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Abstract
In a decision-making problem, there is often some uncertainty regarding the user prefer-
ences. We assume a parameterised utility model, where in each scenario we have a utility
function over alternatives, and where each scenario represents a possible user preference
model consistent with the input preference information. With a set A of alternatives avail-
able to the decision-maker, we can consider the associated utility function, expressing, for
each scenario, the maximum utility among the alternatives. We consider two main problems:
firstly, finding a minimal subset of A that is equivalent to it, i.e., that has the same utility
function. We show that for important classes of preference models, the set of possibly
strictly optimal alternatives is the unique minimal equivalent subset. Secondly, we consider
how to compare A to another set of alternatives B, where A and B correspond to different
initial decision choices. This is closely related to the problem of computing setwise max
regret. We derive mathematical results that allow different computational techniques for
these problems, using linear programming, and especially, with a novel approach using the
extreme points of the epigraph of the utility function.

Keywords Possibly strictly optimal alternatives · Multi-criteria decision making · Multi-
criteria utility theory · Multi-objective decision support systems · Preference elicitation

Mathematics Subject Classification MSC Code1 · MSC Code2 · More

1 Introduction

In a decision-making problem, there can often be uncertainty regarding the user preferences.
Suppose that, in a particular situation, A is the set of alternatives that are available to the
decision-maker. This is interpreted in a disjunctive fashion, in that the user is free to choose
any element a of A. However, as is common, we do not know precisely the user’s prefer-
ences. The preference information available to the system is represented in terms of a set of
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user preference models, parameterised by a set (of scenarios) W where, associated with
each scenario w 2 W, is a (real-valued) utility function fw over alternatives.

Each element w of W is viewed as representing a possible model of the user’s prefer-
ences that is consistent with the preference information we know. If we knew that w were
the true scenario, so that fw represents the user’s preferences over alternatives, then we
would be able to choose a best element of A with respect to fw, leading to a utility value
UtAðwÞ ¼ maxa2A fwðaÞ. However, the situation will frequently be ambiguous given a non-
singleton set W of possible user models or scenarios.

The set W incorporates what we know about the user preferences; for example, if we
have learned that the user regards alternative b as at least as good as alternative c, then W
will only include scenarios w such that fwðbÞ� fwðcÞ.

This framework is fairly general; for instance, the utility function fw may be based on a
decomposition of utility, using, for example, an additive representation for a combinatorial
problem (e.g., [37, 42, 58, 62]). Also, fwðaÞ could represent the expected utility of alter-
native a given that w is the correct user model, based on a probabilistic model with
parameter w, for example in a multi-objective influence diagram [22, 41, 43], with a
corresponding to a policy.

We consider, in particular, the following related pair of questions:

(1) Are there elements of A that can be eliminated unproblematically? In particular, is
there a strict subset A0 of A that is equivalent to A?

(2) Given a choice between one situation, in which the available alternatives are A, and
another situation, in which alternatives B are available, is A at least as good as B in
every scenario?

Regarding (1), we need to be able to eliminate unimportant choices, which can help to make
the list of options manageable, in particular, if we want to display the alternatives to the user.
We interpret this as finding a minimal subset A0 of A such that UtAðwÞ ¼ UtA0 ðwÞ for every
scenario w 2 W. In this situation, we say that A and A0 are utility-equivalent.

Question (2) concerns a case in which the user may have a choice between (I) being able
to obtain any of the set of alternatives A, and (II) any alternative in B (and thus, the user
could obtain any alternative in A [ B). Sets A and B may correspond to different choices
X ¼ a and X ¼ b of a fundamental variable X, and determining that A dominates B may
lead us to exclude X ¼ b, thus simplifying the problem. For instance, A might correspond to
hotels in Paris, and B to hotels in Lisbon, for a potential weekend away. It can be useful to
determine if one of these clearly dominates the other; if, for instance, A dominates B, then
there may be no need for the system and the user to further consider B, and may therefore
focus on Paris rather than Lisbon. We interpret this task as determining if in every scenario
the utility of A is at least that for B, i.e., UtAðwÞ�UtBðwÞ for all w 2 W. We can this
relation utility-dominance.

