [81] describe several Deep Learning (DL) approaches to deal with
toxic comments. In [6], the authors use Natural Language Processing (NLP), ML, and

Fig. 18   The global sum of relevance score for the top 20 words considering the RoBERTa model. Besides,
we also present the frequency in which a word appears in the dataset used for training. The relevance score
is calculated using Integrated Gradients (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 35 of 57  38

feature representation techniques as the basis to build a solution that handles hate speech.
Chandrika et al. [20] report and compare the application of several ML algorithms to
detecting abusive comments online, with Neural Network (NN) presenting better results
than other approaches. We also focus on works that deal with incremental learning in an
environment with concept drift and imbalanced dataset [35, 56, 80]. Gama et al. [35], and
Lu et al. [56] present surveys on concept drift, with different applications to solve this chal-
lenge in several domains, while Ren et al. [6] build an ensemble to deal with imbalanced
dataset and concept drift using a sampling strategy that considers previously seen data to
enhance the current minority set. Lastly, we present works that handle interpretability in a
text classification context, demonstrating how this technique has been used to improve user
interaction in such domains [14, 77, 100].

6.1 � Norm violation detection

Previous works have also focused on the Wikipedia online community to detect norm vio-
lations. Anand and Eswari [8] apply Deep Learning to classify a comment as abusive or
not based on a dataset from the talk page edit. Freitas dos Santos et al. [34] use the Logistic
Model Tree to learn the meaning of norm violation. Additionally, they provide a taxonomy
that describes the relationship between the features of an action. However, these differ from
our research because they do not cope with concept drift and do not incorporate commu-
nity feedback to update their models.

Cheriyan et al. [22] present a work that explores ML to detect norm violations in the
Stack Overflow (SO) community. As in our work, Cheriyan et al. [22] use specific data
about the context of the SO community to train the ML models. In this case, instead of
article edits, Cheriyan et al. [22] analyze comments posted on the site. The presence of
hate speech and abusive language defines the violation. The main difference is our focus on
applying an incremental learning approach to continuously update the ML models, while
Cheriyan et al. [22] focus on using a recommendation system to detect and recommend
alternatives to the community members’ posts. Continuing their work, in [23], the authors
expand their solution to incorporate the detection of offensive language in four different
Software Engineering (SE) communities. They consider three violation classes, personal,
racial, and swearing. Other ML techniques were also evaluated, ranging from Random For-
est and Support Vector Machines to BERT-based language models, which present the best
classification performance. Unlike our work, Cheriyan et al. [22, 23] use TF-IDF Vector-
izer to obtain features, while the community provides our attributes [34].

Using an approach that applies ensemble learning to help in the task of comment mod-
eration in Reddit, Chandrasekaran et al. [19] created a system that uses the concept of
cross-community learning to train different ML models on additional data (provided by
several communities), namely the Crossmod approach. The goal is to detect a violation in
a specific community by understanding how other communities would classify a particular
comment. Unlike our proposal, which uses ensemble learning to create ML models with
balanced portions of the dataset, Crossmod collects information from different communi-
ties to train the ensemble of classifiers. Future work shall investigate incorporating data
from different communities to leverage norm violation detection in our use case.

Different researchers use BERT-based language models for violation detection in
text classification tasks. The work by [59] creates an ensemble using transformers-based
models, SVM, and feature information. Since their application considers the Dutch lan-
guage, BERTje was used, which is explicitly trained on top of Dutch text sentences. The

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 36 of 57

authors used data from comments on Facebook and Twitter to evaluate their approach.
While Markov et al. [59] mix text and features to solve violation classification tasks, our
framework tackles them separately, aiming to avoid the need to have a featurization process
when a community provides text data. For instance, we can tackle hate speech detection
without defining a set of attributes that encodes a text sentence. Thus our system does not
require the community members to create these attributes. Intending to detect aggression
and misogyny, Samghabadi et al. [85] use BERT in a multi-task setting. Their solution first
classifies an action as not aggressive, covertly aggressive, or overtly aggressive. Then, they
discover the target of the violation, focusing on the gender of a person or group. Their work
achieves state-of-the-art performance.

Muslim and Purwarianti [70] investigate the use of offensive language in social media.
They employ a combination of ensemble and cost-sensitive learning to enhance the perfor-
mance of BERT for this task, divided into three subgroups: a) offensive language identi-
fication; b) automatic categorization of offense types; and c) offense target identification.
The authors focus on building an ensemble of BERT models to address the issue of high
variance in small datasets. Similar to other studies on detrimental behavior, the dataset is
also imbalanced. In contrast to Muslim and Purwarianti [70], which uses cost-sensitive
learning to evaluate the costs of mistakes made by the model, we employ binary focal loss
to assess errors in the calculation of the loss function during the training process.

In addition to the comparisons above, we note the potential of our work to contribute
to another line of research, which focuses on continuously revising norms as agents inter-
act [18, 27, 66]. For instance, Dell’Anna et al. [27] propose the Data-Driven Norm Revi-
sion (DDNR) approach that relies on previously obtained knowledge of whether individual
actions violate a norm or not. DDNR requires access to labeled data acquired from auto-
mated (or manual) classification processes, which is precisely the type of information our
approach provides. In this context, our framework complements DDNR’s strategy by ena-
bling the identification of multiple classes of norm violations occurring simultaneously and
handling text-based scenarios.

