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Abstract
The recent paper “Reward is Enough” by Silver, Singh, Precup and Sutton posits that the 
concept of reward maximisation is sufficient to underpin all intelligence, both natural and 
artificial, and provides a suitable basis for the creation of artificial general intelligence. We 
contest the underlying assumption of Silver et  al. that such reward can be scalar-valued. 
In this paper we explain why scalar rewards are insufficient to account for some aspects 
of both biological and computational intelligence, and argue in favour of explicitly multi-
objective models of reward maximisation. Furthermore, we contend that even if scalar 
reward functions can trigger intelligent behaviour in specific cases, this type of reward 
is insufficient for the development of human-aligned artificial general intelligence due to 
unacceptable risks of unsafe or unethical behaviour.

Keywords Scalar rewards · Vector rewards · Artificial general intelligence · Reinforcement 
learning · Multi-objective decision making · Multi-objective reinforcement learning · Safe 
and ethical AI

1 Introduction

Recently, Silver et  al. [70] posited that the concept of reward maximisation is sufficient 
to underpin all intelligence. Specifically they present the reward-is-enough hypothesis 
that “Intelligence, and its associated abilities, can be understood as subserving the maxi-
misation of reward by an agent acting in its environment", and argue in favour of reward 
maximisation as a pathway to the creation of artificial general intelligence (AGI). While 
others have criticised this hypothesis and the subsequent claims [47, 58, 64, 69], here we 
make the argument that Silver et al. have erred in focusing on the maximisation of scalar 
rewards. The ability to consider multiple conflicting objectives is a critical aspect of both 
natural and artificial intelligence, and one which will not necessarily arise or be adequately 
addressed by maximising a scalar reward. In addition, even if the maximisation of a scalar 
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reward is sufficient to support the emergence of AGI, we contend that this approach is 
undesirable as it greatly increases the likelihood of adverse outcomes resulting from the 
deployment of that AGI. Therefore, we advocate that a more appropriate model of intel-
ligence should explicitly consider multiple objectives via the use of vector-valued rewards.

Our paper starts by confirming that the reward-is-enough hypothesis is indeed refer-
ring specifically to scalar rather than vector rewards (Sect. 2). In Sect. 3 we then consider 
limitations of scalar rewards compared to vector rewards, and review the list of intelligent 
abilities proposed by Silver et al. to determine which of these exhibit multi-objective char-
acteristics. Section 4 identifies multi-objective aspects of natural intelligence (animal and 
human). Section 5 considers the possibility of vector rewards being internally derived by 
an agent in response to a global scalar reward. Section 6 reviews the relationship between 
scalar rewards, artificial general intelligence (AGI), and AI safety and ethics, before pro-
viding our proposal for a multi-objective approach to the development and deployment of 
AGI. Finally Sect. 7 summarises our arguments and provides concluding thoughts.

2  Does the reward‑is‑enough hypothesis refer to scalar rewards?

Before we argue against the use of scalar rewards, we first establish that this is in fact 
what Silver et al. are advocating. While the wording of the reward-is-enough hypothesis as 
quoted above does not explicitly state that the reward is scalar, this is specified in Sect. 2.4 
(“A reward is a special scalar observation R

t
 ”) where the authors also state that a scalar 

reward is suitable for representing a variety of goals or considerations which an intelligent 
agent may display:

A wide variety of goals can be represented by rewards. For example, a scalar reward 
signal can represent weighted combinations of objectives, different trade-offs over 
time, and risk-seeking or risk-averse utilities. [70, p.4, emphasis added]

In addition, the authors later acknowledge the existence of other forms of reinforcement 
learning such as multi-objective RL or risk-sensitive methods, but dismiss these as being 
solutions to specialised cases, and contend that more general solutions (i.e. those based on 
maximising a cumulative scalar reward) are to be preferred. We will present an argument 
contesting this view in Sect. 3.

Rather than maximising a generic objective defined by cumulative reward, the goal is 
often formulated separately for different cases: for example multi-objective learning, 
risk-sensitive objectives, or objectives that are specified by a human-in-the-loop. […] 
While this may be appropriate for specific applications, a solution to a specialised 
problem does not usually generalise; in contrast a solution to the general problem 
will also provide a solution for any special cases. [70, p.11]

3  The limitations of scalar rewards

3.1  Theoretical limitations of scalar rewards

The limitations of scalar rewards and the advantages of vector-based multi-objective 
rewards for computational agents have been extensively established in prior work [41, 60, 
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62]. In the interests of space and brevity, we focus here on the aspects that are of most rel-
evance to the reward-is-enough hypothesis.

Clearly, many of the tasks faced by an intelligent decision-maker require trade-offs to 
be made between multiple conflicting objectives. For example a biological agent must aim 
to satisfy multiple drives such as reproduction, hunger, thirst, avoidance of pain, follow-
ing social norms, and so on. A computational agent does not have the same physical or 
emotional motivations and so, when applied in the context of a highly-constrained task 
such as playing a board game like Go, there may be a single, clearly defined objective. 
However, it is likely that the agent will need to account for multiple factors in its decision 
making, when applied in less restricted environments. The ubiquity of multiple objectives 
is evident even in the cases presented by Silver et al. For example, in Sect. 3 they suggest 
that a squirrel’s reward may be to maximise survival time, or reproductive success, or to 
minimise pain, while a kitchen robot may maximise healthy eating by its user, or their posi-
tive feedback, or some measure of the user’s endorphin levels. An agent based on scalar 
rewards must either be maximising only one of these competing objectives, or some scalar-
ised combination of them.