The focus of this paper is to determine important properties of the utility-dominance and
utility-equivalence relations, and to derive computational procedures, in order to find a
minimal equivalent subset, and for testing dominance between A and B; we also determine
properties and a computational technique for a form of maximum regret, that can be viewed
as a degree of dominance, and which corresponds to setwise max regret defined in [62, 65],
and relates to the value of a query. The main computational procedures are based on linear
programming (LP), or, alternatively, a novel method using the extreme points of the epi-
graph of the utility function (which we abbreviate to EEU). These procedures have been
compared and evaluated in [59].
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From the computational perspective we focus especially on the case in which each
alternative a is associated with a multi-attribute utility vector â, based on a weighted average
user preference model. Each utility vector is then an element of IRp, representing a number p
of scales of utility (or objectives); each scenario w is a (typically normalised non-negative)
vector in IRp, with a<wb if and only if the weighted sum of â with respect to w is at least

that of b̂. An input preference of a over b then leads to a linear constraint on the weights
vector w, and we can define the set of consistent preference models W as the convex
polytope generated by a set of input preferences of this form.

Given a finite set of alternatives A, we define the notion of setwise-minimal equivalent
subset, and we show relationships with the set PSOWðAÞ of possibly strictly optimal ele-
ments, where W is the set of parameters relating to a family of user preference models. It
suffices to consider sets A of alternatives that are equivalence-free, i.e., such that no two
alternatives in A have identical utility in all scenarios. For equivalence-free A, the set
PSOWðAÞ consists of those alternatives a 2 A that are such that there exists some scenario
in W for which a is the only optimal alternative in A.

The main contributions of the paper are as follows:

– we give sufficient conditions for the set PSOWðAÞ of possibly strictly optimal
alternatives to be utility-equivalent with A. These apply for many natural situations
including when the user preferences models are linear, and the set W of parameters
defining the set of user preference models is convex.

– We show that then PSOWðAÞ is the unique minimal equivalent subset of A, for
equivalence-free A (i.e., when no two alternatives in A have identical utility in all
scenarios in W). Furthermore, the PSOW operator can be used to filter query sets to
avoid the potential of a partially inconsistent answer.

– We derive sophisticated computational methods for computing utility dominance,
setwise max regret and for computing the unique minimal equivalent subset. These
include both linear programming methods, and extreme point methods using the
epigraph of the utility functions. To increase the efficiency, a number of pre-processing
methods are developed, using the properties we derive for dominance relations between
sets. Our algorithms are experimentally tested based on randomly generated instances.

This paper extends an earlier work [60], including further theoretical results with proofs of
theorems, propositions and lemmas, and new experimental results related to a new imple-
mentation of our algorithms fixing some runtime exceptions related to precision issues (see
Sect. 13). Part of this work is also included in the first author’s PhD thesis [56].

Section 2 discusses related work. Section 3 gives the formal setup, defining dominance
relations between sets of alternatives, and giving basic properties. Section 4 discusses
different ways of defining optimal alternatives in a set, including the possibly strictly
optimal set. Section 5 defines the setwise minimal equivalent set, for a set of alternatives,
and explores the relationship between such sets and the possibly strictly optimal set. Sec-
tion 6 considers continuous spaces of scenarios, and gives a sufficient condition for
equivalence of the possibly strictly optimal set with the input set of alternatives. Section 7
considers the problem of reducing the size of a set A, whilst maintaining equivalence.
Section 8 defines a form of maximum regret in this context, shows how it relates to
dominance, and gives properties that will be useful for computation. Section 9 discusses the
importance of the possibly optimal and possibly strictly optimal alternatives in incremental
preference elicitation. Section 10 describes the EEU method. Section 11 brings together the
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computational techniques for the weighted multi-attribute utility case. Sections 12 and 13
describe the implementation and experimental testing, and Sect. 14 concludes the paper.

2 Related work

Multiattribute utility theory (MAUT) [37] involves numerical representations of user
preferences with respect to alternatives evaluated over multiattribute spaces. Imprecisely
specified multiattribute utility theory (ISMAUT) [68] is one of the earliest attempt to deal
with parameterised utility information representing user preferences with linear inequalities
and reducing the set of alternatives to those that are not dominated by any other alternative.
Related research such as [33] and [67], deals with similar issues.

