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Abstract
We study several fairness notions in allocating indivisible chores (i.e., items with disu-
tilities) to agents who have additive and submodular cost functions. The fairness criteria 
we are concerned with are envy-free up to any item, envy-free up to one item, maximin 
share (MMS), and pairwise maximin share (PMMS), which are proposed as relaxations of 
envy-freeness in the setting of additive cost functions. For allocations under each fairness 
criterion, we establish their approximation guarantee for other fairness criteria. Under the 
additive setting, our results show strong connections between these fairness criteria and, at 
the same time, reveal intrinsic differences between goods allocation and chores allocation. 
However, such strong relationships cannot be inherited by the submodular setting, under 
which PMMS and MMS are no longer relaxations of envy-freeness and, even worse, few 
non-trivial guarantees exist. We also investigate efficiency loss under these fairness con-
straints and establish their prices of fairness.

Keywords Fair division · Indivisible chores · Price of fairness

1 Introduction

Fair division is a central matter of concern in economics, multiagent systems, and artifi-
cial intelligence [6, 16, 18]. Over the years, there emerges a tremendous demand for fair 
division when a set of indivisible resources, such as classrooms, tasks, and properties, are 
divided among a group of agents. This field has attracted the attention of researchers and 
most results are established when resources are considered as goods that bring positive 
utility to agents. However, in real-life division problems, the resources to be allocated can 
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also be chores which, instead of positive utility, bring non-positive utility or cost to agents. 
For example, one might need to assign tasks among workers, teaching load among teach-
ers, sharing noxious facilities among communities, and so on. Compared to goods, fairly 
dividing chores is relatively under-developed. At first glance, dividing chores is similar to 
dividing goods. However, in general, chores allocation is not covered by goods allocation 
and results established on goods do not necessarily hold on chores. Existing works have 
already pointed out this difference in the context of envy-freeness [14, 15, 19] and equi-
tability [30, 31]. As an example, Freeman et al. [30] indicate that, when allocating goods, 
a leximin1 allocation is Pareto optimal and equitable up to any item,2 however, a leximin 
solution does not guarantee equitability up to any item in chores allocation.

Among the variety of fairness notions in the literature, envy-freeness (EF) is one of the 
most compelling, which has drawn research attention over the past few decades [17, 27, 
29]. In an envy-free allocation, no agent envies another agent. Unfortunately, the existence 
of an envy-free allocation cannot be guaranteed in general when the items are indivisible. 
A canonical example is that one needs to assign one chore to two agents and the chore has 
a positive cost for either agent. Clearly, the agent who receives the chore will envy the 
other. In addition, deciding the existence of an EF allocation is computationally intracta-
ble, even for two agents with identical preference. Given this predicament, recent studies 
mainly devote to relaxations of envy-freeness. One direct relaxation is known as envy-free 
up to one item (EF1) [20, 36]. In an EF1 allocation, one agent may be jealous of another, 
but by removing one chore from the bundle of the envious agent, envy can be eliminated. 
A similar but stricter notion is envy-free up to any item (EFX) [22]. In such an alloca-
tion, envy can be eliminated by removing any positive-cost chore from the envious agent’s 
bundle. Another fairness notion, maximin share (MMS) [3, 20], generalizes the idea of 
“cut-and-choose” protocol in cake cutting. The maximin share is obtained by minimizing 
the maximum cost of a bundle of an allocation over all allocations. The last fairness notion 
we consider is called pairwise maximin share (PMMS) [22], which is similar to maximin 
share but different from MMS in that each agent partitions the combined bundle of himself 
and any other agent into two bundles and then receives the one with the larger cost.

The existing research on envy-freeness and its relaxations concentrates on algorithmic 
features of fairness criteria, such as their existence and (approximation) algorithms for 
finding them. Relatively little research studies the connections between these fairness cri-
teria themselves, or the trade-off between these fairness criteria and the system efficiency, 
known as the price of fairness.

When allocating goods, Amanatidis et  al. [2] compare the above four relaxations of 
envy-freeness and provide results on the approximation guarantee of one to another. How-
ever, these connections are unclear in allocating chores. On the price of fairness, Bei et al. 
[11] study allocation of indivisible goods and focus on the notions for which the corre-
sponding fair allocations are guaranteed to exist, such as EF1, maximum Nash welfare,3 
and leximin. Caragiannis et al. [21] study the price of fairness for both chores and goods, 

1 A leximin solution selects the allocation that maximizes the utility of the least well-off agent, subject to 
maximizing the utility of the second least, and so on.
2 Equitability requires that any pair of agents are equally happy with their bundles. In equitability up to any 
item allocations, the violation of equitability can be eliminated by removing any single item from the hap-
pier (in goods allocation)/ less happy agent (in chores allocation).
3 Nash welfare is the product of agents’ utilities.
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and focus on the classical fairness notions, namely, EF, proportionality4 and equitability. 
To the best of our knowledge, no existing work covers the price of fairness for the afore-
mentioned four relaxations (which we will call additive relaxations from time to time in 
this paper) of envy-freeness in chores allocation.

In this paper, we fill these gaps by investigating the four relaxations of envy-freeness on 
two aspects. On the one hand, we study the connections between these criteria and, in par-
ticular, we consider the following questions: Does one fairness criterion implies another? 
To what extent can one criterion guarantee for another? On the other hand, we study the 
trade-off between fairness and efficiency (or social cost defined as the sum of costs of the 
individual agents). Specifically, for each fairness criterion, we investigate its price of fair-
ness, which is defined as the supremum ratio of the minimum social cost of a fair allocation 
to the minimum social cost of any allocation.

1.1  Main results

On the connections between fairness criteria, we summarize our main results in Fig. 1 on 
the approximation guarantee of one fairness criterion for another. Figures 1a and 1b show 
connections under additive and submodular settings, respectively. As shown in Fig.  1a 
below, when agents have additive cost functions, there exist evidently significant connections 

Fig. 1  Connections between fairness criteria. Note Fig. 1a, b illustrate connections between fairness criteria 
under additive and submodular cost functions, respectively. LB and UB stand for lower and upper bound, 
respectively. Px.y and Tx.y point to Proposition x.y and Theorem x.y, respectively

4 An allocation of goods (resp. chores) is proportional if the value (resp. cost) of every agent’s bundle is at 
least (resp. at most) one n-th fraction of his value (resp. cost) for all items.
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between these fairness notions. While some of our results show similarity to those in goods 
allocation [2], others also reveal their difference. Figure 1b provides the corresponding results 
under the submodular setting, which then show a sharp contrast to results under the additive 
setting. More specifically, except that PMMS can have a bounded approximation guarantee 
on MMS, no non-trivial guarantee exists between any other pair of fairness notions.

After comparing each pair of fairness notions, we compare the efficiency of fair alloca-
tions with the optimal one. To quantify the efficiency loss, we apply the idea of the price 
of fairness and our results are summarized in Table 1. The terminology “ �-XYZ” below 
refers to an � approximation for fairness notion XYZ. The formal definitions will be given 
in Sect. 2.

As detailed later in the paper, most of the results summarized in Fig. 1 and Table 1 are 
tight.

1.2  Related works

The fair division problem has been studied for both indivisible goods [13, 22, 36] and indi-
visible chores [5, 7, 31]. Among various fairness notions, a prominent one is EF proposed 
by Foley [29]. But an EF allocation may not exist and even worse, checking the existence 
of an EF allocation is NP-complete [6]. For the relaxations of envy-freeness, the notion of 
EF1 originates from Lipton et al. [36] and is formally defined by Budish [20]. Lipton et al. 
[36] provide an efficient algorithm for EF1 allocations of goods when agents have mono-
tone valuations functions. When allocating chores, Aziz et al. [4] show that, in the additive 
setting, EF1 is achievable by allocating chores in a round-robin fashion. Another fairness 
notion that has been a subject of much attention in the last few years is MMS, proposed 
by Budish [20]. However, existence of an MMS allocation is not guaranteed either for 
goods [35] or for chores [7], even with additive valuation functions. Consequently, more 
efforts are on approximation of MMS in the additive setting, with Amanatidis et al. [3], 
Ghodsi et al. [33], Garg and Taki [32] on goods and Aziz et al. [7], Huang and Lu [34] on 
chores. Some other studies consider approximating MMS when agents have (a subclass of) 
submodular valuation functions. Barman and Krishnamurthy [9] consider the submodu-
lar setting and show that 0.21-approximation of MMS can be efficiently computed by the 

Table 1  Prices of fairness

Note Interval [a,  b) means that the lower bound is equal to a and 
upper bound is equal to b. Tx.y and Lx.y point to Theorem  x.y and 
Lemma x.y, respectively. The price of MMS with respect to submodu-
lar cost functions is open

EFX EF1 PMMS 3

2
-PMMS 2-MMS

n = 2 2 5

4

2 7

6

additive

(T6.4) (T6.1) (T6.4) (T6.3) 1
[3, 4) [2, 4) 3 [

4

3
,
8

3
) (L2.2) submodular

(T7.1) (T7.2) (T7.3) (T7.4)
n ≥ 3 [

n+3

6
, n) additive

∞ (T6.7)
(T6.5) [

n+3

6
,
n
2

2
) submodular

(T7.6)
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round-robin algorithm. Barman and Verma [10] show that an MMS allocation is guaran-
teed to exist and can be computed efficiently if agents have submodular valuation functions 
with binary margin.

The notions of EFX and PMMS are introduced by Caragiannis et al. [22]. They consider 
goods allocation and establish that a PMMS allocation is also EFX when the valuation 
functions are additive. Beyond the simple case of n = 2 , the existence of an EFX allocation 
has not been settled in general. However, significant progress has been made for some spe-
cial cases. When n = 3 , the existence of an EFX allocation of goods is proved by Chaud-
hury et al. [24]. Based on a modified version of leximin solutions, Plaut and Roughgarden 
[37] show that an EFX allocation is guaranteed to exist when all agents have identical valu-
ations. The work most related to ours is by Amanatidis et al. [2], which is on goods alloca-
tion under additive setting, and provides connections between the above four relaxations of 
envy-freeness.

As for the price of fairness, Caragiannis et al. [21] show that, in the case of divisible 
goods, the price of proportionality is Θ(

√
n) and the price of equitability is Θ(n) . Bertsimas 

et al. [12] extend the study to other fairness notions, maximin5 fairness and proportional 
fairness, and they provide a tight bound on the price of fairness for a broad family of prob-
lems. Bei et al. [11] focus on indivisible goods and concentrate on the fairness notions that 
are guaranteed to exist. They present an asymptotically tight upper bound of Θ(n) on the 
price of maximum Nash welfare [26], maximum egalitarian welfare [18] and leximin. They 
also consider the price of EF1 but leave a gap between the upper bound O(n) and lower 
bound Ω(

√
n) . This gap is later closed by Barman et al. [8] with the results that, for both 

EF1 and 1
2
-MMS, the price of fairness is O(

√
n) . All the work reviewed above on the price 

of fairness is on the additive setting. On the other hand, the price of fairness has been stud-
ied in other multi-agent systems, such as machine scheduling [1] and kidney exchange [28].

2  Preliminaries

In the problem of a fair division of indivisible chores, we have a set N = {1, 2,… , n} of 
agents and a set E = {e1,… , em} of indivisible chores. As chores are the items with non-
positive values, each agent i ∈ N is associated with a cost function ci ∶ 2E → R

≥0 , which 
maps any subset of E into a non-negative real number. Throughout this paper, we assume 
ci(�) = 0 and ci is monotone, that is, ci(S) ≤ ci(T) for any S ⊆ T ⊆ E . We say a (set) func-
tion c(⋅) is:

• Additive, if c(S) =
∑

e∈S c(e) for any S ⊆ E.
• Submodular,6 if for any S, T ⊆ E , c(S ∪ T) + c(S ∩ T) ≤ c(S) + c(T).
• Subadditive, if for any S, T ⊆ E, c(S ∪ T) ≤ c(S) + c(T).

Clearly, additivity implies submodularity, which in turn implies subadditivity. For simplic-
ity, instead of ci({ej}) , we use ci(ej) to represent the cost of chore ej for agent i.

An allocation A ∶= (A1,… ,An) is an n-partition of E among agents in N, i.e., 
Ai ∩ Aj = � for any i ≠ j and ∪i∈NAi = E . Each subset S ⊆ E also refers to a bundle of 

5 It maximizes the lowest utility level among all the agents.
6 An equivalent definition is as follows: c(⋅) is submodular if for any S ⊆ T ⊆ E and 
e ∈ E⧵T , c(T ∪ {e}) − c(T) ≤ c(S ∪ {e}) − c(S).
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chores. For any bundle S and k ∈ ℕ
+ , we denote by Πk(S) the set of all k-partition of S, and 

|S| the number of chores in S.

2.1  Fairness criteria

We study envy-freeness and its (additive) relaxations and are concerned with both exact 
and approximate versions of these fairness notions.

Definition 2.1 For any � ≥ 1 , an allocation A = (A1,… ,An) is �-EF if for any 
i, j ∈ N, ci(Ai) ≤ � ⋅ ci(Aj) . In particular, 1-EF is simply called EF.

Definition 2.2 For any � ≥ 1 , an allocation A = (A1,… ,An) is �-EF1 if for any i, j ∈ N , 
there exists e ∈ Ai such that ci(Ai⧵{e}) ≤ � ⋅ ci(Aj) . In particular, 1-EF1 is simply called 
EF1.

Definition 2.3 For any � ≥ 1 , an allocation A = (A1,… ,An) is �-EFX if for any 
i, j ∈ N, ci(Ai⧵{e}) ≤ � ⋅ ci(Aj) for any e ∈ Ai with ci(e) > 0 . In particular, 1-EFX is simply 
called EFX.

Clearly, EFX7 is stricter than EF1. Next, we formally introduce the notion of maximin 
share. For any k ∈ [n] = {1,… , n} and bundle S ⊆ E , the maximin share of agent i on S 
among k agents is

We are interested in the allocation in which each agent receives cost no more than his max-
imin share.

Definition 2.4 For any � ≥ 1 , an allocation A = (A1,… ,An) is �-MMS if for any 
i ∈ N, ci(Ai) ≤ � ⋅MMSi(n,E) . In particular, 1-MMS is called MMS.

Definition 2.5 For any � ≥ 1 , an allocation A = (A1,… ,An) is �-PMMS if for any i, j ∈ N,

In particular, 1-PMMS is called PMMS.

Note that the right-hand side of the above inequality is equivalent to � ⋅MMSi(2,Ai ∪ Aj)

.

Example 2.1 Let us consider an example with three agents and a set E = {e1,… , e7} of 
seven chores. Agents have additive cost functions, displayed in the table below.

MMSi(k, S) = min
A∈Πk(S)

max
j∈[k]

ci(Aj).

ci(Ai) ≤ � ⋅ min
B∈Π2(Ai∪Aj)

max
{
ci(B1), ci(B2)

}
.

7 Note Plaut and Roughgarden [37] consider a stronger version of EFX by dropping the condition ci(e) > 0 . 
In this paper, all results about EFX, except Theorems 4.1 and 4.4, still hold under the stronger version.



Autonomous Agents and Multi-Agent Systems (2023) 37:39 

1 3

Page 7 of 39 39

e
1

e
2

e
3

e
4

e
5

e
6

e
7

Agent 1 2 3 3 0 4 2 1
Agent 2 3 1 3 2 5 0 5
Agent 3 1 5 10 2 3 1 3

It is not hard to verify that MMS1(3,E) = 5,MMS2(3,E) = 7, MMS3(3,E) = 10 . For 
instance, agent 2 can partition E into three bundles: {e1, e3}, {e2, e7}, {e4, e5, e6} , so that the 
maximum cost of any single bundle for her is 7. Moreover, there is no other partitions that 
can guarantee a better worst-case cost.

