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Abstract
We study fair allocations of indivisible goods and chores in conjunction with system effi-
ciency, measured by two social welfare functions, namely utilitarian and egalitarian welfare.
To model preference, each agent is associated with a cardinal and additive valuation
function. The fairness criteria we are concerned with are equitability up to any item (EQX)
and equitability up to one item (EQ1). For the trade-off between fairness and efficiency, we
investigate efficiency loss under these fairness constraints and establish the price of fairness.
From the computational perspective, we provide a complete picture of the computational
complexity of (i) deciding the existence of an EQX/EQ1 and welfare-maximizing alloca-
tion; (ii) computing a welfare maximizer among all EQX/EQ1 allocations.

Keywords Fair division · Indivisible items · Price of fairness

1 Introduction

Fairness and efficiency are two fascinating goals in resource allocation problems and have
been extensively studied in social science, operations research and computer science
[5, 11, 28, 36]. It is known that there is a trade-off between fairness and efficiency, i.e.,
optimization on one notion may lead to bad performance on the other. Such a trade-off
motivates theoretical work on quantifying the efficiency loss under fairness constraints
[8, 19, 37] and practical work on balancing fairness and efficiency, such as in GPU cluster
[20], organ transplant [10] and transportation [35]. To investigate the relationship between
fairness and efficiency, the very first problem is to determine whether there exists a fair
allocation that achieves the optimal social welfare. On the one hand, a positive answer
dramatically narrows down the search space of the desired allocations, which makes it
possible to compute and choose such an allocation in practice efficiently. On the other hand,
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a negative answer implies that some realistic relaxations on one of or both criteria are
needed. For example, when international agencies and organizations distribute aid material
to refugees, the assignment needs to not only improve the overall happiness of the refugee
group, but also treat every member in the group equally, so as to avoid potential internal
conflicts caused by unreasonable distributions. For the distributor, a crucial work is to
determine whether there is such a distribution that can maximize the solution to the needs of
the refugee group while ensuring that everyone is treated equally. If the distributor knows
that the desired assignment exists, she can efficiently find such an allocation by searching
the set of maximum welfare allocations.

The underlying fairness notion of this work is equitability that requires all agents to
receive the same value in an allocation. Equitability acts as an interpersonal fairness cri-
terion and affects agents’ choice and behaviour when facing one-shot distribution problems
[23] and voluntary cooperation games [24]. Herreiner and Puppe [31] conduct free-form
bargaining experiments to compare interpersonal (equitability) and intrapersonal (envy-
freeness) criteria and indicate that interpersonal criterion plays the dominant role and acts as
the cognitive fairness more often than envy-freeness. When assigning indivisible items, the
existence of an equitable (EQ) allocation is not guaranteed, which motivates us to study two
of its realistic relaxations: equitability up to one item (EQ1) and equitability up to any item
(EQX). The idea of relaxing equitability through eliminating some specific items is origi-
nated by Gourvès et al. [30] in which it is named as “Near Jealousy-Freeness”. Freeman
et al. [25] formally define the notions of EQX and EQ1 in goods allocation and show that
both notions are satisfiable when agents have additive valuations. Then, the existence of
EQX and EQ1 is proved by Freeman et al. [26] in chores allocation.

Social welfare or social efficiency is measured by social welfare functions in welfare
economics, microeconomic techniques for evaluating well-being at the aggregate level.
Given a set of social states, a welfare function can prioritize every possible pair of social
states as more desirable and less desirable or indifferent between these two. In this work, we
are interested in two typical ethical principles, utilitarianism and egalitarianism, important
both in theoretical and practical social decision making [36]. Two corresponding cardinal
welfare functions, utilitarian welfare and egalitarian welfare (also known as Rawlsian
welfare [34]) are studied. While a utilitarian measures the welfare by the sum of individuals’
value, egalitarian welfare is the well-being of the worst-off individual (also known as
maximin criterion). In some cases, achieving optimal social welfare may lead to very unfair
outcomes, and recent work in fair division concern the interaction between fairness and
efficiency by quantifying efficiency under fairness constraints [3, 7, 19, 38] and optimizing
welfare in the domain of fair allocations [14, 29].

In this work, we consider the problem of allocating indivisible items to several agents
and investigate both goods and chores allocations. Although problems under these two
settings are similar, results established in one setting do not necessarily hold for the other
[15, 16, 26]. According to Bogomolnaia et al. [14, p. 3], “the results for goods and bads are
similar but not mirror images of one another.” Therefore, our study on fair allocations
together with welfare maximization will be on both settings of goods and chores. In par-
ticular, we wish to decide whether there exists a nearly equitable allocation that also
achieves the maximum utilitarian or egalitarian welfare, and efficiently compute a welfare
maximizer among all nearly equitable allocations.
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1.1 Related literature

The notion of equitable allocation is originally studied in the cake-cutting problem (a
divisible item) and its existence has been proved to be guaranteed by Dubins and Spanier
[22]. For indivisible items, Gourvès et al. [30] relax equitability based on the up to one item
scheme and prove the existence of this relaxed equitability in the matroid context. The
notions of EQX and EQ1 are formally defined by Freeman et al. [25] that study these two
fairness criteria together with Pareto efficiency and envy-freeness. They answer the exis-
tence and computational complexity of a sequence of related problems. In chores allocation,
Freeman et al. [26] also consider EQX and EQ1 together with Pareto efficiency and answer
corresponding existence and computation problems. Additional work on equitable alloca-
tions imposes connectivity constraints; each item is placed in a vertex of a graph and the
bundle received by agents must be connected. Bouveret et al. [18] consider assigning chores
in the path, star, and complete graph and establish results on the complexity of the existence
of equitable and other fair allocations. None of the above-mentioned work studies these two
fairness notions together with another important objective, social welfare.

Study on fairness together with social welfare is considerably intensified recently
[8, 9, 19]. To quantify the efficiency loss under fairness requirements, Caragiannis et al. [19]
introduce the price of fairness and study the notion of envy-freeness, proportionality, and
equitability in divisible and indivisible goods and chores. In the case of indivisible goods,
Bei et al. [7] consider fairness notions whose existences are guaranteed and provide char-
acterizations on their price of fairness. They present lower bound Xð ffiffiffi

n
p Þ and upper bound O

(n) on the price of envy-free up to one item, and this gap is then closed by Barman et al. [6],
who show that the price of envy-free up to one item and of (1/2)-approximate maximin
share are both Hð ffiffiffi

n
p Þ. When assigning indivisible chores, Sun et al. [38] provide tight

results on several fairness notions that are proposed as relaxation of envy-freeness. The
notion of the price of fairness is also applied to more practical topics such as kidney
exchange [21] and machine scheduling [1, 12]. One of the papers closest to ours is Aziz
et al. [4], which focuses on the notion of (relaxed) envy-freeness and proportionality. The
authors study in the setting of goods the computational complexity of computing fair and
welfare-maximizing allocations. They also briefly discuss the adaptability of their approach
to other notions of fairness. In addition, the relationship between fairness and social welfare
has been recently investigated in the online setting [14, 29, 39].

1.2 Main results

The main contribution of this work is to provide a clear picture of the computational
complexity of determining the existence of a nearly equitable allocation that also achieves
the maximum social welfare and moreover, the complexity of computing a welfare maxi-
mizer among all equitable allocations. We also establish the price of fairness under every
pairwise fairness and welfare combination.

On the price of fairness, we have the following main results, which are summarized in
Table 1.

– In chores allocation, the price of EQX and of EQ1 with respect to utilitarian and
egalitarian welfare are both infinite.

– In goods allocation, the price of EQX and of EQ1 with respect to egalitarian welfare are
both 1. For utilitarian welfare, if there are two agents, the price of EQX is 3/2 and the

123

Auton Agent Multi-Agent Syst (2023) 37:8 Page 3 of 45 8



price of EQ1 is at least 6/5 and at most ð ffiffiffi
2

p þ 1Þ=2. For general n agents, the price of
EQX and of EQ1 are both at least n� 1 and at most 3n, asymptotically tight HðnÞ.
After quantifying the welfare loss under fair allocations, we investigate relaxed

equitability and welfare maximization from the algorithmic perspective. When concerning
egalitarian welfare in goods allocation, results on the price of fairness show that there exist
EQX and EQ1 allocations that achieve the optimal egalitarian welfare. We then prove that,
on the contrary, when assigning chores, deciding the existence of an EQX (resp., EQ1)
allocation that also maximizes the egalitarian welfare is strongly NP-hard for general n and
NP-hard for fixed n� 2 (resp., n� 3). For optimization problems, we show that computing
an EQX (or EQ1) allocation with the maximum egalitarian welfare is strongly NP-hard for
general n and NP-hard for fixed n� 2 in both cases of goods and chores. Moreover, in the
case of fixed n, we design pseudo-polynomial time algorithms that output an EQX or EQ1
allocation with the maximum egalitarian welfare.

On the other hand, when focusing on utilitarian welfare, the computational complexity in
allocating goods and chores is identical. In particular, for general n, every decision or
optimization problem is strongly NP-complete and strongly NP-hard, respectively. For fixed

Table 1 Prices of fairness

EQX EQ1

Utilitarian n ¼ 2: 3
2 (T3.4) n ¼ 2: 6

5 ;
ffiffi
2

p þ1
2

h i
(T3.5) Goods

n� 3: n� 1; 3n½ � (T3.6) n� 3:
½n� 1; 3n� (T3.6)

1 (T3.3) 1 (T3.3) Chores

Egalitarian 1 (T3.1) 1 (T3.1) Goods

1 (T3.2) 1 (T3.2) Chores

Interval [a, b] means that the lower bound is equal to a and upper bound is equal to b. Tx.y points to
Theorem x.y

Table 2 Computational complexity for fixed n

UW Goods/Chores EW Goods EW Chores

n ¼ 2 n� 3 n� 2 n ¼ 2 n� 3

E(W �EQ1) P (T4.11) NP-complete (T4.9) P (T3.1) ? NP-hard (T4.14)

pseudo-poly (T5.5) pseudo-poly (T5.3 & 5.6)

C(W/EQ1) NP-hard (T4.12) NP-hard (T4.15)

pseudo-poly (T5.4) pseudo-poly (T5.1 & 5.4)

E(W�EQX) NP-complete (T4.7) P (T3.1) NP-hard (T4.13)

pseudo-poly (T5.5) pseudo-poly (T5.3 & 5.6)

C(W/EQX) NP-hard (T4.8) NP-hard (T4.15)

pseudo-poly (T5.4) pseudo-poly (T5.2 & 5.4)

Note: The problem descriptors in the first column are defined in detailed at the beginning of Sect. 4.
Abbreviations “UW” and “EW” refer to utilitarian welfare and egalitarian welfare, respectively. Abbreviation
“Tx.y” points to Theorem x.y. The complexity of E(EW�EQ1) for allocating chores to two agents is open
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n, our results are summarized in Table 2. The first column of Table 2 contains the (decision/
optimization) problem descriptors. We denote by “E(W � F)” the problem of deciding
whether there exists an F allocation that also maximizesW among all allocations, and denote
by “C(W/F)” the problem of computing an F allocation that maximizes W among all F
allocations. The notion of W refers to the welfare function, and the first row of Table 2
introduces the welfare function under consideration.

Most of the proofs of our results are presented in the main body of the paper, whereas the
rest (particularly those with similar arguments) is relegated to the Appendix.

2 Preliminaries

A fair division instance I ¼ h½n�;E;Vi is composed of a set [n] of agents and a set E ¼
fe1; . . .; emg of m indivisible items, where ½n� ¼ f1; . . .; ng for n 2 Nþ. Each agent i is
associated with a valuation function vi 2 V and vi : 2E ! R. Given an item e 2 E, we say that e
is a good if for every i 2 ½n�, viðeÞ� 0 and e is a chore if for every i 2 ½n�, viðeÞ� 0.We consider
the situation where all items are either goods or chores and we call I a fair-goods (resp., fair-
chores) instance if every item is a good (resp., a chore). Throughout the paper, for every i 2 ½n�,
we assume við;Þ ¼ 0 and function við�Þ is additive, that is, viðSÞ ¼

P
e2S viðeÞ for any S � E.

For simplicity, instead of viðfejgÞ, we use viðejÞ to represent the value of item ej on agent i.
An allocation A :¼ ðA1; . . .;AnÞ is an n-partition of E among agents, i.e., Ai \ Aj ¼ ; for

any i 6¼ j and
S

i2½n� Ai ¼ E. Each subset S � E also refers to a bundle of items. For any

bundle S and k 2 Nþ, we denote by PkðSÞ the set of all k-partition of S, and |S| the number
of items in S.

2.1 Social welfare functions

Utilitarian welfare is defined as the sum of individuals’ values, and egalitarian welfare is
equal to the value of the worst-off agents. Formally, we have the following two definitions.

Definition 2.1 Given an allocation A, the utilitarian welfare (UW) of A is defined as
UWðAÞ ¼ P

i2½n� viðAiÞ.

Definition 2.2 Given an allocation A, the egalitarian welfare (EW) of A is defined as
EWðAÞ ¼ mini2½n� viðAiÞ.

Among all allocations, we are interested in the one that has the maximum social welfare and
such an allocation is also called a welfare maximizer.

Definition 2.3 An allocation A is said to be a utilitarian welfare maximizer (UWM) and a
egalitarian welfare maximizer (EWM) if it has the maximum utilitarian welfare and max-
imum egalitarian welfare, respectively.

2.2 Fairness criteria

We study equitable allocations and two of its relaxations. When presenting the definition of
approximately equitable allocations, we distinguish between the case of goods and chores.
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Definition 2.4 An allocation A ¼ ðA1; . . .;AnÞ is equitable (EQ) if viðAiÞ ¼ vjðAjÞ for any
i; j 2 ½n�.

Definition 2.5 For allocating goods, an allocation A is equitable up to one item (EQ1) if
there exists e 2 Aj such that viðAiÞ� vjðAjnfegÞ for any i; j 2 ½n�. For allocating chores, an
allocation A is equitable up to one item (EQ1) if there exists e 2 Ai such that
viðAinfegÞ� vjðAjÞ for any i; j 2 ½n�.

Definition 2.6 For allocating goods, an allocation A is equitable up to any item (EQX) if
for any i; j 2 ½n� and any e 2 Aj with vjðeÞ 6¼ 0, viðAiÞ� vjðAjnfegÞ holds. For allocating
chores, an allocation A is equitable up to any item (EQX) if for any i; j 2 ½n� and any e 2 Ai

with viðeÞ 6¼ 0, viðAinfegÞ� vjðAjÞ holds.

2.3 Price of fairness

The price of fairness (PoF) quantifies the loss of economic welfare when enforcing allo-
cation fairness. For allocation of goods, PoF is the supremum ratio over all problem
instances between the maximum welfare of all allocations and maximum welfare of all fair
allocations. In the case of chores, PoF is the supremum ratio over all problem instances
between the maximum welfare of all fair allocations and maximum welfare of all alloca-
tions. The price of fairness has been applied to quantify the welfare loss under fairness
requirements in both settings of goods [3, 7, 19] and chores [19, 32, 33]. Following previous
studies [7, 19, 33], we assume agents’ valuation functions are normalized1 to 1 in the case of
goods and �1 in the case of chores (only) when we are concerned with the price of fairness.
Given an instance I and a welfare function W 2 fEW;UWg, denote by OPTW ðIÞ the
maximum welfare with respect to W over all allocations of instance I . Moreover, given a
fairness criterion F and an instance I , denote by FðIÞ the set of all allocations of instance I
satisfying fairness criterion F.

Definition 2.7 Given a fair-goods instance I , for any fairness criterion F and welfare
function W, the price of F with respect to W is defined as

PoFW ¼ sup
I

min
A2FðIÞ

OPTW ðIÞ
W ðAÞ :

In the case of chores, swap the positions of the numerator and denominator.

In the above definition, we apply the following convention for the case where the maximum
welfare of a fair-chores instance is equal to zero: if some fair allocation can achieve welfare
zero, then the price of fairness is 1; otherwise, the price of fairness is infinite. The price of
fairness with respect to fairness notion F is also called price of F, i.e., price of EQ1 and price
of EQX.

1 Normalization can make utilitarian and egalitarian welfare scale invariance. In our case, if agents have
different maximum achievable values, the price of fairness with respect to utilitarian welfare would be
infinite.
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3 Results on price of fairness

We start with studying the price of fairness for every possible pair of welfare function and
fairness criterion, which also answers the question of the existence of a nearly
equitable allocation that approximates a welfare maximizer. Intuitively, if the price of
fairness with respect to fairness criterion F and welfare function W is 1, then in any instance
I , there exists an F allocation that achieves OPTW ðIÞ.

3.1 With respect to egalitarian welfare

First we are concerned with egalitarian welfare in both cases of goods and chores, and
provide tight results that also reveal differences between goods and chores allocation.
Freeman et al. [25] state that leximin2 implies EQX in allocating goods when agents have a
strictly positive value on every item, while leximin fails to guarantee EQX when some items
are valued at 0. Below, we prove that EQX (or EQ1) is compatible with optimal egalitarian
welfare, even dropping the requirement of strictly positive values of all items.

Theorem 3.1 When allocating goods, the price of EQX and of EQ1 with respect to egal-
itarian welfare are both equal to 1.

Proof Since EQX is stricter than EQ1, it suffices to show the statement holds for EQX. We
explicitly construct such an allocation A ¼ ðA1; . . .;AnÞ as follows.

A first maximizes the egalitarian welfare among all allocations. If there is a tie, A
minimizes the number of agents who receive the value EWðAÞ, and subject to that,
maximizes the total number of items assigned to all agents who receive the value
EWðAÞ.