The prevalence of genuinely multi-objective tasks in the real-world is reflected in the 
thriving nature of research fields such as multi-criteria decision-making [18, 75, 80] and 
multi-objective optimisation [20, 27]. Furthermore, this is reflected in the broad range 
of application areas that involve multi-objective aspects, as identified in [19, 41], which 
span almost all aspects of human society. In particular, any decision which affects multiple 
stake-holders will require consideration of multiple objectives [21].

Silver et  al. acknowledge that multiple objectives can exist, but state that “a scalar 
reward signal can represent weighted combinations of objectives". In the context of multi-
ple objectives, the agent is concerned with maximising some measure of utility which cap-
tures the desired trade-offs between those objectives. While it is certainly true that rewards 
representing multiple objectives can be combined into a scalar value via a linear weighting, 
it is well known that this places limitations on the solutions which can be found [24, 79].1 
Furthermore, in many real world problems different objectives operate at significantly dif-
ferent time scales, making it practically impossible to find a meaningful trade-off among 
them in a single time step of learning (examples from biological intelligence are given in 
Sect. 4.2). This means that a scalar representation of reward may not be adequate to enable 
an agent to maximise its true utility [62]. In particular, some forms of utility such as lexi-
cographic ordering cannot be represented as a scalar value [28]. In contrast, intelligence 
based on vector rewards and approaches that are explicitly multi-objective can directly 
optimise any desired measure of utility [41].

A second advantage of multi-objective reward representations is that they allow for a 
greater degree of flexibility in adapting to changes in goals or utility. A scalar reward repre-
senting a weighted combination of objectives directly encodes a single, fixed weighting of 
those objectives, and this restricts the agent to learning only about that weighting. In con-
trast, an agent using a multi-objective representation can follow behaviour which is optimal 
with respect to its current goal, while simultaneously performing learning with regard to 
other possible future goals or utility preferences. This allows for rapid or even immedi-
ate adaptation should the agent’s goals or utility change, which we would argue is likely 

1 Specifically, there may be solutions which lie in concave regions of the Pareto front representing optimal 
trade-offs between objectives, and no linear weighting exists which will favour these particular solutions. 
For a practical example of the implications of this, see [14].
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to arise in dynamic environments, particularly in the context of life-long learning. This 
approach, which is known in multi-objective reinforcement learning research as multi-pol-
icy learning [62], cannot readily be achieved by an agent observing only a scalar reward. 
Silver et al. themselves state that “Intelligence may be understood as a flexible ability to 
achieve goals", but scalar rewards are not sufficient to provide the degree of flexibility sup-
ported by multi-policy multi-objective methods.

Finally we wish to address Silver et al.’s comment that “a solution to a specialised prob-
lem does not usually generalise; in contrast a solution to the general problem will also 
provide a solution for any special cases". We disagree with the implied assumption that 
maximisation of a cumulative scalar reward is the general case. Scalar rewards (where the 
number of rewards n = 1 ) are a subset of vector rewards (where the number of rewards 
n ≥ 1 ). Therefore, intelligence developed to operate in the context of multiple rewards is 
also applicable to situations with a single scalar reward, as it can simply treat the scalar 
reward as a one-dimensional vector. The inverse is not true – while a vector reward can 
be mapped onto a scalar reward, this inevitably involves a loss of information, which will 
limit some capabilities of the intelligence, as discussed in the previous two paragraphs. 
Therefore it is clear that problems with scalar rewards are in fact the special case. A similar 
argument can be made regarding the generality of risk-aware decision-making compared to 
single-objective decision-making.

3.2  The multi‑objective nature of intelligent abilities

Section 3 of Silver et al. identifies the following set of intelligent abilities which they assert 
could arise by maximising a scalar reward: Knowledge and learning, Perception, Social 
intelligence, Language, Generalisation, Imitation, and General intelligence.

For some abilities such as knowledge and learning, and imitation, we concur with the 
reward-is-enough hypothesis. While multi-objective rewards may provide benefits relating 
to these areas such as improving efficiency, they are not strictly required in order for an 
intelligent agent to develop these abilities. However, we contend that other abilities are 
clearly multi-objective in nature. In the following subsections we will address the benefits 
which multi-objective rewards may provide over scalar rewards for each of these aspects of 
intelligence. We believe that the issue of general intelligence merits a deeper discussion, 
particularly in regard to the creation of artificial general intelligence, and so we will defer 
discussion of this facet of intelligence until Sect. 6.