6.2 � Incremental learning

Regarding the use of incremental learning in a setting with a class distribution that is
highly imbalanced, the work by Lebichot et al. [50] builds a solution capable of detecting
credit/debit card frauds. Like our use case, these transactions have a sequential nature, are
highly imbalanced, and present concept drift. The proposed approach in [50] reports better
results than the traditional offline learning approaches. To enhance incremental learning,
Lebichot et al. [50] use ensemble learning to reduce variance and improve stability. At
the same time, transfer learning deals with information learned in a different task. One
difference in our approach is that we use an active process to detect concept drift, better
suited to deal with major changes in time. Lebichot et al. [50], on the other hand, apply a
passive strategy to concept drift since, in their domain, several concept drifts happen daily.
Another major difference is the way to deal with an imbalanced dataset. While we use an
ensemble, their work uses parameter tuning of a dense neural network model. In this case,
the models that compose the ensemble are independently trained. The final output is the
average of the probability scores.

In their work, Zeng et al. [54] present an incremental learning approach that emphasizes
misclassified instances in the update procedure of the models that compose the ensem-
ble (DUE). Another interesting characteristic of DUE is that it keeps a limited number

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 37 of 57  38

of classifiers in the ensemble to ensure efficiency. Like our work, DUE uses an ensem-
ble to handle data imbalance without needing to access past data. The oversampling tech-
nique used in [54] is the SMOTE, while we oversample by duplication. A key distinction
between our approaches is the inclusion of a feedback component that uses data provided
by the community to emphasize instances with a swap of class labels, i.e., we duplicate
edits that receive feedback from community members, which works to update our frame-
work on a new community view.

Zhang et al. [111] introduce an ensemble framework to handle concept drift in an imbal-
anced dataset context, the Resample-based Ensemble Framework for Drifting Imbalance
Stream (RE-DI). This approach employs a resampling buffer to keep instances of the
minority class, enabling the framework to handle the class distribution over time. Addi-
tionally, ensemble members that perform poorly in the minority class receive less weight.
RE-DI incorporates a long-term static classifier to handle gradual changes and a set of
dynamic classifiers to address sudden concept drift, which only considers recently received
data. The framework dynamically creates these classifiers using a block-based method,
chosen due to their ability to be updated incrementally and their strong initialization power.
The goal is for these dynamic classifiers to learn the most recent concepts by the end of the
training process. While RE-DI employs a buffer (using past information). We oversample
to emphasize the minority class and undersample to decrease the influence of the majority
class.

6.3 � Interpretability

Different approaches to handling interpretability exist, Atanasova et al. [11] present a com-
parison of interpretability methods applied to several ML models. Besides, competitions
are also common in the field, providing interesting solutions to the problem [28, 51, 84].

In their work, Xiang et al. [106] propose an approach to enhance the interpretability of
PLMs. Unlike our work, the authors compute the relevance of each word’s contribution to
the output of a text and use max pooling to aggregate these values to determine the over-
all relevance of an entire sentence. To evaluate the effectiveness of this approach, Xiang
et al. [106] conducted a user experiment, discovering that the explanations generated by
their method outperform those produced by inherently interpretable models (e.g., Logistic
Regression). Future work shall evaluate the differences between IG and the proposal in
[106], focusing on analyzing how the understanding of norm violation differs depending on
the interpretability algorithm.

Interpretability is also relevant in the health domain. Novikova and Shkaruta [74] use
BERT to detect depression marks in text. While Wawer et al. [87] present an approach to
detect objective markers of schizophrenia, showing parts of the text that are usually associ-
ated with this disorder. They used a perturbation method (LIME) to explain the output of a
PLM, namely ElMo. In their investigation, the goal is to identify patients and healthy indi-
viduals. The use of interpretability provides additional information about the words usually
associated with patient behavior. For instance, spiritual words are sometimes connected to
non-healthy behavior, while work and professional words indicate healthy behavior.

The relationship between interpretability and PLMs can also be beneficial for low-
resource languages, characterized by a scarcity of labeled data and language models [42,
92]. In [46], the authors present a study that applies an interpretability approach to the
investigation of hate speech in Bengali, focusing on political, personal, geopolitical, and

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 38 of 57

religious hate targets. In contrast to our work, their approach uses the Layer-wise Rele-
vance Propagation (LRP) technique to obtain interpretations when hate speech is detected.

Some researchers also use interpretability to simulate and evaluate how ML models
behave in an adversarial attack situation [7, 53, 108], in which small perturbations to the
input can significantly degrade model performance. In addition, other works focus on lev-
eraging cross-domain interactions. Hossam et al. [41] present a model that learns using
data from a similar domain, extracting relevant features. Their assumption for creating this
substitute model is that text structures are similar across different domains (such as reviews
of movies and restaurants). A possible future direction is to investigate cross-domain inter-
actions, focusing on getting relevant information about violating behavior from different
communities and understanding their evolving meanings.

7 � Conclusion and future work

In this work, we propose mechanisms that support normative systems to learn from the
interactions and feedback of agents (human or artificial) to determine what is considered a
norm violation. Our framework handles norms whose meanings may change, such as hate
speech or acceptable response times. To demonstrate the effectiveness of our approach,
we conduct experiments in tabular and text scenarios. We employ an ensemble of classi-
fiers in tabular tasks, while in text classification tasks, we use the Pre-trained Language
Model (PLM). Both approaches incorporate incremental learning techniques to continu-
ously adapt to the evolving community view.

We evaluate our approach in the Wikipedia article editing task. Specifically, we focus on
two challenges that emerge in such domains, the imbalanced nature of the dataset and the
adaptation to the changing community view on the meaning of norm violation. Thus, our
main contributions are: (1) incorporating feedback data (to be collected from a real online
community in the future) to update the machine learning model as interactions unfold;
and (2) using interpretability to enhance a community understanding of norm-violating
behavior.