By construction, it is straightforward to see that A is an egalitarian-welfare maximizing
allocation. If allocation A is EQX, then clearly the theorem statement holds.

Next, we focus on the case where A is not EQX. Without loss of generality, assume
v1 A1ð Þ� � � � � vnðAnÞ. Note that if v1 A1ð Þ� vjðAjnfegÞ holds for all j and e 2 Aj with
vjðeÞ[ 0, then allocation A is EQX, a contradiction. Thus, agent 1 must violate EQX. Let
J be the set of agents such that agent 1 violates EQX when compare to agent j 2 J . For

each j 2 J , order goods as Aj ¼ ej1 ; . . .; ejjAj j

n o
with vj ejk

� �� vj ejkþ1

� �
. We claim that

vj ej1
� �

[ 0 holds; otherwise, reassigning ej1 to agent 1 results in another allocation satis-
fying one of the following properties: (1) the egalitarian welfare is larger than EWðAÞ; (2)
the number of agents receiving the value EWðAÞ is one less than that of A; (3) the total
number of items assigned to all agents with the value EWðAÞ is one more than that of A. For
each j 2 J , since agent 1 violates EQX when comparing to agent j, it holds that
v1 A1ð Þ\vj Aj n ej1

� �� �
, and accordingly, there exists an index l� 1 such that

vj Ajn ej1 [ � � � [ ejl
� �� �

[ v1 A1ð Þ and vj Ajn ej1 [ � � � [ ejlþ1

� �� �� v1 A1ð Þ. We then refer
bundle fej1 ; . . .; ejlg as Sj, and clearly, for each j 2 J , one can construct the corresponding
non-empty set Sj. Moreover, we claim that v1ðSjÞ ¼ 0 for each j 2 J ; otherwise, reassigning
Sj to agent 1 results in another allocation that either has egalitarian welfare larger than

2 A leximin solution first selects the allocation that maximizes the value of the least well-off agents, then
subject to that, maximizes the value of the second least, and so on.
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EWðAÞ or has one less agent receiving the value EWðAÞ than that of A. We then consider

the allocation A0 with A0
1 ¼

S
j2J Sj

� �
[ A1, A0

j ¼ AjnSj for j 2 J and A0
j ¼ Aj for other j.

Due to the construction of J and fSjgj2J , allocation A0 achieves the optimal egalitarian

welfare, and moreover, the number of agents receiving the value EWðAÞ in A0 is the same as
that of A. However, in allocation A0, the total number of items assigned to all agents who
receive value EWðAÞ is Pj2J jSjj more than that of A, which contradicts the definition of

allocation A as Sj is non-empty for each j 2 J . Therefore, allocation A must satisfy EQX. h

We remark that the allocation A constructed in the proof of Theorem 3.1 is not necessarily
leximin. To see this, consider Example 1 in Freeman et al. [25]. There are three agents and a
set E ¼ fe1; . . .; e6g of six goods. The goods e1; e2; e3 are valued at 1 by agent 1 and 0 by
agents 2 and 3. The goods e4; e5; e6 are valued at 1 by agents 2 and 3 and at 0 by agent 1. In
the constructed allocation, one of e1; e2; e3 is assigned to agent 2 or agent 3, so that the total
number of items received by the agents with value 1 is maximized. However, in leximin
allocations, all e1; e2; e3 must be assigned to agent 1.

Theorem 3.2 When allocating chores, the price of EQX and of EQ1 with respect to
egalitarian welfare are both infinite.

Proof Note that EQX is stricter than EQ1, and it suffices to prove the statement for EQ1. Let
us consider a fair-chores instance with n� 2 agents and a set E ¼ fe1; . . .; emþ1g of mþ 1
chores with m� n. The valuations are shown in Table 3, where V [ 0 is arbitrarily large.

Since V is arbitrarily large, we have �m=V [ � 1=mþ 1=ð2mV Þ, and so, the unique
EWM assigns the first m items to agent 1 and emþ1 to any agent i with i� 2, yielding the
maximum egalitarian welfare �m=V . But in this allocation, agent 1 violates EQ1 because
she still receives less value even eliminating one chore from her bundle. Then, to achieve
EQ1, agent 1 cannot receive all the first m items, and thus, the egalitarian welfare of an EQ1
allocation is at most �1=mþ 1=ð2mV Þ, based on which the price of EQ1 is at least V=m2 �
1=ð2m2Þ that approaches to positive infinity as V ! þ1. h

According to Theorems 3.1 and 3.2, in goods allocation, both EQX and EQ1 are compatible
with EWM, while in chores allocation, achieving EQX or EQ1 sacrifices most of the
egalitarian welfare.

3.2 With Utilitarian welfare

On utilitarian welfare, we establish the price of fairness for each of EQX and EQ1. A sharp
contrast between goods and chores is also revealed by the results below. Specifically, EQX/
EQ1 allocations can provide a bounded welfare guarantee relative to the optimal one in
goods allocation, while in the case of chores, the price of fairness is infinite.

Table 3 The fair-chores instance for Theorem 3.2

Items e1 e2 � � � em emþ1

v1ð�Þ � 1
V � 1

V
� � � � 1

V � V�m
V

við�Þ for i� 2 � 2V�1
2mV � 2V�1

2mV
� � � � 2V�1

2mV � 1
2V
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Theorem 3.3 When allocating chores, the price of EQX and of EQ1 with respect to
utilitarian welfare are both infinite.

Proof Note that EQX is stricter than EQ1, and so it suffices to prove that the statement
holds for EQ1. Again, we consider the instance constructed in the proof of Theorem 3.2.
Since V is arbitrarily large, we have �1=V [ � 1=mþ 1=ð2mV Þ and
�1=ð2V Þ[ � 1þ m=V , and as a consequence, in a UWM allocation, the first m items are
assigned to agent 1 and emþ1 is assigned to agent i with i� 2, yielding the maximum
utilitarian welfare �ð2mþ 1Þ=ð2V Þ. But in such an allocation, agent 1 violates EQ1
because she still receives less value even eliminating one chore from her bundle. Then, to
achieve EQ1, agent 1 cannot receive all the first m items, and thus, the utilitarian welfare of
an EQ1 allocation is at most �1=mþ 1=ð2mV Þ, based on which the price of EQ1 is at least
ð2V � 1Þ=ð2m2 þ mÞ ! þ1 as V ! þ1. h

When moving to the case of goods, we distinguish between two cases: n ¼ 2 and general
n� 3, and provide (asymptotically) tight results on the price of fairness.

Theorem 3.4 When allocating goods to two agents, the price of EQX with respect to
utilitarian welfare is equal to 3/2.

Proof In the proof of Theorem 3.1, we show that, for any instance I , there exists an EQX
allocation achieving the maximum egalitarian welfare. Let A be such an EQX allocation,
and without loss of generality, assume v1ðA1Þ� v2ðA2Þ. Thus, the maximum egalitarian
welfare is v1ðA1Þ and the maximum utilitarian welfare is at most 1þ v1ðA1Þ. Consider
another allocation A0 with A0

1 ¼ A2 and A0
2 ¼ A1. Since A achieves the maximum egalitarian

welfare, we must have v1 A1ð Þ� min v1ðA2Þ; v2ðA1Þf g, and accordingly, v1ðA1Þ� v2ðA1Þ
implies v1 A1ð Þ þ v2ðA2Þ� 1 due to the normalized valuations; v1ðA1Þ� v1ðA2Þ also implies
v1ðA1Þ þ v2ðA2Þ� 1 due to v1ðA1Þ� v2ðA2Þ and the normalized valuations. Hence, we have
UWðAÞ� maxf2v1ðA1Þ; 1g. Recall that the maximum utilitarian welfare of I is at most
1þ v1ðA1Þ, then for any 0� v1ðA1Þ� 1, we have

Price of EQX� 1þ v1ðA1Þ
maxf2v1ðA1Þ; 1g � 3

2
:

For the lower bound, let us consider a fair-goods instance with two agents and a set
E ¼ fe1; e2; e3g of three goods. The valuations are shown in Table 4, where �[ 0 is
arbitrarily small. A utilitarian welfare-maximization allocation assigns e1 to an arbitrary
agent and e2; e3 to agent 1 and agent 2, respectively, which leads to an optimal utilitarian
welfare 3=2� 2�. But in such allocations, the agent who does not receive e1 violates EQX,
and so, in any EQX allocations, one agent only receives e1 and the other agent receives the
rest two goods, yielding utilitarian welfare exactly 1. Therefore, the price of EQX is at least
3=2� 2� ! 3=2 as � ! 0. h

Before we state our result on the price of EQ1 in Theorem 3.5, we first present Algorithm 1,
which uses Algorithm 2 as a subroutine and outputs an EQ1 allocation with utilitarian

welfare guarantee at least 2=ð ffiffiffi
2

p þ 1Þ times the maximum one. Intuitively, given a fair-
goods instance I , Algorithm 1 first checks whether a specific partial allocation, in which
some items are assigned to the agent having the larger value, can be extended to an EQ1
allocation. If yes, it implements Algorithm 2, a subroutine where in each turn, let the agent
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with the smallest current value pick the item of the highest value from the remaining, and
makes the partial allocation a complete EQ1 allocation with the maximum utilitarian wel-
fare. If the answer is no, to achieve EQ1, Algorithm 1 carefully reassigns some items from
the bundle of the agent with the larger value to the other agent, while avoiding as much
welfare loss as possible. For simplicity, in the description of Algorithm 1 and its proof we
write LðkÞ :¼ fe1; . . .; ekg and RðkÞ :¼ fek ; . . .; emg for any k 2 ½m�.

Lemma 3.1 Algorithm1 always terminates and returns an EQ1 allocation.

Proof If the condition of Step 2 in Algorithm 1 holds, then clearly Algorithm 1 terminates
and allocation A is returned by Greedy with partial assignment ðE1;E2Þ. For any i 2 ½2�, let

Table 4 The fair-goods instance for Theorem 3.4

Items e1 e2 e3

v1ð�Þ 1
2

1
2 � � �

v2ð�Þ 1
2

� 1
2 � �
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eðiÞ be the last good received by agent i in Greedy, and if Ai ¼ Ei, let eðiÞ ¼ ;. The following
proof considers two cases. If A2 \ E0 ¼ ;, according to Greedy, we have
v2ðA2Þ� v1 A1n eð1Þ

� �� �
, which implies agent 2 satisfies EQ1. As for agent 1, from the Step

2 of Algorithm 1, we have v1ðA1Þ ¼ v1ðE1 [ E0Þ� mine2E2 v2ðE2nfegÞ, and thus agent 1

also meets the condition of EQ1. For the case of A2 \ E0 6¼ ;, we let AðiÞ be the allocation
right after agent i receiving item eðiÞ. Then, according to Greedy, when agent 1 just receives

eð1Þ, it holds that v2ðA2Þ� v2ðAð1Þ
2 Þ� v1ðAð1Þ

1 nfeð1ÞgÞ ¼ v1ðA1nfeð1ÞgÞ, which implies that
agent 2 satisfies EQ1. Similarly, we have

v1ðA1Þ� v1ðAð2Þ
1 Þ� v2ðAð2Þ

2 nfeð2ÞgÞ ¼ v2ðA2nfeð2ÞgÞ. Then, agent 1 satisfies EQ1 under
allocation A as well.

When Algorithm 1 goes to Step 5, since valuations are normalized and v2ðe0Þ ¼ 0, the
existence of f is guaranteed. According the order and index s, we have E2 ¼ LðsÞ and
E0 [ E1 ¼ Rðsþ 1Þ. Moreover, we can assume without loss of generality s� 2 because the
condition of Step 2 would hold if s ¼ 1. For index f, if f ¼ s� 1, then v2ðE2nfesgÞ ¼
v2ðLðs� 1ÞÞ� v1ðRðsþ 1ÞÞ ¼ v1ðE1 [ E0Þ holds, and this relationship satisfies the condi-
tion of Step 2, a contradiction. Thus, it must hold that f � s� 2. We then prove that
allocation A constructed by Step 9 is EQ1. For agent 1, she would not violate EQ1 since
v1ðA1Þ ¼ v1ðRðf þ 2ÞÞ� v2ðLðf ÞÞ ¼ v2ðA2nfefþ1gÞ. As for agent 2, since f þ 1� s� 1
and f þ 1 is not chosen by Step 8, then we have v2ðLðf þ 1ÞÞ[ v1ðRðf þ 3ÞÞ, equivalent to
v2ðA2Þ[ v1ðA1nfefþ2gÞ. Thus, agent 2 also satisfies EQ1. h

Theorem 3.5 When allocating goods to two agents, the price of EQ1 with respect to

utilitarian welfare is at least 6/5, and at most ð ffiffiffi
2

p þ 1Þ=2.

Proof We start from the upper bound and consider the allocation A returned by the

Algorithm 1. Based on Lemma 3.1, it suffices to show that the UWðAÞ is at least 2=ð ffiffiffi
2

p þ
1Þ times the maximum utilitarian welfare. If allocation A is returned by Step 3 of Algorithm
1, according to Greedy, we have Ei � Ai for any i 2 ½2�, which implies UWðAÞ equals to the
optimal utilitarian welfare. We then consider the case where A is created by Step 9. Denote
by O ¼ ðO1;O2Þ an allocation with maximum utilitarian welfare. Clearly, Ei � Oi for any
i 2 ½2�. Then, due to index order in Step 5 and f � s� 2, it holds that

v1ðA2Þ
v2ðA2Þ �

v1ðO2Þ
v2ðO2Þ ;

which then implies the following

v1ðA1Þ� 1� v2ðA2Þ v1ðO2Þ
v2ðO2Þ :

Recall f � s� 2, then we have O1 � Rðf þ 3Þ, which leads to
v2ðA2Þ ¼ v2 Lðf þ 1Þð Þ[ v1 Rðf þ 3Þð Þ� v1ðO1Þ. Then, we have the following:

v1ðA1Þ þ v2ðA2Þ� 1þ 1� v1ðO2Þ
v2ðO2Þ

	 

v2ðA2Þ� 1þ 1� v1ðO2Þ

v2ðO2Þ
	 


v1ðO1Þ;

and equivalently,
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v1ðO1Þ þ v2ðO2Þ
v1ðA1Þ þ v2ðA2Þ � v1ðO1Þ þ v2ðO2Þ

1þ v1ðO1Þ 1� 1�v1ðO1Þ
v2ðO2Þ

� � :

We observe that the right hand side is actually a function with two variables v1ðO1Þ; v2ðO2Þ,
and for simplicity, let v1ðO1Þ ¼ x, v2ðO2Þ ¼ y. As for the domain, since the condition of
Step 2 is not satisfied, then v2ðO2Þ� v2ðE2Þ[ v1ðE1 [ E0Þ� v1ðO1Þ, implying y[ x. Also,
v2ðO2Þ[ v1ðO2Þ ¼ 1� v1ðO1Þ due to normalized valuations. Therefore, we have
y[ maxfx; 1� xg. Let f(x, y) corresponds to the right hand side of the above inequality,
then we have its derivatives with respect to y,

of ðx; yÞ
oy

¼ ð1þ xÞy2 þ 2ðx2 � xÞyþ x3 � x2

1þ xð1� 1�x
y Þ

� �2
y2

:

We then let gðx; yÞ ¼ ð1þ xÞy2 þ 2ðx2 � xÞyþ x3 � x2, and its partial derivative with
respect to y is

ogðx; yÞ
oy

¼ 2ð1þ xÞyþ 2x2 � 2x:

The root of equation og=oy ¼ 0 is y ¼ x�x2

1þx and inequality
x�x2

1þx \x consistently holds for any
x 2 ½0; 1Þ. Thus, for any x 2 ½0; 1Þ, function g(x, y) is monotonically increase on y.
Accordingly, we have the following:

min
maxfx;1�xg\y� 1

gðx; yÞ ¼
2x2ð2x� 1Þ; if x� 1

2

ð2x� 1Þðx� 1Þ; if x\
1

2

8><>:
It is not hard to verify that gðx; yÞ� 0 consistently holds, which implies that, for any
x 2 ½0; 1Þ, f(x, y) is a monotonically increasing function of y. Then, to find the maxima of f
(x, y), we substitute y ¼ 1, then by simple calculation, the maximum value of f(x, 1) is equal

to ð ffiffiffi
2

p þ 1Þ=2 which happens when x ¼ ffiffiffi
2

p � 1, completing the proof for upper bound.
As for the lower bound, let us consider a fair-goods instance with two agents and a set

E ¼ fe1; e2; e3g of three items. The valuations are shown in Table 5, where �[ 0 is arbi-
trarily small.

Suppose O is a UWM, then we have O1 ¼ fe2; e3g and O2 ¼ fe1g yielding
UWðOÞ ¼ 3=2� 2�. But agent 2 violates EQ1 in O due to v2 O2ð Þ\v1ðO1nfegÞ for any
e 2 O1. Thus, in any EQ1 allocations, agent 1 can not receive both e2; e3, which means the
welfare loss of EQ1 allocations is at least 1=4� �. And one can verify that A0 with A0

1 ¼
fe3g and A0

2 ¼ fe1; e2g is an EQ1 allocation with UWðA0Þ ¼ 5=4� �. Therefore, regarding
utilitarian welfare, we have

Price of EQ1�
3
2 � 2�
5
4 � �

! 6

5
as � ! 0;

which completes the proof. h
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We now consider the case of general n� 3 and provide asymptotically tight results. Before
stating the main result, we first present several lemmas. The following lemma provides a
sufficient condition for extending a partial allocation into a complete EQX allocation.