3.2.1  Perception

When discussing perception, Silver et al. note that there may be costs associated with car-
rying out actions to acquire information such as the energy and computational overheads 
involved in turning the head to look for a potential predator. As such, there is an implicit 
trade-off between the costs associated with misperception and the costs incurred in infor-
mation gathering. Furthermore, there is no reason to assume that the relationship between 
these costs must be linear or that the relationship will remain fixed over time. For exam-
ple, if the acuity of the eyesight of an organism diminishes with age, then the relationship 
between the time taken to obtain information visually and the accuracy of that information 
will change over the organism’s lifetime. This may in turn alter the optimal behaviour for 
that agent – whereas in its youth it may have been optimal to gather accurate information 
before deciding whether to fight or flee, as it ages the optimal decision may favour fleeing 
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as the time and risk associated with more accurately assessing the potential threat increase 
due to its poorer visual capability. As discussed earlier, an intelligence based on vector 
rewards which decompose the factors such as time and accuracy of perception can more 
readily adapt its behaviour to changes in these factors compared to an intelligence based on 
a scalar reward which encodes a hard-wired trade-off between these factors.

3.2.2  Social intelligence

Silver et al. identify that social intelligence may arise from reward maximisation in an envi-
ronment populated by multiple agents, by simply letting an agent treat other agents as part 
of the environment. However, learning in multi-agent systems, and the emergence of social 
intelligence, is more naturally expressed as a multi-objective decision-making problem. In 
a competitive setting, the agent should consider its main goals as well as the long-term 
impact an action has on the future choices of its opponents, which may require a trade-off 
between the two categories of objectives. In a cooperative setting, agents may have differ-
ent capabilities, needs, and rewards. Therefore, a solution must be found that represents a 
trade-off among objectives acceptable to all agents, such that it allows for the cooperation 
to be established and maintained over time. Having a clear idea of the utility will help 
deciding whether to maintain or break partnerships when utility changes.

In multi-agent settings, the difference between vector-valued rewards – in multi-agent 
settings often called payoffs – and scalar-valued rewards is especially clear. For single-
objective problems solutions can often be guaranteed, while in the multi-objective problem 
setting such guarantees cannot be obtained. This is even the case when the utility functions 
of the agents participating in the system are known upfront and are common knowledge. 
For example, while for single-criterion coalition formation games individually stable and 
even core stable partitions are guaranteed to exist, Igarashi et al. [44] show that even for 
multi-criteria coalition formation games (MC2FGs) with known linear utility functions 
this is not necessarily the case. Furthermore, while for single objective normal form games 
Nash equilibria are guaranteed to exist, this is not necessarily the case for multi-objective 
normal form games (MONFGs) [61]. These considerations demonstrate that the multi-
objective multi-agent problem setting is fundamentally different from its single-objective 
counterpart.

3.2.3  Language

By supporting communication of information and coordination of actions, language is 
clearly a beneficial attribute for an intelligent agent operating within a multi-agent environ-
ment. Prior work has demonstrated that agents that are able to communicate can achieve 
mutually beneficial cooperative behaviour, which may not be possible without communi-
cation [23]. It has also been shown that reward-maximising agents can develop their own 
linguistic structures that exhibit advanced features such as compositionality and variability 
[40]. In this regard the arguments of Silver et al. are therefore correct; maximisation of a 
scalar reward is sufficient to give rise to the development and use of language.

However we contend that scalar rewards do not suffice to account for the full complexity 
of language displayed by humans. The use of language is intertwined with the role of social 
intelligence, and so the arguments from the previous section also apply to the development 
of linguistic capabilities. Harari [39] describes how the development of a social language 
was a principle driver of the cognitive revolution separating modern humans from earlier 
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humans and animals. While many animals can communicate factual information, threat 
warnings, and even lie, there is no evidence of communicating for the purpose of higher 
levels of intentionality associated with human social and cultural behaviours [17, 30, 37].

Language plays multiple roles in human interactions; in addition to communication of 
factual information, it can also serve to strengthen relationships, display emotions or per-
sonality, persuade or mislead others, etc. As such the use of language by an intelligent 
agent may be driven by a variety of different conflicting factors – for example, an agent 
may wish to persuade another agent to carry out a particular action, while still preserving 
the long-term trust relationship with them. We argue that such sophisticated use of lan-
guage can only emerge where there is a desire to go beyond simply achieving a particular 
reward and it is, therefore, far more likely to derive from a multi-objective approach to 
decision-making.

3.2.4  Generalisation

Silver et  al. define generalisation as the ability required of an agent that is maximising 
its cumulative reward within ongoing interaction with a single complex environment. The 
agent will inevitably encounter situations which deviate from its past experience, and so to 
behave effectively in those novel situations it must be able to appropriately generalise from 
prior experience.