In the context of tabular tasks, we start evaluating the algorithms in the case with no
concept drift, which focuses on learning the meaning of norm violation. Following this
step, we evaluate our approach in a context with concept drift, specifically the drift due to
the swap of class labels. For this experiment, we highlight the need for feedback from com-
munity members to enhance our framework’s performance. However, as we do not have

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 39 of 57  38

access to real feedback from community members, we use a simulation strategy to cre-
ate different subgroups of the violation dataset and change their labels. This simulation
assumes that the feedback is consistent since we are grouping similar edits. Thus, our inter-
pretation of the results naturally comes from this consistency.

For the text classification tasks, we evaluate RoBERTa and DistilBERT in two different
settings. First, we run experiments for the binary case, in which both PLMs should learn
whether an article edit is a violation. Second, we evaluate the PLMs to solve a multi-label
task, aiming at learning the specific hate speech classes in an article edit. Since we han-
dle text data directly in these cases, we incorporate an interpretability component into our
framework.

Results show that our proposal can learn the meaning of norm violations in an online
community considering different scenario requirements. While ensemble and incremental
learning can efficiently handle imbalanced datasets and continuously adapt to concept drift,
DistilBERT and RoBERTa incorporate prior language knowledge to leverage the learning
process of hate speech in our specific domain. Through interpretability analysis, we could
examine the community’s description of non-acceptable behavior and identify the most rel-
evant words in the dataset usually associated with norm violation, providing a summary
view of this concept.

Finally, as we argue that feedback from community members can provide informa-
tion on how a community understands norm violations, future work shall focus on get-
ting real feedback. This is not only interesting because of feedback collection but also
from the point of view of how the community members will agree on the definition of
norm violation. Additionally, for the ensemble of classifiers to decide if an action is a
norm violation, we will investigate the adoption of different strategies, from a simple
voting scheme (used in this paper) to something more complex as deliberation. For
future interpretation, our work shall investigate the global interpretability of ML mod-
els. We plan to use this information as a resource to explain concept drift and how vio-
lation-related words change as community members interact. To validate our approach,
user experiments shall be conducted.

Appendix 1: Global sum of relevance scores for all violation classes

See Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 40 of 57

Fig. 19   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is INSULT AND ABLEISM. Besides, we also present the frequency
in which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 41 of 57  38

Fig. 20   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is INSULT AND ABLEISM. Besides, we also present the frequency
in which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 42 of 57

Fig. 21   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is SEXUAL HARASSMENT. Besides, we also present the frequency
in which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 43 of 57  38

Fig. 22   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is SEXUAL HARASSMENT. Besides, we also present the frequency
in which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 44 of 57

Fig. 23   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is RACISM. Besides, we also present the frequency in which a
word appears in the dataset used for training. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 45 of 57  38

Fig. 24   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is RACISM. Besides, we also present the frequency in which a
word appears in the dataset used for training. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 46 of 57

Fig. 25   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is LGBTQIA+ Attack. Besides, we also present the frequency in
which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 47 of 57  38

Fig. 26   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is LGBTQIA+ Attack. Besides, we also present the frequency in
which a word appears in the dataset used for training. The relevance score is calculated using Integrated
Gradients (Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 48 of 57

Fig. 27   The global sum of relevance score for the top 20 words considering the DistilBERT model in the
multi-label case. The label considered is MISOGYNY. Besides, we also present the frequency in which a
word appears in the dataset used for training. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 49 of 57  38

Appendix 2: Local interpretation examples for all violation classes

See Figs. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Fig. 28   The global sum of relevance score for the top 20 words considering the RoBERTa model in the
multi-label case. The label considered is MISOGYNY. Besides, we also present the frequency in which a
word appears in the dataset used for training. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 50 of 57

Fig. 29   The local interpretation of a specific edit considering the DistilBERT model in the multi-label case.
The label considered is INSULT AND ABLEISM. The relevance score is calculated using Integrated Gra-
dients (Sect. 2.4)

Fig. 30   The local interpretation of a specific edit considering the RoBERTa model in the multi-label case.
The label considered is INSULT AND ABLEISM. The relevance score is calculated using Integrated Gra-
dients (Sect. 2.4)

Fig. 31   The local interpretation of a specific edit considering the DistilBERT model in the multi-label case.
The label considered is SEXUAL HARASSMENT. The relevance score is calculated using Integrated Gra-
dients (Sect. 2.4)

Fig. 32   The local interpretation of a specific edit considering the RoBERTa model in the multi-label case.
The label considered is SEXUAL HARASSMENT. The relevance score is calculated using Integrated Gra-
dients (Sect. 2.4)

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 51 of 57  38

Fig. 33   The local interpretation of a specific edit considering the DistilBERT model in the multi-label case.
The label considered is RACISM. The relevance score is calculated using Integrated Gradients (Sect. 2.4)

Fig. 34   The local interpretation of a specific edit considering the RoBERTa model in the multi-label case.
The label considered is RACISM. The relevance score is calculated using Integrated Gradients (Sect. 2.4)

Fig. 35   The local interpretation of a specific edit considering the DistilBERT model in the multi-label case.
The label considered is LGBTQIA+ Attack. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

Fig. 36   The local interpretation of a specific edit considering the RoBERTa model in the multi-label case.
The label considered is LGBTQIA+ Attack. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 52 of 57

Acknowledgements  This research is supported by the EU funded VALAWAI (# 101070930) and WeNet
(# 823783) projects, the Spanish funded VAE (# TED2021-131295B-C31) and Rhymas (# PID2020-
113594RB-100) projects, and the Generalitat de Catalunya funded Ajuts a grups de recerca de Catalunya
(# 2021 SGR 00754) project.