Lemma 3.2 Given a fair-goods instance I and a partial allocation A0 of I , if allocation A0

is EQX and for any i with A0
i 6¼ ;, mine2A0

i
viðeÞ� maxe2En

S
i2½n� A

0
i
viðeÞ holds, then alloca-

tion A returned by Greedy ðA0; IÞ is EQX.

Proof For the sake of contradiction, we assume that A is not EQX. Without loss of
generality we assume v1ðA1Þ� � � � � vnðAnÞ and agent 1 violates EQX when comparing to
agent k, i.e., maxe2Ak :vkðeÞ[ 0 vkðAknfegÞ[ v1ðA1Þ. Consider two cases.

Case 1 Ak n A0
k 6¼ ;. Denote by eðkÞ the last item received by agent k in Greedy and AðkÞ

the partial allocation right before agent k receiving item eðkÞ, i.e., Ak ¼ AðkÞ
k [ feðkÞg. Then,

since AðkÞ
1 � A1, we have v1ðA1Þ� v1ðAðkÞ

1 Þ. According to the choice of Step 3 in Algo-

rithm 2, it holds that v1ðAðkÞ
1 Þ� vkðAðkÞ

k Þ, and hence v1ðA1Þ� vkðAðkÞ
k Þ. We show that eðkÞ is

the item with the smallest positive value for agent k in bundle Ak . If A0
k ¼ ;, since an agent

always picks the single item with largest value, item eðkÞ chosen the last must have a value
no larger than any other item in Ak . If A0

k 6¼ ;, the condition
mine2A0

k
vkðeÞ� maxe2En

S
i2½n� A

0
i
vkðeÞ together with the way of picking items can also

guarantee vkðeðkÞÞ � vkðeÞ for any e 2 Ak. Accordingly, we have

maxe2Ak vkðAknfegÞ ¼ vkðAðkÞ
k Þ� v1ðA1Þ, contradicting the assumption that agent 1 violates

EQX when comparing to agent k.
Case 2 Ak n A0

k ¼ ;. In this case, we have Ak ¼ A0
k as A0

k � Ak . Since A0
1 � A1 and

allocation A0 is EQX, it holds that v1ðA1Þ� v1ðA0
1Þ� maxe2Ak :vk ðeÞ[ 0 vkðAknfegÞ, which

again contradicts the assumption that agent 1 violates EQX when comparing to agent k. h

In the following, we propose algorithm ALG3, which efficiently computes an EQX allo-
cation that also has an absolute welfare guarantee. The ALG3 first assigns one large item,
with value at least 1/(3n), to as many agents as possible, and at the same time, maximizes
the welfare of the partial allocation. This is achieved by computing a maximum-weight
matching of a bipartite graph. Then, it carefully assigns a bundle to every unmatched agent
so that each of them receives value at least 1/(3n), while maintaining the partial allocation
being EQX. At last, the remaining goods are assigned to agents by running algorithm
Greedy. In what follows we formally prove that ALG3 can efficiently output an EQX
allocation with the desired utilitarian welfare guarantee.

Table 5 The fair-goods instance for Theorem 3.5

Items e1 e2 e3

v1ð�Þ 0 1
2

1
2

v2ð�Þ 1
2 � 2� 1

4 þ � 1
4 þ �
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Lemma 3.3 Algorithm3 returns in polynomial time an EQX allocation A with utilitarian
welfare UWðAÞ� 1=3.

Proof We first consider the case where allocation A is returned in Step 4 of ALG3. For this
case, allocation B is the partial allocation established based on matching l and hence
jBij � 1 for i 2 ½n�. Observe that allocation A is returned by Greedy ðB; IÞ, and thus, Bi � Ai

for any i 2 ½n�. Consequently, we have UWðAÞ�UWðBÞ� 1=3. What remains to be shown
is that allocation A is EQX. Notice that jBij ¼ 1 for each matched agent i 2 N0 and Bi ¼ ;
for i 2 ½n�nN0. Thus, the partial allocation B is EQX. For each matched agent i 2 N0, if
9 e 2 EnE0 such that viðeÞ[ viðBiÞ� 1=ð3nÞ, then by matching i to the corresponding
vertex of e and keeping other matched pair in l, one can find another matching l0 with a
weight larger than that of l, a contradiction. Thus, for every i with Bi 6¼ ;, it holds that
viðBiÞ� maxe2EnE0

viðeÞ. According to Lemma 3.2 and the fact that B is EQX, we conclude
that allocation A is EQX.

Now consider the case where allocation A is not returned in Step 4 of ALG3 and hence
UWðBÞ\1=3. Clearly, not all agents are matched in l. Since l is a maximum-weight
matching, for any i 2 ½n�nN0 and e 2 EnE0, we have viðeÞ\1=ð3nÞ. Moreover, even if
viðe0Þ � 1=ð3nÞ for some e0 2 E0 and e0 ¼ lði0Þ, it must hold that viðe0Þ � vi0 ðe0Þ. Accord-
ingly, for each i 2 ½n�nN0, we have viðE0Þ�UWðBÞ and thus,
viðEnE0Þ[ 1� UWðBÞ[ 2=3. We then prove that every agent i 2 ½n� n N0 can receive a
bundle Si in the while-loop of ALG3, which is equivalent to showing that the value of the
remaining items for agent i is always at least 1/(3n). Consider an arbitrary point where the
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while-loop starts with remaining items E0 and agents N 0. For each j 2 ½n�nðN0 [ N 0Þ and
i 2 N 0, it must hold that viðSjÞ\2=ð3nÞ; otherwise, at the time when agent j receives a
bundle, there exists a subset S	(Sj such that viðS	Þ[ 1=ð3nÞ and viðS	nfegÞ\1=ð3nÞ for
all e 2 S	, and thus, instead of agent j, the algorithm assigns a bundle to agent i, a con-
tradiction. Consequently, for each i 2 N 0, we have

viðE0Þ ¼ viðEÞ � viðE0Þ � vi
[

j2½n�nðN0[N 0Þ
Sj

0@ 1A
[

2

3
� 2

3n
� n� jN0j � jN 0jð Þ[ 2

3n
;

where the last transition is due to jN 0j � 1. Thus, every agent i 2 ½n� n N0 is able to receive a
bundle that satisfies the conditions described in Step 8.

With a slight abuse of notations, we now let B be the partial allocation when the while-
loop ends. Clearly, we have viðBiÞ� 1=ð3nÞ for every i 2 ½n�, which implies UWðBÞ� 1=3.
Since allocation A is computed by Greedy with input B, it then holds that
UWðAÞ�UWðBÞ� 1=3. In order to prove that allocation A is EQX, we use Lemma 3.2.
We first claim that allocation B satisfies EQX. For each agent i 2 ½n�, when comparing to
agent j 2 N0, it does not violate EQX as jBjj ¼ 1, and when comparing to agent j 2 ½n�nN0,
agent i also satisfies EQX because viðBiÞ� 1=ð3nÞ[ maxe2Bj vjðBjnfegÞ. Thus, allocation
B is EQX. As for the remaining condition, for any i 2 N0, it holds that viðBiÞ ¼
mine2Bi viðeÞ� maxe2En

S
i2½n� Bi

viðeÞ because l computed in Step 2 is the maximum-weight

matching. For an agent i 2 ½n� n N0, if 9e0 2 EnSi2½n� Bi such that viðe0Þ[ viðeÞ for some

e 2 Bi, then at the moment when agent i is chosen in Step 9 and bundle Si is constructed,
bundle Si [ fe0g n feg is also a candidate and has the same size as jSij but with value strictly
larger than viðSiÞ. Thus, instead of Si, bundle Si [ fe0g n feg would be assigned to agent i, a
contradiction. Therefore, based on Lemma 3.2, we can conclude that allocation A is EQX
and has welfare UWðAÞ� 1=3.

As for time complexity of ALG3, since the maximum-weight matching can be computed
efficiently, ALG3 clearly finishes in polynomial time. h

Now, we are at the stage to present and prove the main statement on the price of EQX and of
EQ1 with respect to utilitarian welfare.

Theorem 3.6 When allocating goods to n agents, the price of EQ1 and of EQX with respect
to utilitarian welfare are at least n� 1 and at most 3n, asymptotically tight HðnÞ.

Proof We start from the upper bound. According to Lemma 3.3, there exists an EQX
allocation with welfare at least 1/3. Due to the normalized valuations, the optimal utilitarian
welfare is at most n, and thus, the price of EQX is at most 3n. This upper bound also holds
for the price of EQ1 as the notion of EQX is stricter than EQ1.

As for the lower bound, it suffices to prove that the statement holds for EQ1. Let us
consider a fair-goods instance I with n agents and a set E ¼ fe1; . . .; eðn�2Þpþ1g of ðn�
2Þpþ 1 goods where p 2 Nþ is arbitrarily large. For agent i 2 ½n� 2�, her valuation
function is: viðejÞ ¼ 1=p if ði� 1Þpþ 1� j� ip and viðejÞ ¼ 0 for other j. Both agents
n� 1 and n value eðn�2Þpþ1 at 1 and other items at 0. In a utilitarian welfare-maximizing
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allocation O, bundle Oi ¼ feði�1Þpþ1; . . .; eipg is assigned to agent i for all i 2 ½n� 2�. One
of agents n� 1 and n receives eðn�2Þpþ1, which leaves the other receiving an empty set. The
optimal utilitarian welfare equals UWðOÞ ¼ n� 1. Note that the agent receiving an empty
set violates EQ1 in O when comparing to every agent i 2 ½n� 2�. To achieve EQ1, each
agent i 2 ½n� 2� can receive at most one of the goods on which she has non-zero value, and
accordingly, the welfare of an EQ1 allocation is at most 1þ ðn� 2Þ=p. Therefore, regarding
utilitarian welfare, we have

Price of EQ1� n� 1

1þ n�2
p

! n� 1 as p ! 1;

which completes the proof. h

According to Caragiannis et al. [19], when assigning indivisible goods, the price of EQ is
infinite for general n and two for the case of n ¼ 2. From our results, the prices of EQX and
EQ1 are smaller than that of EQ in both cases of general n and two agents. Moreover, the
price of EQX is greater than that of EQ1 when n ¼ 2. Such observations confirm an
intuition in stating that if one relaxes the fairness requirement, then less welfare would be
sacrificed.

Equitability aims to reduce the difference between agents’ value, while utilitarianism
may lead to unbalanced outcomes. This intuition suggests that approximately equitable al-
locations may have a poor performance in guaranteeing utilitarian welfare, and Theo-
rems 3.3 and 3.6 can be evidence for this intuition. Egalitarianism also aims for “balancing”
agents’ value, and accordingly, equitability is highly likely to have a considerable guarantee
on egalitarian welfare. However, while Theorem 3.1 confirms this guess in goods allocation,
Theorem 3.2 states that the price of EQ1 with respect to egalitarian welfare is infinite in the
case of chores. We believe the reason behind is that in the case of chores, agents’ value are
balanced around zero, and the price of fairness as the ratio of two negligible numbers can be
enormous.

4 Results on computational complexity

Results on the price of fairness not only quantify the efficiency loss under fairness con-
straints but also can derive answers to the existence of a welfare maximizer that is also fair.
In particular, our results on the price of fairness suggest that relaxed equitability is not
always compatible with utilitarian welfare in either goods or chores and not always com-
patible with egalitarian welfare in chores allocation. These impossibilities motivate two
crucial follow-up algorithmic problems, i.e., given an instance, whether one can efficiently
determine the existence of fair and welfare-maximizing allocations and whether one can
efficiently compute the allocation with maximum welfare among the set of fair allocations.
In this section, we settle the computational complexity of these two algorithmic problems.

We introduce some notation for ease of reference to a problem. For a fairness criterion
F 2 fEQX;EQ1g and welfare objective W 2 fUW;EWg, denote by “E(W � F)” the
problem of deciding whether there exists an F allocation that also maximizes W, and denote
by “C(W/F)” the problem of computing an F allocation that maximizes W among all F
allocations. For example, E(UW�EQX) refers to the problem of deciding the existence of
an EQX allocation that also maximizes utilitarian welfare, and C(EW/EQ1) denotes the
problem of computing an EQ1 allocation that maximizes the egalitarian welfare among all
EQ1 allocations.
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To establish (strong) NP-hardness, we provide polynomial time reductions from two
well-known problems; that is, 3-PARTITION and PARTITION, described as below.
According to Garey and Johnson [27], the problem 3-PARTITION is strongly NP-complete,
and the problem PARTITION is NP-complete.

3-PARTITION: given a non-empty finite set B ¼ fbi : i 2 I ¼ f1; . . .; 3mgg of 3m
positive integers and another positive integer T such that T=4\bi\T=2 for any i 2 ½3m�
and

P
i2I bi ¼ mT , can I be partitioned into m disjoint subsets I1; . . .; Im such that

P
i2Ik bi ¼

T for any k 2 ½m�?
PARTITION: given a non-empty finite set P ¼ fpi : i 2 I ¼ f1; . . .;mgg of m positive

integers such that
P

i2I pi ¼ 2T , can I be partition into two disjoint subsets I1; I2 such thatP
i2I1 pi ¼

P
i2I2 pi ¼ T?

4.1 Non-equivalence between goods and chores

As we already mentioned, the results for goods and chores are not mirror images of one
another, which is supported by our results on the price of fairness. Before diving deep into
studying the complexity, we argue that even being restricted to the algorithmic problems we
are concerned with, the chores problem may not be equivalent to the corresponding goods
version, neither do the other direction.

Proposition 4.1 For any fairness criterion F 2 fEQX;EQ1g, there is no mapping f :
½�1; 0� ! Rþ [ f0g such that a fair-chores instance I c ¼ h½n�;E;Vi admits an F and
utilitarian welfare-maximizing allocation if and only if the fair-goods instance Ig ¼
h½n�;E; f ðVÞi admits an F and utilitarian welfare-maximizing allocation.

Proof For the sake of contradiction, assume such a mapping f exists. We first consider
instance I c

1 ¼ h½2�;E1;V1i with two agents and three items E1 ¼ e11; e
1
2; e

1
3

� �
. The valuation

function of agent 1 is: v11 e11
� � ¼ v11 e12

� � ¼ �1=2 and v11 e13
� � ¼ �1 and of agent 2 is:

v12 e11
� � ¼ v12 e12

� � ¼ �1 and v12 e13
� � ¼ 0. It is not hard to verify that I c

1 admits an unique
UWM, in which agent 1 violates fairness criterion F. Accordingly, no UWM of I c

1 satisfies
F. We then consider the corresponding fair-goods instance I

g
1 ¼ h½2�;E1; f V1

� �i, in which

the value of agent i on good e 2 E1 is f v1i ðeÞ
� �

. Due to the definition of mapping f, it must
hold that instance Ig

1 does not admit F and utilitarian welfare-maximizing allocations, either.
Next, we discuss the several cases classified by the possible relationship among
f ð�1Þ; f ð�1=2Þ and f(0).

If f ð�1Þ� maxff ð�1=2Þ; f ð0Þg, then assigning e11; e
1
2 to agent 2 and e13 to agent 1

results in an F allocation that is also a UWM, a contradiction.
If f ð�1=2Þ[ f ð�1Þ� f ð0Þ, we consider another fair-chores instance I c

2 ¼ h½2�;E2;V2i
with six items E2 ¼ fe21; . . .; e26g and its corresponding fair-goods instance

I
g
2 ¼ h½2�;E2; f ðV2Þi. Under instance I c

2, function v21ð�Þ is: v21ðe2j Þ ¼ �1=2 for j ¼ 1; 2; 3; 6

and v21ðe2j Þ ¼ �1 for j ¼ 4; 5, and v22ð�Þ is: v22ðe2j Þ ¼ �1 for j 2 ½4� and v22ðe2j Þ ¼ 0 for

j ¼ 5; 6. Notice I c
2 admits an F and utilitarian welfare-maximizing allocation A with A1 ¼

e21; e
2
2; e

2
3

� �
and A2 ¼ E2nA1. Due to the construction of f, instance I

g
2 should also admits an

F and utilitarian welfare-maximizing allocation. However, in any UWM of instance I
g
2,

since f ð�1=2Þ[ f ð�1Þ� f ð0Þ, agent 2 violates fairness criterion F, a contradiction.
If f ð�1=2Þ� f ð0Þ[ f ð�1Þ, one can verify that I g

1 does not admit an allocation that is
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both F and UWM only if f ð�1=2Þ[ f ð0Þ[ f ð�1Þ holds. Again, we consider instances I c
2

and I
g
2. Under the relationship of f ð�1=2Þ[ f ð0Þ[ f ð�1Þ, in any UWM of instance I

g
2,

agent 2 does not satisfy F, while allocation A (defined above) is a UWM of instance I c
2 and

satisfies F, a contradiction.
If f ð0Þ[ f ð�1=2Þ� f ð�1Þ, for instance I g

1, assigning e11; e
1
2 to agent 1 and e13 to agent 2

leads to a UWM that also satisfies F. This contradicts the fact that I c
1 does not have an F and

utilitarian welfare-maximizing allocation.
If f ð0Þ[ f ð�1Þ[ f ð�1=2Þ, we consider another fair-chores instance I c

3 ¼ h½2�;E3;V3i
with five items E3 ¼ e31; . . .; e

3
5

� �
and its corresponding fair-goods instance

I
g
3 ¼ h½2�;E3; f ðV3Þi. In instance I c

3, function v31ð�Þ is: v31ðe3j Þ ¼ 0 for j 2 ½3� and v31ðe3j Þ ¼
�1 for j ¼ 4; 5 and function v32ð�Þ is: v32ðe3j Þ ¼ �1=2 for j 2 ½4� and v32ðe35Þ ¼ 0. It is not hard

to verify that any UWM of I c
3 satisfies fairness criterion F. But in a UWM of I g

3, agent 1 has
value 3f ð0Þ þ f ð�1Þ and agent 2 has value f(0). Hence, agent 2 violates F in the unique
UWM of Ig

3, and consequently, instance Ig
3 does not admit a UWM that also satisfies F, a

contradiction.
Overall, no possible relationship among f ð�1Þ; f ð�1=2Þ and f(0) can make such a

mapping f exist, completing the proof. h

The above assertion indicates that a fair-chores instance can not be transformed to a fair-
goods instance by a unified mapping on valuations so that two instances admit the same
answer to the question of whether there exists a UWM that also satisfies the notion of F.
This statement, together with the price of fairness with respect to egalitarian welfare,
motivates us to study the complexity of the existence and optimization problem from both
goods and chores perspectives.