We now examine allocation A with A1 = {e1, e4, e7},A2 = {e2, e3, e6},A3 = {e5} . We 
can verify that ci(Ai) ≤ ci(Aj) for any i, j ∈ [3] and thus allocation A is EF that is then 
also EFX, EF1, MMS and PMMS. For another allocation B with B1 = {e1, e5, e7},B2 
= {e2, e4, e6},B3 = {e3} , agent 1 would still envy agent 2 even if chore e7 is eliminated 
from her bundle, and hence, allocation B is neither exact EF nor EFX. One can verify that 
B is indeed 7

3
-EF and 2-EFX. Moreover, allocation B is EF1 because agent 1 would not 

envy others if chore e5 is eliminated from her bundle and agent 3 would not envy others if 
chore e3 is eliminated from her bundle. As for the approximation guarantee on the notions 
of MMS and PMMS, it is not hard to verify that allocation B is 7

5
-MMS and 7

5
-PMMS.

2.2  Price of fairness

Let I = ⟨N,E, (ci)i∈N⟩ be an instance of the problem for allocating indivisible chores and 
let I  be the set of all such instances. The social cost of an allocation A = (A1,… ,An) 
is defined as SC(A) =

∑
i∈N ci(Ai) . The optimal social cost for an instance I, denoted by 

OPT(I) , is the minimum social cost over all allocations for this instance. Following previ-
ous work [11, 21], when study the price of fairness, we assume that agents cost functions 
are normalized to one, i.e., ci(E) = 1 for all i ∈ N.

The price of fairness is the supremum ratio over all instances between the social cost of 
the “best” fair allocation and the optimal social cost, where “best” refers to the one with 
the minimum cost. Since we consider several fairness criteria, let F be any given fairness 
criterion and define by F(I) as the set (possibly empty) of all allocations for instance I that 
satisfy fairness criterion F.

Definition 2.6 For any given fairness property F, the price of fairness with respect to F is 
defined as

Note that in the case where it is unclear whether F(I) ≠ � for any instances, we only 
consider those instances I with F(I) ≠ �.

2.3  Some simple observations

We begin with some initial results, which reveal some intrinsic difference in allocating goods 
and allocating chores as far as approximation guarantee is concerned. Our proof of any result 

PoF = sup
I∈I

min
A∈F(I)

SC(A)

OPT(I)
.
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in this paper either immediately follows the statement of the result, or can be found in the 
Appendix clearly indicated. First, we state a simple lemma concerning lower bounds of the 
maximin share.

Lemma 2.1 When agents have subadditive cost functions, for any i ∈ N and S ⊆ E , we 
have

Proof Let T = (T1,… , Tk) be the k-partition of S defining MMSi(k, S) ; that is 
maxTj ci(Tj) = MMSi(k, S) . We start with the lower bound 1

k
ci(S) . Without loss of general-

ity, assume ci(T1) ≥ ci(T2) ≥ ⋯ ≥ ci(Tk) and as a result, we have ci(T1) = MMSi(k, S) . 
Then, the following holds

where the second transition is due to subadditivity. Due to ci(T1) = MMSi(k, S) , we 
have MMSi(k, S) ≥

1

k
ci(S) . As for the lower bound ci(e) , for any given chore e ∈ S , 

there must exist a bundle Tj′ containing e. Due to the monotonicity of cost func-
tion, we have ci(Tj� ) ≥ ci(e) , which combines MMSi(k, S) = c1(T1) ≥ c1(Tj� ) , implying 
MMSi(k, S) ≥ ci(e) .   ◻

Based on the lower bounds in Lemma 2.1, we provide a trivial approximation guarantee for 
PMMS and MMS.

Lemma 2.2 When agents have subadditive cost functions, any allocation is 2-PMMS and 
n-MMS.

Proof Let A = (A1,… ,An) be an arbitrary allocation without any specified proper-
ties. We first show it’s already an n-MMS allocation. By Lemma  2.1, for each agent i, 
we have ci(E) ≤ n ⋅MMSi(n,E) . Then, due to the monotonicity of the cost function, 
ci(Ai) ≤ ci(E) ≤ n ⋅MMSi(n,E) holds.

Next, by a similar argument, we prove the result about 2-PMMS. By Lemma  2.1, 
ci(Ai ∪ Aj) ≤ 2MMSi(2,Ai ∪ Aj) holds for any i, j ∈ N . Again, due to the monotonicity of 
the cost function, we have ci(Ai) ≤ ci(Ai ∪ Aj) that implies ci(Ai) ≤ 2MMSi(2,Ai ∪ Aj) . 
Therefore, allocation A is also 2-PMMS, completing the proof.   ◻

As can be seen from the proof of Lemma 2.2, in allocating chores, if one assigns all chores 
to one agent, then the allocation still has a bounded approximation for PMMS and MMS. 
However, when allocating goods, if an agent receives nothing but his maximin share is posi-
tive, then clearly the corresponding allocation has an infinite approximation guarantee for 
PMMS and MMS.

MMSi(k, S) ≥
1

k
ci(S),∀k ∈ [n]; MMSi(k, S) ≥ ci(e),∀e ∈ S,∀k ∈ [n].

kci(T1) ≥

k∑
j=1

ci(Tj) ≥ ci

(
k⋃

j=1

Tj

)
= ci(S),
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3  Guarantess from envy‑based relaxations

Let us start with EF. According to the definitions, for any � ≥ 1 , �-EF is stronger than �
-EFX and �-EF1. The following theorems present the approximation guarantee of �-EF 
for MMS and PMMS.

Theorem 3.1 When agents have additive cost functions, for any � ≥ 1 , an �-EF allocation 
is also n�

n−1+�
-MMS, and this result is tight.

Proof We first prove the upper bound and focus on agent i. Let A = (A1,… ,An) be an �
-EF allocation, then according to its definition, ci(Ai) ≤ � ⋅ ci(Aj) holds for any j ∈ N . 
By summing up j over N⧵{i} , we have (n − 1)ci(Ai) ≤ � ⋅

∑
j∈N⧵{i} ci(Aj) and as a 

result, (n − 1 + �)ci(Ai) ≤ � ⋅

∑
j∈N ci(Aj) = � ⋅ ci(E) where the last transition owing 

to the additivity of cost functions. On the other hand, from Lemma  2.1, it holds that 
MMSi(n,E) ≥

1

n
ci(E) , implying the ratio

Regarding tightness, consider the following instance with n agents and n2 chores denoted 
as {e1,… , en2} . Agents have an identical cost profile and for every i ∈ [n] , ci(ej) = � for 
1 ≤ j ≤ n and ci(ej) = 1 for n + 1 ≤ j ≤ n2 . Consider allocation B = (B1,… ,Bn) with 
Bi = {e(i−1)n+1,… , ein} for any i ∈ N . It is not hard to verify that allocation B is �-EF. As 
for MMS1(n,E) , since in total we have n chores with each cost � and (n − 1)n chores with 
each cost 1, then in the partition defining MMS1(n,E) , each bundle contains exactly one 
chore with cost � and n − 1 chores with cost 1. Consequently, we have 
MMS1(n,E) = n − 1 + � and the ratio c1(B1)

MMS1(n,E)
=

n�

n−1+�
 .   ◻

Theorem 3.2 When agents have additive cost functions, for any � ≥ 1 , an �-EF allocation 
is also 2�

1+�
-PMMS, and this result is tight.

Proof We first prove the upper bound. Let A = (A1,A2,… ,An) be an �-EF allocation, then 
according to the definition, for any i, j ∈ N , ci(Ai) ≤ � ⋅ ci(Aj) holds. By additivity, we have 
ci(Ai ∪ Aj) = ci(Ai) + ci(Aj) ≥ (1 +

1

�
) ⋅ ci(Ai) , and consequently, ci(Ai) ≤

�

�+1
⋅ ci(Ai ∪ Aj) 

holds. On the other hand, from Lemma 2.1, we know ci(Ai ∪ Aj) ≤ 2 ⋅MMSi(2,Ai ∪ Aj) , 
and therefore the following holds

As for tightness, consider an instance with n agents and 2n chores denoted as {
e1, e2,… , e2n

}
 . Agents have identical cost profile and for every i ∈ [n] , ci(e1) = ci(e2) = � 

and ci(ej) = 1 for 3 ≤ j ≤ 2n . Now, consider an allocation B = (B1,… ,Bn) where 
Bi = {e2i−1, e2i} for any i ∈ N . It is not hard to verify that allocation B is �-EF and except 
for agent 1, no one else will violate the condition of PMMS. For any j ≥ 2 , one can calcu-
late MMS1(2,B1 ∪ Bj) = 1 + � , yielding the ratio c1(B1)

MMS1(2,B1∪Bj)
=

2�

1+�
 , as required.   ◻

Theorem 3.2 indicates that the approximation guarantee of �-EF for PMMS is inde-
pendent of the number of agents. However, according to Theorem 3.1, its approximation 

ci(Ai)

MMSi(n,E)
≤

n�

n − 1 + �
.

ci(Ai) ≤
2�

� + 1
⋅MMSi(2,Ai ∪ Aj).
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guarantee for MMS is affected by the number of agents. Moreover, this guarantee ratio 
converges to � as n goes to infinity.

We remark that none of EFX, EF1, PMMS and MMS has a bounded guarantee for EF. 
We show this by a simple example. Consider an instance of two agents and one chore, 
and the chore has a positive cost for both agents. Assigning the chore to an arbitrary agent 
results in an allocation that satisfies EFX, EF1, PMMS and MMS, simultaneously. How-
ever, since one agent has a positive cost on his own bundle and zero cost on other agents’ 
bundle, such an allocation has an infinite approximation guarantee for EF.

Next, we consider approximation of EFX and EF1.

Proposition 3.1 When agents have additive cost functions, an �-EFX allocation is �-EF1 
for any � ≥ 1 . On the other hand, an EF1 allocation is not �-EFX for any � ≥ 1.

Proof We first show the positive part. Let A = (A1,A2,… ,An) be an �-EFX allocation, 
then according to its definition, ∀i, j ∈ N,∀e ∈ Ai with ci(e) > 0 , ci(Ai⧵{e}) ≤ � ⋅ ci(Aj) 
holds. This implies A is also �-EF1.

For the impossibility result, consider an instance with n agents and 2n chores denoted as 
{e1, e2,… , e2n} . Agents have identical cost profile. The cost function of agent 1 is: 
c1(e1) = p, c1(ej) = 1,∀j ≥ 2 where p ≫ 1 . Now consider an allocation B = (B1,… ,Bn) 
with Bi = {e2i−1, e2i},∀i ∈ N . It is not hard to see allocation B is EF1 and except for agent 
1, no one else will envy the bundle of others. Thus, we only concern agent 1 when calcu-
late the approximation guarantee for EFX. By removing chore e2 from bundle B1 , 
c1(B1⧵{e2})

c1(Bj)
=

p

2
 holds for any j ∈ N⧵{1} , and the ratio p

2
→ ∞ as p → ∞ .   ◻

Next, we consider the approximation guarantee of EF1 for MMS. In allocating goods, 
Amanatidis et al. [2] present a tight result that an �-EF1 allocation is O(n)-MMS. In con-
trast, in allocating chores, �-EF1 can have a much better guarantee for MMS.

Theorem 3.3 When agents have additive cost functions, for any � ≥ 1 and n ≥ 2 , an �-EF1 
allocation is also n�+n−1

n−1+�
-MMS, and this result is tight.

Proof We first prove the upper bound. Let A = (A1,… ,An) be an �-EF1 allocation and 
the approximation guarantee for MMS is determined by agent i. We can further assume 
ci(Ai) > 0 ; otherwise agent i meets the condition of MMS and we are done. Let ē be the 
chore with largest cost for agent i in bundle Ai , i.e., ē ∈ argmaxe∈Ai

ci(e).
By the definition of �-EF1, for any j ∈ N⧵{i} , ci(Ai⧵{ē}) ≤ 𝛼 ⋅ ci(Aj) holds. Then, by 

summing up j over N⧵{i} and adding a term �ci(Ai) on both sides, the following holds,

From Lemma  2.1, we have MMSi(n,E) ≥ max{
1

n
ci(E), ci(ē)} , and by additivity, it holds 

that

Inequality (2) is equivalent to ci(Ai)

MMSi(n,M)
≤

n�+n−1

n−1+�
 , as required.

As for tightness, consider the following instance with n agents and a set 
E = {e1,… , en2−n+1} of n2 − n + 1 chores. Agents have an identical cost profile and for 

(1)𝛼 ⋅

∑
j∈N

ci(Aj) ≥ (n − 1 + 𝛼)ci(Ai) − (n − 1)ci(ē).

(2)n�MMSi(n,E) ≥ (n − 1 + �)ci(Ai) − (n − 1)MMSi(n,E).
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every i ∈ [n] , ci(e1) = � + n − 1 , ci(ej) = � for any 2 ≤ j ≤ n and ci(ej) = 1 for j ≥ n + 1 . 
Now, consider an allocation B =

{
B1,… ,Bn

}
 with B1 =

{
e1,… , en

}
 and 

Bj = {en+(n−1)(j−2)+1,… , en+(n−1)(j−1)} for any j ≥ 2 . Then, we have ci(Bj) = n − 1 for any 
i ∈ [n] and j ≥ 2 . Accordingly, except for agent 1, no one else will violate the condition of 
�-EF1 and MMS. As for agent 1, since c1(B1⧵{e1}) = (n − 1)� = �c1(Bj),∀j ≥ 2 , then we 
can claim that allocation B is �-EF1. To calculate MMS1(n,E) , consider an allocation 
T = (T1,… , Tn) with T1 = {e1} and Tj = {Bj ∪

{
ej
}
} for any 2 ≤ j ≤ n . It is not hard to 

verify that c1(Tj) = � + n − 1 for any j ∈ N . Therefore, we have MMS1(n,E) = � + n − 1 
implying the ratio c1(B1)

MMS1(n,E)
=

n�+n−1

n−1+�
 , completing the proof.   ◻

We now study �-EFX in terms of its approximation guarantee for MMS and provide 
upper and lower bounds for general � ≥ 1 or n ≥ 2.

Theorem 3.4 When agents have additive cost functions, for any � ≥ 1 and n ≥ 2 , an �-EFX 
allocation is min

{
2n�

n−1+2�
,
n�+n−1

n−1+�

}
-MMS, while it is not �-MMS for any 

𝛽 < max
{

2n𝛼

2𝛼+2n−3
,

2n

n+1

}
.

Proof We first prove the upper bound. Let A = (A1,… ,An) be an �-EFX allocation with 
� ≥ 1 and the approximation guarantee for MMS is determined by agent i. The upper 
bound n�+n−1

n−1+�
 directly follows from Theorems 3.1 and 3.3. In what follows, we prove the 

upper bound 2n�

n−1+2�
 . We assume ci(Ai) > 0 ; otherwise agent i meets the condition of MMS 

and we are done. We further assume that every chore in Ai has positive cost for agent i 
since zero-cost chore does not affect the approximation guarantee for EFX or MMS. Let e∗ 
be the chore in bundle Ai having the minimum cost for agent i, i.e., e∗ ∈ argmine∈Ai

ci(e) . 
Next, we divide the proof into two cases.

Case 1: |Ai| = 1 . Then e∗ is the unique element in Ai , and thus ci(Ai) = ci(e
∗) . By 

Lemma 2.1, ci(e∗) ≤ MMSi(n,E) holds, and thus, ci(Ai) ≤ MMSi(n,E).
Case 2: |Ai| ≥ 2 . By the definition of �-EFX, for any j ∈ N⧵{i} , ci(Ai⧵{e

∗}) ≤ � ⋅ ci(Aj) . 
Since e∗ ∈ argmine∈Ai

ci(e) and |Ai| ≥ 2 , we have ci(e∗) ≤
1

2
ci(Ai) . Then, the following 

holds,

By summing up j over N⧵{i} and adding a term �ci(Ai) on both sides of inequality (3), the 
following holds

On the other hand, from Lemma 2.1, we know MMSi(n,E) ≥
1

n
ci(E) , which combines ine-

quality (4) yielding the ratio

Regarding the lower bound 2n

n+1
 , consider an instance with n agents and a set 

E =
{
e1, e2,… , e2n

}
 of 2n chores. Agents have identical cost profile and ci(ej) = ⌈ j

2
⌉ for 

(3)� ⋅ ci(Aj) ≥ ci(Ai) − ci(e
∗) ≥

1

2
ci(Ai), ∀j ∈ N ⧵ {i}.