Author contributions  TFS created the source code, collected data, executed the experiments and the statisti-
cal analysis, organized the content, and wrote the main manuscript text. NO and MS conceived the initial
idea, provided intellectual guidance, coordinated the study, and reviewed and corrected the manuscript. All
authors participated in the study’s conceptualization and the discussion of the results.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Fig. 37   The local interpretation of a specific edit considering the DistilBERT model in the multi-label
case. The label considered is MISOGYNY. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

Fig. 38   The local interpretation of a specific edit considering the RoBERTa model in the multi-label
case. The label considered is MISOGYNY. The relevance score is calculated using Integrated Gradients
(Sect. 2.4)

http://creativecommons.org/licenses/by/4.0/

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 53 of 57  38

References

	 1.	 Adelani, D. I., Mai, H., Fang, F., Nguyen, H. H, Yamagishi, J., & Echizen, I. (2020). Generat-
ing sentiment-preserving fake online reviews using neural language models and their human-and
machine-based detection. In: Advanced information networking and applications: Proceedings of
the 34th international conference on advanced information networking and applications (AINA-
2020), (pp. 1341–1354), Springer.

	 2.	 Thomas Adler, B., de Alfaro, L., Mola-Velasco, S. M., Rosso, P., & West, A. G. (2011). Wikipedia
vandalism detection: Combining natural language, metadata, and reputation features. Computa-
tional linguistics and intelligent text processing (pp. 277–288). Berlin Heidelberg: Springer.

	 3.	 Afroz, S., Brennan, M., & Greenstadt, R. (2012). Detecting hoaxes, frauds, and deception in writ-
ing style online. 2012 IEEE symposium on security and privacy (pp. 461–475). IEEE, San Fran-
cisco, CA, USA: IEEE.

	 4.	 Aires, J. P., & Meneguzzi, F. (2021). Norm conflict identification using a convolutional neural net-
work. In A. A. Tubella, S. Cranefield, C. Frantz, F. Meneguzzi, & W. Vasconcelos (Eds.), Coor-
dination, organizations, institutions, norms, and ethics for governance of multi-agent systems XIII
(pp. 3–19). Cham: Springer International Publishing.

	 5.	 Ajmeri, N., Guo, H., Murukannaiah, P. K., & Singh, M. P. (2020). Elessar: Ethics in norm-aware
agents. In: Proceedings of the 19th international conference on autonomous agents and multiagent
systems. (pp. 16–24), International foundation for autonomous agents and multiagent systems,
Richland, SC.

	 6.	 Al-Hassan, A. & Al-Dossari, H. (2019). Detection of hate speech in social networks: A survey
on multilingual corpus. In 6th international conference on computer science and information
technology.

	 7.	 Alsmadi, I., Ahmad, K., Nazzal, M., Alam, F., Al-Fuqaha, A., Khreishah, A., & Algosaibi, A.
(2021). Adversarial attacks and defenses for social network text processing applications: Tech-
niques, challenges and future research directions. arXiv preprint arXiv:​2110.​13980

	 8.	 Anand, M., & Eswari, R. (2019). Classification of abusive comments in social media using deep
learning. In 2019 3rd international conference on computing methodologies and communication
(ICCMC), (pp. 974–977).

	 9.	 Anowar, F., & Sadaoui, S. (2021). Incremental learning framework for real-world fraud detection
environment. Computational Intelligence, 37(1), 635–656.

	 10.	 Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-
López, S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Information fusion, 58(2020), 82–115.

	 11.	 Atanasova, P., Simonsen, J. G., Lioma, C., & Augenstein, I. (2020). A diagnostic study of explainabil-
ity techniques for text classification. In Proceedings of the 2020 conference on empirical methods in
natural language processing (EMNLP). (pp. 3256–3274), Association for computational linguistics,
Online. https://​doi.​org/​10.​18653/​v1/​2020.​emnlp-​main.​263

	 12.	 Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:​1607.​06450
	 13.	 Barbado, R., Araque, O., & Iglesias, C. A. (2019). A framework for fake review detection in online

consumer electronics retailers. Information Processing and Management, 56(4), 1234–1244.
	 14.	 Belle, V., & Papantonis, I. (2021). Principles and practice of explainable machine learning. Frontiers

in Big Data, 2021, 39.
	 15.	 Biber, J. K., Doverspike, D., Baznik, D., Cober, A., & Ritter, B. A. (2002). Sexual harassment in

online communications: Effects of gender and discourse medium. Cyber Psychology and Behavior,
5(1), 33–42.

	 16.	 Bogart, K. R., & Dunn, D. S. (2019). Ableism special issue introduction. Journal of Social Issues,
75(3), 650–664.

	 17.	 Brzezinski, D., & Stefanowski, J. (2014). Reacting to different types of concept drift: The accuracy updated
ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.

	 18.	 Campos, J., Lopez-Sanchez, M., Salamó, M., Avila, P., & Rodríguez-Aguilar, J. A. (2013). Robust
regulation adaptation in multi-agent systems. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), 8(3), 1–27.

	 19.	 Chandrasekharan, E., Gandhi, C., Mustelier, M. W., & Gilbert, E. (2019). Crossmod: A cross-com-
munity learning-based system to assist reddit moderators. Proceedings of the ACM on Human-Com-
puter Interaction, 3, 30.

	 20.	 Chandrika, C. P., & Kallimani, J. S. (2020). Classification of abusive comments using various
machine learning algorithms. In P. K. Mallick, V. E. Balas, A. K. Bhoi, & G.-S. Chae (Eds.), Cogni-
tive Informatics and soft computing (pp. 255–262). Springer Singapore.

http://arxiv.org/abs/2110.13980
https://doi.org/10.18653/v1/2020.emnlp-main.263
http://arxiv.org/abs/1607.06450

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 54 of 57

	 21.	 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16(2002), 321–357.