An agent maximising a scalar reward may exhibit some aspects of generalisation, such 
as generalising across variations in state. However other aspects of generalisation, such as 
generalising to new tasks or to changes in user preferences, will be problematic. As the 
agent has only observed its current reward signal, it has no basis for adapting its behaviour 
should the reward signal undergo a significant change. In contrast, as discussed earlier, a 
multi-policy multi-objective agent can learn with regard to all components of the vector 
reward they are receiving, regardless of the extent to which each component contributes to 
their current utility (it could even learn about factors which do not contribute at all to its 
current utility, but which may be beneficial to know about in the future [46]). Should the 
task or the user’s preferences change, the agent can almost immediately adapt its behaviour 
[3, 78].2

For example, consider an autonomous vehicle which has learned a policy based on a 
scalar reward carefully handcrafted to address various factors such as travel time, passenger 
comfort, safety and fuel consumption. Now imagine that the cost of fuel rises considerably 
so that the current policy is too expensive. The reward signal will need to be redefined to 
place more emphasis on conserving fuel, and the agent controlling the vehicle will need 
to relearn an optimal policy based on this new reward. In contrast a multi-objective agent 
treats these factors as separate elements of a vector reward, and can use multi-policy learn-
ing to identify in advance various policies which are optimal for different preferences over 
those factors. When fuel costs change a multi-objective agent can simply update its util-
ity function to place a greater weight on fuel consumption, and can immediately follow a 

2 We note similarities in this aspect of generalisation across tasks between multi-objective reinforcement 
learning (MORL) and other approaches such as multi-task reinforcement learning [66] or successor features 
[8]. However, as discussed in Sect. 6.3 of [41], there are also differences between these approaches, with 
MORL representing a more general class of methods. The relationship between MORL and successor fea-
tures has recently been explored further in [4].
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policy which is optimal with respect to the changed conditions without the need for any 
further learning.

4  Multi‑objective reinforcement learning in natural intelligences

If our arguments in favour of multi-objective representations of reward are correct, then it 
would be expected that naturally evolved intelligences such as those in humans and animals 
would exhibit evidence of vector-valued rewards. In fact, evolution has developed organ-
isms that delegate learning not just into multiple objectives but even into multiple learn-
ing systems within an organism. There are multiple objectives at a basic biological regula-
tory level, and these are matched with multiple objectives at every level of analysis of the 
organism. In this section we show that these cannot be reduced to any single objective.

4.1  Distinguishing biological evolution and biological intelligence

When considering natural intelligences it is important to draw a clear distinction between 
the evolutionary process which has produced these intelligences, and the functioning of the 
intelligences themselves. Biological evolution optimises for a single objective (i.e. repro-
ductive fitness), to an environment that varies over time and space (though its operation-
alisation depends greatly on the environment [42, 70]). In contrast, at at least five distinct 

Biological evolution

Organism
Computational 
level

Optimizes for:

Neurochemical 
level

System level

● Maximise reward
● Avoid pain
● Dopamine as reward or RPE signal
● Serotonin
● Oxytocin
etc
“Three categories of reward signals” for phasic dopamine
(Brynes 2021):

● RPE for success-in-life
● RPE for multiple local sub-circuit rewards
● Supervised learning (SL) error signals

Behavioural level Primary reinforcers or hard-coded objectives to produce 
dopamine and other neurochemical rewards, includes but 
not limited to:
● Rewarding sensory experiences, e.g., tastes, touch etc.
● Hunger satiation
● Achieving homeostatic balance of salt and other nutrients
● Thirst quenching
● Sexual contact
● Social acceptance and physical contact with offspring,

parents, affiliates
Psychological 
level

Fundamental values in humans--at least some degree of 
socialization or learning involved, but some biological 
influence, and are pluralistic. e.g. 

● Schwartz Values: affiliation, security, achievement
etc.

● Moral foundations: fairness, group loyalty, etc.

Optimises for:
● Reproductive

fitness

Via:
● Natural

selection
● Mutations
● Crossover via

sexual
reproduction

Taxonomy of multiple objectives in mammalian learning

Environment

Fig. 1  Biological evolution generates organism genotypes, optimising for the fit of an organism’s phenotype 
to its environment. Genotypes are the genetic instruction set that are decoded into into an organism that 
exhibits a set of phenotypical expressions. These include all of the learning and reward systems that make 
up an organism’s biological intelligence. Further details about each level of objectives in the organism are 
described in the text
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levels of analysis for human organisms, an organism’s computational processes include 
multiple objectives that must be balanced during action selection (see Fig. 1).

4.2  Biological intelligence has no single primary objective

In optimising for reproductive fitness, evolution generates an organism’s genotype (Fig. 1), 
which in turn creates what we could call an intellectual phenotype, a set of innate intellec-
tual capacities that an organism can use to learn about and interact with its environment. In 
mammals, as in most other organisms, the bio-computational processes that constitute that 
intellectual phenotype have no single objective; rather, they include multiple objectives 
including hunger satiation [29], thirst quenching, social bonding [59], and sexual contact 
[34], as described in Fig. 1.