4.2 Computational complexity with variable number of agents

We first consider the case of general n agents and study the utilitarian welfare. For the problem
of deciding the existence of an EQX and utilitarian welfare-maximizing allocation, we
establish the strong NP-hardness in both goods and chores. For some statements, we present
the proof regarding chores after the statement, while that for goods is in Appendix A.

Theorem 4.1 For both goods and chores, the decision problem E(UW�EQX) is strongly
NP-complete.

Proof of Theorem 4.1 for chores The decision problem is in NP as both utilitarian welfare
maximization and EQX can be examined in polynomial time. We then derive a reduction
from the problem 3-PARTITION.

Given an arbitrary instance of 3-PARTITION, we construct a fair-chores instance as
follows. There are mþ 1 agents and a set E ¼ fe1; . . .; e3mþ2g of 3mþ 2 items. The
valuations are shown in Table 6.

It is not hard to verify that an allocation is a UWM if and only if the first 3m chores are
assigned to the first m agents and the last two chores are assigned to agent mþ 1.

Suppose we have a “yes” instance of 3-PARTITION, and let I1; . . .; Im be a solution.
Then, consider the allocation A with Ai ¼

S
j2Ii ej for any i 2 ½m� and

Amþ1 ¼ fe3mþ1; e3mþ2g. It is straightforward to see that allocation A has the maximum
utilitarian welfare. As for the fairness requirement, since viðAiÞ ¼ �T for any i 2 ½m� and
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vmþ1ðAmþ1Þ ¼ �2T , none of the first m agents would violate the condition of EQX.
Moreover, for any e 2 Amþ1, we have vmþ1ðAmþ1nfegÞ ¼ viðAiÞ for any i 2 ½m�. Thus,
allocation A is a UWM and satisfies EQX.

Now we prove the other direction. Suppose we have a “no” instance of 3-PARTITION.
Notice that in any UWM, agent mþ 1 receives value �2T . Because it is a “no” 3-PAR-
TITION instance, assigning the first 3m chores to the first m agents always results in an
allocation in which at least one agent receives value strictly larger than �T . Through the
comparison between agent mþ 1 and the agent receiving the largest value, agent mþ 1
violates the condition of EQX in any UWM, completing the proof. h

For the notion of EQ1, the strong NP-hardness on the decision problem is also established
for both goods and chores.

Theorem 4.2 For both goods and chores, the decision problem E(UW�EQ1) is strongly
NP-complete.

Proof of Theorem 4.2 for chores The arguments in the proof of Theorem 4.1 for chores can
be carried over to the decision problem E(UW�EQ1). h

Theorems 4.1 and 4.2 indicate that although the chores and goods versions of the decision
problem (with respect to utilitarian welfare) are not equivalent in general, there surprisingly
exist some similarities; that is, neither of them has pseudo-polynomial time algorithms.
When concerning egalitarian welfare, results are different under these two settings.
According to Theorem 3.1, the price of EQX and of EQ1 with respect to egalitarian welfare
are both 1 in goods allocation, which implies that the existence of a goods allocation that is
an EWM and also satisfies EQX (or EQ1) is guaranteed. Then, the answer to both problems
E(EW�EQX) and E(EW�EQ1) is “yes” in the case of goods; however, finding the egal-
itarian welfare-maximizing allocation that satisfies EQX (or EQ1) is computationally hard
as shown in our Theorem 4.15 later. On the other hand, when assigning chores, as shown by
the results below, deciding the existence of an EQX and egalitarian welfare-maximizing
allocation is computationally intractable.

Theorem 4.3 When allocating chores, the decision problem E(EW�EQX) is strongly NP-
hard.

Proof Given an arbitrary instance of 3-PARTITION, we construct a fair-chores instance as
follows. There are mþ 1 agents and a set E ¼ fe1; . . .; e3mþ2g of 3mþ 2 chores. The
valuation functions are shown in Table 7.

Consider an allocation Â with Âi ¼ fe3i�2; e3i�1; e3ig for i 2 ½m� and

Âmþ1 ¼ fe3mþ1; e3mþ2g. Due to T=4\bi\T=2, we have EWðÂÞ[ � 3T=2, so that the

Table 6 The fair-chores instance for Theorem 4.1

Items e1 e2 � � � e3m�1 e3m e3mþ1 e3mþ2

við�Þ for i�m �b1 �b2 � � � �b3m�1 �b3m �ðmþ 1ÞT �ðmþ 1ÞT
vmþ1ð�Þ �T �T � � � �T �T �T �T
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maximum egalitarian welfare of this instance is larger than �3T=2. Thus, in any EWM,
agent mþ 1 must receive exactly the last two chores, resulting in value �T � 1 for her.

Suppose we have a “yes” instance of 3-PARTITION, and let I1; . . .; Im be a solution.
Then, consider allocation A with Ai ¼

S
j2Ii ej for i 2 ½m� and Amþ1 ¼ fe3mþ1; e3mþ2g. One

can compute EWðAÞ ¼ �T � 1. Since agent mþ 1 must receive value �T � 1 in an
EWM, allocation A clearly achieves the maximum egalitarian welfare. As for fairness
constraint, since for any i 2 ½m�, viðAiÞ ¼ �T and vmþ1ðAmþ1Þ ¼ �T � 1, none of the first
m agents would violate EQX. For agent mþ 1, it holds that
vmþ1ðAmþ1nfegÞ� viðAiÞ ¼ �T ; 8i 2 ½m�; 8e 2 Amþ1. Thus, allocation A is an EWM and
also satisfies EQX.

We now prove the other direction. Suppose we have a “no” instance of 3-ARTITION.
Recall that in any EWM, agent mþ 1 must receive value exactly �T � 1. Because it is a
“no” instance, assigning the first 3m items to the first m agents always results in an allo-
cation in which at least one agent receives value larger than �T . Through the comparison
between agent mþ 1 and the agent receiving the largest value, one can easily verify that no
EWM can also be EQX, completing the proof. h

For the problem in which the quantity of optimal egalitarian welfare is involved, since
computing an EWM is NP-hard [11], which is different from the utilitarian welfare, one may
not able to find the maximum egalitarian welfare in polynomial time. As a consequence, we
are unclear whether verifying a “yes” instance of E(EW�EQX) can be done in polynomial
time, based on which we only state hardness in Theorem 4.3. For the same reason, we also
only state hardness in the following theorem.

Theorem 4.4 When allocating chores, the decision problem E(EW�EQ1) is strongly NP-
hard.

Proof Given an arbitrary instance of 3-PARTITION, we construct a fair-chores instance as
follows. There are mþ 1 agents and a set E ¼ fe1; . . .; e3mþ2g of 3mþ 2 items. The val-
uation functions are shown in Table 8. We first consider an allocation that assigns three of
fe1; . . .; e3mg to each agent i 2 ½m�, and assigns e3mþ1 and e3mþ2 to agent mþ 1. Due to
bj\T=2 for any j 2 ½3m�, the value of agent i is larger than �3T=2 for each i 2 ½m�. The
value of agent mþ 1 is equal to �2T , and hence the egalitarian welfare of this allocation is
equal to �2T . Due to the value of e3mþ1 and e3mþ2, no allocation can achieve egalitarian
welfare larger than �2T , which then implies that the maximum egalitarian welfare of the
constructed fair-chores instance is equal to �2T .

Suppose we have a “yes” instance of 3-PARTITION, and let I1; . . .; In be the solution.
Consider an allocation A with Ai ¼

S
j2Ii ej for any i 2 ½m� and Amþ1 ¼ fe3mþ1; e3mþ2g. It is

not hard to see that viðAiÞ ¼ �T for any i 2 ½m� and vmþ1ðAmþ1Þ ¼ �2T , then we have
EWðAÞ ¼ �2T , which implies that the allocation A is an EWM. As for the fairness

Table 7 The fair-chores instance for Theorem 4.3

Items e1 e2 � � � e3m e3mþ1 e3mþ2

við�Þ for i�m �b1 �b2 � � � �b3m � ð5mþ1ÞTþ1
2 � ð5mþ1ÞTþ1

2

vmþ1ð�Þ �2T �2T � � � �2T �T �1

123

8 Page 20 of 45 Auton Agent Multi-Agent Syst (2023) 37:8



constraint, none of the first m agents would violate EQ1, and for agent mþ 1, we have
vmþ1ðAmþ1nfegÞ ¼ viðAiÞ ¼ �T for any i 2 ½m� and e 2 Amþ1. Thus, the allocation A is
also EQ1.

We now prove the other direction. Suppose we have a “no” instance of 3-PARTITION.
Recall that in any EWM, agent mþ 1 must receive exactly items e3mþ1 and e3mþ2, and must
have value exactly �2T. Due to “no” instance, there exists an agent receiving a value
strictly larger than �T from the assignment of the first 3m chores. Through the comparison
between agent mþ 1 and the agent receiving the largest value, one can verify that no EWM
can satisfy EQ1, completing the proof. h

The above results show that, except for concerning egalitarian welfare in goods allocation,
all other decision problems are strongly NP-hard in the case of general n agents. These
results directly imply the NP-hardness of computing the allocation with maximum utilitarian
welfare among all EQX (or EQ1) allocations.

Theorem 4.5 For both goods and chores, problems C(UW/EQX) and C(UW/EQ1) are
strongly NP-hard.

Proof To prove the strong NP-hardness of C(UW/EQX), we use the strong NP-hardness of
E(UW�EQX) established by Theorem 4.1. For the sake of contradiction, if there exists a
(pseudo) polynomial time algorithm ALG for problem C(UW/EQX), then we can compute
the maximum UW among all EQX allocations. Notice that an UWM (without EQX
requirement) can be found in polynomial time by assigning each item to the agent who has
the largest value on it, and so, one can efficiently find the optimal utilitarian welfare. By
comparing the optimal utilitarian welfare with the output from ALG, the problem E
(UW�EQX) is then solved in (pseudo) polynomial time, a contradiction. Based on
Theorem 4.2, similar arguments can be applied to prove the strong NP-hardness of C(UW/
EQ1). h

Theorem 4.6 When allocating goods and chores, problems C(EW/EQ1) and C(EW/EQX)
are strongly NP-hard.

Proof It suffices to prove strong NP-completeness of the decision version of C(EW/EQ1)
(resp., C(EW/EQX)): given an instance I ¼ h½n�;E;Vi and a threshold value W, does there
exist an EQ1 (resp., EQX) allocation with egalitarian welfare at least W?

For both goods and chores, we provide a reduction from 3-PARTITION. Given an
arbitrary instance of 3-PARTITION, we construct a fair-goods (resp. fair-chores) instance
with m agents and a set E ¼ fe1; . . .; e3mg of 3m goods (resp. chores). Agents have
identical valuation functions and in the fair-goods instance, viðejÞ ¼ bj for any i 2 ½m� and
j 2 ½3m�; in the fair-chores instance, viðejÞ ¼ �bj for any i 2 ½m� and j 2 ½3m�. The

Table 8 The fair-chores instance for Theorem 4.4

Items e1 e2 � � � e3m e3mþ1 e3mþ2

við�Þ for i�m �b1 �b2 � � � �b3m �4mT �4mT

vmþ1ð�Þ � 9m�2
3m T � 9m�2

3m T � � � � 9m�2
3m T �T �T
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threshold value is defined as: W ¼ T in the fair-goods instance; W ¼ �T in the fair-chores
instance. Then, in the both cases of goods and chores, there exists an EQ1 (or EQX)
allocation with egalitarian welfare at least W if and only if the 3-PARTITION instance is a
“yes” instance. h

Results of this section completely answer the computational complexity of the decision and
computation problem we are concerned with for general n agents. Most problems are
computationally intractable, which means that one can not efficiently determine the exis-
tence of a fair and welfare-maximizing allocation or compute the allocation with maximum
welfare among all fair allocations. In addition, our results provide more insights into the
similarities between goods and chores. According to Theorems 4.1 and 4.2, for both EQX
and EQ1, together with utilitarian welfare, problems for goods and chores share the same
complexity. When concerning egalitarian welfare, we show that decision problems for
chores are strongly NP-hard and one can directly answer “yes” in the case of goods, but this
may not indicate goods and chores have different algorithmic features. Instead of linking to
algorithmic property, such an “inconsistency” is due to distinct structural properties, i.e.,
optimal egalitarian welfare is compatible with EQX/EQ1 for goods but not for chores.

4.3 Computational complexity with fixed number of agents

The above complexity results are for general n, but in practice, the number of agents is
usually fixed. Theoretically, even a system with two agents, n ¼ 2, can already yield
valuable and non-trivial results, especially in machine scheduling [1, 2], an application of
chores allocation. This observation motivates us to resolve the complexity for the case
where n is fixed.

We carry out the analysis for the case of small and fixed n from utilitarian welfare and
EQX, and show NP-completeness for both goods and chores.

Theorem 4.7 For both goods and chores, the decision problem E(UW�EQX) is NP-
complete, even for two agents.

Proof of Theorem 4.7 for chores To prove NP-hardness, we derive a reduction from the
problem PARTITION. Given an arbitrary instance of PARTITION, we construct a fair-
chores instance with two agents and a set E ¼ fe1; . . .; emþ4g of mþ 4 chores. The valu-
ation functions are shown in Table 9, where 0\�\1. It is not hard to verify that an
allocation is a UWM if and only if chores emþ1 and emþ2 are assigned to agent 2 and
emþ3; emþ4 are assigned to agent 1.

Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,
consider an allocation A in which A1 contains bundle

S
j2I1 ej and emþ3; emþ4, and

A2 ¼ EnA1. Clearly, allocation A is a UWM. Moreover, for agents’ value, we have

Table 9 The fair-chores instance for Theorem 4.7

Items e1 e2 � � � em emþ1 emþ2 emþ3 emþ4

v1ð�Þ �p1 �p2 � � � �pm �T �T �� ��

v2ð�Þ �p1 �p2 � � � �pm �� �� �T �T
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v1ðA1Þ ¼ v2ðA2Þ ¼ �T � 2�. Thus, allocation A is also EQX.
We now prove the other direction. Suppose we have a “no” instance of PARTITION. Let

S ¼ fe1; . . .; emg be the set of first m items, and recall P2ðSÞ be the set of 2-partition of S.
We denote by D ¼ minB2P2ðSÞ jv1ðB1Þ � v2ðB2Þj, and claim that D� 1 because pi 2 N for
any i 2 ½m� and it’s a “no” instance. Notice that any utilitarian welfare-maximizing allo-
cation O has the form of O1 ¼ B1 [ femþ3; emþ4g and O2 ¼ B2 [ femþ1; emþ2g where
fB1;B2g 2 P2ðSÞ. Without loss of generality we assume v2ðO2Þ[ v1ðO1Þ, and accordingly,
due to the definition of D and �, we have v1ðO1nfemþ3gÞ � v2ðO2Þ� �� D\0. So agent 1
violates EQX in allocation O, and therefore, no UWM can satisfy EQX, completing the
proof. h

The theorem below follows from Theorem 4.7.

Theorem 4.8 For both goods and chores, the problem C(UW/EQX) is NP-hard, even with
two agents.

We then move to EQ1, a notion weaker than EQX, and show that E(UW�EQ1) is NP-
complete when n� 3, but in P when only two agents are involved.

Theorem 4.9 For both goods and chores, the decision problem E(UW�EQ1) is NP-
complete, even for three agents.

Proof of Theorem 4.9 for chores The problem is in NP as both utilitarian welfare-maxi-
mization and EQ1 can be examined in polynomial time. To prove NP-hardness, we derive a
reduction from problem PARTITION. Given an arbitrary instance of PARTITION, we
construct a fair-chores instance for three agents with a set E ¼ fe1; . . .; emþ3g of mþ 3
chores. The valuation functions are shown in Table 10. An allocation of the constructed
instance is a UWM if and only if the first mþ 2 chores are assigned to the first two agents
and the last chore is assigned to agent 3.

Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,
consider allocation A, in which A1 contains bundle

S
j2I1 ej and emþ1; A2 contains bundleS

j2I2 ej and emþ2; A3 ¼ femþ3g. Clearly, allocation A is a UWM. As for agents’ value, it

holds that v1ðA1Þ ¼ v2ðA2Þ\v3ðA3Þ, and moreover, viðAinfemþigÞ ¼ v3ðA3Þ for any i 2 ½2�.
Thus, allocation A is a UWM that also satisfies EQ1.