	 22.	 Cheriyan, J., Savarimuthu, B. T. R., & Cranefield, S. (2017). Norm violation in online communities–
A study of stack overflow comments. In: Coordination, organizations, institutions, norms, and ethics
for governance of multi-agent systems XIII, (pp. 20–34), Springer.

	 23.	 Cheriyan, J., Savarimuthu, B. T. R., & Cranefield, S. (2021). Towards offensive language detection
and reduction in four software engineering communities. In Evaluation and assessment in software
engineering, (pp. 254–259).

	 24.	 Chollet, F. et al. (2015). Keras. https://​keras.​io.
	 25.	 Criado, N., Ferrer, X., & Such, J. M. (2020). A normative approach to attest digital discrimination.

arXiv preprint arXiv:​2007.​07092
	 26.	 De-Arteaga, M., Romanov, A., Wallach, H., Chayes, J., Borgs, C., Chouldechova, A., Geyik,

S., Kenthapadi, K., & Kalai, A. T. (2019). Bias in bios: A case study of semantic representa-
tion bias in a high-stakes setting. In Proceedings of the conference on fairness, accountability, and
transparency(FAT* ’19). (pp. 120–128), Association for computing machinery, New York, NY, USA.
https://​doi.​org/​10.​1145/​32875​60.​32875​72

	 27.	 Dell’Anna, D., Alechina, N., Dalpiaz, F., Dastani, M., & Logan, B. (2022). Data-driven revision of con-
ditional norms in multi-agent systems. Journal of Artificial Intelligence Research, 75(2022), 1549–1593.

	 28.	 Ding, H., & Jurgens, D. (2021). HamiltonDinggg at SemEval-2021 Task 5: Investigating toxic
span detection using RoBERTa pre-training. In Proceedings of the 15th international workshop
on semantic evaluation (Semeval-2021). (pp. 263–269), Association for computational linguistics,
Online. https://​doi.​org/​10.​18653/​v1/​2021.​semev​al-1.​31

	 29.	 Dong, X., Zhiwen, Yu., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Fron-
tiers of Computer Science, 14(2), 241–258.

	 30.	 Hongle, D., Zhang, Y., Gang, K., Zhang, L., & Chen, Y.-C. (2021). Online ensemble learning
algorithm for imbalanced data stream. Applied Soft Computing, 107(2021), 107378. https://​doi.​
org/​10.​1016/j.​asoc.​2021.​107378

	 31.	 Elazar, Y., Kassner, N., Ravfogel, S., Ravichander, A., Hovy, E., Schütze, H., & Goldberg, Y.
(2021). Measuring and improving consistency in pretrained language models. Transactions of the
Association for Computational Linguistics, 9(2021), 1012–1031.

	 32.	 Fenech, Stephen, Pace, Gordon J., & Schneider, Gerardo. (2009). Automatic conflict detection on
contracts. International colloquium on theoretical aspects of computing (pp. 200–214). Springer.

	 33.	 Freitas dos Santos, T. , Osman, N., & Schorlemmer, M. (2022a). Ensemble and incremental learn-
ing for norm violation detection. In Proceedings of the 21st international conference on autono-
mous agents and multiagent systems (pp. 427–435).

	 34.	 Freitas dos Santos, T., Osman, N., & Schorlemmer, M. (2022b). Learning for detecting norm vio-
lation in online communities. In: Coordination, organizations, institutions, norms, and ethics for
governance of multi-agent systems XIV: International workshop, COINE 2021, London, UK, May
3, 2021, Revised Selected Papers (pp. 127–142), Springer.

	 35.	 Gama, J., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on
concept drift adaptation. ACM Computing Surveys, 46, 4.

	 36.	 Gao, X., & Singh, M. P. (2014). Extracting normative relationships from business contracts. In:
Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems.
(pp. 101–108).

	 37.	 Ging, D., & Siapera, E. (2018). Special issue on online misogyny.
	 38.	 Gray, K. L. (2018). Gaming out online: Black lesbian identity development and community build-

ing in Xbox Live. Journal of Lesbian Studies, 22(3), 282–296.
	 39.	 Harper, G. W., & Schneider, M. (2003). Oppression and discrimination among lesbian, gay, bisex-

ual, and transgendered people and communities: A challenge for community psychology. Ameri-
can Journal of Community Psychology, 31(3), 243–252.

	 40.	 Hoi, S. C. H., Sahoo, D., Jing, L., & Zhao, P. (2021). Online learning: A comprehensive survey.
Neurocomputing, 459(2021), 249–289. https://​doi.​org/​10.​1016/j.​neucom.​2021.​04.​112

	 41.	 Hossam, M., Le, T., Zhao, H., & Phung, D. (2021). Explain2Attack: Text adversarial attacks
via cross-domain interpretability. In: 2020 25th international conference on pattern recognition
(ICPR). (pp. 8922–8928), IEEE.

	 42.	 Ishmam, A. M., & Sharmin, S. (2019). Hateful speech detection in public facebook pages for the
bengali language. In 2019 18th IEEE international conference on machine learning and applica-
tions (ICMLA), (pp. 555–560). https://​doi.​org/​10.​1109/​ICMLA.​2019.​00104

https://keras.io
http://arxiv.org/abs/2007.07092
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/2021.semeval-1.31
https://doi.org/10.1016/j.asoc.2021.107378
https://doi.org/10.1016/j.asoc.2021.107378
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1109/ICMLA.2019.00104

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 55 of 57  38

	 43.	 Islam, R., Ben Treves, Md., Rokon, O. F., & Faloutsos, M. (2022). HyperMan: Detecting misbe-
havior in online forums based on hyperlink posting behavior. Social Network Analysis and Mining,
12(1), 1–14.