Even if reproduction is regarded as a ‘single objective’ of the evolutionary process, 
broadly construed, at the organism level it is not a primary reinforcer at all. Rather, the 
organism’s phenotype includes a set of features, including intelligent systems, which have 
been tuned by the evolutionary process because they tend to lead to environmental fitness 
and ultimately genetic reproduction. This includes sexual orgasm [34], social contact with 
conspecifics like offspring [59], and so on. These do not necessarily internally store any 
kind of explicit representation of reproduction as a goal. Rather reproduction is an emer-
gent result of the organism fulfilling other multiple primary objectives. Understanding 
the multi-objective nature of motivation in biological systems is critical because different 
systems are more dominant at different times, depending on context. An example in this 
regard concerns the remediation of pain and hunger. On the one hand, pain warrants an 
immediate response, while on the other hand, for hunger this response can be delayed for 
hours up to days. These examples demonstrate that such objectives could not be aggregated 
in a single reward signal, due to the difference in time scale in which these rewards are 
relevant, and we note that distinct biological subsystems are in place to support these dif-
ferences. Simply understanding the computational processes of the organism is insufficient 
to predict behaviour without also including an account of the state of the organism and its 
environment, and the relevant objectives that arise as a function of that state.

The clearest example of biological primary objectives might be what are called ‘pri-
mary reinforcers’ in behavioural psychology. These constitute behavioural goals that are 
innate [29], such as hunger satiation, thirst quenching, and sexual satisfaction (Fig.  1, 
‘behavioural level’). These are themselves entire families of objectives, because an organ-
ism needs a wide array of nutrients to survive and can pursue very specific objectives to 
ensure that each nutrient is obtained. Even for specific primary reinforcers, there may 
be multiple biological signals acting as proxy objectives to ensure those objectives are 
obtained. For instance, salt consumption alone activates taste receptors, interoceptive sig-
nals related to ingestion, and blood osmolality detectors designed to maintain homeostatic 
balance [72]. These receptors drive the value assigned to consuming salt during decision-
making at any particular moment. Thus, even for just a single critical nutrient, there are 
multiple biological objectives [55, 82] on multiple level tuned to ensure an appropriate 
level of consumption.

At a psychological level (Fig.  1), humans appear to hold multiple irreducible and 
irreconcilable moral [38] and life [68] objectives. Moral objectives include preferences 
for equality, for harm avoidance, and upholding authority hierarchies and group loyalties 
[38] and may have a basis in distinct biological tendencies. Schwartz et al. [68] identified 
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ten distinct human values, including benevolence, security, hedonism, and autonomy that 
appear to be distinct life objectives for people across cultures to varying degrees.

4.3  There’s no plausible neurochemical or neuroanatomical single objective 
function

Proponents of a single-objective account of RL in biological organisms might look for a 
single neurotransmitter release that could conceivably underlie all the objectives outlined 
above – perhaps a global reward signal or brain region that combines all the objectives 
outlined in the previous section into a single process. However, even if such a mechanism 
was identified as, for instance, release of dopamine to indicate reward prediction error, the 
reward-is-enough hypothesis would not follow: that single signal is properly thought of as 
hard-coded to achieve multiple objectives, as outlined in Fig. 1.

Dopamine is often associated with reward, but it is more appropriate to characterize it as 
a ‘reward prediction error’ (RPE) signal than as a simple signal of positive reinforcement 
[54] (Fig. 1, ‘Neurochemical level’). The reward system releases dopamine as a response 
to a signal indicating a reward is coming [67], but on release of a reward, dopamine is 
only delivered if the reward was unexpected. It might be said only a single neurotransmit-
ter performs the RPE function in mammalian reward learning, but this is not the same as 
saying mammalian RL is single-objective, because the RPE signal is delivered to drive 
learning across a wide variety of domains. For instance, not only is dopamine responsible 
for modulating goal-directed behavior, but it also seems to play a role in learning within 
sensory systems including visual, auditory, olfactory, and taste cortices [53]. Additionally, 
other neurochemicals like oxytocin [52] or serotonin [81] are important in the experience 
of pleasure, attachment, and motivation, and although these may ultimately depend on the 
dopaminergic system for motivational power, their presence demonstrates the neurochemi-
cal hardcoding of a variety of objectives in animal behavior [52, 67, 81].

A number of neuroanatomical brain regions are important for the production and assess-
ment of value calculation and reward (Fig.  1, ‘Computational level’). A full survey of 
biological decision-making is outside of the scope of this article. But in brief, subcorti-
cal regions like the nucleus accumbens are thought to be involved in reward processing 
[45], while the ventromedial prefrontal cortex (vmPFC) appears to formulate value signals 
associated with potential rewards. However, these do not appear to function as parts of 
single-objective reinforcement learning systems because the values represented are context 
dependent [65]. When an organism is hungry, the value of food, as recorded in the vmPFC, 
is higher [74]; when an organism is thirsty, the value of drinking is higher. Something like 
a ‘common currency’ might indeed be represented in the vmPFC [51] and related regions, 
but to extend the metaphor, the ‘exchange’ rate between that currency and various physi-
ological and psychological goals and drives changes currently based on context, limiting 
the applicability of any single-objective account.

4.4  The brain has multiple objective functions at a systemic level

Byrnes [15] attempts a description of the brain as an integrated reward learning system. 
The model described draws on Mollick et  al.’s [54] description of the brain’s phasic 
dopamine system as well as classic work describing the brain as an array of parallel 
loops [5]. Here, three separate categories of phasic dopamine signals are described: 
reward prediction error for basic universal goals, reward prediction error for motor 
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action execution, and supervised learning error signals. These are distinct processes 
required for human intelligence, all with their own objectives, but they are all required 
for a human brain (or a mammalian brain more generally) to function correctly.