We now prove the other direction. Suppose we have a “no” instance of PARTITION.
Since for any j 2 ½m�, pj\2T , then agent 3 receives value exactly �T in any UWM. Based
on the assignment of chores emþ1 and emþ2, we discuss two cases: (i) allocations with
exactly one �5T chore for each i 2 ½2�; (ii) other assignments. If case (ii) happens, without
loss of generality assume agent 1 receives two �5T chores. Then, when comparing agent 1
and agent 3, agent 1 still receives less value no matter which chore is removed from his

Table 10 The fair-chores instance for Theorem 4.9

Items e1 e2 � � � em emþ1 emþ2 emþ3

við�Þ for i ¼ 1; 2 �p1 �p2 � � � �pm �5T �5T �2mT � 9T

v3ð�Þ �2T �2T � � � �2T �10T �10T �T
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bundle, violating the condition of EQ1. Consequently, to make an allocation be both EQ1
and utilitarian welfare-maximizing, case (i) must happen. Moreover, since it is a “no”
instance of PARTITION, assigning the first m chores to the first two agents always results in
allocations in which there exists one agent with value strictly less than �T . Then, when
comparing to agent 3, the agent receiving the least value violates EQ1. Thus, no UWM can
satisfy EQ1, completing the proof. h

The theorem below follows from Theorem 4.9.

Theorem 4.10 For both goods and chores, problem C(UW/EQ1) is NP-hard, even for three
agents.

Next, we provide a polynomial-time algorithm that can determine the existence of an EQ1
and utilitarian welfare-maximizing allocation in the case of two agents. In the algorithm, we
first guarantee the allocation achieving maximum utilitarian welfare by assigning each item
to the agent who values it the most, and then for unassigned items (if exist), in each round,
allocate one of them to the agent with a smaller absolute value via Algorithm 2.

Theorem 4.11 For both goods and chores allocation with two agents, there exists a
polynomial time algorithm that solves problem E(UW�EQ1)

Proof of Theorem 4.11 for chores The proof uses Algorithm 4. It is not hard to verify that
assigning Ei to agent i for all i is a necessary and sufficient condition for the output having
maximum utilitarian welfare.

Denote by A ¼ ðA1;A2Þ with A1 ¼ eð1Þ1 ; . . .; eð1Þk1

n o
and A2 ¼ eð2Þ1 ; . . .; eð2Þk2

n o
. Clearly,

we have k1 þ k2 ¼ m. Term eð1Þj refer to the j-th chore assigned by Algorithm 4 to agent 1

and eð2Þl is the l-th chore assigned to agent 2. If the algorithm terminates at Step 4, clearly we
find a UWM that satisfies EQ1. We now consider the case where algorithm terminates at
Step 6, and show if so, no UWM is EQ1. We first claim that, in this case, either E0 � A1 or
E0 � A2 holds. It suffices to show that if both A1 \ E0 and A2 \ E0 are not empty set,
Algorithm 4 terminates at Step 4. To prove this claim, we discuss two cases. If

jv1ðA1Þj[ jv2ðA2Þj, since A1 \ E0 6¼ ;, we have eð1Þk1
2 E0. Then by algorithm, it must hold

that jv1ðA1nfeð1Þk1
gÞj� jv2ðA2Þj; otherwise, agent 1 would not receive chore eð1Þk1

. Accord-

ingly, allocation A is EQ1, and Algorithm 4 terminates at Step 4. On the other hand, if

jv1ðA1Þj\jv2ðA2Þj, then since A2 \ E0 6¼ ;, similarly, jv1ðA1Þj � jv2ðA2nfeð2Þk2
gÞj holds and
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A is EQ1. Up to here, the claim is proved.
Next, if E0 � A1, then either (i) jv1ðA1Þj\jv2ðA2Þj or (ii) jv1ðA1Þj[ jv2ðA2Þj and

jv1ðA1Þnfeð1Þk1
gj\jv2ðA2Þj holds. The latter one indicates that allocation A is EQ1, a con-

tradiction. As for the first possible case, recall that terminating at Step 6 implies allocation A
is not EQ1, and consequently, even when agent 2 only receives E2, she still violates the
condition of EQ1. Notice that in any UWM, all E2 must be assigned to agent 2, and so, no
UWM satisfies EQ1. If E0 � A2, similarly, there are two possible cases: (i)

jv1ðA1Þj[ jv2ðA2Þj; (ii) jv1ðA1Þj\jv2ðA2Þj but jv1ðA1Þj � jv2ðA2nfeð2Þk2
gÞj. If case (ii) hap-

pens, allocation A is EQ1, a contradiction. The only possibility is case (i), which then
implies that even when agent 1 only receives bundle E1, he still violates the condition of
EQ1. Therefore, no UWM is EQ1, completing the proof. h

We remark that the goods version of Algorithm 4 has been proposed by Aziz et al. [4] to
answer E(UW�EQ1) on allocating goods to two agents. For completeness, we have pre-
sented the algorithm and proof for both cases of chores and goods.

In the case of two agents, given that E(UW�EQ1) is polynomial-time solvable, the
remaining question is whether one can solve C(UW/EQ1) in polynomial time.

Theorem 4.12 For both goods and chores, the problem C(UW/EQ1) is NP-hard, even for
two agents.

Proof of Theorem 4.12 for chores It suffices to prove NP-completeness of the decision
version of C(UW/EQ1): given an instance I ¼ h½n�;E;Vi and a threshold value W, does
there exist an EQ1 allocation with utilitarian welfare at leastW? We then provide a reduction
from the problem of PARTITION.

Given an arbitrary instance of PARTITION, we construct an instance of fair-chores with
two agents and a set E ¼ fe1; . . .; emþ1g of mþ 1 chores. The valuation functions are shown
in Table 11, where 0\�\0:1. The thresholds value is defined as
W ¼ �5T þ ð4T � 1Þ�þ �2.

Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,
consider allocation A with A1 ¼ [j2I1ej and A2 ¼ EnA1. For agents’ value, we have
v1ðA1Þ[ v2ðA2Þ and v2ðA2nfemþ1gÞ[ v1ðA1Þ, and thus, A is an EQ1 allocation with
utilitarian welfare

UWðAÞ ¼ �T � ð1� �ÞT � ð1� �Þð3T þ �Þ ¼ �5T þ ð4T � 1Þ�þ �2 ¼ W :

Therefore, we find an EQ1 allocation A with utilitarian welfare W.
We now prove the other direction. Suppose we have a “no” instance of PARTITION.

Denote by B ¼ ðB1;B2Þ an EQ1 allocation and it must be in the form of fS1 [ femþ1g; S2g
where fS1; S2g is a partition of set fe1; . . .; emg. We highlight that S1 is not necessarily

Table 11 The fair-chores instance for Theorem 4.12

Items e1 e2 � � � em emþ1

v1ð�Þ �p1 �p2 � � � �pm �3T � �

v2ð�Þ �ð1� �Þp1 �ð1� �Þp2 � � � �ð1� �Þpn �ð1� �Þð3T þ �Þ
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assigned to agent 1. Let �P
e2S1 v1ðeÞ ¼ D� 0, and accordingly,

�P
e2S2 v1ðeÞ ¼ 2T � D� 0. To meet the condition of EQ1, chore emþ1 has to be elimi-

nated when comparing; otherwise, the agent who receives bundle S1 [ femþ1g would violate
the condition of EQ1, even when S1 ¼ ;. As a consequence, the condition of EQ1 is
equivalent to D�T . Moreover, since it’s a “no” instance of PARTITION, we have D\T .
Given the form of fS1 [ femþ1g; S2g, there are two possible allocations: assigning bundle
S1 [ femþ1g to agent 1; assigning bundle S1 [ femþ1g to agent 2.

If B1 ¼ S1 [ femþ1g and B2 ¼ S2, then such an assignment results in welfare

UWðBÞ ¼ �D� 3T � �� ð1� �Þð2T � DÞ
¼ �5T þ ð2T � D� 1Þ�\W :

If B1 ¼ S2 and B2 ¼ S1 [ femþ1g, then allocation B has welfare

UWðBÞ ¼ �2T þ D� ð1� �ÞD� ð1� �Þð3T þ �Þ
¼ �5T þ ð3T þ D� 1Þ�þ �2\W ;

where the last transition is due to D\T . Therefore, in both cases, no EQ1 allocations can
have utilitarian welfare at least W, completing the proof. h

We have completely settled the computational complexity of algorithmic decision and
optimization problems when utilitarian welfare is concerned. Most of results are compu-
tationally intractable. In addition, the above algorithmic problems (regarding utilitarian
welfare) for goods and chores have the same computational complexity, which somewhat
reveals similarities between these two settings.

Next, we investigate egalitarian welfare-maximizing allocations and provide the com-
putational complexity in the case of chores.

Theorem 4.13 When allocating chores, the problem E(EW�EQX) is NP-hard, even for two
agents.

Proof To prove NP-hardness, we derive a reduction from the problem PARTITION. Given
an arbitrary instance of ARTITION, we construct a fair-chores instance with two agents and
a set E ¼ fe1; . . .; emþ2g of mþ 2 items. The valuation functions are shown in Table 12,
where 0\�\0:1. Since

P
i2½m� pi ¼ 2T , it is not hard to verify that in an EWM, chores emþ1

and emþ2 must be assigned to agent 1 and agent 2, respectively, and moreover, the maximum
egalitarian welfare is at most �T � �.

Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,
consider an allocation A, in which A1 contains bundle

S
j2I1 ej and chore emþ1, and

A2 ¼ EnA1. For agents’ value, we have v1ðA1Þ ¼ v2ðA2Þ ¼ �T � �, and so allocation A is

Table 12 The fair-chores instance for Theorem 4.13

Items e1 e2 � � � em emþ1 emþ2

v1ð�Þ �p1 �p2 � � � �pm �� �2T

v2ð�Þ �p1 �p2 � � � �pm �2T ��
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an EWM that satisfies EQX.
We now prove the other direction. Suppose we have a “no” instance of PARTITION. Let

S ¼ fe1; . . .; emg be the set of the first m chores, andP2ðSÞ be the set of 2-partition of S. We
then denote by D ¼ minB2P2ðSÞ jv1ðB1Þ � v2ðB2Þj, and claim that D� 1 because pi 2
N; 8i 2 ½m� and it’s a “no” instance. Notice that every egalitarian welfare-maximizing
allocation O is in the form of O1 ¼ B1 [ femþ1g and O2 ¼ B2 [ femþ2g where
fB1;B2g 2 P2ðSÞ. Without loss of generality we assume v1ðO1Þ\v2ðO2Þ, and based on the
definition of D and �, we have v1ðO1nfemþ1gÞ � v2ðO2Þ� �� D\0, based on which, agent
1 violates EQX in allocation O. Therefore, no EWM is EQX, completing the proof. h

Theorem 4.14 When allocating chores, the problem E(EW�EQ1) is NP-hard, even for
three agents.

Proof To prove NP-hardness, we derive a reduction from PARTITION. Given an arbitrary
instance of PARTITION, we construct a fair-chores instance with three agents and a set
E ¼ fe1; . . .; emþ2g of mþ 2 items. The valuation functions are shown in Table 13. Con-
sider an allocation of arbitrarily assigning the first m chores to the first two agents, and
assigning chores emþ1 and emþ2 to agent 3. Since

Pm
j¼1 pj ¼ 2T , the egalitarian welfare of

that allocation is �2T . Due to the value of emþ1 and emþ2, no allocation can achieve
egalitarian welfare larger than �2T , which then implies that the maximum egalitarian
welfare of the constructed fair-chores instance is equal to �2T .

Suppose we have a “yes” instance of PARTITION, and let I1, I2 be a solution. Consider
an allocation A with A1 ¼

S
j2I1 ej, A2 ¼

S
j2I2 ej and A3 ¼ femþ1; emþ2g. It is not hard to

see that v1ðA1Þ ¼ v2ðA2Þ ¼ �T and v3ðA3Þ ¼ �2T , and accordingly, the allocation A is an
EWM. Since v3ðA3nfegÞ ¼ viðAiÞ holds for any e 2 A3 and i ¼ 1; 2, the allocation A is also
EQ1.

We now prove the other direction. Suppose we have a “no” instance of PARTITION.
Recall that in any EWM, agent 3 must receive exactly items emþ1 and emþ2 and have value
exactly �2T. Due to “no” instance, one of the first two agents receives a value strictly larger
than �T from the assignment of the first m chores. Through the comparision between agent
3 and the agent receiving the largest value, one can verify that no EWM can satisfy EQ1,
completing the proof. h

Theorem 4.15 When allocating goods and chores, problems C(EW/EQ1) and C(EW/EQX)
are NP-hard, even for two agents.

Proof It suffices to show NP-completeness of the decision version of problems C(EW/
EQ1) and C(EW/EQX) (see the proof of Theorem 4.6). For both goods and chores, we
provide a reduction from . GIVEN AN ARBITRARY INSTANCE OF PARTITION, WE CONSTRUCT A

Table 13 The fair-chores instance for Theorem 4.14

Items e1 e2 � � � em emþ1 emþ2

við�Þ for i ¼ 1; 2 �p1 �p2 � � � �pm � 3m
2 T � 3m

2 T

v3ð�Þ �3T �3T � � � �3T �T �T

123

Auton Agent Multi-Agent Syst (2023) 37:8 Page 27 of 45 8



FAIR-GOODS (RESP., FAIR-CHORES) INSTANCE WITH TWO AGENTS AND A SET E ¼ fe1; . . .; emg OF M

GOODS (RESP., CHORES). AGENTS HAVE IDENTICAL VALUATION FUNCTIONS AND IN THE FAIR-GOODS
INSTANCE, viðejÞ ¼ pj FOR i 2 ½2� AND j 2 ½m�; IN THE FAIR-CHORES INSTANCE, viðejÞ ¼ �pj FOR

i 2 ½2� AND j 2 ½m�. THE THRESHOLD VALUE IS DEFINED AS W ¼ T IN THE FAIR GOODS INSTANCE;
W ¼ �T IN THE FAIR-CHORES INSTANCE. THEN, IN BOTH CASES OF GOODS AND CHORES, THERE

EXISTS AN EQ1 (OR EQX) ALLOCATION WITH EGALITARIAN WELFARE AT LEAST W IF AND ONLY IF THE

PARTITION INSTANCE IS A “YES” INSTANCE. h

Concerning all complexity results in Section 4, we remark that, except for Theorem 4.12,
the established (strong) NP-hardness still holds even when agents’ valuations are normal-
ized to a constant. The results of this section leaves the following two interesting open
questions.

Open question 1: For fixed n, what is the time complexity of computing an EQ1
allocation maximizing UW among all EQ1 allocation when agents’ valuations are
normalized?
Open question 2: For chores and two agents, what is the time complexity of deciding
whether there exists an EWM that is also EQ1?

5 Pseudo-polynomial-time algorithms for fixed number of agents

From the results established in the previous sections, for general n, all decision and com-
putation problems are strongly NP-hard. However, for fixed n it is still unknown whether
problems are pseudo-polynomial time solvable. In this section, we design pseudo-polyno-
mial time algorithms that can output the approximately equitable allocation with the
maximum welfare for both goods and chores. Similar to the algorithms in Aziz et al. [4], our
pseudo-polynomial time algorithms mainly rely on dynamic programming with the sub-
problem of assigning the first k items. Once the assignment of k-th item has been settled, we
augment k by one and analyse the assignment of ðk þ 1Þ-th item upon the allocation of the
first k items. Throughout this section, we assume agents’ values are integers and
V ¼ maxi2½n�

P
j2½m� jviðejÞj.

When considering utilitarian welfare, Aziz et al. [4] already provide an algorithm to
compute an EQ1/EQX allocation with the maximum utilitarian welfare in the case of goods.
For each i 2 ½n�, their algorithm uses ti and si to represent the lower bound of agent i’s value
and a specific item in agent i’s bundle, respectively. In particular, it applies dynamic pro-
gramming to compute Gkðt1; . . .; tn; s1; . . .; snÞ for all k, ti and si, and sets it as True if there
exists an allocation of e1; . . .; ek such that for all i, the value of agent i is at least ti and item si
is in agent i’s bundle; otherwise, False. The desired EQ1/EQX allocation can be found by
visiting all Gmðt1; . . .; tn; s1; . . .; snÞ. Since for each i, parameter ti 2 f0; 1; . . .;Vg has V þ 1
possible values and parameter si 2 E has m possible values, the worst-case running time of
their algorithm is at least OðmnVnÞ.

In what follows, we borrow the idea from Aziz et al. [4] and design psuedo-polynomial
time algorithms for optimization/decision problems regarding egalitarian welfare. Our
algorithms rely on dynamic programmings subroutines, Algorithms 5 and 6, which compute
Bðk; t; sÞ for all possible k; t and s. For every Bðk; t; sÞ, the parameter k refers to the number
of items; vector t ¼ ðt1; . . .; tnÞ represents agents’ values; vector s ¼ ðs1; . . .; snÞ represents
specific items in bundles of individual agents. To make the case of k ¼ 0 well-defined, we
assume that every agent is endowed with a dummy item e0 of zero value (in total there are n
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dummy items) and moreover, the dummy item of an agent cannot be reassigned to others.
We remark that for all i, si takes value from fe0; e1; . . .; emg. Note that Algorithms 5 and 6
work for both fair-goods and fair-chores instances. After computing Bðk; t; sÞ 2
fTrue; Falseg for every k, t and s, the desired EQ1 or EQX allocations can be found by
visiting all Bðm; t; sÞ and backtracking the specific one.

The following lemma holds in both cases of goods and chores.

Lemma 5.1 Given a Bðk; t; sÞ returned by Algorithm5, Bðk; t; sÞ ¼ True if and only if there
exists an allocation of e1; . . .; ek such that for all i, the value of agent i is equal to ti and

si 2
Sk�1

r¼0 er is in agent i’s bundle.

Consequently, we have the following theorem.

Theorem 5.1 Given an instance I ¼ h½n�;E;Vi, one can compute an EQ1 allocation with
the maximum egalitarian welfare in time Oðmnþ2VnÞ.

Proof Note that Algorithm 5 can return Bðm; t; sÞ for all t and s. By visiting the entire
Bðm; t; sÞ, we can find the set C, of which the construction depends on the underlying items.
The full construction of C is presented below, and the second condition for both goods and
chores is to verify the underlying fairness notion.