	 44.	 Joachims, T. (1996). A probabilistic analysis of the Rocchio algorithm with TFIDF for text catego-
rization. Technical Report. Carnegie-mellon univ pittsburgh pa dept of computer science.

	 45.	 Kaliyar, R. K., Goswami, A., & Narang, P. (2021). FakeBERT: Fake news detection in social media
with a BERT-based deep learning approach. Multimedia Tools and Applications, 80(8), 11765–11788.

	 46.	 Karim, M. R., Dey, S. K., Islam, T., Sarker, S., Menon, M. H., Hossain, K., Hossain, M. A., &
Decker, S. (2021). Deephateexplainer: Explainable hate speech detection in under-resourced ben-
gali language. In 2021 IEEE 8th international conference on data science and advanced analytics
(DSAA). (pp. 1–10), IEEE.

	 47.	 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of naacL-HLT, (pp. 4171–4186).

	 48.	 Keum, B. T. H., & Miller, M. J. (2018). Racism on the internet: Conceptualization and recommen-
dations for research. Psychology of Violence, 8(6), 782.

	 49.	 Krishna, K., & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 29(3), 433–439.

	 50.	 Lebichot, B., Paldino, G. M., Siblini, W., He-Guelton, L., Oblé, F., & Bontempi, G. (2021). Incre-
mental learning strategies for credit cards fraud detection. In 2020 IEEE 7th international confer-
ence on data science and advanced analytics (DSAA) (pp. 785-786). IEEE.

	 51.	 LekshmiAmmal, H. R. I., Ravikiran, M., & Madasamy, A. K. (2022). NITK-IT_NLP@ TamilNLP-
ACL2022: Transformer based model for offensive span identification in Tamil. DravidianLangTech,
2022(2022), 75.

	 52.	 Li, T. C., Gharibshah, J., Papalexakis, E. E., & Faloutsos, M. (2017). TrollSpot: Detecting misbe-
havior in commenting platforms. In Proceedings of the 2017 IEEE/ACM international conference on
advances in social networks analysis and mining 2017. (pp. 171–175).

	 53.	 Li, Y., Cheng, M., Hsieh, C.-J., & Lee, T. C. M. (2022). A review of adversarial attack and defense for
classification methods. The American Statistician, 2022, 1–17.

	 54.	 Li, Z., Huang, W., Xiong, Y., Ren, S., & Zhu, T. (2020). Incremental learning imbalanced data
streams with concept drift: The dynamic updated ensemble algorithm. Knowledge-Based Systems,
195(2020), 105694.

	 55.	 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M, Zettlemoyer, L., & Stoyanov, V.
(2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:​1907.​11692

	 56.	 Jie, L., Liu, A., Dong, F., Feng, G., Gama, J., & Zhang, G. (2018). Learning under concept drift: A
review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.

	 57.	 Lyu, Q., Apidianaki, M., & Callison-Burch, C. (2022). Towards faithful model explanation in NLP: A
survey. arXiv preprint arXiv:​2209.​11326

	 58.	 Mahmoud, S., Griffiths, N., Keppens, J., & Luck, M. (2012). Efficient norm emergence through expe-
riential dynamic punishment. In ECAI 2012. (pp. 576–581), IOS Press.

	 59.	 Markov, I., Gevers, I., & Daelemans, W. (2022). An ensemble approach for Dutch cross-domain hate
speech detection. In International conference on applications of natural language to information sys-
tems. (pp. 3–15), Springer.

	 60.	 McLean, L., & Griffiths, M. D. (2019). Female gamers’ experience of online harassment and social
support in online gaming: A qualitative study. International Journal of Mental Health and Addiction,
17(4), 970–994.

	 61.	 Min, B., Ross, H., Sulem, E., Pouran B. V., Amir, N., Thien H., Sainz, O., Agirre, E., Heinz, I., &
Roth, D. (2021). Recent advances in natural language processing via large pre-trained language mod-
els: A survey. arXiv preprint arXiv:​2111.​01243

	 62.	 Mitrović, S., Andreoletti, D., & Ayoub, O. (2023). Chatgpt or human? Detect and explain. explaining
decisions of machine learning model for detecting short chatgpt-generated text. arXiv preprint arXiv:​
2301.​13852

	 63.	 Mohawesh, R., Tran, S., Ollington, R., & Shuxiang, X. (2021). Analysis of concept drift in fake
reviews detection. Expert Systems with Applications, 169(2021), 114318.

	 64.	 Mollas, I., Chrysopoulou, Z., Karlos, S., & Tsoumakas, G. (2022). ETHOS: A multi-label hate speech
detection dataset. Complex and Intelligent Systems, 2022, 1–16.

	 65.	 Montiel, J., Halford, M., Mastelini, S. M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes,
H. M., Read, J., Abdessalem, T., & Bifet, A. (2021). River: Machine learning for streaming data in
Python. Journal of Machine Learning Research, 22(110), 1–8.

	 66.	 Morales, J., López-Sánchez, M., Rodríguez-Aguilar, J. A., Wooldridge, M., & Vasconcelos, W.
(2015). Synthesising liberal normative systems. In Proceedings of the 2015 international conference

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2209.11326
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2301.13852
http://arxiv.org/abs/2301.13852

	 Autonomous Agents and Multi-Agent Systems (2023) 37:38

1 3

38  Page 56 of 57

on autonomous agents and multiagent systems(AAMAS ’15). (pp. 433–441), International foundation
for autonomous agents and multiagent systems, Richland, SC.