A major division in recent work on parameterised user preference models is whether a
Bayesian model is assumed over the scenarios (corresponding to the different user prefer-
ence models), or if there is a purely qualitative (logical) representation of the uncertainty
over scenarios, where all we represent is that the scenario is in a set W. Bayesian
approaches include [12, 13, 20, 64]. Work involving a qualitative uncertainty representation
includes [7, 14, 18, 42, 62]. Linear imprecise preference models, including those based on a
simple form of MAUT model, have been considered in work such as [18, 36, 41, 49]
including in a conversational recommender system context [19, 62, 63].

Parameterised preference models are commonly used with interactive preference elici-
tation approaches (see, e.g., [9, 30, 38, 54, 57]). In this context, the purpose is to explore the
alternatives based on different interactions with the decision-maker and without listing all
the available alternatives. The parameterisation represents different decision-maker’s pref-
erence scenarios, and the likelihood or the restrictions on the parameters represent the
information obtained by the interaction with the decision-maker. Methods that iteratively
interact with the decision-maker to reduce the uncertainty about a parameterised preference
models are also called Incremental [3, 10, 40]. In general, the purpose of such methods is to
recommend alternatives to the decision-maker without defining a precise utility function
using methods such as the minimax regret criterion (see Sect. 8). A typical interactive
approach consists of the following steps:

1. Computation: generate some undominated solutions.
2. Interaction: show to the decision-maker some of the generated solutions asking to input

new preference information.
3. Termination: interruption of the elicitation process by the decision-maker or if some

specified stopping criterion has been satisfied.

Different approaches have been explored to generate new queries for the decision-maker
(see, e.g., [52]). A classical interactive approach is based on a comparison of alternatives
(see, e.g., [53, 75]), i.e., the preference elicitation system asks the decision-maker to specify
their preference between a set of alternatives, and the response is used to reduce the
uncertainty of the preference model. Ideally, the uncertainty of the preference model should
be reduced to a scenario in which we have a unique optimal alternative according to the
preference information collected. However, often this is unfeasible or requires too many
interactions with the decision-maker. Because of this, the parameterisation of utility func-
tions leads to different notions of optimality that can be used to classify alternatives (see, e.
g., [71]).

In Sect. 4 we consider a number of operators representing different notions of optimality.
The set UDWðAÞ is a subset of A not including strictly dominated alternatives, a natural
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generalisation of the Pareto-optimal elements, appears in many contexts, e.g., [36, 42].
Possibly optimal POWðAÞ (also known as potentially optimal) elements have been con-
sidered in many publications, such as [6, 10, 28, 29, 33, 72]. See Sect. 11 for details and
references about the computation of UDWðAÞ and POWðAÞ for linear and convex utility
functions. The possibly strictly optimal set PSOWðAÞ and the maximally possibly optimal
set MPOWðAÞ have been considered much less [46, 70, 71]. Regret-based decision making
has a long history, with recent work in AI including [7, 14, 18]. We describe in Sect. 8 the
relationship between the dominance relation <W

889 and setwise max regret [62, 65]. See
Sect. 11 for details and references about the computation of the setwise max regret and the
setwise minimax regret for linear and convex utility functions.

3 Basic terminology and dominance relations between sets

In this section we give some basic definitions, in particular regarding utility-dominance and
related dominance relations, and utility-equivalence. Section 3.1 describes the basic set up,
involving a parameterised family of utility functions over a set X of alternatives. There are
natural dominance and equivalence relations induced between alternatives, as described in
Sect. 3.2. The utility of a finite subset of alternatives is defined to be the maximum utility
over the alternatives in the set. This leads to a natural (utility-)dominance relation between
finite sets of alternatives, and the corresponding utility-equivalence relation, as described in
Sect. 3.3, where A utility-dominates B if and only if in every compatible scenario, the utility
of A is at least as great as the utility of B. We also define two computationally simpler
dominance relations between sets, which are useful as sufficient conditions for utility-
dominance.

3.1 Uncertain preference structures

We consider a (possibly infinite) set X of alternatives, and another set U, the elements of
which we call scenarios, that corresponds with a set of user preference models. With each
scenario w 2 U is associated a utility function fw on X, i.e., a function from X to IR; this
gives rise to a total pre-order <w on X given by a<wb () fwðaÞ� fwðbÞ, for a; b 2 X.

For each w 2 U, we also define associated relations �w and �w in the standard way:
a�wb if and only if a<wb and :ðb<waÞ, which is if and only if fwðaÞ[ fwðbÞ. We define
a �w b if and only if a<wb and b<wa, which is if and only if fwðaÞ ¼ fwðbÞ.