C ¼ fðt; sÞjBðm; t; sÞ ¼ True and ti þ vjðsjÞ� tj for all i; jg; for goods;

fðt; sÞjBðm; t; sÞ ¼ True and ti � viðsiÞ� tj for all i; jg; for chores:

�
Given an arbitrary EQ1 allocation A0 ¼ ðA0

1; . . .;A
0
nÞ, construct ðt0; s0Þ as follows: for all i,

t0i ¼ viðA0
iÞ and s0i 2 A0

i is the item with the largest absolute value for agent i. Then, we have
ðt0; s0Þ 2 C due to the property of EQ1 and the construction of t0 and s0. Accordingly, by
visiting all element of C, we are able to find the element ðt	; s	Þ 2 C, of which t	 represents
the agents’ values in the EQ1 allocation maximizing egalitarain welfare over all EQ1
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allocations. In particular, one can pursue the ðt	; s	Þ with mini2½n� t	i � mini2½n� ti for all
ðt; sÞ 2 C. The specific EQ1 allocation can be found by backtracking Bðm; t	; s	Þ in the
following way: assigning em to agent im if the value of Bðm; t	; s	Þ is set to True by
Bðm� 1; tm�1; sm�1Þ ¼ True and at that time the for-loop in Step 5 is i ¼ im; then assigning
em�1 to agent im�1 if the value of Bðm� 1; tm�1; sm�1Þ is set to True by Bðm�
2; tm�2; sm�2Þ ¼ True and at that time the for-loop in Step 5 is i ¼ im�1; repeat this process
until all items are assigned. If in some step, the choice of Bðh; th; shÞ is not unique, then
arbitrarily pick one.

As for the time complexity, the running time of Algorithm 5 is Oðmnþ2VnÞ, and visiting
the entire Bðm; t; sÞ and backtracking takes time OðmnVnÞ. Therefore, the running time of
the algorithm is Oðmnþ2VnÞ. h

Moving on to our consideration of EQX, the dynamic programming for problem C(EW/
EQX) is shown as Algorithm 6. Different from Algorithm 5, we now use si to represent the
item with least non-zero absolute value in agent i’s bundle if agent i receives a non-zero
value. We establish that the EQX allocation with the maximum egalitarian welfare can be
found by visiting the entire Bðm; t; sÞ and backtracking specific ones.

The following lemma holds in both cases of goods and chores.

Lemma 5.2 Given a Bðk; t; sÞ returned by Algorithm 6, Bðk; t; sÞ ¼ True if and only if there
exists an allocation such that for all i:
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(i) the value of agent i is equal to ti;
(ii) if si ¼ e0, then ti ¼ 0; if si 6¼ e0, item si 2

S
r2½k� er is in agent i’s bundle and

moreover, either si is the unique item of non-zero value in agent i’s bundle or
0\jviðsiÞj � jviðeÞj for every item e of non-zero value in agent i’s bundle.

Consequently, we obtain the following theorem.

Theorem 5.2 Given an instance I ¼ h½n�;E;Vi, one can compute an EQX allocation with
the maximum egalitarian welfare in time Oðmnþ2VnÞ.

Proof Similar proof to that of Theorem 5.1 applies. The proof is deferred to Appendix A.9.
h

Theorems 5.1 and 5.2 indicate that both problems of C(EW/EQ1) and C(EW/EQX) can be
solved in pseudo-polynomial time. Accordingly, for fixed n, problems C(EW/EQ1) and C
(EW/EQX) are weakly NP-hard. Note that for goods, optimal egalitarian welfare is com-
patible with EQX/EQ1. To address the decision problems of E(EW�EQ1) and E
(EW�EQX) for chores, we remark that in Algorithms 5 and 6, tuples Bðm; t; sÞ actually
record all possible values that agents can receive in nearly equitable allocations. Moreover,
by eliminating the conditions for parameters fsigni¼1, it is possible to compute the maximum
egalitarian welfare in time OðmVnÞ via a dynamic program similar to Algorithm 5.
Therefore, in the case of chores, the problems of E(EW�EQ1) and E(EW�EQX) are also
weakly NP-hard.

Theorem 5.3 In the allocations of chores, problems E(EW�EQ1) and E(EW�EQX) can be
answered in time Oðmnþ2VnÞ.

In some resource allocation scenarios, the number of items m to be allocated can be larger
than V, and allocating items to agents with dichotomous preferences3 is a typical example of
m 
 V . We then further explore the possibility of algorithms whose running time is smaller
than Oðmnþ2VnÞ in the case of m 
 V . The main strategy is to decrease the running time
related to input size m, which may inevitably increase the running time caused by V. Below
we design pseudo-polynomial time algorithms that can compute the EQ1/EQX allocation
with the maximum utilitarian/egalitarian welfare in time OðmV 2nþ1Þ. The algorithms rely on
dynamic programming subroutines, Algorithm 7, in which for each i 2 ½n�, we use ti to
represent the value of agent i and pi to represent the absolute value of a special item in agent
i’s bundle. The special item is in particular used to examine whether the underlying fairness
notion is satisfied or not. To take an example, when considering EQ1, pi would represent the
absolute value of the item with the largest absolute value in agent i’s bundle. The dynamic
programming subroutines therefore admit two n-dimensional vectors t ¼ ðt1; . . .; tnÞ with
ti 2 f�V ; . . .; 0; . . .;Vg and p ¼ ðp1; . . .; pnÞ with pi 2 f0; . . .;Vg. For any t and p, the
dynamic programming examines that for each k 2 ½m� whether the assignments of the first k
items can satisfy the constraints regarding t and p, and returns a tuple Bðk; t; pÞ that takes
value from fTrue; Falseg. Informally, given fixed k, t and p, if there exists an assignment of
e1; . . .; ek such that for each i 2 ½n�, agent i receives value ti and the value of the special item
in agent i’s bundle is equal to pi, then the dynamic programming sets Bðk; t; pÞ ¼ True;
otherwise, Bðk; t; pÞ ¼ False.
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Lemma 5.3 Given a Bðk; t; pÞ returned by Algorithm 7, Bðk; t; pÞ ¼ True if and only if
there exists an allocation A ¼ ðA1; . . .;AnÞ of e1; . . .; ek such that for all i:

(i) when considering EQ1, if viðAiÞ ¼ 0 then pi ¼ 0, and otherwise pi ¼ max
e2Ai

jviðeÞj;
when considering EQX, if viðAiÞ ¼ 0 then pi ¼ 0, and otherwise
pi ¼ min

e2Ai:viðeÞ6¼0
jviðeÞj;

(ii) viðAiÞ ¼ ti.

Proof We first prove the “only if” part by mathematical induction. In the case of k ¼ 0,
Step 2 of Algorithm 7 sets Bð0; t; pÞ ¼ True only if ti ¼ pi ¼ 0 for all i. Note that when
k ¼ 0, each agent receives nothing and has value 0. Thus, the statement holds for the case of
k ¼ 0. We now assume that the statement holds for k ¼ 0; . . .; h, and show that it also holds
for the case of k ¼ hþ 1. Fix t and p with Bðhþ 1; t; pÞ ¼ True and suppose that Algo-
rithm 7 makes Bðhþ 1; t; pÞ ¼ True when the for-loop in Step 5 is i ¼ i	. By Steps 7 and
10, it holds that Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; p1; . . .; p0i	 ; . . .; pnÞ ¼ True for some p0i	 .
As the statement holds for k ¼ h, there exists an allocation R of e1; . . .; eh satisfying
properties (i) and (ii) regarding ðt1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tnÞ and ðp1; . . .; p0i	 ; . . .; pnÞ. We
now consider the allocation R	 of e1; . . .; ehþ1 with R	

j ¼ Rj for j 6¼ i	 and

R	
i	 ¼ Ri	 [ fehþ1g. It is not hard to see that vjðR	

j Þ ¼ tj for any j 2 ½n�.

3 If agent i has dichotomous preference on the set of goods E, then viðeÞ 2 f0; 1g. For a detailed discussion
of dichotomous preferences, we refer the reader to Bogomolnaia and Moulin [13] and Bogomolnaia et al.
[17].
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As for property (i), since each agent j 6¼ i	 receives an identical bundle in allocations R
and R	 and the parameter pj is consistent in the two tuples under consideration, it suffices to
prove that property (i) regarding agent i	 is satisfied by the allocation R	. When considering
EQ1, we split the proof into two cases:

Case 1 p0i	 ¼ 0. As the allocation R satisfies property (i) regarding ðp1; . . .; p0i	 ; . . .; pnÞ,
the equality vi	 ðRi	 Þ ¼ 0 holds. Based on Step 7, we have
pi	 ¼ max jvi	 ðehþ1Þj; p0i	

� � ¼ jvi	 ðehþ1Þj. If vi	 ðehþ1Þ ¼ 0, then it holds that vi	 ðR	
i	 Þ ¼ 0 and

pi	 ¼ 0, which implies that the allocation R	 satisfies property (i). If jvi	 ðehþ1Þj[ 0, we
have pi	 ¼ maxe2R	

i	
jvi	 ðeÞj, and thus property (i) is also satisfied by R	.

Case 2 p0i	 [ 0. In this case, the following holds,

pi	 ¼ max jvi	 ðehþ1Þj; p0i	
� � ¼ max jvi	 ðehþ1Þj;max

e2Ri	
jvi	 ðeÞj

� �
¼ max

e2R	
i	
jvi	 ðeÞj;

where the first equality is due to Step 7 and the second is owing to the construction of R.
Thus, property (i) regarding p is also satisfied by R	.

Therefore, R	 is an allocation of e1; . . .; ehþ1 that satisfies properties (i) and (ii) regarding
t and p.

When considering EQX, we also split the proof into two cases.
Case 1: vi	 ðehþ1Þ ¼ 0. According to Step 10, we have p0i	 ¼ pi	 since p0i	 � 0 always

holds. If p0i	 ¼ 0, then we have vi	 ðRi	 Þ ¼ 0, which implies vi	 ðR	
i	 Þ ¼ 0 due to R	

i	 ¼
Ri	 [ fehþ1g and vi	 ðehþ1Þ ¼ 0. Note that pi	 ¼ p0i	 ¼ 0, and thus property (i) is satisfied by
R	. If p0i	 6¼ 0, then we have the following:

pi	 ¼ p0i	 ¼ min
e2Ri	 :vi	 ðeÞ6¼0

jvi	 ðeÞj ¼ min
e2R	

i	 :vi	 ðeÞ6¼0
jvi	 ðeÞj;

where the second equality is due to the construction of R and the third is due to
vi	 ðehþ1Þ ¼ 0. Thus, the property (i) is also satisfied.

Case 2: vi	 ðehþ1Þ 6¼ 0. If p0i	 ¼ 0, then according to Step 10, it holds that
pi	 ¼ jvi	 ðehþ1Þj. Since p0i	 ¼ 0 and R	

i	 ¼ Ri	 [ fehþ1g, item ehþ1 is the unique non-zero
value item in R	

i	 for agent i. Thus, we have pi	 ¼ jvi	 ðehþ1Þj ¼ mine2R	
i	 :vi	 ðeÞ6¼0 jvi	 ðeÞj and

property (i) is satisfied. If p0i	 6¼ 0, then the following holds

pi	 ¼ minfjvi	 ðehþ1Þj; p0i	g ¼ min jvi	 ðehþ1Þj; min
e2Ri	 :vi	 ðeÞ6¼0

jvi	 ðeÞj
� �

¼ min
e2R	

i	 :vi	 ðeÞ6¼0
jvi	 ðeÞj;

where the first equality is due to Step 10; the second is due to the construction of R; and the
third is due to vi	 ðehþ1Þ 6¼ 0 and R	

i	 ¼ Ri	 [ fehþ1g. As a consequence, property (i) is also
satisfied. Therefore, when considering EQX, R	 is an allocation of e1; . . .; ehþ1 that satisfies
properties (i) and (ii) regarding t and p.

Overall, by mathematical induction, the “only if” part is proved.
Now let us prove the “if” part, again with mathematical induction. In the case of k ¼ 0,

Step 2 of Algorithm 7 sets Bð0; t; pÞ ¼ True if ti ¼ pi ¼ 0 for all i. Accordingly, if
Bð0; t0; p0Þ ¼ False, then either t0q 6¼ 0 or p0q 6¼ 0 holds for some q. Note that the value of an

agent can only be zero in the case of k ¼ 0. Thus, the statement holds for the case of k ¼ 0.
We now assume the statement holds for k ¼ 0; . . .; h and show that it also holds for the case
of k ¼ hþ 1. Fix t and p with Bðhþ 1; t; pÞ ¼ False. For a contradiction, assume that S is
an allocation of e1; . . .; ehþ1 satisfying the properties (i) and (ii) regarding t and p. Without
loss of generality, we assume ehþ1 2 Si	 . Construct an allocation S

0 of e1; . . .; eh with S0j ¼ Sj
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for j 6¼ i	 and S0i	 ¼ Si	nfehþ1g. In the following, we show that S0 is an allocation that makes
Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; p1; . . .; epi	 ; . . .; pnÞ ¼ True for some epi	 (will be specified
later on) satisfying the condition in Steps 7 and 10, which then results in
Bðhþ 1; t; pÞ ¼ True, a desired contradiction. Note that vjðS0jÞ ¼ vjðSjÞ ¼ tj for j 6¼ i	 and

vi	 ðS0i	 Þ ¼ ti	 � vi	 ðehþ1Þ, then the property (ii) regarding ðt1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tnÞ is
satisfied by S0.

As for property (i), since each agent j 6¼ i	 receives an identical bundle in allocations S
and S0 and the parameter pj is consistent in the two tuples under consideration, it suffices to
prove that property (i) regarding agent i	 is satisfied by the allocation S0.

When considering EQ1, if vi	 ðS0i	 Þ ¼ 0 then let epi	 ¼ 0, and otherwiseepi	 ¼ maxe2S0
i	
jvi	 ðeÞj. It is not hard to verify that the allocation S0 makes Bðh; t1; . . .; ti	 �

vi	 ðehþ1Þ; . . .; tn; p1; . . .; epi	 ; . . .; tnÞ ¼ True. If epi	 ¼ 0, we clearly have
max jvi	 ðehþ1Þj; epi	f g ¼ pi	 . If epi	 [ 0, the following holds,

max jvi	 ðehþ1Þj; epi	f g ¼ max jvi	 ðehþ1Þj;max
e2S0

i	
jvi	 ðeÞj

( )
¼ max

e2Si	
jvi	 ðeÞj ¼ pi	 ;

where the second equality is due to Si	 ¼ S0i	 [ fehþ1g. Thus, Step 7 always sets Bðhþ
1; t; pÞ ¼ True when the for-loop in Step 5 is i ¼ i	, a contradiction.

When considering EQX, we define epi	 as follows,

epi	 ¼ 0; if vi	 ðS0i	 Þ ¼ 0;

min
e2S0

i	 :vi	 ðeÞ6¼0
jvi	 ðeÞj; otherwise :

8<:
Then one can verify that the allocation S0 makes Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; p1; . . .; epi	
; . . .; pnÞ ¼ True because the statement holds for k ¼ h. In the following, we split the proof
into two cases and for each case prove that the condition in Step 10 is satisfied.

Case 1: vi	 ðehþ1Þ ¼ 0. Since Si	 ¼ S0i	 [ fehþ1g and vi	 ðehþ1Þ ¼ 0, it holds that pi	 ¼
maxfjvi	 ðehþ1Þj; epi	g no matter whether epi	 ¼ 0 or not.

Case 2: vi	 ðehþ1Þ 6¼ 0. If epi	 ¼ 0, then ehþ1 is the unique item in Si	 having non-zero
value for agent i	. Accordingly, we have pi	 ¼ jvi	 ðehþ1Þj ¼ maxfjvi	 ðehþ1Þj; epi	g, and thus
the condition of Step 10 is satisfied. If epi	 6¼ 0, then the following holds,

pi	 ¼ min
e2Si	 :vi	 ðeÞ6¼0

jvi	 ðeÞj ¼ min jvi	 ðehþ1Þj; min
e2S0

i	 :vi	 ðeÞ6¼0
jvi	 ðeÞj

( )
¼ minfjvi	 ðehþ1Þj; epi	g;

where the second equality is due to Si	 ¼ S0i	 [ fehþ1g; the third equality comes from the
definition of epi	 . Thus, in both cases, Step 10 sets Bðhþ 1; t; pÞ ¼ True when the for-loop in
Step 5 is i ¼ i	, a contradiction,

Therefore, with mathematical induction, we have also proved the “if” part of the lemma.
h

Theorem 5.4 Given an instance I ¼ h½n�;E;Vi, one can compute an F 2 fEQ1;EQXg
allocation with the maximum W 2 fEW;UWg welfare in time OðmV 2nþ1Þ.

Proof Note that Algorithm 7 can return Bðm; t; pÞ for all t and p. By visiting the entire
Bðm; t; pÞ, we can find the set C, of which the construction depends on the underlying items.
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The full construction of C is presented below, and the second condition for both goods and
chores is to examine whether the underlying fairness notion is satisfied or not.

C ¼ fðt; pÞjBðm; t; pÞ ¼ True and ti þ pj � tj for all i; jg; for goods;

fðt; pÞjBðm; t; pÞ ¼ True and ti þ pi � tj for all i; jg; for chores:

�
For an arbitrary F allocation A0 ¼ ðA0

1; . . .;A
0
nÞ, consider two vectors t0 and p0 with for all i,

t0i ¼ viðA0
iÞ, and for p0i, we distinguish between EQ1 and EQX: for EQ1, if viðA0

iÞ ¼ 0 then let
p0i ¼ 0, and otherwise let p0i ¼ maxe2A0

i
jviðeÞj; for EQX, if viðA0

iÞ ¼ 0, then let p0i ¼ 0 and

otherwise let p0i ¼ mine2A0
i:viðeÞ6¼0 jviðeÞj.