	 67.	 Morales, J., Wooldridge, M., Rodríguez-Aguilar, J. A., & López-Sánchez, M. (2018). Off-line synthe-
sis of evolutionarily stable normative systems. Autonomous Agents and Multi-Agent Systems, 32(5),
635–671.

	 68.	 Morris-Martin, A., De Vos, M., & Padget, J. (2019). Norm emergence in multiagent systems: A view-
point paper. Autonomous Agents and Multi-Agent Systems, 33(6), 706–749.

	 69.	 Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar, M. M., & Rahman, M. S. (2021). A comprehen-
sive review on fake news detection with deep learning. IEEE Access.

	 70.	 Muslim, F., Purwarianti, A., & Ruskanda, F. Z. (2021). Cost-sensitive learning and ensemble bert for
identifying and categorizing offensive language in social media. In 2021 8th international conference
on advanced informatics: Concepts, theory and applications (ICAICTA). (pp. 1–6), IEEE.

	 71.	 Nir, R., Shleyfman, A., & Karpas, E. (2020). Automated synthesis of social laws in strips. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34, 9941–9948.

	 72.	 Niu, R., Wei, Z., Wang, Y., & Wang, Q. (2022). Attexplainer: Explain Transformer via Attention by
Reinforcement Learning.

	 73.	 Nockleby, J. (2000). Hate speech. In L. Levy, K. Kenneth, A. Winkler (Eds.). Encyclopedia of the
American Constitution, Vol 6. (pp. 1277–1279).

	 74.	 Novikova, J., & Shkaruta, K. (2022). DECK: Behavioral tests to improve interpretability and gen-
eralizability of BERT models detecting depression from text. arXiv preprint arXiv:​2209.​05286

	 75.	 Peng, J., Choo, K.-K.R., & Ashman, H. (2016). Bit-level n-gram based forensic authorship analy-
sis on social media: Identifying individuals from linguistic profiles. Journal of Network and Com-
puter Applications, 70(2016), 171–182.

	 76.	 Potthast, M., & Holfeld, T. (2010). Overview of the 1st International Competition on Wikipedia
Vandalism Detection. In CLEF.

	 77.	 Qiang, Y., Pan, D., Li, C., Li, X., Jang, R., & Zhu, D. (2022). AttCAT: Explaining transformers
via attentive class activation tokens. In Advances in neural information processing systems.

	 78.	 Qiu, X., Sun, T., Yige, X., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained models for natural
language processing: A survey. Science China Technological Sciences, 63(10), 1872–1897.

	 79.	 Räukur, T., Ho, A., Casper, S., & Hadfield-Menell, D. (2022). Toward transparent AI: A survey on
interpreting the inner structures of deep neural networks. arXiv preprint arXiv:​2207.​13243

	 80.	 Ren, S., Liao, B., Zhu, W., Li, Z., Liu, W., & Li, K. (2018). The gradual resampling ensemble for
mining imbalanced data streams with concept drift. Neurocomputing, 286(2018), 150–166.

	 81.	 Risch, J., & Krestel, R. (2020). Toxic comment detection in online discussions. In Deep learning-
based approaches for sentiment analysis. (pp. 85–109), Springer.

	 82.	 Rosso, P., Correa, S., & Buscaldi, D. (2011). Passage retrieval in legal texts. The Journal of Logic
and Algebraic Programming, 80(3–5), 139–153.

	 83.	 Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. WIREs Data Mining and Knowledge
Discovery, 8(4), e1249.

	 84.	 Salemi, A., Sabri, N., Kebriaei, E., Bahrak, B., & Shakery, A. (2021). UTNLP at SemEval-2021
Task 5: A comparative analysis of toxic span detection using attention-based, named entity rec-
ognition, and ensemble models. In Proceedings of the 15th international workshop on semantic
evaluation (SemEval-2021). (pp. 995–1002) Association for Computational Linguistics, Online.
https://​doi.​org/​10.​18653/​v1/​2021.​semev​al-1.​136

	 85.	 Samghabadi, N. S., Patwa, P., Pykl, S., Mukherjee, P., Das, A., & Solorio, T. (2020). Aggression
and misogyny detection using BERT: A multi-task approach. In Proceedings of the second work-
shop on trolling, aggression and cyberbullying, (pp. 126–131).

	 86.	 Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT:
Smaller, faster, cheaper and lighter. arXiv preprint arXiv:​1910.​01108

	 87.	 Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska, J., Stefaniak, I., Jarkiewicz, M., &
Okruszek, L. (2021). Detecting formal thought disorder by deep contextualized word representa-
tions. Psychiatry Research, 304(2021), 114135.

	 88.	 Savarimuthu, B. T. R., , Purvis, M., Purvis, M., & Cranefield, S. (2008). Social norm emergence
in virtual agent societies. In International workshop on declarative agent languages and technolo-
gies. (pp. 18–28), Springer.

	 89.	 Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11), 2673–2681.

	 90.	 Sechidis, K., Tsoumakas, G., & Vlahavas, I. (2011). On the stratification of multi-label data. In:
Joint European conference on machine learning and knowledge discovery in databases. (pp. 145–
158), Springer.

http://arxiv.org/abs/2209.05286
http://arxiv.org/abs/2207.13243
https://doi.org/10.18653/v1/2021.semeval-1.136
http://arxiv.org/abs/1910.01108

Autonomous Agents and Multi-Agent Systems (2023) 37:38	

1 3

Page 57 of 57  38

	 91.	 Serramia, M., Lopez-Sanchez, M., & Rodriguez-Aguilar, J. A. (2020). A qualitative approach to
composing value-aligned norm systems. In Proceedings of the 19th international conference on
autonomous agents and multiagent systems. (pp. 1233–1241).