5  Internally‑derived rewards

One could argue that an agent concerned with maximising a scalar reward may still 
develop the capabilities required to carry out multi-objective decision-making. Natu-
ral intelligence provides an example of this. As we discussed in Sect. 4, the evolution-
ary objective of reproduction has led to the development of organisms with specialised 
sensors, internally derived reward signals, and learning systems associated with those 
signals. Another example of this is the perception of fairness and inequality, which has 
been identified as a process embedded in the human brain [16]. Conceivably this could 
also arise in the context of computational intelligence, where agents based on evolution-
ary algorithms or reinforcement learning might construct their own internal reward sig-
nals to guide their learning and decision-making [32, 71, 76].

One benefit of internalised rewards is that they provide a less sparse reward signal. 
If the agent learns to identify events which are correlated with future occurrences of 
its external reward, then creating secondary reward signals for those events will pro-
vide more immediate feedback, thereby speeding up learning and adaptation. For exam-
ple, developing taste sensors which respond to particular nutrients in food will provide 
immediate rewards to an animal which eats that food, correlating to the more delayed 
benefits which may accrue from the intake of those nutrients. Similarly, a team of 
autonomous rovers aiming to discover signs of life on another planet will find this task 
exceedingly difficult to learn if they are only provided with a single reward at the end of 
the task, but can learn far more effectively if provided with short-term rewards for activ-
ities which are correlated with the long-term goal [83]. It has been shown that multi-
objectivisation or reward decomposition (where the primary scalar reward is decom-
posed into several distinct rewards) can be beneficial for a computational RL agent, 
particularly where the primary reward is sparse [13, 49, 83]. Similarly, agents may use 
internally derived rewards to drive aspects of the learning process itself such as explora-
tion [9, 57].

Regardless of whether vector rewards are derived externally or internally, the agent still 
needs to make decisions based on those vector values. Silver et al. argue that an agent max-
imising a scalar reward could theoretically develop multi-objective capabilities. However 
this would require the agent to modify its own internal structure. Therefore, we believe that 
it is more practical to construct multi-objective agents through the explicit design of multi-
objective algorithms. Similarly, we argue that where we can design multi-objective reward 
structures for computational agents, it makes sense to do so rather than relying on them to 
identify such structures themselves. In fact, we contend that it typically will be easier to 
specify multi-objective rewards directly than to design a scalar reward which captures all 
of the various factors of interest. We note that the reward-is-enough hypothesis is theoreti-
cally focused, and so these practical considerations do not constitute an argument against 
the hypothesis. Nevertheless we feel it is important to highlight these issues as they clearly 
impact on the pathway to the development of more powerful computational intelligence, as 
will be discussed further in the following section.
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6  Reward maximisation and general intelligence

6.1  The risks of single‑objective general intelligence

One of the main arguments presented by Silver et al. is that the maximisation of even a 
simple reward in the context of a suitably complex environment (such as those which occur 
in the natural world) may suffice for the emergence of general intelligence. They illustrate 
this via the following scenario:

For example, consider a signal that provides +1 reward to the agent each time a 
round-shaped pebble is collected. In order to maximise this reward signal effectively, 
an agent may need to classify pebbles, to manipulate pebbles, to navigate to pebble 
beaches, to store pebbles, to understand waves and tides and their effect on pebble 
distribution, to persuade people to help collect pebbles, to use tools and vehicles to 
collect greater quantities, to quarry and shape new pebbles, to discover and build 
new technologies for collecting pebbles, or to build a corporation that collects peb-
bles. [70, p.10]

While the development of open-ended, far-reaching intelligence from such a simple reward 
is presented positively by Silver et al., this scenario is strikingly similar to the infamous 
paperclip maximiser thought experiment from the AI safety literature [10]. In this exam-
ple, a superintelligent agent charged with maximising the production of paperclips enslaves 
humanity and consumes all available resources in order to achieve this aim. While unre-
stricted maximisation of a single reward may indeed result in the development of com-
plex, intelligent behaviour, it is also inherently dangerous [56]. For this reason, AI safety 
researchers have argued in favour of approaches based on satisficing rather than unbounded 
maximisation [73], or on multi-objective measures of utility which account for factors such 
as safety or ethics [77].

Even when safety is not at risk, it is vital to carefully consider which types of behaviour 
can arise when deploying learning agents in society. Depending on the application, ele-
ments such as bluffing or information hiding can potentially be harmful and undesirable. 
For example, consider a smart grid setting, in which autonomous agents decide on behalf 
of the homeowners how to best store or trade locally generated green energy. This is, in 
general, a competitive scenario. While the main goal of each agent is to ensure the comfort 
and reduce the costs of the household, it is not acceptable for agents to manipulate the 
market or submit bluff-bids, even if these behaviours would be optimal with respect to their 
reward signal. Since autonomous agents need to operate in the context of our society, we 
should give careful thought to and investigate what type of emergent behaviour is desir-
able. This will be important to avoid the development of selfish and harmful mechanisms, 
under the pretext of being optimal with respect to a single numerical feedback signal.