(4)� ⋅ ci(E) = � ⋅

∑
j∈N⧵{i}

ci(Aj) + � ⋅ ci(Ai) ≥
n − 1 + 2�

2
ci(Ai).

ci(Ai)

MMSi(n,M)
≤

2n�

n − 1 + 2�
.
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any i, j. It is not hard to verify that for any i ∈ [n] , MMSi(n,E) = n + 1 . Then, consider the 
allocation B = (B1,… ,Bn) with B1 =

{
e2n−1, e2n

}
 and Bi = {ei−1, e2n−i} for any i ≥ 2 . 

Accordingly, we have ci(Bj) = n for any i ∈ [n] and j ≥ 2 . Thus, except for agent 1, no one 
else will violate the condition of MMS and EFX. As for agent 1, since 
c1(B1⧵{e2n}) = c1(B1⧵{e2n−1}) = n , envy can be eliminated by removing any single chore. 
Hence, the allocation B is EFX and its approximation guarantee for MMS equals to 

c1(B1)

MMS1(n,E)
=

2n

n+1
 , as required.

Next, for lower bound 2n�

2�+2n−3
 , let us consider an instance with n agents and a set 

E = {e1,… , e2n2−2n} of 2n2 − 2n chores. We focus on agent 1 with cost function c1(ej) = 2� 
for 1 ≤ j ≤ n and c1(ej) = 1 for j ≥ n + 1 . Consider the allocation B = (B1,… ,Bn) with 
B1 = {e1,… , en},B2 = {en+1,… , e3n−2} and Bj = {e3n−1+(j−3)(2n−1),… , e3n−2+(j−2)(2n−1)} 
for any j ≥ 3 . Accordingly, bundle B2 contains 2n − 2 chores and Bj contains 2n − 1 chores 
for any j ≥ 3 . For any agent i ≥ 2 , her cost functions is ci(e) = 0 for e ∈ Bi and ci(e) = 1 for 
e ∈ E⧵Bi . Consequently, except for agent 1, no one else violate the condition of MMS and 
�-EFX. As for agent 1, his cost on B2 is the smallest over all bundles and 
c1(B1⧵{e1}) = 2�(n − 1) = �c1(B2) , as a result, the allocation B is �-EFX. For MMS1(n,E) , 
it happens that E can be evenly divided into n bundles of the same cost (for agent 1), so we 
have MMS1(n,E) = 2� + 2n − 3 implying the ratio c1(B1)

MMS1(n,E)
=

2n�

2�+2n−3
 , completing the 

proof.   ◻

The performance bound in Theorem  3.4 is almost tight since 
n𝛼+n−1

n−1+𝛼
−

2n𝛼

2𝛼+2n−3
<

n−1

n−1+𝛼
< 1 . In addition, we highlight that the upper and lower bounds 

provided in Theorem 3.4 are tight in two interesting cases: (i) � = 1 and (ii) n = 2.
On the approximation of EFX and EF1 for PMMS, we have the following theorems.

Theorem 3.5 When agents have additive cost functions, for any � ≥ 1 , an �-EFX allocation 
is also 4�

2�+1
-PMMS, and this guarantee is tight.

Proof We first prove the upper bound. Let A = (A1,A2,… ,An) be an �-EFX allocation 
and the approximation guarantee for PMMS is determined by agent i. We can assume 
ci(Ai) > 0 ; otherwise agent i meets the condition of PMMS and we are done. Let e∗ be 
the chore in Ai having the minimum cost for agent i, i.e., e∗ ∈ argmine∈Ai

ci(e) . Then, we 
divide the proof into two cases.

Case 1: |Ai| = 1 . Then chore e∗ is the unique element in Ai , and thus ci(e∗) = ci(Ai) . 
By Lemma 2.1, ci(e∗) ≤ MMSi(2,Ai ∪ Aj) holds for any j ∈ N⧵{i} . As a result, we have 
ci(Ai) ≤ MMSi(2,Ai ∪ Aj),∀j ∈ N⧵{i}.

Case 2: |Ai| ≥ 2 . Since e∗ ∈ argmine∈Ai
ci(e) and |Ai| ≥ 2 , we have ci(e∗) ≤

1

2
ci(Ai) , and 

equivalently, ci(Ai⧵{e
∗}) = ci(Ai) − ci(e

∗) ≥
1

2
ci(Ai) . Then, based on the definition of �-

EFX allocation, for any j ∈ N⧵{i} , the following holds

Combining Lemma 2.1 and Inequality (5), for any j ∈ N⧵{i} , we have

Therefore, for any j ∈ N⧵{i} , ci(Ai) ≤
4�

2�+1
⋅MMSi(2,Ai ∪ Aj) holds, as required.

(5)� ⋅ ci(Aj) ≥ ci(Ai ⧵ {e
∗}) ≥

1

2
⋅ ci(Ai).

MMSi(2,Ai ∪ Aj) ≥
1

2
(ci(Ai) + ci(Aj)) ≥

2� + 1

4�
ci(Ai).
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As for the tightness, consider an instance with n agents and a set E = {e1,… , e2n} of 2n 
chores. Agents have identical cost profile and for every i ∈ [n] , ci(e1) = ci(e2) = 2� and 
ci(ej) = 1 for 3 ≤ j ≤ 2n . Consider the allocation B = (B1,… ,Bn) with 
Bi = {e2i−1, e2i},∀i ∈ N . It is not hard to verify that, except for agent 1, no one else would 
violate the condition of EFX and PMMS. For agent 1, by removing any single chore from 
his bundle, the remaining cost is � times of the cost on others’ bundle. Thus, allocation B is 
�-EFX. Notice that for any j ≥ 2 , bundle B1 ∪ Bj contains exactly two chores with cost 2� 
and two chores with cost 1, then MMS1(2,B1 ∪ Bj) = 2� + 1 , implying for any j ≠ 1 , 

c1(B1)

MMS1(2,B1∪Bj)
=

4�

2�+1
 .   ◻

Theorem 3.6 When agents have additive cost functions, for any � ≥ 1 , an �-EF1 allocation 
is also 2�+1

�+1
-PMMS, and this guarantee is tight.

Proof We first prove the upper bound part. Let A = (A1,… ,An) be an �-EF1 alloca-
tion and the approximation guarantee for PMMS is determined by agent i. We can 
assume ci(Ai) > 0 ; otherwise agent i meets the condition of PMMS and we are done. 
To study PMMS, we fix another agent j ∈ N⧵{i} , and let e∗ ∈ Ai be the chore such that 
ci(Ai⧵{e

∗}) ≤ � ⋅ ci(Aj) . We divide our proof into two cases.
Case 1: ci(e

∗) > ci(Ai ∪ Aj ⧵ {e
∗}) . Consider 

{
{e∗},Ai ∪ Aj⧵{e

∗}
}
 , a 2-partition 

of Ai ∪ Aj . Since ci(e∗) > ci(Ai ∪ Aj⧵{e
∗}) , we can claim that this partition defining 

MMSi(2,Ai ∪ Aj) , and accordingly, MMSi(2,Ai ∪ Aj) = ci(e
∗) holds. From Lemma 2.1 and 

the definition of �-EF1, the following holds

Then, based on (6) and the fact MMSi(2,Ai ∪ Aj) = ci(e
∗) , we have

Case 2: ci(e
∗) ≤ ci(Ai ∪ Aj⧵{e

∗}) . By the definition of �-EF1, we have 
ci(Ai⧵{e

∗}) ≤ � ⋅ ci(Aj) . As a consequence,

where the first inequality transition is due to ci(e∗) ≤ ci(Ai ∪ Aj⧵{e
∗}) . Using Inequality (7) 

and additivity of cost function, we have ci(Ai) ≤
2�+1

2�+2
⋅ ci(Ai ∪ Aj) . By Lemma 2.1, we have 

MMSi(2,Ai ∪ Aj) ≥
1

2
ci(Ai ∪ Aj) and then, the following holds,

As for tightness, consider the following instance of n agents and a set E = {e1,… , en+1} of 
n + 1 chores. Agents have an identical cost profile and for every i ∈ [n] , 
ci(e1) = � + 1, ci(e2) = � and ci(ej) = 1 for j ≥ 3 . Then, consider the allocation 
B = (B1,… ,Bn) with B1 = {e1, e2} and Bj = {ej+1},∀j ≥ 2 . It is not hard to verify that 
allocation B satisfying �-EF1, and moreover, the guarantee for PMMS is determined by 
agent 1. Notice that for any j ≥ 2 , the combined bundle B1 ∪ Bj contains three chores with 

(6)ci(e
∗) ≥

1

2
(ci(Ai) + ci(Aj)) ≥

1

2
ci(Ai) +

1

2�
⋅ ci(Ai ⧵ {e

∗}).

ci(Ai)

MMSi(2,Ai ∪ Aj)
≤

2� + 1

� + 1
.

(7)ci(Ai) = ci(e
∗) + ci(Ai ⧵ {e

∗}) ≤ 2ci(Ai ⧵ {e
∗}) + ci(Aj) ≤ (2� + 1) ⋅ ci(Aj),

ci(Ai)

MMSi(2,Ai ∪ Aj)
≤

2� + 1

� + 1
.
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cost � + 1, �, 1 , respectively. Thus, for any j ≥ 2 , we have MMS1(2,B1 ∪ Bj) = � + 1 , 
implying the ratio c1(B1)

MMS1(2,B1∪Bj)
=

2�+1

�+1
 .   ◻

In addition to the approximation guarantee for PMMS, Theorem 3.6 also has a direct 
implication in approximating PMMS algorithmically. It is known that an EF1 allocation 
can be found efficiently by allocating chores in a round-robin fashion — each of the agent 
1,… , n picks her most preferred item in that order, and repeat until all chores are assigned 
[4]. Therefore, Theorem 3.6 with � = 1 leads to the following corollary, which is current 
the best algorithmic result for PMMS (in chores allocation), to the best of our knowledge.

Corollary 3.1 When agents have additive cost functions, the round-robin algorithm outputs 
a 3

2
-PMMS allocation in polynomial time.

We remark that the established guarantees from envy-based fairness criteria, together 
with the result in [2], can reveal a sharp contrast between the settings of indivisible goods 
and chores. In particular, as shown by Theorem 3.3, in allocation of chores, an EF1 alloca-
tion is also 2-MMS, while Amanatidis et al. [2] show that in allocation of goods, an EF1 
allocation cannot achieve better than n-MMS. In addition, these guarantees can be imple-
mented to translate an approximation algorithm of one fairness notion to another. Theo-
rem 3.3 indicates that a polynomial-time algorithm of EF1, such as round-robin, is also an 
algorithm of 2-MMS. The 2-MMS approximation matches the result in [7], and recently 
this approximation ratio has been pushed to 11/9 by Huang and Lu [34]. As for the guaran-
tees from �-EFX, the results at first glance are not as useful as the guarantees from �-EF1, 
because few results regarding EFX have been established with respect to chores. Note that 
with respect to goods, the guarantees from �-EFX lead to 4/7-GMMS8 allocations [25]. 
We believe that an efficient algorithm of �-EFX with respect to chores would help develop 
efficient algorithms for other fairness criteria, such as PMMS.

4  Guarantees from share‑based relaxations

Note that PMMS implies EFX in goods allocation according to Caragiannis et  al. [22]. 
This implication also holds in allocating chores as stated in our theorem below.

Theorem 4.1 When agents have additive cost functions, a PMMS allocation is also EFX.

Proof Let A = (A1,… ,An) be a PMMS allocation. For the sake of contradiction, assume A 
is not EFX and agent i violates the condition of EFX, which implies ci(Ai) > 0.

As agent i violates the condition of EFX, there must exist an agent j ∈ N and e∗ ∈ Ai 
with ci(e∗) > 0 such that ci(Ai⧵{e

∗}) > ci(Aj) . Note chore e∗ is well-defined owing 
to ci(Ai) > 0 . Now, consider the 2-partition 

{
Ai⧵{e

∗},Aj ∪ {e∗}
}
∈ Π2(Ai ∪ Aj) . By 

ci(Ai⧵{e
∗}) > ci(Aj) , the following holds:

8 An allocation is called group-wise maximin share (GMMS) if for every subgroup of agents of size k, 
each member of the subgroup receives her 1-out-of-k maximin share restricted to the items received by this 
subgroup.
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where the last transition is by the definition of PMMS. Inequality (8) is a contradiction, and 
therefore, A must be an EFX allocation.   ◻

Since EFX implies EF1, Theorem 4.1 directly leads to the following result.

Theorem 4.2 When agents have additive cost functions, a PMMS allocation is also EF1.

For approximate version of PMMS, when allocating goods it is shown in Amanatidis 
et al. [2] that for any � , �-PMMS can imply �

2−�
-EF1. However, in the case of chores, our 

results indicate that �-PMMS has no bounded guarantee for EF1.

Proposition 4.1 When agents have additive cost functions, an �-PMMS allocation with 
1 < 𝛼 ≤ 2 is not necessarily �-EF1 for any � ≥ 1.

Proof It suffices to show an �-PMMS allocation with � ∈ (1, 2) can not have a bounded 
guarantee for the notion of EF1. Consider an instance with n agents and n + 1 chores e1 ..., 
en+1 . Agents have identical cost profile and for any i, we let ci(e1) =

1

�−1
 , ci(e2) = 1 and 

ci(ej) = � for 3 ≤ j ≤ n + 1 where � takes arbitrarily small positive value. Then, consider an 
allocation B = (B1,… ,Bn) with B1 = {e1, e2} and Bj = {ej+1} for 2 ≤ j ≤ n . Consequently, 
except for agent 1, other agents violate neither EF1 nor �-PMMS. As for agent 1, notice 
that 1

𝛼−1
> 1 + 𝜖 and thus, for any j ≥ 2 , the combined bundle B1 ∪ Bj admits 

MMS1(2,B1 ∪ Bj) =
1

�−1
 implying c1(B1)

MMS1(2,B1∪Bj)
= � . Thus, allocation B is �-PMMS. For 

the guarantee on EF1, as c1(Bj) = � for any j ≥ 2 , then removing the chore with the largest 
cost from B2 still yields the ratio c1(B1⧵{e1})

c1(Bj)
=

1

�
→ ∞ as � → 0 .   ◻

Since for any � ≥ 1 , �-EFX is stricter than �-EF1, the impossibility result on EF1 in 
Proposition 4.1 is also true for EFX.

Proposition 4.2 When agents have additive cost functions, an �-PMMS allocation with 
1 < 𝛼 ≤ 2 is not necessarily a �-EFX allocation for any � ≥ 1.

We now study the approximation guarantee of PMMS for MMS. Since these two 
notions coincide when there are only two agents, we consider the situation where n ≥ 3 . 
We first provide a tight bound for n = 3 and then give an almost tight bound for general 
n.

Theorem 4.3 When agents have additive cost functions, for n = 3 , a PMMS allocation is 
also 4

3
-MMS, and moreover, this bound is tight.

Proof See Appendix A.1.   ◻

For general n, we use the connections between PMMS, EFX and MMS to find the 
approximation guarantee of PMMS for MMS. According to Theorem  4.1, a PMMS 

(8)
ci(Ai) > max

{
ci(Ai ⧵ {e

∗}), ci(Aj ∪ {e∗})
}

≥ min
B∈Π2(Ai∪Aj)

max
{
ci(B1), ci(B2)

}
≥ ci(Ai),
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allocation is also EFX, and by Theorem 3.4, EFX implies 2n

n+1
-MMS. As a result, we can 

claim that PMMS also implies 2n

n+1
-MMS. With the following theorem we show that this 

guarantee is almost tight.

Theorem 4.4 When agents have additive cost functions, for n ≥ 4 , a PMMS allocation is 
2n

n+1
-MMS but not necessarily �-MMS for any 𝛽 <

2n+2

n+3
.