	 92.	 Sharma, A., Kabra, A., & Jain, M. (2022). Ceasing hate with MoH: Hate speech detection in
Hindi–English code-switched language. Information Processing and Management, 59(1), 102760.
https://​doi.​org/​10.​1016/j.​ipm.​2021.​102760

	 93.	 Shojaee, S, Murad, M. A. A., Azman, A. B., Sharef, N. M., & Nadali, S. (2013). Detecting decep-
tive reviews using lexical and syntactic features. In 2013 13th international conference on intel-
lient systems design and applications. (pp. 53–58), IEEE.

	 94.	 Skopik, F., & Pahi, T. (2020). Under false flag: Using technical artifacts for cyber attack attribu-
tion. Cybersecurity, 3(2020), 1–20.

	 95.	 Somasundaram, A., & Reddy, S. (2019). Parallel and incremental credit card fraud detection
model to handle concept drift and data imbalance. Neural Computing and Applications, 31(1),
3–14.

	 96.	 Strøm, E. (2021). Multi-label style change detection by solving a binary classification problem. In
CLEF (working notes). (pp. 2146–2157).

	 97.	 Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In Inter-
national conference on machine learning. PMLR, pp. 3319–3328.

	 98.	 Szczepański, M., Pawlicki, M., Kozik, R., & Choraś, M. (2021). New explainability method for
BERT-based model in fake news detection. Scientific Reports, 11(1), 1–13.

	 99.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems 30.

	100.	 Ventura, F., Greco, S., Apiletti, D., & Cerquitelli, T. (2022). Trusting deep learning natural-language
models via local and global explanations. Knowledge and Information Systems, 64(7), 1863–1907.

	101.	 Wang, H., & Abraham, Z. (2015). Concept drift detection for streaming data. In 2015 International
joint conference on neural networks (IJCNN). (pp. 1–9), IEEE.

	102.	 Wang, S., Minku, L. L., & Yao, X. (2015). Resampling-based ensemble methods for online class
imbalance learning. IEEE Transactions on Knowledge and Data Engineering, 27(5), 1356–1368.

	103.	 Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class imbalance learning with
concept drift. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4802–4821.

	104.	 West, A. G., & Lee, I. (2011). Multilingual vandalism detection using language-independent and ex
post facto evidence. In CLEF Notebooks.

	105.	 Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,
Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L.,
Gugger, S., Drame, M., Lhoest, Q., & Rush, A. M. (2020). Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 conference on empirical methods in natural language
processing: System demonstrations. (pp. 38–45), Association for Computational Linguistics, Online.
https://​www.​aclweb.​org/​antho​logy/​2020.​emnlp-​demos.6

	106.	 Xiang, T., MacAvaney, S., Yang, E., & Goharian, N. (2021). ToxCCIn: Toxic content classification
with interpretability. In Proceedings of the eleventh workshop on computational approaches to sub-
jectivity, sentiment and social media analysis. (pp. 1–12), Association for Computational Linguistics,
Online. https://​aclan​tholo​gy.​org/​2021.​wassa-1.1

	107.	 Xu, J., Sun, X., Zhang, Z., Zhao, G., & Lin, J. (2019). Understanding and improving layer normaliza-
tion. Advances in Neural Information Processing Systems 32.

	108.	 Yang, P., Chen, J., Hsieh, C.-J., Wang, J.-L., & Jordan, M. I. (2020). Greedy attack and gumbel attack:
Generating adversarial examples for discrete data. Journal of Machine Learning Research, 21(43),
1–36.

	109.	 Yun-tao, Z., Ling, G., & Yong-cheng, W. (2005). An improved TF-IDF approach for text classifica-
tion. Journal of Zhejiang University-Science A, 6(1), 49–55.

	110.	 Zangerle, E., Mayerl, M., Specht, G., Potthast, M., & Stein, B. (2020). Overview of the style change
detection task at PAN 2020. In CLEF (Working Notes) 93.

	111.	 Zhang, H., Liu, W., Wang, S., Shan, J., & Liu, Q. (2019). Resample-based ensemble framework for
drifting imbalanced data streams. IEEE Access, 7(2019), 65103–65115. https://​doi.​org/​10.​1109/​
ACCESS.​2019.​29147​25

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.ipm.2021.102760
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2021.wassa-1.1
https://doi.org/10.1109/ACCESS.2019.2914725
https://doi.org/10.1109/ACCESS.2019.2914725

	A multi-scenario approach to continuously learn and understand norm violations
	Abstract
	1 Introduction
	2 Background
	2.1 Ensemble learning
	2.2 Incremental learning
	2.3 The pre-trained language model (PLM)
	2.4 Interpretability of PLM

	3 The multi-scenario incremental learning framework
	3.1 Mini-Batch Learning for Tabular Scenarios
	3.2 Online learning for tabular scenarios
	3.3 Mini-batch learning for binary text scenarios
	3.4 Mini-batch learning for multi-label text scenarios

	4 Experiments
	5 Results and discussion
	5.1 Tabular scenario
	5.1.1 Experiment 1—No concept drift
	5.1.2 Experiment 2—presence of concept drift

	5.2 Text scenario
	5.2.1 Experiment 1—binary classification
	5.2.2 Experiment 2—multi-label classification of vandalism
	5.2.3 Interpretability—binary and multi-label cases

	6 Literature review
	6.1 Norm violation detection
	6.2 Incremental learning
	6.3 Interpretability

	7 Conclusion and future work
	Appendix 1: Global sum of relevance scores for all violation classes
	Appendix 2: Local interpretation examples for all violation classes
	Acknowledgements
	References