Notation M: We use the symbol M to represent the set of finite non-empty subsets of
the set of alternatives X.

Each A 2 M gives rise to a function giving values of utility for each element of U. This
expresses how good the set A is, with respect to different user models.

Definition 1 (Utilities associated with A.) We define, for w 2 U, UtAðwÞ to be
maxa2A fwðaÞ.

We do not a priori assume anything about the functions fw; however certain mathematical
results make additional assumptions, such as continuity with respect to w. Of particular
interest in this paper is the case when fwðaÞ is a linear function of w, where U ¼ IRp for
some p, and so fwðaÞ can be written as

Pp
i¼1 aiwðiÞ ¼ ða1; . . .; apÞ � w, for some reals ai,

with ai representing how good alternative a is with respect to objective/criterion i. We then
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write the vector ða1; . . .; apÞ as â. Thus, in the linear case, for each a 2 X there exists an
associated vector â 2 IRp, and fwðaÞ ¼ â � w for all w 2 U.

If a 2 IRp then we could set â ¼ a, giving a simple weighted sum utility function.
However, this linear function case also covers more complex preference models, including
GAI representations [16, 31], Ordered Weighted Averages [73], and preference models
based on Choquet integrals [7, 32], since the utility functions in these cases are linear in the
parameter w (although not linear with respect to a in the latter two cases). For the GAI and
Choquet representations, there are a larger number of parameters, so the dimension p of the
utility and parameter spaces is larger.

3.2 Dominance and equivalence between alternatives

Very often we will have information that restricts the set of scenarios (i.e., user models). In
particular, the user may previously have answered some queries, and we then only consider
the set W of user models compatible with their answers.

For W � U we define relation <W on X by a<Wb () for all w 2 W, a<wb. Thus,
a<Wb holds if and only if a is at least as good as b in every scenario inW. We define �W to
be the strict part of <W , i.e., for a; b 2 X, a�Wb if and only if a<Wb and b 6 <Wa. Thus,
a�Wb if and only if a is at least as good as b in every scenario inW, and strictly better in at
least one scenario in W. Relation �W is transitive and acyclic. We define equivalence
relation �W to be the symmetric part of <W , given by a �W b if and only if a<Wb and
b<Wa.

We define the notion of being equivalence-free. Alternatives a and b are equivalent, i.e.,
a �W b, if and only if a �w b for all w 2 W. It can be unnecessary to include two
equivalent alternatives a and b in a set of alternatives A, since a should be acceptable if and
only if b is acceptable. In an equivalence-free set of alternatives no two alternatives are
equivalent:

Definition 2 (Equivalence-free) We say that A (2 M) is �W-free (or equivalence-free) if
for all a; b 2 A, we have a 6�W b.

One can reduce any A to an equivalence-free set A0 by including exactly one element in A0 of
each �W-equivalence class in A.

3.3 Dominance relations between sets

Given a set of scenarios W, we will define three relations, <W
889, <W

898 and <W
988, between

sets of alternatives A and B in M, that specify when A is better than B. These relations are
based on a setW of scenarios, and the corresponding set of relations, <w, for w 2 W. In this
paper we focus especially on the relation <W

889, with the other two relations being useful

computationally. A<W
889B holds if and only if in every scenario w 2 W, there’s an element

of A that is at least as good as any element of B. The relation thus relates to Question (2) in
the introduction. This section gives some basic properties of these three dominance relations
between sets, that are useful for our algorithmic methods.

Definition 3 (Dominance relations <W
889, <W

898 and <W
988) For subset W of U , we define

binary relations <W
889, and <W

898 and <W
988 on M as follows. Consider any A;B 2 M.
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– A<W
889B holds if and only if for all b 2 B and for all w 2 W there exists a 2 A such that

a<wb.
– A<W

898B holds if and only if for all b 2 B there exists a 2 A such that for all w 2 W,
a<wb.

– A<W
988B holds if and only if there exists a 2 A such that for all b 2 B and for all w 2 W,

a<wb.

In the notation in the subscript for the three relations (such as 898 in relation <W
898), the first

8 symbol relates to the quantification for all b 2 B, the second 8 symbol relates to for all
w 2 W, and the 9 symbol relates to there exists a 2 A.