Therefore we argue that even if scalar rewards are enough for the development of gen-
eral intelligence, they are not sufficient for the far more important task of creating human-
aligned AGI. While safety and ethics are not the focus of Silver et al.’s paper, it is con-
cerning that these issues are not acknowledged in a paper which is actively calling for the 
development of AGI. More broadly we note that Silver et al. do not provide guidance as 
to the actual objective or reward signal which may be suitable for the creation of human-
aligned AGI.

Even if we were to accept the hypothesis that an intelligent agent’s behaviour can arise 
from maximising a single scalar reward within the environment, that does not necessarily 
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imply that the design and construction of such a scalar reward is feasible. In this sense, 
the pebble-collecting scenario is an outlier as the agent has access to a straightforward, 
dense source of reward (“+1 reward... each time a round-shaped pebble is collected"). In 
practice the sort of problems for which general intelligence is required will rarely lead to 
such simple and immediate feedback, and the design of a suitable reward will be a major 
challenge. In addition analysing the behaviour of a general intelligence in terms of a single 
reward is unlikely to provide sufficient insight into the drivers of that behaviour. For exam-
ple, interpreting the behaviour of a squirrel as maximising a single scalar reward represent-
ing “survival" does not help to understand the mechanisms of that reward, nor does it assist 
in the construction of an equivalent reward signal that induces squirrel-like behaviour in an 
arbitrary intelligent agent.

As described by Amodei et al. [7], reward specification is difficult even in trivial sys-
tems, and reward misspecification and reward hacking often lead to surprising, unintended, 
and undesirable behaviour. In more complex systems with more general agents, the poten-
tial for reward misspecification is significantly increased [31]. We argue, then, that the 
application of a single scalar reward signal leads to significant risk of unpredictable and 
undesirable behaviour. Given the limitations of their human designers, scalar rewards will 
most likely not be enough for the development of AGI with guaranteed behavioural proper-
ties, and predictable reward design is better achieved using multi-objective methods.

6.2  A multi‑objective approach to human‑aligned general intelligence

In order for general artificial intelligence to be beneficial to humanity, it will need to be 
accountable and adaptable to human ethics, as well as human needs and aims. To be a part 
of society, an agent needs to adapt, and be accountable to others in this society, and we 
argue that agents that optimise for a single objective are severely handicapped in doing so. 
In this section, we will first explain the need for multiple objectives from an ethical and 
human-alignment point of view, and second explain our vision for future AI systems that 
form an integral part of society; agents that can be reviewed with respect to, and adapted 
to, a changing society.

Ultimately, all ethical capabilities that AGI can attain will have to come from humans, 
as well as all other goals and aims. There simply is no other available source for ethics and 
general goals than humans. However we do not agree amongst ourselves what ethically 
optimal behaviour is. Philosophers – arguably the closest there is to generalist experts in 
ethics – disagree on a wide range of ethical questions including meta-ethics, moral moti-
vation, and normative ethics [12], and their positions on these disagreements correlate 
systematically with personal identities including race and gender. Psychologically, moral 
intuitions seem to arise from a pluralistic set of incommensurable and innate moral values 
that differ systematically across different political parties [36]. Fundamental human psy-
chological values differ individually and across cultures [68]. Furthermore, even if it is not 
a question of ethics, the question of what to care about is not trivial either [35]. Therefore, 
we cannot expect people who need to specify the rewards for an AI system to get it right, 
especially not in one go. Moreover, priorities are likely to change over time. Any AI system 
– general or not – that is deployed for a long time, and that is possibly propagated to new 
generations of the systems, must be able to deal with this.

Humans who will have to specify what the agent must care about will likely identify 
multiple goals that are important. For example, a self-driving car will need to minimise 
travel time, minimise energy consumption, as well as minimise the expected harm resulting 
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from a trip to both the occupants of the car, other humans in the environment, animals, and 
property. Furthermore, a reasonable trade-off between these objectives (which may well be 
a non-linear one, as we explained in Sect. 3.1) must be identified during training. However, 
the engineers of such a system are most likely not ethicists nor legal experts. Furthermore, 
they do not own the utility of the system’s deployment, and may not ultimately bear the 
responsibility for the system being deployed in practice. Therefore, the human-alignment 
process will necessarily be in the hands of others, who need a clear explanation from the 
AI system about the available trade-offs between objectives in different situations. We 
therefore believe that an explicitly multi-objective approach is necessary for responsible 
agent design. For further arguments why human-aligned AI is inherently multi-objective, 
please refer to [77].