We first claim that ðt0; p0Þ 2 C. Based on Lemma 5.3, the allocation A0 makes
Bðm; t0; p0Þ ¼ True. Moreover, due to the construction of t0 and p0 and the fact that A0 is an F
allocation, the second condition is also satisfied. As a consequence, it holds that ðt0; p0Þ 2 C.
Then, by visiting all elements of C, we are able to find the element ðt	; p	Þ 2 C, of which t	

represents the agents’ values in the F allocation maximizing W over all F allocations. In par-
ticular, whenW ¼ UW (resp.,W ¼ EW), one can pursue the ðt	; p	ÞwithPi2½n� t

	
i �

P
i2½n� ti

(resp.,mini2½n� t	i � mini2½n� ti) for all ðt; pÞ 2 C. The specificF allocation thatmaximizesWover
allF allocations can be constructed by backtrackingBðm; t	; p	Þ in the followingway: assigning
em to agent im if the value of Bðm; t	; p	Þ is set to True by B m� 1; tm�1; pm�1ð Þ ¼ True and at
that time the for-loop in Step 5 is i ¼ im; then assigning em�1 to agent im�1 if the value of
B m� 1; tm�1; pm�1ð Þ is set to True by B m� 2; tm�2; pm�2ð Þ ¼ True and at that time the for-
loop in Step 5 is i ¼ im�1; repeat this process until all items are assigned. If in some step, the
choice of Bðh; th; phÞ is not unique, then arbitrarily pick one.

As for the time complexity, the running time of Algorithm 7 isO mV 2nþ1ð Þ, and visiting all
Bðm; t; pÞ and backtracking the specific one takes time O mV 2nð Þ. Therefore, the running time
of the algorithm is O mV 2nþ1ð Þ. h

For the decision problems, note that the maximum utilitarian welfare can be computed in
linear time, and accordingly, problems E(UW�EQ1) and E(UW�EQX) can be answered in
time O mV 2nþ1ð Þ.

Theorem 5.5 When allocating goods and chores, problems E(UW�EQ1) and E
(UW�EQX) can be answered in time O mV 2nþ1ð Þ.

When considering egalitarian welfare, recall that for goods, decision problems E(EW�EQ1)
and E(EW�EQX) trivially have answer “yes”. For the allocation of chores, the maximum
egalitarian welfare can be computed in time OðmVnÞ via a dynamic program similar to
Algorithm 7 (eliminating p and the corresponding conditions). Consequently, for chores, the
problems of E(EW�EQ1) and E(EW�EQX) can also be answered in time OðmV 2nþ1Þ.

Theorem 5.6 When allocating chores, problems E(EW�EQ1) and E(EW�EQX) can be
answered in time OðmV 2nþ1Þ.

We remark that, when considering egalitarian welfare, we have presented two pseudo-
polynomial algorithms, one using Algorithms 5 and 6 as subroutines, and the other using
Algorithm 7 as subroutines. The two types of algorithms are mutually non-dominating in
terms of running time. Specific resource allocation problems determine which one is more
efficient.
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6 Concluding remarks

In this paper, we have conducted an analysis on both indivisible goods and indivisible
chores and studied two notions of relaxed equitability, namely EQX and EQ1, together with
efficiency measured by two welfare allocations, utilitarian and egalitarian welfare. On every
pairwise fairness and welfare combination, we have provided (almost) tight results on the
price of fairness. In the case of chores, to achieve relaxed equitability, almost all efficiency
would be sacrificed, while the prices of fairness in goods allocation are all bounded. Par-
ticularly, with two agents, fairness can be achieved at the cost of at most half of welfare in
goods allocations; however, in the case of chores, fair allocations cannot have a bounded
guarantee on welfare. Our results on the price of fairness somewhat reflect the differences
between goods and chores.

From the results on the price of fairness, relaxed equitability is not always compatible
with optimal social welfare, which motivates us to investigate whether one can efficiently
determine the existence of a fair and welfare-maximizing allocation and compute the one
with maximum welfare among fair allocations. We have depicted a complete picture of the
computational complexity of all decision and optimization problems. In particular, when
utilitarian welfare is concerned, all decision and optimization problems are strongly NP-
complete or strongly NP-hard for general n agents. For the case of fixed n, except for E
(UW�EQ1) with two agents, other problems are still intractable in polynomial time. On the
positive side, we are able to propose a pseudo-polynomial time algorithm that output the fair
allocation with the maximum utilitarian welfare. For problem E(UW�EQ1) with two
agents, a polynomial time algorithm exists. When focusing on egalitarian welfare, EQX and
EQ1 are compatible with optimal egalitarian welfare in goods allocations. On the contrary,
in the case of chores, deciding the existence of EQX (resp., EQ1) and egalitarian welfare-
maximizing allocation is strongly NP-hard for general n and weakly NP-complete for fixed
n� 2 (resp., n� 3). Both goods and chores versions for optimization problems are strongly
NP-hard for general n and weakly NP-hard for fixed n. Our results indicate that although
goods and chores yield different results in the problem where the numerical value of input
matters, for example, price of fairness, they may have similar features in terms of com-
putational complexity.

Looking forward, areas that allure immediate exploration include: (a) bound tightness on
the price of EQX in the case of general n and the price of EQ1 with respect to utilitarian
welfare; (b) whether Theorem 4.12 still holds when agents’ valuations are normalized to a
constant; (c) for the allocations of chores with two agents, what is the time complexity of
deciding the existence of an EQ1 allocation that also achieves the maximum egalitarian
welfare? Besides, given unboundedness of the PoF in our consideration of fair and efficient
allocation of chores, it is desirable to improve our current lens of the PoF to see a refined
picture about the efficiency loss of a fair allocation of chores. One possible way could be to
add a positive parameter intrinsic to the problem instance to both the numerator and
denominator of our current definition of the PoF ratio.

Appendix

A.1 Proof of Theorem 4.1 for goods

The problem is in NP as both utilitarian welfare maximization and EQX can be tested in
polynomial time. We then derive a reduction from 3-PARTITION.
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Given an arbitrary instance of 3-PARTITION, we construct a fair-goods instance as
follows. There are mþ 1 agents and a set E ¼ fe1; . . .; e3mþ2g of 3mþ 2 goods. The
valuation functions are shown in Table 14. It is not hard to verify that an allocation is a
UWM if and only if the first 3m goods are assigned to the first m agents and the last two
goods are allocated to agent mþ 1.

Suppose we have a “yes” instance of 3-PARTITION, and let I1; . . .; Im be a solution.
Then, consider allocation A with Ai ¼

S
j2Ii ej for any i 2 ½m� and Amþ1 ¼ fe3mþ1; e3mþ2g.

Clearly, allocation A is a UWM. For agents’ value, we have viðAiÞ ¼ T for every i 2 ½m� and
vmþ1ðAmþ1Þ ¼ 2T . Notice that viðAiÞ ¼ vmþ1ðAmþ1nfegÞ holds for any i 2 ½m� and
e 2 Amþ1, and consequently, A is a UWM that satisfies EQX.

Now we prove the other direction. Suppose we have a “no” instance of 3-PARTITION.
Recall that in any UWM, agent mþ 1 only receives the last two goods and has value 2T.
Because it is a “no” instance, assigning the first 3m goods to the first m agents always results
in an allocation in which at least one agent receives value strictly smaller than T. In any
UWM, when comparing to agent mþ 1, the agent receiving the least value violates the
condition of EQX, completing the proof.

A.2 Proof of Theorem 4.2 for goods

This decision problem is in NP as both utilitarian welfare maximization and EQ1 can be
examined in polynomial time. The polynomial time reduction in the proof of Theorem 4.1
for goods can be carried over to problem E(UW�EQ1).

A.3 Proof of Theorem 4.7 for goods

To prove NP-hardness, we derive a reduction from the problem PARTITION. Given an
arbitrary instance of PARTITION, we construct a fair-goods instance with two agents and a
set E ¼ fe1; . . .; emþ2g of mþ 2 goods. The valuation functions are shown in Table 15,
where 0\�\1. Given these valuation functions, an allocation is a UWM if and only if emþ1

and emþ2 are assigned to agent 2 and agent 1, respectively.
Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,

consider allocation A in which A1 contains bundle
S

j2Ii ej and good emþ2, and A2 ¼ EnA1.

Clearly, allocation A is a UWM. Then, since v1ðA1Þ ¼ v2ðA2Þ ¼ T þ �, allocation A is also
EQX.

We now prove the other direction. Suppose we have a “no” instance of PARTITION.
Then, let S ¼ fe1; . . .; emg be the set of first m goods and P2ðSÞ be the set of 2-partition of
S. We denote by D ¼ argminB2P2ðSÞ jv1ðB1Þ � v2ðB2Þj, and we claim that D� 1 because
pi 2 N; 8i 2 ½m� and it’s a “no” PARTITION instance. Let O be an arbitrary UWM, and
without loss of generality assume v1ðO1Þ[ v2ðO2Þ. According to the construction of D, it
must hold that 0\D� �� v1ðO1nfemþ2gÞ � v2ðO2Þ implying that agent 2 violates the
condition of EQX. Therefore, no UWM can also be EQX, completing the proof.

A.4 Proof of Theorem 4.9 for goods

The problem is in NP as both utilitarian welfare maximization and EQ1 can be tested in
polynomial time. To prove NP-hardness, we derive a reduction from the problem of
PARTITION. Given an arbitrary instance of PARTITION, we construct a fair-goods
instance for three agents with a set E ¼ fe1; . . .; emþ2g of mþ 2 goods. The valuation
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functions are shown in Table 16. An allocation is a UWM if and only if the first m goods are
assigned to the first two agents and the last two goods are assigned to agent 3.

Suppose we have a “yes” instance of PARTITION, and let I1; I2 be a solution. Then,
consider allocation A with A1 ¼

S
j2I1 ej, A2 ¼

S
j2I2 ej and A3 ¼ femþ1; emþ2g. It is

straightforward to verify that allocation A is a UWM. As for agents’ value, we have
v1ðA1Þ ¼ v2ðA2Þ ¼ T and v3ðA3Þ ¼ 2T , and moreover, v3ðA3nfegÞ ¼ T holds for any
e 2 A3. Thus, allocation A is also EQ1.

We now prove the other direction. Suppose we have a “no” instance of PARTITION.
Recall that in any UWM, agent 3 receives value 2T. Since it is a “no” PARTITION instance,
assigning the first m goods to the first two agents always results in an allocation in which
one agent receives value strictly smaller than T. In an UWM, when comparing to agent 3,
the agent receiving the least value violates the condition of EQ1. Therefore, no UWM is
EQ1, completing the proof.

A.5 Proof of Theorem 4.11 for goods

The proof uses Algorithm 4. It is not hard to verify that assigning Ei to agent i for all i is the
necessary and sufficient condition for guaranteeing the output being an UWM.

Denote by A ¼ ðA1;A2Þ the with A1 ¼ eð1Þ1 ; . . .; eð1Þk1

n o
and A2 ¼ eð2Þ1 ; . . .; eð2Þk2

n o
.

Clearly, we have k1 þ k2 ¼ m. Term eðiÞj refers to the j-th goods assigned by algorithm to
agent i. If Algorithm 4 terminates at Step 4, clearly we find a UWM that satisfies EQ1. We
now consider the case where Algorithm 4 terminates at Step 6, and claim in this case, either
E0 � A1 or E0 � A2. It suffices to show that if both A1 \ E0 and A2 \ E0 are not empty set,
then Algorithm 4 terminates at Step 4. To prove this claim, we discuss two cases. If

v1 A1ð Þ[ v2 A2ð Þ, since A1 \ E0 6¼ ;, we have eð1Þk1
2 E0. Then by algorithm, it mush hold

that v1 A1 n eð1Þk1

n o� �
� v2ðA2Þ; otherwise, agent 1 would not receive good eð1Þk1

. Accord-

ingly, allocation A is EQ1, and Algorithm 4 terminate at Step 4. On the other hand, if

v1ðA1Þ\v2ðA2Þ, then since A2 \ E0 6¼ ;, similarly, v1ðA1Þ� v2 A2n eð2Þk2

n o� �
holds and

allocation A is EQ1. The claim is proved.

Table 14 The fair-goods instance for Theorem 4.1

Items e1 e2 � � � em emþ1 emþ2

við�Þ for i�m b1 b2 � � � b3m 0 0

vmþ1 ðm�2Þb1
m

ðm�2Þb2
m

� � � ðm�2Þb3m
m

T T

Table 15 The fair-goods instance for Theorem 4.7

Items e1 e2 � � � em emþ1 emþ2

v1ð�Þ p1 p2 � � � pm 0 �

v2ð�Þ p1 p2 � � � pm � 0
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Next, if E0 � A1, then either (i) v1ðA1Þ\v2ðA2Þ or (ii) v1ðA1Þ[ v2ðA2Þ and

v1 A1n eð1Þk1

n o� �
� v2ðA2Þ. The latter one indicates that allocation A is EQ1, a contradiction.

As for the first possible case, recall that terminating at Step 6 means that allocation A is not
EQ1, and as a consequence, even when agent 1 receives all E0, he still violates the condition
of EQ1. Notice that in any UWM, agent 1 receives value at most v1ðE0 [ E1Þ ¼ v1ðA1Þ, and
so, no UWM is EQ1. If E0 � A2, similarly, there are two possible cases: (i)

v1ðA1Þ[ v2ðA2Þ; (ii) v1ðA1Þ\v2ðA2Þ and v1ðA1Þ� v2 A2n eð2Þk2

n o� �
. If case (ii) happens,

then allocation A is EQ1, a contradiction. The only possibility is case (i), which then implies
that even when agent 2 receives both E0 and E2, she still violates that condition of EQ1.
Thus, no UWM is EQ1, completing the proof.

A.6 Proof of Theorem 4.12 for goods

It suffices to prove that the decision version of C(UW/EQ1) is NP-complete. We prove it by
deriving a reduction from the problem of PARTITION.

Given an arbitrary instance of PARTITION, we construct an instance of the decision
version of C(UW/EQ1) with a set E ¼ fe1; . . .; emþ3g goods. The valuation functions are
shown in Table 17, where 0\�\1=T . The threshold value is defined as W ¼ 5T .

We denote by S ¼ fe1; . . .; emg. Suppose we have a “yes” instance of PARTITION, and
let I1; I2 be a solution. Then, consider an allocation A, in which A1 contains bundles

S
j2I1 ej

and good emþ1 and A2 ¼ EnA1. It holds that v1ðA1Þ ¼ 2T ¼ v2ðA2nfemþ3gÞ, which implies
that allocation A is EQ1. Also, we have UWðAÞ ¼ 5T implying that A is an EQ1 allocation
with utilitarian welfare 5W.

We now prove the other direction. Suppose we have a “no” instance of PARTITION. For
an arbitrary EQ1 allocation B, its utilitarian welfare is no less than 5T only if emþ1 is
assigned to agent 1 and emþ2; emþ3 are assigned to agent 2. Moreover, it is not hard to verify
that in order to gain utilitarian welfare 5T, agent 2 has to receive value at least ð1þ �ÞT from
bundle S. Then we discuss two cases according to the largest pi. Let i	 2 argmaxi2½m� pi.

If pi	 [ T , then due to pi	 2 Nþ and it is an “no” instance, we have pi	 � T � 1. Then,
good ei	 must be assigned to agent 2 so that the utilitarian welfare is no less than 5T. Then,
in such an allocation B, agent 1 has value v1ðB1Þ� 3T � pi	 � 2T � 1\2T � �T �
mine2B2 v2ðB2nfegÞ. Thus, B is not EQ1, which implies that the utilitarian welfare of any
EQ1 allocation is smaller than 5T.

If pi	\T (pi	 6¼ T because of “no” instance), suppose S1; S2 be a 2-PARTITION of S
such that allocation B is composed of B1 ¼ S1 [ femþ1g and B2 ¼ S2 [ femþ2; emþ3g and
has utilitarian welfare no less than 5T. Recall that to meet the requirement on welfare,
v2ðS2Þ� ð1þ �ÞT must hold, and moreover, owing to “no” PARTITION instance, it holds
that v2ðS2Þ[ ð1þ �ÞT . Accordingly, we have v1ðS1Þ\T , derived by

P
i2½m� pi ¼ 2T. As a

consequence, v1ðB1Þ\2T � mine2B2 v2ðB2nfegÞ where the last transition is because, in this

Table 16 The fair-goods instance for Theorem 4.9

Items e1 e2 � � � em emþ1 emþ2

við�Þ for i ¼ 1; 2 p1 p2 � � � pm 0 0

v3ð�Þ 0 0 � � � 0 T T
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case, emþ3 is the most valuable item in bundle B2 for agent 2 given pi	\T . This inequality
contradicts the fact that allocation B is EQ1, completing the proof.

A.7 Proof of Lemma 5.1

We first prove the “only if” part by mathematical induction. In the case of k ¼ 0, Step 2 of
Algorithm 5 sets Bð0; t; sÞ ¼ True if si ¼ e0 and ti ¼ 0 for all i. Note that when k ¼ 0, each
agent i receives only e0 with value equal to 0. Thus, the statement holds for the case of
k ¼ 0. We now assume that the statement holds for k ¼ 0; . . .; h and show that it also holds
for the case of k ¼ hþ 1. Fix t and s with Bðhþ 1; t; sÞ ¼ True and suppose that Algo-
rithm 5 makes Bðhþ 1; t; sÞ ¼ True when the for-loop in Step 5 being i ¼ i	.