Relation <W
889 and its corresponding equivalence relation are the main foci of attention in

this paper. However, for computational reasons we consider relations <W
898 and <W

988, which

allow computationally efficient sufficient conditions for A<W
889B.

Since each relation <w is a total pre-order, and A is finite (as is B), we have A<W
889B if

and only if for all w 2 W there exists a 2 A such that for all b 2 B, a<wb.
Relations <W

898 and <W
988 can be written in terms of <W :

– A<W
898B holds if and only if for all b 2 B there exists a 2 A such that a<Wb, i.e., every

element of B is <W-dominated by some element of A.
– A<W

988B holds if and only if there exists a 2 A such that for all b 2 B, a<Wb, i.e., there’s
some element a of A that is better than every element of B in every scenario.

The three relations are all transitive, and are nested: <W
988 � <W

898 � <W
889. Thus, for

example, A<W
898B implies A<W

889B. We also have chaining properties for the three relations.
These are valuable, for instance, if we are comparing a number of sets Ai, i ¼ 1; . . .;K, since
if we determine that Ai<W

889Aj and Aj<W
889Ak , then we do not need to check that Ai<W

889Ak ,
since it is implied.

Proposition 1 For any W � U we have <W
988 � <W

898 � <W
889. Also, <W and each of the

relations, <W
889,

<W
898 and <W

988, is transitive. Furthermore, we have the following chaining properties:

(i) If A<W
898B and B<W

988C then A<W
988C.

(ii) If <W
� is any of the relations <W

889, <W
898 or <W

988 then A<W
988B and B<W

� C implies

A<W
988C.

Corresponding equivalence relations: As well as being transitive, relations <W
889 and <W

898
are reflexive (relation < onM is reflexive if for all A � X, A<A). Because the relation <W

889
is reflexive and transitive, its symmetric part, defined by A �W

889 B if and only if A<W
889B and

B<W
889A, is an equivalence relation. Similarly, we define the relation �W

898 to be the sym-

metric part of <W
898 with A �W

898 B if and only if A<W
898B and B<W

898A. Therefore we have

A �W
898 B if and only if (i) for all b 2 B there exists a 2 A such that a<Wb; and (ii) for all

a 2 A there exists b 2 B such that a<Wb. Proposition 1 implies that �W
898 � �W

889.

Clearly, <W
889 and <W

898 determine the corresponding equivalence relations; conversely,

<W
889 and <W

898 can be expressed in terms of their corresponding equivalence relations:
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Proposition 2 For all A;B 2 M, A<W
889B () A �W

889 A [ B; and A<W
898B ()

A �W
898 A [ B.

The following result shows how the relation <W
889 and its corresponding equivalence

relation �W
889 can be expressed in terms of the utility functions. For this reason, we refer to

the relation �W
889 as utility-equivalence, and the relation <W

889 as utility-dominance. Part (iii)

gives another representation of the relation <W
988 that allows efficient computation.

Proposition 3 Consider any W � U and A;B 2 M.

(i) A<W
889B () for all w 2 W, UtAðwÞ�UtBðwÞ.

(ii) A �W
889 B () for all w 2 W, UtAðwÞ ¼ UtBðwÞ.

(iii) A<W
988B if and only if there exists a 2 A such that for all w 2 W, fwðaÞ�UtBðwÞ.

One can also consider a (strong form of) strict dominance A �W
889 B defined as for all

w 2 W, UtAðwÞ[UtBðwÞ; this corresponds with the dominance relation defined in Defi-
nition 2 of [10].

Example 1 Let A ¼ fð11; 1Þ; ð10; 4Þ; ð7; 5Þ; ð6; 6Þ; ð4; 7Þg and B ¼ fð11; 2Þ; ð8; 5Þg be sets
of utility vectors of hotels in Paris and Lisbon respectively. For example, the first value of
each utility vector could be a score for the location and the second value could be a score for
cleanliness, where the higher the score, the better. We assume linear utility functions of the
form fwðaÞ ¼ w � a. Let U ¼ fðw1;w2Þ : w1;w2 � 0 & w1 þ w2 ¼ 1g, representing differ-
ent normalised weightings of the two criteria. We assume that the user has an associated
weights vector that is unknown and we want to recommend to the user a trip to Paris or
Lisbon based on her preferences on the available hotels. Suppose then that we ask the user
for her preference between the hotel with utility vector (10, 4) and the hotel with utility
vector (11, 2). An input preference of (10, 4) over (11, 2) implies w � ð10; 4Þ�w � ð11; 2Þ
and so 2w2 �w1 and thus, w1 	 2