Proof The positive part directly follows from Theorems  4.1 and  3.4. As for the lower 
bound, consider an instance with n (odd) agents and a set E = {e1,… , e2n} of 2n chores. 
We focus on agent 1 and his cost function is c1(ej) =

n+1

2
 for 1 ≤ j ≤ n and c1(ej) = 1 for 

n + 1 ≤ j ≤ 2n . Consider the allocation B = (B1,… ,Bn) with B1 = {e1, e2} , 
Bn = {en+1,… , e2n} and Bj = {ej+1} for any j = 2,… , n − 1 . For agents i ≥ 2 , her cost 
function is ci(e) = 0 for any e ∈ Bi and ci(e) = 1 for any e ∈ E⧵Bi , and thus agent i has zero 
cost under allocation B . As a result, except for agent 1, other agents violate neither MMS 
nor PMMS. For agent 1, we have c1(B1) ≤ MMS1(2,B1 ∪ Bj) holds for any j ≥ 2 , which 
implies allocation B is PMMS. For MMS1(n,E) , it happens that E can be evenly divided 
into n bundles of the same cost (for agent 1), so we have MMS1(n,E) =

n+3

2
 yielding the 

ratio c1(B1)

MMS1(n,E)
=

2n+2

n+3
 .   ◻

Next, we investigate the approximation guarantee of approximate PMMS for MMS. 
Let us start with an example of six chores E = {e1,… , e6} and three agents. We focus 
on agent 1 and the cost function of agent 1 is c1(ej) = 1 for j = 1, 2, 3 and c1(ej) = 0 for 
j = 4, 5, 6 , thus clearly, MMS1(3,E) = 1 . Consider an allocation A = (A1,A2,A3) with 
A1 = {e1, e2, e3} . It is not hard to verify that allocation A is a 3

2
-PMMS allocation and also a 

3-MMS allocation. Combining the result in Lemma 2.2, we observe that allocation A only 
has a trivial guarantee on the notion of MMS. Motivated by this example, we focus on �
-PMMS allocations with 𝛼 <

3

2
.

Theorem  4.5 When agents have additive cost functions, for n ≥ 3 and 1 < 𝛼 <
3

2
 , an �-

PMMS allocation is n�

�+(n−1)(1−
�

2
)
-MMS, but not necessarily ( n�

�+(n−1)(2−�)
− �)-MMS for any 

𝜖 > 0.

Before we can prove the above theorem, we need the following two lemmas.

Lemma 4.3 For any i ∈ N and S ⊆ E , suppose MMSi(2, S) is defined by a 2-partition 
T = (T1, T2) with ci(T1) = MMSi(2, S) . If the number of chores in T1 is at least two, then 

ci(S)

MMSi(2,S)
≥

3

2
.

Proof For the sake of contradiction, we assume ci(S)

MMSi(2,S)
<

3

2
 . Since ci(T1) = MMSi(2, S) , 

we have ci(T1) >
2

3
ci(S) , and accordingly, ci(T2) <

1

3
ci(S) due to additivity. Thus, 

ci(T1) − ci(T2) >
1

3
ci(S) holds, and we claim that each single chore in T1 has cost strictly 

larger than 1
3
ci(S) for agent i; otherwise, by moving the chore with the smallest cost in T1 to 

T2 , one can find a 2-partition in which the cost of larger bundle is smaller than ci(T1) , a 
contradiction. Based on our claim, we have |T1| = 2 . Notice that for any e ∈ T1 , 
ci(e) > ci(T2) holds. As a result, moving one chore from T1 to T2 results in a 2-partition, in 
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which the cost of larger bundle is strictly smaller than ci(T1) , contradicting the construction 
of allocation T .   ◻

Lemma 4.4 For any i ∈ N and S1, S2 ⊆ E , if MMSi(2, S1 ∪ S2) > MMSi(2, S1) , then 
MMSi(2, S1 ∪ S2) ≤

1

2
ci(S1) + ci(S2).

Proof Suppose MMSi(2, S1) is defined by partition (T1, T2) and we have MMSi(2, S1) = ci(T1) . 
We distinguish two cases according to the value of ci(T1) . If ci(T1) =

1

2
ci(S1) , then con-

sider (T1 ∪ S2, T2) , a 2-partition of S1 ∪ S2 . Clearly, MMSi(2, S1 ∪ S2) ≤ ci(T1 ∪ S2) =
1
2 ci(S1) + ci(S2) . 

If ci(T1) >
1

2
ci(S1) , since MMSi(2, S1 ∪ S2) > MMSi(2, S1) , we can claim that 

ci(T1) − ci(T2) < ci(S2) ; otherwise, considering partition {T1, T2 ∪ S2} , we have 
MMSi(2, S1 ∪ S2) ≤ ci(T1) = MMSi(2, S1) , a contradiction. Now let us consider {T2 ∪ S2, T1} , 
another 2-partition of S1 ∪ S2 . According to our claim, we have ci(T2 ∪ S2) > ci(T1) , and 
thus, MMSi(2, S1 ∪ S2) ≤ ci(T2 ∪ S2) <

1

2
ci(S1) + ci(S2) , where the last inequality is due to 

ci(T2) = ci(S1) − ci(T1) <
1

2
ci(S1) .   ◻

Proof of Theorem 4.5 We first prove the upper bound. Let A = (A1,… ,An) be an �-PMMS allo-
cation and we focus our analysis on agent i. Let �(i) = maxj≠i

ci(Ai)

MMSi(2,Ai∪Aj)
 and j(i) be the index 

such that MMSi(2,Ai ∪ Aj(i) ) ≤ MMSi(2,Ai ∪ Aj) for any j ∈ N⧵{i} (tie breaks arbitrarily). By 
such a construction, clearly, � = maxi∈N �(i) and ci(Ai) = �(i)

⋅MMSi(2,Ai ∪ Aj(i) ) . Then, we 
split our proof into two different cases.

Case 1: ∃j ≠ i such that MMSi(2,Ai ∪ Aj) = MMSi(2,Ai) . Then �(i) =
ci(Ai)

MMSi(2,Ai)
 holds. 

Suppose MMSi(2,Ai) is defined by the 2-partition (T1, T2) with ci(T1) = MMSi(2,Ai) . If 
|T1| ≥ 2 , by Lemma 4.3, we have �(i) =

ci(Ai)

MMSi(2,Ai)
≥

3

2
 , contradicting to 𝛼(i) ≤ 𝛼 <

3

2
 . As a 

result, we can further assume |T1| = 1 . Then, by Lemma 2.1, we have MMSi(n,E) ≥ ci(T1) 
and accordingly, ci(Ai)

MMSi(n,E)
≤

ci(Ai)

ci(T1)
= �(i) ≤ � . For 1 < 𝛼 <

3

2
 and n ≥ 3 , it is not hard to ver-

ify that � ≤
n�

�+(n−1)(1−
�

2
)
 , completing the proof for this case.

Case 2: ∀j ≠ i , MMSi(2,Ai ∪ Aj) > MMSi(2,Ai) holds. According to Lemma  4.4, for 
any j ≠ i , the following holds

Due to the construction of �(i) , for any j ≠ i , we have ci(Ai) ≤ �(i)
⋅MMSi(2,Ai ∪ Aj) . Com-

bining Inequality (9), we have ci(Aj) ≥
2−�(i)

2�(i)
ci(Ai) for any j ≠ i . Thus, the following holds,

The last expression in (10) is monotonically increasing in �(i) , and accordingly, we have

As for the lower bound, consider an instance of n (even) agents and a set E = {e1,… , en2} 
of n2 chores. Agents have identical cost functions and for any i, we let ci(ej) = � for 

(9)MMSi(2,Ai ∪ Aj) ≤
1

2
ci(Ai) + ci(Aj).

(10)
ci(Ai)

MMSi(n,E)
≤

nci(Ai)

ci(E)
≤

nci(Ai)

ci(Ai) + (n − 1)
2−�(i)

2�(i)
ci(Ai)

.

ci(Ai)

MMSi(n,E)
≤

n�

� + (n − 1)(1 −
�

2
)
.
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1 ≤ j ≤ n and ci(ej) = 2 − � for n + 1 ≤ j ≤ n2 . Consider the allocation B = (B1,… ,Bn) 
with Bi = {e(i−1)n+1,… , eni} for any i ∈ [n] . Since 𝛼 > 1 , it is not hard to verify that, except 
for agent 1, no one else violates the condition of PMMS, and accordingly, the approxima-
tion guarantee for PMMS is determined by agent 1. For agent 1, since n is even, 
MMS1(2,B1 ∪ Bj) = n holds for any j ≥ 2 , and due to c1(B1) = n� , we can claim that the 
allocation B is �-PMMS. Moreover, it is not hard to verify that 
MMS1(n,E) = � + (n − 1)(2 − �) and so c1(B1)

MMS1(n,E)
=

n�

�+(n−1)(2−�)
 , completing the proof.  

 ◻

The motivating example right before Theorem  4.5, unfortunately, only works for the 
case of n = 3 . When n becomes larger, an �-PMMS allocation with � ≥

3

2
 can still provide 

a non-trivial approximation guarantee on the notion of MMS.
We remain to consider the approximation guarantee of MMS for other fairness criteria. 

Notice that all of EFX, EF1 and PMMS can have non-trivial guarantee for MMS (i.e., bet-
ter than n-MMS). However, the converse is not true and even the exact MMS does not pro-
vide any substantial guarantee for the other three criteria.

Proposition 4.5 When agents have additive cost functions, for any n ≥ 3 , an MMS alloca-
tion is not necessarily �-PMMS for any 1 ≤ 𝛽 < 2.

Proof Consider an instance with n agents and p + 2n − 1 chores denoted as {e1,… , e2n+p−1} 
where p ∈ ℕ

+ and p ≫ 1 . We focus on agent 1 and his cost function is: c1(ej) = 1 for any 
1 ≤ j ≤ n + p and c1(ej) = p for any j ≥ n + p + 1 . Consider allocation B = (B1,… ,Bn) 
with B1 =

{
e1,… , ep+1

}
 , Bi =

{
ep+i

}
,∀i = 2,… , n − 2 , Bn−1 = {en+p−1, en+p} and 

Bn = {en+p+1,… , e2n+p−1} . For any agent i ≥ 2 , her cost function is ci(e) = 0 for any e ∈ Bi 
and ci(e) = 1 for any e ∉ Bi . Consequently, except for agent 1, other agents violate neither 
MMS nor PMMS, and accordingly the approximation guarantee for PMMS and MMS is 
determined by agent 1. For MMS1(n,E) , it happens that E can be evenly divided into n 
bundles of the same cost (for agent 1), so we have MMS1(n,E) = p + 1 . Accordingly, 
c1(B1) = MMS1(n,E) holds and thus, allocation B is MMS. As for the approximation guar-
antee on PMMS, consider the combined bundle B1 ∪ B2 and it is not hard to verify that 
MMS1(2,B1 ∪ B2) = ⌈ p+2

2
⌉ implying c1(B1)

MMS1(2,B1∪B2)
=

p+1

⌈ p+2

2
⌉ → 2 as p → ∞ .   ◻

Proposition 4.6 When agents have additive cost functions, an MMS allocation is not neces-
sarily �-EF1 or �-EFX for any � ≥ 1.

Proof By Proposition 3.1, the notion �-EFX is stricter than �-EF1, and thus, we only need 
to show the unbounded guarantee on EF1. Again, we consider the instance given in the 
proof of Proposition 4.5. As stated in that proof, B is an MMS allocation, and except for 
agent 1, no one else will violate the condition of PMMS. Note that PMMS is stricter than 
EF1, then no one else will violate the condition of EF1. As for agent 1, each chore in B1 has 
the same cost for him, so we can remove any single chore in B1 and check its performance 
in terms of EF1. When comparing to bundle B2 , we have c1(B1⧵{e1})

c1(B2)
= p → ∞ as p → ∞ .  

 ◻

The guarantees presented in this section again indicate that goods and chores are not 
mirror images of one another. To take an example, according to Proposition 4.1, �-PMMS 
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allocations of chores with 𝛼 > 1 have no bounded guarantee on EF1, whereas in allocations 
of goods, �-PMMS can guarantee �

2−�
-MMS [2].

5  Guarantees beyond additive setting

The results in previous sections demonstrate the strong connections between the four 
(additive) relaxations of envy-freeness in the setting of additive cost functions. Under this 
umbrella, what would also be interesting is that whether there still exists certain connec-
tions when agents’ cost profile is no longer additive. In this section, we also study the con-
nections between fairness criteria and, instead of additive cost functions, we assume that 
agents have submodular cost functions, which have also been widely concerned with in 
the fair division literature [23, 33].

As a starting point, we consider EF, the strongest notion in the setting of additive, and 
see whether it can still provide guarantee on other fairness notions. According to the defi-
nitions, the notion of EF is, clearly, still stricter than EFX and EF1 if cost functions are 
monotone. Then, we study the approximation guarantee of EF on MMS and PMMS. As 
shown by our results below, in contrast to the results under additive setting, PMMS and 
MMS are no longer the relaxations of EF, and even worse, the notion of EF does not pro-
vide any substantial guarantee on PMMS and MMS.

Proposition 5.1 When agents have submodular cost functions, an EF allocation is not nec-
essarily �1-MMS or �2-PMMS for any 1 ≤ 𝛽1 < n , 1 ≤ 𝛽2 < 2.

Proof It suffices to show that there exists an EF allocation with approximation guarantee 
n and 2 for MMS and PMMS, respectively. Consider an instance with n (even) agents and 
a set E of chores with |E| = n2 . Chores are placed in the form of n × n matrix E =

[
eij
]
n×n

 . 
All agents have an identical cost function c(S) =

∑n

i=1
min

���Ei ∩ S��, 1
�
 for any S ⊆ E , 

where Ei is the set of all elements in the i-th row of matrix E, i.e., Ei = {ei1,… , ein} . Since 
capped cardinality function ||Ei ∩ S|| of S ⊆ E is monotone and submodular for any fix i 
( 1 ≤ i ≤ n ), it follows that c(⋅) is also monotone and submodular.9

Next, we prove that this instance permits an EF allocation, with which the approxima-
tion guarantee for MMS and PMMS is n and 2, respectively. Consider an allocation 
B = (B1,… ,Bn) where for any j, bundle Bj contains all elements in the j-th column of 
matrix E, i.e., Bj = (e1j, e2j,… , enj) . One can compute that 

c(Bj) =
∑n

i=1
min

����Ei ∩ Bj
���, 1

�
= n holds for any j ∈ [n] , which implies that allocation B 

is EF. Next, we check the approximation guarantee of B on MMS. With a slight abuse of 
notation, we let E be the allocation defined by n-partition E1,… ,En , i.e., E = (E1,… ,En) . 
It is not hard to see that for any i ∈ N, c(Ei) = 1 . Then we claim that allocation E defines 
MMS for all agents; otherwise, there exists another allocation in which each bundle has 
cost strictly smaller than 1, and this never happens because c(e) = 1 for any e ∈ E and c(⋅) 
is monotone. Therefore, for any i ∈ N,MMSi(n,E) = 1 , which implies c(Bi)

MMSi(n,E)
= n , as 

required.

9 More generally, if f (⋅) is submodular, then g(f (⋅)) is also submodular for any g(⋅) that is non-decreasing 
and concave. Furthermore, conical combination (with sum as a special case) of submodular functions is 
also submodular.



 Autonomous Agents and Multi-Agent Systems (2023) 37:39

1 3

39 Page 20 of 39

Next, we argue that the allocation B is 2-PMMS. Fix i, j ∈ N and j ≠ i . Notice that the 
combined bundle Bi ∪ Bj contains two columns of chores, so we can consider another allo-
cation B

�
= (B�

i
,B�

j
) with B�

i
=

{
e1i,… , e n

2
i, e1j,… , e n

2
j

}
 and 

B�
j
= {e n

2
+1i,… , eni, e n

2
+1j,… , enj} . The idea of B′ is to split each column into two parts 

with equal size and one part staring from the first row to n
2
-th row while the other one con-

taining the rest half. By the definition of cost function c(⋅) , we know c(B�
i
) = c(B�

j
) =

n

2
 

implying MMSi(2,Bi ∪ Bj) ≤ max{c(B�
i
), c(B�

j
)} =

1

2
ci(Bi) . Therefore, B is a 2-PMMS allo-

cation.   ◻

In the aspect of worst-case analysis, combining Lemma  2.2 and Proposition  5.1, EF 
can only have a trivial guarantee (n and 2, respectively) on MMS and PMMS, which is a 
sharp contrast to the results in additive setting where EF is strictly stronger than these two 
notions. As we mentioned above, EF is stricter than EFX and EF1, then we can directly 
argue that neither EFX nor EF1 can have better guarantees than trivial ones, namely, 
2-PMMS and n-MMS.