Once the design, training, and testing is completed, and the AI system is deployed, it 
will be equipped with a set of objectives, and a mechanism (e.g., a utility function [63]) for 
making online decisions about trade-offs between these objectives. However, it may well 
encounter situations that were not foreseen in training, and the trade-offs between objec-
tives in these situations become unlike hitherto encountered trade-offs. Here we encoun-
ter another key benefit of an explicitly multi-objective approach – and in our opinion an 
ethically necessary capability, of any agent. In combination with probabilistic methods, the 
agent can identify when it becomes too uncertain about which trade-offs will be desired 
and therefore, if possible, defer the decision back to responsible humans, or shut down 
safely. When this is not possible, these situations can be identified and reported back. For 
example, if a parrot suddenly gets loose in an automated factory, and the AI system cor-
rectly identifies it as an animal, but has never had to make choices between animal safety, 
human safety, product damage, and production before, the system may try to opt for safe 
system shutdown if a responsible human cannot be reached. However, if the parrot flies 
straight into the production line, more drastic immediate action might be required, and 
there is no time to shut down safely. These immediate actions will necessarily be taken 
on the fly, and will have to be reported and later reviewed to see whether the taken actions 
were indeed what the responsible humans would have wanted the system to do.

Finally, when undesirable things have occurred, an agent needs to be able to explain 
the decision made. Single objective systems are only able to provide simple details such 
as what was the perceived state and that its chosen action maximised its reward [22]. Such 
explanations provide little understanding to the users. However, an explicitly multi-objec-
tive approach confers significant further benefits. Namely, it can help diagnose exactly 
what went wrong, such as: what was the trade-off between objectives; what alternative out-
comes would have occurred with alternative trade-offs; or, was the selected policy pro-
viding an undesired trade-off between objectives [26]. Hence, a multi-objective approach 
allows explicitly attributed details, as well as contrastive and counterfactual explanations 
of the reasoning process behind behaviour rather than just the outcome [25]. Being able 
to explicitly identify the trade-off underlying an agent’s basis for reasoning has long been 
argued as a key component of transparency in AGI [43].

One possible implementation of these concepts would be a review-and-adjust cycle [41]. 
Figure 2 demonstrates how a review-and-adjust cycle could be applied when developing an 
agent for a multi-objective Markov decision process (MOMDP). During the planning or 
learning phase, an AGI would utilise a multi-objective algorithm to compute a set of opti-
mal policies for all possible utility functions. In the selection phase, a policy is selected 
to be executed, possibly with direct or indirect user feedback. The selected policy is then 
executed, during the execution phase. The outcome from the policy execution can then be 
reviewed by the overseer (either a human, the AGI itself, or another AGI), along with the 
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AGI’s explanation of its policy selection. The MOMDP, utility function or set of solutions 
can then be updated based on this review. We note that such reviews can not only be trig-
gered by incidents, but also by regular inspection.

We see such a review-and-adjust cycle as an essential feature of future AI. We, as AI 
researchers have to enable responsible deployment, and well-informed review of the sys-
tems we create is a key feature of this. It is our opinion that the above-mentioned benefits 
are not merely desirable, but that it is a moral imperative for AI designers to obtain them, 
in order to create AI systems that more likely benefit society. In addition to the mathemati-
cal, technical, and biological arguments for why scalar reward is not enough, we thus also 
point out that there are ethical and societal reasons why scalar rewards are not enough.

We acknowledge the difficulties which may arise in implementing human oversight of 
AGI if the latter achieves superhuman levels of intelligence [6, 11, 33]. Superintelligent 
AGI may be motivated to, and highly capable of, deceiving human overseers, or its behav-
iours and reasoning may simply be too complex for human understanding. Nevertheless 
we would argue that it is certainly preferable to attempt such oversight than not, and that 
a multi-objective AGI will provide greater transparency than a single-objective AGI. Nev-
ertheless, we acknowledge that such an approach will not necessarily guarantee a manage-
able superhuman AGI, and therefore a careful ethical consideration of such research efforts 
is warranted.

7  Conclusion

Silver et al. argue that maximisation of a scalar reward signal is a sufficient basis to explain 
all observed properties of natural intelligence, and to support the construction of artifi-
cial general intelligence. However, this approach requires representing all of the different 
objectives of an intelligence as a single scalar value. As outlined in Sect.  3, this places 
restrictions on the behaviour which can emerge from maximisation of this reward. There-
fore, we contend that the reward-is-enough hypothesis does not provide a sufficient basis 
for understanding all aspects of naturally occurring intelligence, nor for the creation of 
computational agents with broad capabilities.

In the context of the creation of AGI, a focus on maximising scalar rewards creates an 
unacceptable exposure to risks of unsafe or unethical behaviour by the AGI agents. This 
is particularly concerning given that Silver et  al. are highly influential researchers and 
employed at DeepMind, one of the organisations best equipped to expand the frontiers of 

MOMDP solution
set

planning or learning phase

overseer
selection

selection phase

single
solution

execution and review phase

overseer
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update

algorithm

Fig. 2  Our proposal for a responsible review-and-adjust scheme for future AI. During the learning/planning 
phase the agent identifies multiple policies which would be optimal under different utility functions. One of 
these policies is then selected and executed, and a subsequent review of the outcomes may lead to an adjust-
ment in overseer selection (without a need to remodel or retrain), or other changes such as the introduction 
of new objectives
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AGI. While Silver et al. “hope that other researchers will join us on our quest", we instead 
hope that the creation of AGI based on reward maximisation is tempered by other research-
ers with an understanding of the issues of AI safety [48, 50] and an appreciation of the 
benefits of multi-objective agents [1, 2].
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