If si	 ¼ ehþ1, then Step 7 sets Bðhþ 1; t; sÞ ¼ True and thus Bðh; t1; . . .; ti	 �
vi	 ðehþ1Þ; . . .; tn; s1; . . .; s0i	 ; . . .; snÞ ¼ True for some s0i	 2

Sh
r¼0 er. As the statement holds

for k ¼ h, there exists an allocation P of e1; . . .; eh such that (i) vjðPjÞ ¼ tj for j 6¼ i	 and

vi	 ðPi	 Þ ¼ ti	 � vi	 ðehþ1Þ; (ii) sj 2
Sh

r¼0 er and sj 2 Pj for all j 6¼ i	; s0i	 2
Sh

r¼0 er and
s0i	 2 Pi	 . Then consider allocation P	 with P	

j ¼ Pj for j 6¼ i	 and P	
i	 ¼ Pi	 [ fehþ1g. One

can verify that P	 is an allocation of e1; . . .; ehþ1 with viðP	
i Þ ¼ ti and si 2 P	

i for all i.
If si	 6¼ ehþ1, then Step 10 sets Bðhþ 1; t; sÞ ¼ True and thus Bðh; t1; . . .; ti	 �

vi	 ðehþ1Þ; . . .; tn; s1; . . .; si	 ; . . .; snÞ ¼ True. As the statement holds for k ¼ h, there exists an
allocation Q of e1; . . .; eh such that (i) vjðQjÞ ¼ tj for j 6¼ i	 and vi	 ðQi	 Þ ¼ ti	 � vi	 ðehþ1Þ;
(ii) sj 2

Sh
r¼0 er and sj 2 Qj for all j. Then consider allocation Q	 with Q	

j ¼ Qj for j 6¼ i	

and Q	
i	 ¼ Qi	 [ fehþ1g. One can verify that Q	 is an allocation of e1; . . .; ehþ1 with

viðQ	
i Þ ¼ ti and si 2 Q	

i for all i. Up to here, the statement also holds when k ¼ hþ 1.
Overall, by mathematical induction, the “only if” part is proved.
Now let us prove the “if” part, again with mathematical induction. In the case of k ¼ 0,

Step 2 of Algorithm 5 sets Bð0; t; sÞ ¼ True if si ¼ e0 and ti ¼ 0 for all i. Accordingly, if
Bð0; t0; s0Þ ¼ False, then either t0q 6¼ 0 or s0q 6¼ e0 holds for some q. Note that in the case of

k ¼ 0, no allocation can make agent q receive non-dummy item s0q or a non-zero value.

Thus, the statement holds for the case of k ¼ 0. We now assume that the statement holds for
k ¼ 0; . . .; h and show that it also holds for the case of k ¼ hþ 1. Fix t and s with
Bðhþ 1; t; sÞ ¼ False. For a contradiction, assume that P is an allocation of e1; . . .; ehþ1

with vjðPjÞ ¼ tj and sj 2 Pj for all j. Without loss of generality, we assume ehþ1 2 Pi	 .
Construct an allocation P0 of e1; . . .; eh with P0

j ¼ Pj for j 6¼ i	 and P0
i	 ¼ Pi	nfehþ1g.

If si	 ¼ ehþ1, due to the construction of P and P0 and the fact that the statement holds for
k ¼ h, one can verify that allocation P0 makes Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1;
. . .; s0i	 ; . . .; sngÞ ¼ True, where s0i	 2

Sh
r¼0 er. Accordingly, when the for-loop in Step 5 is

i ¼ i	, Step 7 will set Bðhþ 1; t; sÞ ¼ True, a contradiction.
If si	 6¼ ehþ1, since si	 2 Pi	 and si	 6¼ ehþ1, we have si	 2 P0

i	 . Due to the construction of
P and P0 and the fact that the statement holds for k ¼ h, one can verify that allocation P0

Table 17 The fair-goods instance for Theorem 4.12

Items e1 e2 � � � em emþ1 emþ2 emþ3

v1ð�Þ p1 p2 . . . pm T 0 0

v2ð�Þ ð1þ �Þp1 ð1þ �Þp2 . . . ð1þ �Þpm 0 ð1� �ÞT T
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makes Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1; . . .; si	 ; . . .; snÞ ¼ True. As a result, when the
for-loop in Step 5 is i ¼ i	, Step 10 will set Bðhþ 1; t; sÞ ¼ True, another contradiction.
Therefore, the statement also holds when k ¼ hþ 1.

Therefore, with mathematical induction, we have also proved the “if” part of the lemma.

A.8 Proof of Lemma 5.2

We first prove the “only if” part with mathematical induction. In the case of k ¼ 0, Step 2 of
Algorithm 6 sets Bð0; t; sÞ ¼ True if si ¼ e0 and ti ¼ 0 for all i. Note that when k ¼ 0, each
agent i receives only e0 with value equal to 0. Thus, the statement holds for the case of
k ¼ 0. We now assume that the statement holds for k ¼ 0; . . .; h and show that it also holds
for the case of k ¼ hþ 1. Fix t and s with Bðhþ 1; t; sÞ ¼ True and suppose that Algo-
rithm 6 makes Bðhþ 1; t; sÞ ¼ True when for-loop in Step 5 is i ¼ i	.

If si	 ¼ ehþ1 and ti	 ¼ vi	 ðehþ1Þ 6¼ 0, then Step 7 sets Bðhþ 1; t; sÞ ¼ True and
Bðh; t1; . . .; ti	�1; 0; ti	þ1; . . .; tn; s1; . . .; si	�1; e0; si	þ1; . . .; snÞ ¼ True. As the statement
holds for k ¼ h, there exists an allocation P of e1; . . .; eh such that vjðPjÞ ¼ tj for j 6¼ i	 and
vi	 ðPi	 Þ ¼ 0, and moreover, satisfies property (ii) described in the statement. We now
consider P0 with P0

j ¼ Pj for j 6¼ i	 and P0
i	 ¼ Pi	 [ fehþ1g. Since vi	 ðP0

i	 Þ ¼ vi	 ðPi	 Þ þ
vi	 ðehþ1Þ ¼ ti	 and ehþ1 2 P0

i	 is the unique item of non-zero value in P0
i	 , P

0 is an allocation
of e1; . . .; ehþ1 that satisfies the properties (i) and (ii) described in the statement regarding t
and s.

If si	 ¼ ehþ1 and ti	 6¼ vi	 ðehþ1Þ 6¼ 0, then Step 10 sets Bðk; t; sÞ ¼ True and
Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1; . . .; s0i	 ; . . .; snÞ ¼ True, where s0i	 2

S
r2½h� er satisfies

jvi	 ðs0i	 Þj � jvi	 ðehþ1Þj. As the statement holds for k ¼ h, there exists an allocation Q of
e1; . . .; eh such that vjðQjÞ ¼ tj for j 6¼ i	 and vi	 ðQi	 Þ ¼ ti	 � vi	 ðehþ1Þ, and moreover, sat-
isfies property (ii) described in the statement regarding s1; . . .; s0i	 ; . . .; sn. We now consider
Q0 with Q0

j ¼ Qj for j 6¼ i	 and Q0
i	 ¼ Qi	 [ fehþ1g. Since vi	 ðQ0

i	 Þ ¼ vi	 ðQi	 Þ þ vi	 ðehþ1Þ ¼
ti	 and Q0

j ¼ Qj for j 6¼ i	, then we have vjðQ0
jÞ ¼ tj for all j. As for property (ii), note that

jvi	 ðs0i	 Þj � jvi	 ðehþ1Þj 6¼ 0 and s0i	 is the item with the least non-zero absolute value for agent
i	 in Qi	 , thus ehþ1 is the item with the least non-zero absolute value in Q0

i	 . Then, property
(ii) regarding s described in the statement is also satisfied by Q0.

If e0 ¼ si	 6¼ ehþ1 and ti	 ¼ vi	 ðehþ1Þ ¼ 0, then Step 13 sets Bðk; t; sÞ ¼ True and also
sets Bðh; t1; . . .; ti	�1; 0; ti	þ1; . . .; tn; s1; . . .; si	�1; e0; si	þ1; . . .; snÞ ¼ True. As the statement
holds for k ¼ h, there exists an allocation R of e1; . . .; eh such that vjðRjÞ ¼ tj for j 6¼ i	 and
vi	 ðRi	 Þ ¼ 0, and moreover, satisfies property (ii) described in the statement. We now
consider R0 with R0

j ¼ Rj for j 6¼ i	 and R0
i	 ¼ Ri	 [ fehþ1g. Note that vi	 ðR0

i	 Þ ¼ 0, then one

can verify that R0 is an allocation of e1; . . .; ehþ1 that satisfies the properties (i) and (ii)
described in the statement regarding t and s.

If e0 6¼ si	 6¼ ehþ1 and ti	 6¼ vi	 ðehþ1Þ, then Step 16 sets Bðk; t; sÞ ¼ True and
Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1; . . .; si	 ; . . .; snÞ ¼ True and either
0\jvi	 ðsi	 Þj � jvi	 ðehþ1Þj or vi	 ðehþ1Þ ¼ 0. As the statement holds for k ¼ h, there exists an
allocation S of e1; . . .; eh such that vjðSjÞ ¼ tj for j 6¼ i	 and vi	 ðSi	 Þ ¼ ti	 � vi	 ðehþ1Þ, and
moreover, satisfies property (ii) described in the statement regarding s. We now consider S0

with S0j ¼ Sj for j 6¼ i	 and S0i	 ¼ Si	 [ fehþ1g. Since vi	 ðS0i	 Þ ¼ vi	 ðSi	 Þ þ vi	 ðehþ1Þ ¼ ti	 and

S0j ¼ Sj for j 6¼ i	, then we have vjðS0jÞ ¼ tj for all j. As for property (ii), note that either

jvi	 ðsi	 Þj � jvi	 ðehþ1Þj or vi	 ðehþ1Þ ¼ 0 and si	 is the item with the least non-zero absolute
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value for agent i	 in Si	 , then one can verify that property (ii) regarding s described in the
statement is also satisfied by S0. Up to here, the statement also holds when k ¼ hþ 1.

Overall, with mathematical induction, we have proved the “only if” part of the lemma.
Now let us prove the “if” part, again with mathematical induction. In the case of k ¼ 0,

Step 2 of Algorithm 6 sets Bð0; t; sÞ ¼ True if si ¼ e0 and ti ¼ 0 for all i. Accordingly, if
Bð0; t0; s0Þ ¼ False, then either t0q 6¼ 0 or s0q 6¼ e0 holds for some q. Note that in the case of

k ¼ 0, no allocation can make agent q receive non-dummy item s0q or non-zero value. Thus,

the statement holds for the case of k ¼ 0. We now assume that the statement holds for
k ¼ 0; . . .; h and show that the statement also holds for the case of k ¼ hþ 1. Fix t and s
with Bðhþ 1; t; sÞ ¼ False, and for a contradiction, assume P is an allocation of e1; . . .; ehþ1

satisfying properties (i) and (ii) described in the statement regarding t and s. Without loss of
generality, we assume ehþ1 2 Pi	 . Construct allocation P0 with P0

j ¼ Pj for j 6¼ i	 and

P0
i	 ¼ Pi	nfehþ1g. We then split the proof into four cases based on the possibilities of si	 and

ti	 .
Case 1: si	 ¼ ehþ1 and ti	 ¼ vi	 ðehþ1Þ. As si	 6¼ e0, we must have ti	 ¼ vi	 ðPi	 Þ 6¼ 0, and

accordingly, vi	 ðehþ1Þ 6¼ 0 holds. Note that vi	 ðP0
i	 Þ ¼ ti	 � vi	 ðehþ1Þ ¼ 0. As the statement

holds for the case of k ¼ h, it is not hard to verify that allocation P0 makes
Bðh; t1; . . .; ti	�1; 0; ti	þ1; . . .; tn; s1; . . .; si	�1; e0; si	þ1; . . .; snÞ ¼ True. Thus, when the for-
loop in Step 5 of Algorithm 6 is i ¼ i	, Step 7 sets Bðhþ 1; t; sÞ ¼ True, a contradiction.

Case 2: si	 ¼ ehþ1 and ti	 6¼ vi	 ðehþ1Þ. For this case, we must have vi	 ðehþ1Þ 6¼ 0;
otherwise, item si	 has zero value for agent i	, contradicting the property (ii) satisfied by P.
Note that vi	 ðP0

i	 Þ ¼ ti	 � vi	 ðehþ1Þ 6¼ 0, and accordingly, bundle P0
i	 contains items of non-

zero value for agent i	. Denote by e0 the item with the least non-zero absolute value in P0
i	 .

As P satisfies property (ii) regarding s and e0 2 P0
i	 � Pi	 , we have jvi	 ðsi	 Þj � jvi	 ðe0Þj. As

for agent i	’s value, we have vi	 ðP0
i	 Þ ¼ ti	 � vi	 ðehþ1Þ. Consequently, one can verify that

allocation P0 makes Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1; . . .; e0; . . .; snÞ ¼ True. Thus, when
the for-loop in Step 5 of Algorithm 6 is i ¼ i	, Step 10 sets Bðhþ 1; t; sÞ ¼ True, a
contradiction.

Case 3: e0 ¼ si	 6¼ ehþ1. Note that si	 ¼ e0 implies ti	 ¼ vi	 ðPi	 Þ ¼ 0, and consequently,
vi	 ðehþ1Þ ¼ 0 holds as ehþ1 2 Pi	 . Also, it is evident that vi	 ðP0

i	 Þ ¼ 0. As the statement
holds for the case of k ¼ h, it is not hard to verify that P0 makes
Bðh; t1; . . .; ti	�1; 0; ti	þ1. . .; tn; s1; . . .; si	�1; e0; si	þ1; . . .; snÞ ¼ True. Thus, when the for-
loop in Step 5 of Algorithm 6 is i ¼ i	, Step 13 sets Bðhþ 1; t; sÞ ¼ True, a contradiction.

Case 4: e0 6¼ si	 6¼ ehþ1. Note that both items si	 and ehþ1 are in Pi	 , then
jti	 j ¼ jvi	 ðPi	 Þj � jvi	 ðsi	 Þ þ vi	 ðehþ1Þj. Since agent i	 has a non-zero value on item si	 , it
must hold that jti	 j 6¼ jvi	 ðehþ1Þj. Since si	 is the item with the least non-zero absolute value
for agent i	 in Pi	 , then si	 is also the item with the least non-zero absolute value in P0

i	 , and
moreover, either jvi	 ðsi	 Þj � jvi	 ðehþ1Þj or vi	 ðehþ1Þ ¼ 0 holds. For agent i’s value, we have
vi	 ðP0

i	 Þ ¼ ti	 � vi	 ðehþ1Þ. Consequently, one can verify that allocation P0 makes
Bðh; t1; . . .; ti	 � vi	 ðehþ1Þ; . . .; tn; s1; . . .; si	 ; . . .; snÞ ¼ True with either
0\jvi	 ðsi	 Þj � jvi	 ðehþ1Þj or vi	 ðehþ1Þ ¼ 0. Thus, when the for-loop in Step 5 of Algorithm 6
is i ¼ i	, Step 16 sets Bðhþ 1; t; sÞ ¼ True, another contradiction. Up to here, the statement
also holds when k ¼ hþ 1.

Overall, with mathematical induction, we have also proved the “if” part of the lemma.
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A.9 Proof of Theorem 5.2

Note that Algorithm 6 can return Bðm; t; sÞ for all t and s. By visiting the entire Bðm; t; sÞ,
we can find the set C, of which the construction depends on the underlying items. The full
construction of C is presented as follows.

C ¼ fðt; sÞjBðm; t; sÞ ¼ True and ti þ vjðsjÞ� tj for all i; jg; for goods;

fðt; sÞjBðm; t; sÞ ¼ True and ti � viðsiÞ� tj for all i; jg; for chores:

�
Given an arbitrary EQX allocation A0 ¼ ðA0

1; . . .;A
0
nÞ, construct ðt0; s0Þ as follows: for all i,

t0i ¼ viðA0
iÞ and if viðA0

iÞ ¼ 0, then s0i ¼ e0 and otherwise, s0i 2 A0
i is the item with the least

non-zero absolute value for agent i. Then, we have ðt0; s0Þ 2 C due to the property of EQX
and the construction of t0 and s0. Accordingly, by visiting all element of C, we are able to
find the element ðt	; s	Þ 2 C, of which t	 represents the agents’ value in the EQX allocation
maximizing egalitarain welfare over all EQX allocations. In particular, one can pursue the
ðt	; s	Þ with mini2½n� t	i � mini2½n� ti for all ðt; sÞ 2 C. The specific EQX allocation can be
found by backtracking Bðm; t	; s	Þ in the following way: assigning em to agent im if the
value of Bðm; t	; s	Þ is set to True by Bðm� 1; tm�1; sm�1Þ ¼ True and at that time the for-
loop in Step 5 is i ¼ im; then assigning em�1 to agent im�1 if the value of Bðm�
1; tm�1; sm�1Þ is set to True by Bðm� 2; tm�2; sm�2Þ ¼ True and at that time the for-loop in
Step 5 is i ¼ im�1; repeat this process until all items are assigned. If in some step, the choice
of Bðh; th; shÞ is not unique, then arbitrarily pick one.

As for the time complexity, the running time of Algorithm 5 is Oðmnþ2VnÞ, and visiting
the entire Bðm; t; sÞ and backtracking takes time OðmnVnÞ. Therefore, the running time of
the algorithm is Oðmnþ2VnÞ.
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