Proposition 5.2 When agents have submodular cost functions, an EFX allocation is not 
necessarily �1-MMS or �2-PMMS for any 1 ≤ 𝛽1 < n , 1 ≤ 𝛽2 < 2.

Proposition 5.3 When agents have submodular cost functions, an EF1 allocation is not 
necessarily �1-MMS or �2-PMMS for any 1 ≤ 𝛽1 < n , 1 ≤ 𝛽2 < 2.

As for the connections between EFX and EF1, the statement of Proposition 3.1 is still 
true in the case of submodular.

Proposition 5.4 When agents have submodular cost functions, an �-EFX allocation is also 
�-EF1 for any � ≥ 1 . On the other hand, an EF1 allocation is not necessarily a �-EFX for 
any � ≥ 1.

Proof The positive part follows directly from definitions of EFX and EF1. As for the 
impossibility result, the instance in the proof of Proposition 3.1 is established in the case of 
additive. Since an additive function is also submodular, we also have such an impossibility 
result here.   ◻

Next, we study the notion of PMMS in terms of its approximation guarantee on EFX 
and EF1. Recall the results of Theorems 4.1 and 4.2, a PMMS allocation is stricter than 
EFX and EF1 in the additive setting. However, in the case of submodular, this relationship 
does not hold any more, and even worse, PMMS provides non-trivial guarantee on neither 
EFX nor EF1.

Proposition 5.5 When agents have submodular cost functions, a PMMS allocation is not 
necessarily a �-EF1 or �-EFX allocation for any � ≥ 1.

Proof By Proposition 5.4, for any � ≥ 1 , �-EFX is stronger than �-EF1, and thus it suffices 
to show the approximation guarantee for EF1 is unbounded. In what follows, we provide an 
instance that has a PMMS allocation with only trivial guarantee on EF1.
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Consider an instance with two agents and a set E =
{
e1, e2, e3

}
 of chores. Agents have 

identical cost function c(S) = min{|S|, 2} . Since |S| is monotone and submodular, it follows 
that c(⋅) is also monotone and submodular (see Footnote 9).

Next, we prove this instance having a PMMS allocation whose guarantee for EF1 is 
unbounded. Since in total, we have three chores, and thus in any 2-partition there always 
exists an agent receiving at least two chores. Thus, we can claim that MMSi(2,E) = 2 for 
any i ∈ [2] . Then, consider an allocation B = (B1,B2) with B1 = E and B2 = � . Allocation 
B is PMMS since, for any i ∈ [2] , max

{
c(B1), c(B2)

}
= MMSi(2,E) = 2 holds. However, 

bundle B2 is empty and so c1(B2) = c(B2) = 0 . Then, no matter which chore is removed 
from bundle B1 , agent 1 still has a positive cost, which implies an unbounded approxima-
tion guarantee for the notion of EF1.   ◻

The approximation guarantee of an MMS allocation for EFX, EF1 and PMMS can be 
directly derived from the results in the additive setting. According to Propositions 4.5 and 4.6, 
in additive setting MMS does not provide non-trivial guarantee on all other three notions. 
Since additive functions belong to the class of submodular functions, we directly have the fol-
lowing two results.

Proposition 5.6 When agents have submodular cost functions, an MMS allocation is not 
necessarily �-PMMS for any 1 ≤ 𝛽 < 2.

Proposition 5.7 When agents have submodular cost functions, an MMS allocation is not 
necessarily a �-EF1 or �-EFX allocation for any � ≥ 1.

At this stage, what remains is the approximation guarantee of PMMS on MMS. Before 
presenting the main result, we provide a lemma, which states that the quantity of MMS is 
monotonically non-decreasing on the set of chores to be assigned.

Lemma 5.8 Given a monotone function c(⋅) defined on ground set E, for any subsets 
S ⊆ T ⊆ E , if quantities MMS(2, S) and MMS(2, T) are computed based on function c(⋅) , 
then MMS(2, S) ≤ MMS(2, T).

Proof Let {T1, T2} be the 2-partition of set T and moreover it defines 
MMS(2, T) = c(T1) ≥ c(T2) . We then consider {T1 ∩ S, T2 ∩ S} , which is, clearly, a 2-parti-
tion of S due to S ⊆ T  . According to the definition of MMS, we have

where the second inequality transition is because c(⋅) is monotone.   ◻

Theorem 5.1 When agents have submodular cost functions, for any 1 ≤ � ≤ 2 , an �-PMMS 
allocation is also min{n, �⌈ n

2
⌉}-MMS, and this guarantee is tight.

Proof We first prove the upper bound. According to Lemma  2.2, any allocation is n-
MMS and so what remains is to prove the upper bound of �⌈ n

2
⌉ . Fix agent i with cost 

function ci(⋅) . Suppose n-partition {T1,… , Tn} defines MMSi(n,E) and w.l.o.g, we 
assume ci(T1) ≥ ci(T2) ≥ ⋯ ≥ ci(Tn) , i.e., ci(T1) = MMSi(n,E) . Then, we let 2-par-
tition {Q1,Q2} defines MMSi(2,E) and ci(Q1) ≥ ci(Q2) , i.e., ci(Q1) = MMSi(2,E) . 
Let A be an arbitrary �-PMMS allocation, and accordingly, for any j ≠ i , we have 

MMS(2, S) ≤ max{c(T1 ∩ S), c(T2 ∩ S)} ≤ max{c(T1), c(T2)} = MMS(2, T),
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ci(Ai) ≤ � ⋅MMSi(2,Ai ∪ Aj) . Since Ai ∪ Aj is a subset of E, according to Lemma 5.8, we 
have MMSi(2,Ai ∪ Aj) ≤ MMSi(2,E) . We then construct an upper bound of MMSi(2,E) 
through partition {T1,… , Tn}.

Let us consider a 2-partition {B1,B2} of E with B1 = {T1, T2,… , T⌈ n

2
⌉} , 

B2 = {T⌈ n

2
⌉+1,… , Tn} . Then, the following holds:

where the first inequality transition is due to subadditivity of ci(⋅) and the sec-
ond inequality transition is because ci(T1) ≥ ci(T2)⋯ ≥ ci(Tn) . Recall 
ci(Q1) = MMSi(2,E) ≤ max{ci(B1), ci(B2)} , and accordingly we have 
MMSi(2,E) ≤ ⌈ n

2
⌉ ⋅ ci(T1) = ⌈ n

2
⌉ ⋅MMSi(n,E) . Therefore, for any j ≠ i , the following 

holds:

As for the lower bound, it suffices to show that for any � ∈ [1, 2] , there exists an �-PMMS 
allocation with approximation guarantee �⌈ n

2
⌉ of MMS when �⌈ n

2
⌉ ≤ n . Let us consider an 

instance with n (even) agents and a set E of chores with |E| = n(n + 1) . Since � ≤ 2 and n 
is even, clearly we have �⌈ n

2
⌉ ≤ n . Chores are placed in n × (n + 1) matrix E =

[
eij
]
n×(n+1)

 . 
For j ∈ [n + 1] , denote by Pj the j-th column, i.e., Pj = {e1j, e2j,… , enj} . We concentrate on 

allocation A with A1 = P1 ∪⋯ ∪ P⌊� n

2
⌋ ∪ Pn , Aj =

�
ej,⌊� n

2
⌋+1,… , ej,n−1, ej,n+1

�
 for any 

2 ≤ j ≤ n − 1 , and An =

�
en,⌊� n

2
⌋+1,… , en,n−1, en,n+1

�
∪

�
e1,⌊� n

2
⌋+1,… , e1,n−1, e1,n+1

�
 . For 

any 2 ≤ i ≤ n , agent i has additive cost function ci(⋅) with ci(e) = 0 for any e ∈ Ai , and 
ci(e) = 1 for any e ∈ E⧵Ai . Then, for every 2 ≤ i ≤ n , agent i has an additive, clearly mono-
tone and submodular, cost function, and violates neither PMMS nor MMS due to 
ci(Ai) = 0 . Consequently, the approximation guarantee of A on both PMMS and MMS are 
determined by agent 1.

As for the cost function c1(⋅) of agent 1, for any S ⊆ E , we let

where � = �
n

2
− ⌊� n

2
⌋ . Function c1(⋅) is clearly monotone. As in the proof of Proposi-

tion 5.1 (see Footnote 9), c1(⋅) as a conical combination of submodular functions is also 
submodular.

We argue A is an �-PMMS allocation with approximation guarantee � n

2
 on the notion 

of MMS. In fact, under allocation A , one can compute c1(A1) = ⌊� n

2
⌋ + � = �

n

2
 and 

c1(A1 ∪ Aj) = c1(E) = n for any 2 ≤ j ≤ n . Then, for any j ≥ 2 , due to Lemma 2.1, it holds 
that MMS1(2,A1 ∪ Aj) ≥

n

2
 , which then imply c1(A1) ≤ �MMS1(2,A1 ∪ Aj) . Thus, alloca-

tion A is �-PMMS. As for the quantity of MMS1(n,E) , consider partition {Bi}i∈[n] with 

max{ci(B1), ci(B2)} = max
�
ci

�
∪
⌈ n

2
⌉

j=1
Tj

�
, ci

�
∪n

j=⌈ n

2
⌉+1Tj

��

≤ max

⎧⎪⎨⎪⎩

⌈ n

2
⌉�

j=1

ci(Tj),

n�
j=⌈ n

2
⌉+1

ci(Tj)

⎫⎪⎬⎪⎭
≤ ⌈n

2
⌉ ⋅ ci(T1),

ci(Ai)

MMSi(n,E)
≤

� ⋅MMSi(2,Ai ∪ Aj)

MMSi(n,E)
≤

� ⋅MMSi(2,E)

MMSi(n,E)
≤ � ⋅ ⌈n

2
⌉.

c1(S) =

n−1∑
j=1

min{|S ∩ Pj|, 1} + � ⋅min{|S ∩ Pn|, 1} + (1 − �) ⋅min{|S ∩ Pn+1|, 1},
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Bi = Pi for 1 ≤ i ≤ n − 1 and Bn = Pn ∪ Pn+1 . It is not hard to verify c1(Bi) = 1 for any 
i ∈ [n] . According to Lemma  2.1, we have MMS1(n,E) ≥

1

n
c1(E) = 1 . Hence, partition 

{Bi}i∈[n] defines MMS1(n,E) = 1 , and accordingly, the approximation guarantee of A for 
MMS is � n

2
 , equivalent to �⌈ n

2
⌉ since n is even.   ◻

We remark that all statements in this section are still true if agents have subadditive 
cost functions. Results in this section show that although PMMS (or MMS) is proposed 
as relaxation of EF under additive setting, there are few connections between PMMS (or 
MMS) and EF in the submodular setting. This motivates new submodular fairness notions 
which is not only a relaxation of EF but also inherit the spirit of PMMS (or MMS).

6  Price of fairness under additive setting

After having compared the fairness criteria between themselves, in this section we study 
the efficiency of these fairness criteria in terms of the price of fairness with respect to 
social optimality of an allocation.

6.1  Two agents

We start with the case of two players. Our first result concerns EF1.

Theorem 6.1 When n = 2 and agents have additive cost functions, the price of EF1 is 5/4.

Proof For the upper bound part, we analyze the allocation returned by algorithm ALG1 , 
whose detailed description is in Appendix A.2. In this proof, we denote L(k) = {e1,… , ek} 
and R(k) = {ek,… , em} . We first show that ALG1 is well-defined and can always output an 
EF1 allocation. Note that O is the optimal allocation for the underlying instance due to the 
order of chores. We consider the possible value of index s. Because of the normalized cost 
function, trivially, s < m holds. If s = 0 , ALG1 outputs the allocation returned by round-
robin (line 6) and clearly, it’s EF1. If the optimal allocation O is EF1 (line 9), we are done. 
For this case, we claim that if s = m − 1 , then O must be EF1. The reason is that for agent 
1, his cost c1(O1) ≤ c2(O2) ≤ c1(O2) where the first transition due to line 1 of ALG1 , and 
thus he does not envy agent 2. For agent 2, since he only receives a single chore in optimal 
allocation due to s = m − 1 , clearly, he does not violate the condition of EF1, either. Thus, 
allocation O is EF1 in the case of s = m − 1 . Next, we study the remaining case (lines 
11–13) that can only happen when 1 ≤ s ≤ m − 2 . We first show that the index f is well-
defined. It suffices to show c2(R(s + 2)) > c2(L(s)) . For the sake of contradiction, assume 
c2(R(s + 2)) ≤ c2(L(s)) . This is equivalent to c2(O2 ⧵ {es+1}) ≤ c2(O1) , which means agent 
2 satisfying EF1 in allocation O . Due to the assumption (line 1), c1(O1) ≤ c2(O2) ≤ c1(O2) 
holds, and thus, agent 1 is EF under the allocation O . Consequently, the allocation O is 
EF1, a contradiction. Then, we prove allocation A (line 13) is EF1. According to the order 
of chores, it holds that

Since c2(R(f + 2)) > c2(L(f )) ≥ 0 , this implies,

c1(L(f ))

c2(L(f ))
≤

c1(R(f + 2))

c2(R(f + 2))
.
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By the definition of index f, we have c2(R(f + 2)) > c2(L(f )) and therefore c1(L(f )) < c1(R(f + 2)) 
which is equivalent to c1(A1 ⧵ {ef+1}) < c1(A2) . Thus, agent 1 is EF1 under allocation A . 
As for agent 2, if f = m − 2 , then |A

2
| = 1 and clearly, agent 2 does not violate the condi-

tion of EF1. We can further assume f ≤ m − 3 . Since f is the maximum index satisfying 
f ≥ s and c2(R(f + 2)) > c2(L(f )) , it must hold that c2(R(f + 3)) ≤ c2(L(f + 1)) , which is 
equivalent to c2(A2 ⧵ {ef+2}) ≤ c2(A1) and so agent 2 is also EF1 under allocation A.

Next, we show the social cost of the allocation returned by ALG1 is at most 1.25 times of the 
optimal social cost. If s = 0 , both agents have the same cost profile, then any allocations have 
the optimal social cost and we are done in this case. If allocation O is EF1, then clearly, we are 
done. The remaining case is of lines 11–13 of ALG1 . Since c1(O1) ≤ c2(O2) ≤ c1(O2) , we have 
c1(O1) ≤

1

2
 . Notice that O is not EF1, then c2(O2) >

1

2
 must hold; otherwise, c2(O2) ≤ c2(O1) 

and allocation O is EF, a contradiction. Therefore, under the case where allocation O is not EF1, 
we must have c1(O1) ≤

1

2
 and c2(O2) >

1

2
 . Due to f + 2 ≥ s + 1 and the order of chores, it holds 

that

This implies c1(R(f + 2)) ≥
c1(O2)

c2(O2)
c2(R(f + 2)) , and equivalently,

Again, by the construction of f, we have

Therefore, we derive the following upper bound,

where the second inequality is due to c1(O2)

c2(O2)
≥ 1 and c2(A2) ≥ c2(O1) . Based on (11), we 

have an upper bound on the price of EF1 as follows:

Recall 0 ≤ c1(O1) ≤
1

2
< c2(O2) ≤ 1 . The partial derivatives of the fraction in (12) with 

respect to c1(O1) is equal to the following:

c1(L(f ))

c1(R(f + 2))
≤

c2(L(f ))

c2(R(f + 2))
.

c1(R(f + 2))

c2(R(f + 2))
≥

c1(O2)

c2(O2)
.

c1(A1) = c1(L(f + 1)) ≤ 1 −
c1(O2)

c2(O2)
c2(R(f + 2)).

c2(A2) = c2(R(f + 2)) > c2(L(f )) ≥ c2(L(s)) = c2(O1).

(11)
c1(A1) + c2(A2) ≤ 1 −

(
c1(O2)

c2(O2)
− 1

)
c2(A2) ≤ 1 −

(
c1(O2)

c2(O2)
− 1

)
c2(O1)

= 1 −

(
1 − c1(O1)

c2(O2)
− 1)(1 − c2(O2)

)
,

(12)Price of EF1 ≤

1 −
(

1−c1(O1)

c2(O2)
− 1

)
(1 − c2(O2))

c1(O1) + c2(O2)
.

1

(c1(O1) + c2(O2))
2

(
1

c2(O2)
− 2

)
.
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It is not hard to see this derivative has a negative value for any 1
2
< c2(O2) ≤ 1 . Thus, the 

fraction in (12) takes maximum value only when c1(O1) = 0 and hence,

Similarly, by taking the derivative with respect to c2(O2) , the maximum value of this 
expression happens only when c2(O2) =

2

3
 , then one can easily compute the maximum 

value of the RHS of (12) is 1.25. Therefore, the price of EF1 ≤ 1.25.
As for the lower bound, consider an instance with a set E = {e1, e2, e3} of three chores. 

The cost function of agent 1 is c1(e1) = 0 and c1(e2) = c1(e3) =
1

2
 . For agent 2, his cost is 

c2(e1) =
1

3
− 2� and c2(e2) = c2(e3) =

1

3
+ � where 𝜖 > 0 takes arbitrarily small value. An 

optimal allocation assigns chore e1 to agent 1 and the rest chores to agent 2, which yields 
the optimal social cost 2

3
+ 2� . However, this allocation is not EF1 since agent 2 envies 

agent 1 even removing one chore from his bundle. To achieve EF1, agent 2 can not receive 
both of chores e2 and e3 , and so, agent 1 must receive one of chore e2 and e3 . Therefore, the 
best EF1 allocation can be assigning chore e1 and e2 to agent 1 and chore e3 to agent 2 

resulting in the social cost 5
6
+ � . Thus, the price of EF1 is at least 

5

6
+�

2

3
+2�

→
5

4
 as � → 0 , com-

pleting the proof.   ◻

According to Theorems 3.3 and 3.6, EF1 implies 2-MMS and 3
2
-PMMS. The follow-

ing two theorems confirm an intuition — if one relaxes the fairness condition, then less 
efficiency will be sacrificed.

Theorem 6.2 When n = 2 and agents have additive cost functions, the price of 2-MMS is 1.

Proof The proof directly follows from Lemma 2.2.   ◻

Theorem 6.3 When n = 2 and agents have additive cost functions, the price of 3
2
-PMMS is 

7/6.

Proof We first prove the upper bound. Given an instance I, let O = (O1,O2) be an optimal 
allocation of I. If the allocation O is already 3

2
-PMMS, we are done. For the sake of contra-

diction, we assume that agent 1 violates the condition of 3
2
-PMMS in allocation O , i.e., 

c1(O1) >
3

2
MMS1(2,E) . Suppose O1 = {e1,… , eh} and the index satisfies the following 

rule; c1(e1)
c2(e1)

≥
c1(e2)

c2(e2)
≥ ⋯ ≥

c1(eh)

c2(eh)
 . In this proof, for simplicity, we write L(k) ∶= {e1,… , ek} 

for any 1 ≤ k ≤ h and L(0) = � . Then, let s be the index such that 
c1(O1 ⧵ L(s)) ≤

3

2
MMS1(2,E) and c1(O1 ⧵ L(s − 1)) >

3

2
MMS1(2,E) . In the following, we 

divide our proof into two cases.
Case 1: c1(L(s)) ≤

1

2
c1(O1) . Consider allocation A = (A1,A2) with A1 = O1⧵L(s) 

and A2 = O2 ∪ L(s) . We first show allocation A is 3

2
-PMMS. For agent 1, due to 

the construction of index s, he does not violate the condition of 3

2
-PMMS. As for 

agent 2, we claim that c2(A2) = 1 − c2(O1⧵L(s − 1)) + c2(es) <
1

4
+ c2(es) because 

c2(O1⧵L(s − 1)) ≥ c1(O1⧵L(s − 1)) >
3

2
MMS1(2,E) ≥

3

4
 where the first inequal-

ity transition is due to the fact that O1 is the bundle assigned to agent 1 in the 

Price of EF1 ≤

3 −
1

c2(O2)

c2(O2)
− 1.
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optimal allocation. If c2(es) <
1

2
 , then clearly, c2(A2) <

3

4
≤

3

2
MMS2(2,E) . If 

c2(es) ≥
1

2
 , then c2(es) = MMS1(2,E) and accordingly, it is not hard to verify that 

c2(A2) ≤
3

2
MMS1(2,E) . Thus, A is a 3

2
-PMMS allocation.

Next, based on allocation A , we derive an upper bound on the price of 3
2
-PMMS. First, 

by the order of index, c1(L(s))

c2(L(s))
≥

c1(O1)

c2(O1)
 holds, implying c2(L(s)) ≤

c2(O1)

c1(O1)
c1(L(s)) . Since 

A1 = O1⧵L(s) and A2 = O2 ∪ L(s) , we have the following:

where the second inequality due to c2(L(s)) ≤
c2(O1)

c1(O1)
c1(L(s)) ; the third inequality due to the 

condition of Case 1; and the last inequality is because c1(O1) >
3

2
MMS1(2,E) ≥

3

4
.

Case 2: c1(L(s)) >
1

2
c1(O1) . We first derive a lower bound on c1(es).  Equa-

tion c
1
(e

s
) = c

1
(O

1
⧵L(s − 1)) + c

1
(L(s)) − c

1
(O

1
)  and the condition of Case 

2 imply c1(es) > c1(O1⧵L(s − 1)) −
1

2
c1(O1) , and consequently we have 

c1(es) >
3

2
MMS1(2,E) −

1

2
c1(O1) ≥

1

4
 where the last transition is due to MMS1(2,E) ≥

1

2
 

and c1(O1) ≤ 1 . Then, we consider two subcases.
If 0 ≤ c2(es) − c1(es) ≤

1

8
 , consider an allocation A = (A1,A2) with A1 = O1⧵{es} 

and A2 = O2 ∪ {es} . We first show the allocation A is 3

2
-PMMS. For agent 1, 

since c1(es) >
1

4
 , c1(A1) = c1(O1) − c1(es) <

3

4
≤

3

2
MMS1(2,E) . As for agent 2, 

c2(A2) = c2(O2) + c2(es) ≤ 1 − c1(O1) + c2(es) <
1

4
+ c2(es) . If c2(es) <

1

2
 , then clearly, 

c2(A2) ≤
3

4
<

3

2
MMS2(2,E) holds. If c2(es) ≥

1

2
 , we have c2(es) = MMS2(2,E) and accord-

ingly, it is not hard to verify that c2(A2) ≤
3

2
MMS2(2,E) . Thus, the allocation A is 3

2
-

PMMS. Next, based on the allocation A , we derive an upper bound regarding the price of 
3

2
-PMMS,

where the second inequality due to 0 ≤ c2(es) − c1(es) ≤
1

8
 and c1(O1) >

3

4
.

If c2(es) − c1(es) >
1

8
 , consider an allocation �

� = (A�
1
,A�

2
) with A�

1
= {es} 

and A�
2
= E⧵{es} . We first show that the allocation A

′ is 3

2
-PMMS. For agent 

1, due to Lemma  2.1, c1(es) ≤ MMS1(2,E) holds. As for agent 2, since 
c2(es) ≥ c1(es) >

1

4
 , we have c2(A

�
2
) = c2(E) − c2(es) <

3

4
≤

3

2
MMS2(2,E) . Thus, 

the allocation A′ is 3

2
-PMMS. In the following, we first derive an upper bound for 

c2(O1 ⧵ {es}) − c1(O1 ⧵ {es}) , then based on the bound, we provide the target upper 
bound for the price of fairness. Since c1(O1) >

3

4
 and c2(es) − c1(es) >

1

8
 , we have 

Price of
3

2
-PMMS ≤ 1 +

c2(L(s)) − c1(L(s))

c1(O1) + c2(O2)
≤ 1 +

c1(L(s))(
c2(O1)

c1(O1)
− 1)

c1(O1) + c2(O2)

= 1 +

c1(L(s))

c1(O1)
(1 − c2(O2) − c1(O1))

c1(O1) + c2(O2)

≤ 1 +

1

2
−

1

2
(c1(O1) + c2(O2))

c1(O1) + c2(O2)
≤ 1 −

1

2
+

1

2
×
4

3
=

7

6
,

Price of
3

2
-PMMS ≤

c1(O1) − c1(es) + c2(O2) + c2(es)

c1(O1) + c2(O2)
≤ 1 +

1

8
×
4

3
=

7

6
,
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c2(O1⧵{es}) − c1(O1⧵{es}) = c2(O1) − c1(O1) − (c2(es) − c1(es)) <
1

8
 , and then, the fol-

lowing holds,

which completes the proof of the upper bound.
Regarding lower bound, consider an instance I with two agents and a set E = {e1, e2, e3, e4} 

of four chores. The cost function for agent 1 is: c1(e1) = 3
8
, c1(e2) =

3
8
+ �, c1(e3) =

1
8
− �, c1(e4) =

1
8
 

where 𝜖 > 0 takes arbitrarily small value. For agent 2, here cost function is: 
c2(e1) = c2(e2) =

1

2
, c2(e3) = c2(e4) = 0 . It is not hard to verify that MMSi(2,E) =

1

2
 for any 

i = 1, 2 . In the optimal allocation, the assignment is; e1, e2 to agent 1 and e3, e4 to agent 2, result-
ing in OPT(I) = 3

4
+ � . Observe that to satisfy 3

2
-PMMS, agent 1 cannot receive both chores 

e1, e2 , and accordingly, the minimum social cost of a 3
2
-PMMS allocation is 7

8
 by assigning e1 to 

agent 1 and the rest chores to agent 2. Based on this instance, when n = 2 , the price of 3
2
-PMMS 

is at least 
7

8
6

8
+�

→
7

6
 as � → 0 .   ◻

We remark that if we have an oracle for the maximin share, then our constructive 
proof of Theorem 6.3 can be transformed into an efficient algorithm for finding a 3/2-
PMMS allocation whose cost is at most 7/6 times the optimal social cost. Moving to 
other fairness criteria, we have the following uniform bound.

Theorem  6.4 When n = 2 and agents have additive cost functions, the price of PMMS, 
MMS, and EFX are all 2.

Proof We first show results on the upper bound. When n = 2 , PMMS is identical to MMS 
and moreover implies  EFX according to Theorem  4.1. Thus  it suffices to show that the 
price of PMMS is at most 2. Given an instance I, let allocation O = (O1,O2) be its opti-
mal allocation and w.l.o.g, we assume c1(O1) ≤ c2(O2) . If c2(O2) ≤

1

2
 , then we have 

c1(O1) ≤ 1 − c1(O1) = c1(O2) and c2(O2) ≤ 1 − c2(O2) = c2(O1) . So allocation O is an EF 
and accordingly is PMMS, which yields the price of PMMS equals to one. Thus, we can 
further assume c2(O2) >

1

2
 and hence the optimal social cost is larger than 1

2
.

We next show that there exist a PMMS allocation whose social cost is at most 1. W.l.o.g, 
we assume MMS1(2,E) ≤ MMS2(2,E) (the other case is symmetric). Let T = (T1, T2) be 
the allocation defining MMS1(2,E) and c1(T1) ≤ c1(T2) = MMS1(2,E) . If c2(T2) ≤ c2(T1) , 
then allocation T is EF (also PMMS), and thus it holds that c1(T1) ≤

1

2
 and c2(T2) ≤

1

2
 . 

Therefore, social cost of allocation T is no more than one, which implies the price of 
PMMS is at most two. If c2(T2) > c2(T1) , then consider the allocation T�

= (T2, T1) . Since 
c1(T

�
1
) = c1(T2) = MMS1(2,E) and c2(T �

2
) = c2(T1) < c2(T2) , then T′ is a PMMS alloca-

tion. Owing to MMS1(2,E) ≤ MMS2(2,E) , we claim that c2(T1) ≤ c1(T1) ; otherwise, we 
have MMS1(2,E) = c1(T2) > c2(T2) > c2(T1) , and equivalently, allocation �′ is a 2-parti-
tion where the cost of both bundles for agent 2 is strictly smaller than MMS1(2,E) , con-
tradicting MMS1(2,E) ≤ MMS2(2,E) . By c2(T1) ≤ c1(T1) , the social cost of allocation T′ 
satisfies c2(T1) + c1(T2) ≤ 1 and so the price of PMMS is at most two.

Regarding the tightness, consider an instance I with two agents and a set E = {e1, e2, e3} 
of three chores. The cost function of agent 1 is: c1(e1) =

1

2
, c1(e2) =

1

2
− � and c1(e3) = � 

where 𝜖 > 0 takes arbitrarily small value. For agent 2, his cost is c2(e1) =
1

2
, c2(e2) = � and 

Price of
3

2
-PMMS ≤ 1 +

c2(O1 ⧵ {es}) − c1(O1 ⧵ {es})

c1(O1) + c2(O2)
≤ 1 +

1

8
×
4

3
=

7

6
,
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c2(e3) =
1

2
− � . An optimal allocation assigns chores e1, e2 to agent 2, and e3 to agent 1, and 

consequently, the optimal social cost equals to 1
2
+ 2� . We first concern the tightness on the 

notion of PMMS (or MMS, these two are identical when n = 2 ). In any PMMS allocations, 
it must be the case that an agent receives chore e1 and the other one receives chores e2, e3 , 
and thus the social cost of PMMS allocations is one. Therefore, the price of PMMS and of 
MMS is at least 1

1

2
+�

→ 2 as � → 0 . As for EFX, similarly, it must be the case that in any 

EFX allocations, the agent receiving chore e1 cannot receive any other chores. Thus, it not 
hard to verify that the social cost of EFX allocations is also one and the price of EFX is at 
least 1

1

2
+�

→ 2 as � → 0 .   ◻

6.2  More than two agents

Note that the existence of an MMS allocation is not guaranteed in general [7, 35] and the 
existence of PMMS or EFX allocation is still open in chores when n ≥ 3 . Nonetheless, we 
are still interested in the prices of fairness in case such a fair allocation does exist.

Theorem 6.5 When agent have additive cost functions, for n ≥ 3 , the price of EF1, EFX, 
PMMS and 3

2
-PMMS are all infinity.

Proof In this proof, � always takes arbitrarily small positive value. Based on our 
results on the connections between fairness criteria, we have the relationship: 
PMMS → EFX → EF1 →

3

2
-PMMS, where A → B refers to that notion A is stricter than 

notion B. Therefore, it suffices to give a proof for 3
2
-PMMS.

Consider an instance with n agents and m ≥ 5 chores. The cost function of agent 1 is 
c1(e1) = 1 − 4� , c1(ej) = 0 for j = 2,… ,m − 4 , and c1(ej) = � for j ≥ m − 3 . For agent 2, 
his cost is c2(e1) = 1 −

4

m
 , c2(ej) = 0 for j = 2,… ,m − 4 , and c2(ej) =

1

m
 for j ≥ m − 3 . The 

cost function of agent 3 is: c3(e1) = � , c3(ej) =
1

m
 for j = 2,… ,m − 1 , and c3(em) =

1

m
− � . 

For any i ≥ 4 , the cost function of agent i is ci(ej) =
1

m
 for any j ∈ [m] . An optimal allo-

cation assigns em−3, em−2, em−1, em to agent 1 and e1 to agent 3. For each of the remain-
ing  chores, it is assigned to the agents having zero cost on it. Accordingly, the optimal 
social cost is 5� . However, in any optimal allocation O , we have MMS1(2,O1 ∪ O2) = 2� , 
implying c1(O1) >

3

2
MMS1(2,O1 ∪ O2) . Thus, agent 1 violates 3

2
-PMMS. In order to 

achieve 3
2
-PMMS, at least one of em−3, em−2, em−1, em has to be assigned to someone other 

than agent 1, and so the social cost of a 3
2
-PMMS allocation is at least 1

m
+ 3� , resulting in 

an unbounded price of 3
2
-PMMS when � → 0 .   ◻

In the context of goods allocation, Barman et  al. [8] present an asymptotically tight 
price of EF1, O(

√
n) . However, as shown by Theorem  6.5, when allocating chores, the 

price of EF1 is infinite, which shows a sharp contrast between goods and chores allocation.
We are now left with MMS fairness. Let us first provide upper and lower bounds on the 

price of MMS.

Theorem 6.6 When agents have additive cost functions, for n ≥ 3 , the price of MMS is at 
most n2 and at least n

2
.
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Proof We first prove the upper bound part. For any instance I, if OPT(I) ≤ 1

n
 , then by 

Lemma 2.1, any optimal allocations is MMS. Thus, we can further assume OPT(I) > 1

n
 . 

Notice that the maximum social cost of an allocation is n and thus the upper bound of n2 is 
straightforward.

For the lower bound, consider an instance I with n agents and n + 1 chores 
E = {e1,… , en+1} . For agent i = 2,… , n , ci(e1) = ci(e2) =

1

2
 and ci(ej) = 0 for any j ≥ 3 . 

As for agent 1, c1(e1) =
1

n
 , c1(e2) = � , c1(e3) =

1

n
− � and c1(ej) =

1

n
 for any j ≥ 4 where 

𝜖 > 0 takes arbitrarily small value. It is not hard to verify that MMS1(n,E) =
1

n
 and 

MMSi(n,E) =
1

2
 for i ≥ 2 . In any optimal allocation O = (O1,… ,On) , the first two chores 

are assigned to agent 1 and each of the remaining chores is assigned to agents having 
cost zero. Thus, we have OPT(I) = 1

n
+ � . However, in any optimal allocation O , we have 

c1(O1) > MMS1(n,E) =
1

n
 . In order to achieve MMS, agent 1 can not receive both chores 

e1, e2 , and so at least one of them has to be assigned to the agent other than agent 1. As a 
result, the social cost of an MMS allocation is at least 1

2
+ � , which implies that the price of 

MMS is at least n
2
 as � → 0 .   ◻

As mentioned earlier, the existence of MMS allocation is not guaranteed. So we also pro-
vide an asymptotically tight price of 2-MMS, whose existence is guaranteed for any instance 
with additive cost functions.

Theorem 6.7 When agents have additive cost functions, for n ≥ 3 , the price of 2-MMS is at 
least n+3

6
 and at most n, asymptotically tight Θ(n).

Proof We first prove the upper bound. By Proposition 3.3, we know that an EF1 alloca-
tion is also 2n−1

n
-MMS (also 2-MMS). As we mentioned earlier, round-robin algorithm 

always output EF1 allocations. Consequently, given any instance I, the allocation returned 
by round-robin is also 2-MMS. In the following, we incorporate the idea of expectation in 
probability theory and show that there exists an order of round-robin such that the output 
allocation has social cost at most 1.

Let � be a uniformly random permutation of {1,… , n} and A(�) = (A1(�),… ,An(�)) be 
the allocation returned by round-robin based on the order � . Clearly, each element Ai(�) is 
a random variable. Since � is chosen uniformly random, the probability of agent i on j-th 
position is 1

n
 . Fix an agent i, we assume ci(e1) ≤ ci(e2) ≤ ⋯ ≤ ci(em) . If agent i is in j-th 

position of the order, then his cost is at most ci(ej) + ci(en+j) +⋯ + ci(e⌊ m−j

n
⌋n+j) . Accord-

ingly, his expected cost is at most 
∑n

j=1

1

n

∑⌊ m−j

n
⌋

l=0
ci(eln+j) . Thus, we have an upper bound of 

the expected social cost,

Therefore, there exists an order such that the social cost of the output is at most 1. Notice 
that for any instance I, if OPT(I) ≤ 1

n
 , then any optimal allocations are also MMS. Thus, we 

can further assume OPT(I) > 1

n
 , and accordingly, the price of 2-MMS is at most n.

�[SC(A(�))] ≤

n�
i=1

n�
j=1

1

n

⌊ m−j

n
⌋�

l=0

ci(eln+j) =
1

n

n�
i=1

ci(E) = 1.
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For the lower bound, consider an instance I with n agents and a set E = {e1,… , en+3} 
of n + 3 chores. The cost function of agent 1 is: c1(e1) = c1(e2) =

1

n
− � , c1(e3) = 3� , 

c1(e4) = c1(e5) = � , c1(e6) =
1

n
− 3� where 𝜖 > 0 takes arbitrarily small value, and 

c1(ej) =
1

n
 for any j > 6 (if exists). For agent i = 2,… , n , his cost is: ci(ej) =

1

3
 for 

any j ∈ [3] and ci(ej) = 0 for j ≥ 4 . It is not hard to verify that MMS1(n,E) =
1

n
 and 

MMSi(n,E) =
1

3
 for any i ≥ 2 . In any optimal allocation O = (O1,… ,On) , the first three 

chores are assigned to agent 1 and all rest chores are assigned to agents having cost 
zero on them. Thus, we have OPT(I) = 2

n
+ � . However, in any optimal allocations O , 

2

n
+ 𝜖 = c1(O1) > 2MMS1(n,E) holds, and so agent 1 violates 2-MMS. In order to achieve 

a 2-MMS allocation, agent 1 can not receive all first three chores, and so at least one of 
them has to be assigned to the agent other than agent 1. As a result, the social cost of an 
2-MMS allocation is at least 1

3
+

1

n
+ 2� , yielding that the price of 2-MMS is at least n

6
+

1

2
 . 

Combing lower and upper bound, the price of 2-MMS is Θ(n)   ◻

7  Price of fairness beyond additive setting

In this section, we study the price of fairness when agents have submodular cost functions. 
Notice that for those fairness notions whose price of fairness is unbounded in the additive 
setting, the efficiency loss would still be unbounded in the submodular setting. As a con-
sequence, for most notions, we only need to study its price of fairness in the case of two 
agents. Recall that, when studying specific fairness notion, we only consider instances for 
which allocations satisfying the underlying fairness notion do exist. All results established 
in this section remain true if agents have subadditive cost functions.

Theorem 7.1 When n = 2 and agents have submodular cost functions, if an EFX allocation 
exists, the price of EFX is at least 3 and at most 4.

Proof We first prove the upper bound. For an instance I, let O = (O1,O2) be an optimal 
allocation, and w.l.o.g., we assume c1(O1) ≤ c2(O2) . Since c2(⋅) is submodular and also 
subadditive, then ci(Oi) + ci(O3−i) ≥ ci(E) holds for i ∈ [2] . If c1(O1) ≤ c2(O2) ≤ 1∕2 , then 
ci(O3−i) ≥ ci(E) − ci(Oi) ≥ 1∕2 ≥ ci(Oi) holds for i ∈ [2] . Accordingly, allocation O is 
already EFX and we are done. Thus, w.l.o.g., we can further assume c2(O2) > 1∕2 . Notice 
that the social cost of an allocation is at most 2, and so the price of EFX is at most 4.

As for the lower bound, let us consider an instance with a set E = {e1, e2, e3} of 
three chores. The cost function of agent 1 is: c1(e1) = 1∕2, c1(e2) = 1∕2 − �, c1(e3) = � 
and for any S ⊆ E, c1(S) =

∑
e∈S c1(es) where 𝜖 > 0 takes arbitrarily small value. The 

cost function of agent 2 is: c2(e1) = 1 − �, c2(e2) = 3�, c2(e3) = 1 − 2� and for any 
S ⊆ E, c2(S) = min{

∑
e∈S c2(e), 1} . Function c1(⋅) is additive and hence clearly monotone 

and submodular. For function c2(⋅) , since 
∑

e∈S c2(e) is additive (also monotone and sub-
modular) on S, it follows that c2(⋅) is also monotone and submodular (see Footnote 9).

For this instance, the optimal allocation O = (O1,O2) is O1 = {e1, e3} and O2 = {e2} , 
yielding social cost 1∕2 + 4� . But due to c1(O1⧵{e3}) = 1∕2 > 1∕2 − 𝜖 = c1(O2) , agent 1 
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violates EFX in O . In an EFX allocation, agent 2 can not receive the whole E or {e1, e3} or 
{e1, e2} . Thus, the EFX allocation with the smallest social cost is A1 = {e2, e3} and 
A2 = {e1} , yielding social cost 3∕2 − � . As a consequence, the price of EFX is at least 
3∕2−�

1∕2+4�
→ 3 as � → 0 .   ◻

Theorem 7.2 When n = 2 and agents have submodular cost functions, if an EF1 allocation 
exists, the price of EF1 is at least 2 and at most 4.

Proof For the upper bound part, similar to the proof of Theorem 7.1, we can w.l.o.g assume 
c1(O1) ≤ c2(O2) and c2(O2) > 1∕2 ; otherwise, O is already EF1. Notice that the social cost 
of an allocation is at most 2, and so the price of EF1 is at most 4.

As for the lower bound, let us consider an instance I with a set E = {e1, e2, e3} of three 
chores. The cost function of agent 1 is: c1(e1) = 1∕3 + �, c1(e2) = 1∕3, c1(e3) = 1∕3 − � 
and for any S ⊆ E, c1(S) =

∑
e∈S c1(e) where 𝜖 > 0 takes arbitrarily small value. The 

cost function of agent 2 is: c2(e1) = 1 − �, c2(e2) = 1 − �, c2(e3) = � and for any 
S ⊆ E, c2(S) = min{

∑
e∈S c2(e), 1} . Function c1(⋅) is additive and clearly monotone and 

submodular. For function c2(⋅) , since 
∑

e∈S c2(e) is additive (also monotone and submodu-
lar) on S, it follows that c2(⋅) is also monotone and submodular (see Footnote 9).

For this instance, the optimal allocation O = (O1,O2) is O1 = {e1, e2} and O2 = {e3} , 
yielding social cost 2∕3 + 2� . But since mine∈O1

c1(O1⧵{e}) = 1∕3 > 1∕3 − 𝜖 = c1(O2) , 
agent 1 violates EF1 under allocation O . In an EF1 allocation, agent 2 can not receive all 
chores and can not receive both e1, e2 , either. Thus, the EF1 allocation with minimal social 
cost is A = (A1,A2) with A1 = {e2} and A2 = {e1, e3} , yielding cost 4/3. As a consequence, 
the price of EF1 is at least 4∕3

3∕2+2�
→ 2 as � → 0 .   ◻

Theorem 7.3 When n = 2 and agents have submodular cost functions, if an PMMS alloca-
tion exists, the price of PMMS is 3.

Proof According to Lemma  2.1, MMSi(2,E) ≥ 1∕2 holds for any i ∈ [2] . Given an 
instance I and allocation O with minimal social cost, we can assume allocation O is not 
MMS and w.l.o.g, agent 2 violates the condition of MMS. Let A be an MMS allocation. 
Due to c2(A2) ≤ MMS2(2,E) < c2(O2) , we have

where the last inequality transition is because c1(A1) ≤ 1 and MMS2(2,E) ≥ 1∕2.
As for the lower bound, let us consider an instance I with a set E = {e1, e2, e3} of 

chores. The cost function of agent 1 is: c1(e1) = 1∕2 , c1(e2) = 1∕2 − � , c1(e3) = � and for 
S ⊆ E, c1(S) =

∑
e∈S c1(e) . The cost function of agent 2 is: c2(e1) = 1 − 2� , c2(e2) = 10� , 

c2(e3) = 1 − 3� , c2(e1 ∪ e2) = 1 , c2(e1 ∪ e3) = 1 , c2(e2 ∪ e3) = 1 − � , c2(E) = 1 . Func-
tion c1(⋅) is additive and hence monotone and submodular. It is not hard to verify c2(⋅) is 
monotone. Suppose c2(⋅) is not submodular, and accordingly, there exists S ⊊ T ⊆ E and 
e ∈ E⧵T  such that c2(T ∪ {e}) − c2(T) > c2(S ∪ {e}) − c2(S) . Since c2(⋅) is monotone, 
we have c2(S ∪ {e}) − c2(S) ≥ 0 implying c2(T ∪ {e}) − c2(T) > 0 . If |T| = 2 , the only 

c1(A1) + c2(A2)

c1(O1) + c2(O2)
<

c1(A1) +MMS2(2,E)

MMS2(2,E)
≤ 3,
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possibility is T = e2 ∪ e3 and adding e1 to T has margin � . But for any S ⊊ T  the margin of 
adding e1 to S is larger than � , a contradiction. If |T| = 1 , then c2(S ∪ {e}) − c2(S) = c2(e) 
that is the largest margin of adding item e to a subset, a contradiction. Thus, function c2(⋅) 
is also submodular.

For this instance, partition {{e1}, {e2, e3}} defines MMS1(2,E) = 1∕2 , and 
{{e1}, {e2, e3}} defines MMS2(2,E) = 1 − � . The minimal social cost allocation 
O = (O1,O2) with O1 = {e1, e3} and O2 = {e2} , resulting in minimal social cost 1∕2 + 11� . 
But c1(O1) = 1∕2 + 𝜖 > MMS1(2,E) , and thus O is not MMS. Observe that in an MMS 
allocation, agent 2 can only receive either a single chore or {e2, e3} . The MMS allocation 
with minimal social cost is A with A1 = {e2, e3} and A2 = {e1} whose social cost is equal 
to 3∕2 − 2� . As a consequence, the price of MMS is at least 3∕2−2�

1∕2+11�
→ 3 as � → 0 .   ◻

Theorem 7.4 When n = 2 and agents have submodular cost functions, if a 3
2
-PMMS alloca-

tion exists, the price of 3
2
-PMMS is at least 4/3 and at most 8/3.

Proof We first prove the upper bound. According to Lemma 2.1, MMSi(2,E) ≥ 1∕2 holds 
for any i ∈ [2] . Given an instance I, let O = (O1,O2) be an minimal social cost allocation of 
I, and w.l.o.g., we assume c1(O1) ≤ c2(O2) . Moreover, we can assume c2(O2) > 3∕4 ; oth-
erwise O is already a 3

2
-PMMS allocation and we are done. Notice that the social cost of an 

allocation is at most 2, and so the price of 3
2
-PMMS is at most 8/3.

As for the lower bound, let us consider an instance with a set E = {e1, e2, e3, e4} 
of four chores. The cost profile of agent 1 is: c1(e1) = 3∕8 , c1(e2) = 3∕8 + � , 
c1(e3) = 1∕8 − � , c1(e4) = 1∕8 and for S ⊆ E, c1(S) =

∑
e∈S c1(e) . The cost profile of agent 

2 is: c2(e1) = c2(e2) = 1 − � , c2(e3) = c2(e4) = � and for S ⊆ E, c2(S) = min{
∑

e∈S c2(e), 1} 
where 𝜖 > 0 can take arbitrarily small value. Function c1(⋅) is additive and hence monotone 
and submodular. For function c2(⋅) , since 

∑
e∈S c2(e) is additive (also monotone and sub-

modular) on S, it follows that c2(⋅) is also monotone and submodular (see Footnote 9).
For the quantity of MMS, partition {{e1, e4}, {e2, e3}} defines MMS1(2,E) = 1∕2 , and 

any allocation defines MMS2(2,E) = 1 . The minimal social cost allocation O with 
O1 = {e1, e2} and O2 = {e3, e4} whose social cost is equal to 3∕4 + 3� . But due to 
c1(O1) = 3∕4 + 𝜖 > 3∕2 ⋅MMS1(2,E) , agent 1 violates 3

2
-PMMS under O . Notice agent 1 

can not receive both e1, e2 , one can check that the 3
2
-PMMS allocation with minimal social 

cost assigns all chores to agent 2, yielding social cost exactly 1. As a consequence, the 
price of 3

2
-PMMS is at least 1

3∕4+3�
→

4

3
 as � → 0 .   ◻

Theorem 7.5 When n = 2 and agents have submodular cost functions, the price of 2-MMS 
is 1.

Proof According to Lemma  2.2, the allocation with minimal social cost must also be 
2-MMS, completing the proof.   ◻

Theorem 7.6 When n ≥ 3 and agents have submodular cost functions, the price of 2-MMS 
is at least n+3

6
 and at most n

2

2
.
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Proof The lower bound directly follows from the instance constructed in Theorem 6.7. As 
for the upper bound, given any minimal social cost allocation O , if maxi∈[n] ci(Oi) ≤

2

n
 , then 

due to MMSi(n,E) ≥
1

n
 from Lemma 2.1, we have ci(Oi) ≤ 2MMSi(n,E) for any i ∈ [n] . 

This implies allocation O is 2-MMS and we are done. Thus, we can assume w.l.o.g. that 
maxi∈[n] ci(Oi) >

2

n
 . Notice the social cost of an allocation is at most n, and so the price of 

2-MMS is at most n
2

2
 .   ◻

8  Conclusions

In this paper, we are concerned with fair allocations of indivisible chores among agents 
under the setting of both additive and submodular (subadditive) cost functions. First, 
under the additive setting, we have established pairwise connections between several 
(additive) relaxations of the envy-free fairness in allocating, which look at how an 
allocation under one fairness criterion provides an approximation guarantee for fair-
ness under another criterion. Some of our results in that part are in sharp contrast to 
what is known in allocating indivisible goods, reflecting the difference between goods 
and chores allocation. We have also extended to the submodular setting and investi-
gated the connections between these fairness criteria. Our results have shown that, 
under the submodular setting, the interesting connections we have established under 
the additive setting almost disappear and few non-trivial approximation guarantees 
exist. Then we have studied the trade-off between fairness and efficiency, for which we 
have established the price of fairness for all these fairness notions in both additive and 
submodular settings. We hope our results have provided an almost complete picture for 
the connections between these chores fairness criteria together with their individual 
efficiencies relative to social optimum.

Appendix

A.1 Proof of Theorem 4.3

We first prove the upper bound. Let A = (A1,A2,A3) be a PMMS allocation and we focus 
on agent 1. For the sake of contradiction, we assume c1(A1) >

4

3
MMS1(3,E) . We can 

also assume bundles A1,A2,A3 do not contain chore with zero cost for agent 1 since the 
existence of such chores do not affect approximation ratio of allocation A on PMMS or 
MMS. To this end, we let c1(A2) ≤ c1(A3) (the other case is symmetric).

We first show that A1 must be the bundle yielding the largest cost for agent 1. Oth-
erwise, if c1(A1) ≤ c1(A2) ≤ c1(A3) , then by additivity c1(A1) ≤

1

3
c1(E) ≤ MMS1(3,E) , 

contradicting c1(A1) >
4

3
MMS1(3,E) . Or if c1(A2) < c1(A1) ≤ c1(A3) , since A1 and 

A2 is a 2-partition of A1 ∪ A2 , then c1(A1) is at least MMS1(2,A1 ∪ A2) . On the other 
hand, since A is a PMMS allocation, we know c1(A1) ≤ MMS1(2,A1 ∪ A2) , and thus, 
c1(A1) = MMS1(2,A1 ∪ A2) holds. Based on assumption c1(A1) >

4

3
MMS1(3,E) and 
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Lemma  2.1, we have c1(A1) >
4

3
MMS1(3,E) ≥

4

9
c1(E) , then c1(A3) ≥ c1(A1) >

4

9
c1(E) 

which yields c1(A2) <
1

9
c1(E) owning to the additivity. As a result, the differ-

ence between c1(A1) and c1(A2) is lower bounded c1(A1) − c1(A2) >
1

3
c1(E) . 

Due to c1(A1) = MMS1(2,A1 ∪ A2) , we can claim that every single chore in A1 
has cost strictly greater than 1

3
c1(E) ; otherwise, ∃e ∈ A1 with c1(e) ≤

1

3
c1(E) , 

then reassigning chore e to A2 yields a 2-partition {A1⧵{e},A2 ∪ {e}} with 
max{c1(A1⧵{e}), c1(A2 ∪ {e})} < c1(A1) = MMS1(2,A1 ∪ A2) , contradict-
ing the definition of maximin share. Since every single chore in A1 has cost 
strictly greater than 1

3
c1(E) , then A1 can only contain a single chore; otherwise, 

c1(A3) ≥ c1(A1) ≥
|A1|
3
c1(E) ≥

2

3
c1(E) , implying c1(A3 ∪ A1) ≥

4

3
c1(E) , a contradiction. 

However, if |A1| = 1 , according to the second point of Lemma 2.1, c1(A1) >
4

3
MMS1(3,E) 

can never hold. Therefore, it must hold that c1(A1) ≥ c1(A3) ≥ c1(A2) , which then implies 
c1(A1) = MMS1(2,A1 ∪ A3) = MMS1(2,A1 ∪ A2) as a consequence of PMMS.

Next, we prove our statement by carefully checking the possibilities of |A1| . According to 
Lemma 2.1, if |A1| = 1 , then c1(A1) ≤ MMS1(3,E) . Thus, we can further assume |A1| ≥ 2 . 
We first consider the case |A1| ≥ 3 . Since c1(A1) >

4

3
MMS1(3,E) ≥

4

9
c1(E) , by additivity, 

we have c1(A2) + c1(A3) <
5

9
c1(E) and moreover, c1(A2) <

5

18
c1(E) due to c1(A2) ≤ c1(A3) . 

Then the cost difference between bundle A1 and A2 satisfies c1(A1) − c1(A2) >
1

6
c1(E) . 

This allow us to claim that every single chore in A1 has cost strictly greater than 
1

6
c1(E) ; otherwise, reassigning a chore with cost no larger than 1

6
c1(E) to A2 yields 

another 2-partition of A1 ∪ A2 in which the cost of larger bundle is strictly smaller than 
MMS1(2,A1 ∪ A2) , a contradiction. In addition, since c1(A1) = MMS1(2,A1 ∪ A2) , we 
claim c1(A2) ≥ c1(A1⧵{e}),∀e ∈ A1 ; otherwise, ∃e� ∈ A1 such that c1(A2) < c1(A1 ⧵ {e

�}) , 
then reassigning e′ to A2 yields another 2-partition of A1 ∪ A2 of which both two bundles’ 
cost are strictly smaller than MMS1(2,A1 ∪ A2) , a contradiction. Thus, for any e ∈ A1 , we 
have c1(A2) ≥ c1(A1⧵{e}) ≥

1

6
c1(E) ⋅ |A1⧵{e}| ≥ 1

3
c1(E) , where the last transition is due to 

|A1| ≥ 3 . However, the cost of bundle A2 is c1(A2) <
5

18
c1(E) , a contradiction.

The remaining work is to rule out the possibility of |A1| = 2 . Let A1 = {e1
1
, e1

2
} with 

c1(e
1
1
) ≤ c1(e

1
2
) (the other case is symmetric). Since c1(A1) >

4

3
MMS1(3,E) ≥

4

9
c1(E) , then 

c1(e
1
2
) >

2

9
c1(E) . Let S∗

2
∈ argmaxS⊆A2

{c1(S) ∶ c1(S) < c1(e
1
1
)} (can be empty set) be the 

largest subset of A2 with cost strictly smaller than c1(e11) . Due to c1(A1) = MMS1(2,A1 ∪ A2) , 
then swapping S∗

2
 and e1

1
 would not produce a 2-partition in which the cost of both bundles 

are strictly smaller than c1(A1) , and thus c1(A2 ⧵ S
∗
2
∪ {e1

1
}) ≥ c1(A1) , equivalent to

Then, by c1(A1) − c1(A2) >
1

6
c1(E) and c1(A2⧵S

∗
2
) ≥ c1(e

1
2
) , we have 

c1(e
1
1
) − c1(S

∗
2
) >

1

6
c1(E) , which allows us to claim that every single chore in A2 ⧵ S

∗
2
 has 

cost strictly greater than 1
6
c1(E) ; otherwise, we can find another subset of A2 whose cost is 

strictly smaller than e1
1
 but larger than c1(S∗2) , contradicting the definition of S∗

2
 . As a result, 

(A-1)c1(A2 ⧵ S
∗

2
) ≥ c1(e

1
2
) >

2

9
c1(E).
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bundle A2 ⧵ S
∗
2
 must contain a single chore; if not, c1(A2) >

1

6
c1(E) ⋅ |A2⧵S

∗
2
| ≥ 1

3
c1(E) , 

which implies c1(A1 ∪ A2 ∪ A3) >
10

9
c1(E) due to c1(A1) >

4

9
c1(E) and 

c1(A3) ≥ c1(A2) >
1

3
c1(E) . Thus, bundle A2 ⧵ S

∗
2
 only contains one chore, denoted by e2

1
 . So 

we can decompose A2 as A2 = {e2
1
} ∪ S∗

2
 where c1(e21) ≥ c1(e

1
2
) >

2

9
c1(E).

Next, we analyse the possible composition of bundle A3 . To have an explicit discussion, 
we introduce two more notions Δ1,Δ2 as follows

Recall c1(A1) >
4

9
c1(E) and c1(e

2
1
) ≥ c1(e

1
2
) >

2

9
c1(E) , so both Δ1,Δ2 > 0 . Simi-

larly, let S∗
3
∈ argminS⊆A3

{c1(S) ∶ c1(S) < c1(e
1
1
)} , then we claim c1(A3⧵S

∗
3
) ≥ c1(e

1
2
) ; 

otherwise, swapping S∗
3
 and e1

1
 yields a 2-partition of A1 ∪ A3 in which the cost 

of both bundles are strictly smaller than c1(A1) = MMS1(2,A1 ∪ A3) , contradict-
ing the definition of maximin share. By additivity of cost functions and Equa-
tion (A-2), we have c1(A3) =

3

9
c1(E) − c1(S

∗
2
) − Δ1 − Δ2 , and accordingly 

c1(A1) − c1(A3) =
1

9
c1(E) + c1(S

∗
2
) + 2Δ1 + Δ2 . This combing c1(A3⧵S

∗
3
) ≥ c1(e

1
2
) yields

Based on Inequality (A-3), we can claim that every single chore in A3 ⧵ S
∗
3
 has cost at 

least 1

9
c1(E) + c1(S

∗
2
) + 2Δ1 + Δ2 ; otherwise, contradicting the definition of S∗

3
 . Recall 

c1(A3) =
3

9
c1(E) − c1(S

∗
2
) − Δ1 − Δ2 , then due to the constraint on the cost of single chore 

in A3⧵S
∗
3
 , we have |A3⧵S

∗
3
| ≤ 2 . Meanwhile, c1(A3⧵S

∗
3
) ≥ c1(e

1
2
) implying that bundle 

A3 ⧵ S
∗
3
 can not be empty. In the following, we separate our proof by discussing two pos-

sible cases: |A3⧵S
∗
3
| = 1 and |A3⧵S

∗
3
| = 2.

Case 1: |A3⧵S
∗
3
| = 1 . Let A3⧵S

∗
3
= {e3

1
} . Therefore, the whole set E is composed by four 

single chores and two subsets S∗
2
, S∗

3
 , i.e., E = {e1

1
, e1

2
, e2

1
, S∗

2
, e3

1
, S∗

3
} . Then, we let 

T = (T1, T2, T3) be the allocation defining MMS1(3,E) and without loss of generality, let 
c1(T1) = MMS1(3,E) . Next, to find contradictions, we analyse bounds on both MMS1(3,E) 
and c1(A1) . Since min{c1(e

2
1
), c1(e

3
1
)} ≥ c1(e

1
2
) ≥

1

2
c1(A1) , we claim that c1(A1) ≤

9

18
c1(E) ; 

otherwise c1(A1) + c1(e
2
1
) + c1(e

3
1
) > c1(E) . Notice that E contains three chores with the 

cost at least 2
9
c1(E) each, if any two of them are in the same bundle under T , then 

MMS1(3,E) >
4

9
c1(E) and consequently, c1(A1)

MMS1(3,E)
<

9

8
 , a contradiction. Or if each of 

{e1
2
, e2

1
, e3

1
} is contained in a distinct bundle, then the bundle also containing chore e1

1
 has 

cost at least c1(A1) as a result of min{c1(e
2
1
), c1(e

3
1
)} ≥ c1(e

1
2
) and A1 = {e1

1
, e1

2
} . Thus, 

MMS1(3,E) ≥ c1(A1) holds, contradicting c1(A1) >
4

3
MMS1(3,E).

Case 2: |A3⧵S
∗
3
| = 2 . Let A3⧵S

∗
3
= {e3

1
, e3

2
} and accordingly, the whole set can be decom-

posed as E = {e1
1
, e1

2
, e2

1
, S∗

2
, e3

1
, e3

2
, S∗

3
} . Note the upper bound c1(A1) ≤

9

18
c1(E) still holds 

since min{c1(A3 ⧵ S
∗
3
), c1(e

2
1
)} ≥ c1(e

1
2
) . Then, we analyse the possible lower bound of 

MMS1(3,E) . If chores e1
2
, e2

1
 are in the same bundle of T , then MMS1(3,E) >

4

9
c1(E) holds 

and so c1(A1)

MMS1(3,E)
<

9

8
 , a contradiction. Thus, chores e1

2
, e2

1
 are in different bundles in T . 

(A-2)
c1(A1) =

4

9
c1(E) + Δ1,

c1(A2) =
2

9
c1(E) + c1(S

∗

2
) + Δ2.

(A-3)c1(e
1
1
) − c1(S

∗

3
) ≥

1

9
c1(E) + c1(S

∗

2
) + 2Δ1 + Δ2.
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Then, if both chores e3
1
, e3

2
 are in the bundle containing e1

2
 or e2

1
 , then we also have 

MMS1(3,E) >
4

9
c1(E) implying c1(A1)

MMS1(3,E)
<

9

8
 , a contradiction. Therefore, only two possi-

ble cases; that is, both e3
1
, e3

2
 are in the bundle different from that containing e1

2
 or e2

1
 ; or the 

bundle having e1
2
 or e2

1
 contains at most one of e3

1
, e3

2
.

Subcase 1: both e3
1
, e3

2
 are in the bundle different from that containing e1

2
 or e2

1
 ; Recall 

c1(e
1
1
) >

3

18
c1(E) + c1(S

∗
2
) and the fact min{c1(e

1
2
), c1(e

2
1
), c1(e

3
1
∪ e3

2
)} >

4

18
c1(E) , the bun-

dle also containing e1
1
 has cost strictly greater than 7

18
c1(E) . Thus, MMS1(3,E) >

7

18
c1(E) , 

which combines c1(A1) ≤
9

18
c1(E) implying c1(A1)

MMS1(3,E)
<

9

7
<

4

3
 , a contradiction.

Subcase 2: bundle having e1
2
 or e2

1
 contains at most one of e3

1
, e3

2
 . Recall c1(e21) ≥ c1(e

1
2
) 

and min{c1(e
3
1
), c1(e

3
2
)} ≥

1

9
c1(E) + c1(S

∗
2
) + 2Δ1 + Δ2 , thus in allocation T there always 

exist a bundle with cost at least 1
9
c1(E) + c1(S

∗
2
) + 2Δ1 + Δ2 + c1(e

1
2
) and results in the ratio

In order to satisfying our assumption c1(A1)

MMS1(3,E)
>

4

3
 , the RHS of Inequality (A-4) must be 

strictly greater than 4
3
 , which implies the following

However, based on the first equation of (A-2) and c1(e
1
1
) ≤ c1(e

1
2
) , we have 

c1(e
1
1
) ≤

2

9
c1(E) +

1

2
Δ1 <

2

9
c1(E) + 2c1(S

∗
1
) + 4Δ1 + 2Δ2 due to Δ1,Δ2 > 0 . This contra-

dicts Inequality (A-5). Therefore, c1(A1)

MMS1(3,E)
>

4

3
 can never hold under Case 2. Up to here, 

we complete the proof of the upper bound.
Next, as for tightness, consider an instance with three agents and a set E = {e1,… , e6} 

of six chores. Agents have identical cost functions. The cost function of agent 1 is as fol-
lows: c1(ej) = 2,∀j = 1, 2, 3 and c1(ej) = 1,∀j = 4, 5, 6 . It is easy to see that 
MMS1(3,E) = 3 . Then, consider an allocation B = {B1,B2,B3} with 
B1 = {e1, e2},B2 = {e3} and B3 = {e4, e5, e6} . It is not hard to verify that allocation B is 
PMMS and due to c1(B1) = 4 , we have the ratio c1(B1)

MMS1(3,E)
=

4

3
.

A.2 Algorithm 1

The following efficient algorithm, which we call ALG1 , outputs an EF1 allocation with a 
cost at most 5

4
 times the optimal social cost under the case of n = 2 . In the algorithm, we 

use notations: L(k) ∶= {e1,… , ek} and R(k) ∶= {ek,… , em} for any 1 ≤ k ≤ m.

(A-4)
c1(A1)

MMS1(3,E)
≤

c1(e
1
1
) + c1(e

1
2
)

1

9
c1(E) + c1(S

∗
2
) + 2Δ1 + Δ2 + c1(e

1
2
)
.

(A-5)c1(e
1
1
) >

2

9
c1(E) + 2c1(S

∗

1
) + 4Δ1 + 2Δ2.
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