3, leading to the set of scenarios

W ¼ fðw1;w2Þ : w1 þ w2 ¼ 1 & 0	w1 	 2
3g. This example is illustrated in Fig. 1, and it

is easy to see that A<W
889B since for 0	w1 	 1

3 there is no line above the line associated to

ð4; 7Þ 2 A, and for 1
3 	w1 	 2

3 there is no line above the line associated to ð10; 4Þ 2 A, i.e.,
6 9b 2 B s.t. fwðbÞ[UtAðwÞ for any w 2 W. Therefore in this case we can recommend to
the user the trip to Paris.

Note that, A 6 <W
898B since the line associated to ð8; 5Þ 2 B is above the line associated to

any a 2 A in at least one point w 2 W.
All three relations satisfy obvious monotonicity properties with respect to A, B and W:

see Proposition 4 below. In addition, for < being either <W
889 or <W

898, to determine if A<B it
is sufficient to check that A<fbg holds for each b 2 B. We call this property Right
Decomposition:

Definition 4 (Right Decomposition) We say that relation < on M satisfies the Right
Decomposition property if A<B if and only if A<fbg holds for each b 2 B.

Relations <W
889 and <W

898 satisfy the Right Decomposition property; it turns out that this can

be useful computationally, as it means that, for < being either <W
889 or <W

898, to determine if
A<B it is sufficient to check that A<fbg holds for each b 2 B.

123

   44 Page 8 of 66 Auton Agent Multi-Agent Syst           (2022) 36:44 



Proposition 4 For anyW � U. Let <W be any of <W
889, <W

898 and <W
988, and let A

0;B 2 M
and let A � A0 and let B0 � B, and let W0 � W. If A<WB then A0<W0

B0. Relations <W
889

and<W
898 satisfy Right Decomposition and are reflexive. If A 
 B then A<W

889B and A<W
898B.

4 Some choice functions associated with the set W of scenarios

Given a finite set A of alternatives, and a set of scenarios (i.e., user models) W, some
alternatives may very well be of less interest than others. It is therefore often desirable to
define a reduced, i.e., filtered, set OPWðAÞ of alternatives, by eliminating elements that are
considered to be non-optimal. OPW will be a choice function, i.e., it maps a finite set A of
alternatives to a subset of A. There are a variety of the different natural ways of defining
such a choice function OPW . We consider UDWðAÞ, which removes strictly dominated
alternatives from A, and POWðAÞ, which removes alternatives that are not possibly optimal,
i.e., not optimal with respect to any scenario in W, and two refined variations, MPOWðAÞ
and PSOWðAÞ. MPOWðAÞ consists of alternatives in A that are optimal in a maximal set of
scenarios.

Our focus is especially on PSOWðAÞ, the set of possibly strictly optimal alternatives; for
equivalence-free A, this is the set of alternatives that are uniquely optimal in some scenario,
i.e., they are (strictly) better than any other element of A. Our interest in PSOWðAÞ is
particularly because of the close relationship with minimal equivalent subsets (shown in
later sections such as Sects. 5 and 6). The operators POW , UDW and MPOW can all be
useful in the efficient computation of PSOWðAÞ. This section gives basic properties of these
operators, and their relationships with utility-dominance and utility-equivalence. POW ,
UDW and MPOW all always maintain utility-equivalence, i.e., for any A 2 M, POWðAÞ,
UDWðAÞ and MPOWðAÞ are all utility-equivalent with A. Although PSOW does not
maintain utility-equivalence in general, we will later show that for many natural forms of
uncertain preference structure, PSOW does maintain utility-equivalence.

Fig. 1 fwðaÞ and fwðbÞ for each a 2 A and b 2 B, where A ¼ A0 [ A00 ¼ fð11; 1Þ; ð10; 4Þ;
ð7; 5Þ; ð6; 6Þ; ð4; 7Þg, B ¼ fð11; 2Þ; ð8; 5Þg and w 2 W ¼ fðw1;w2Þ : w1 þ w2 ¼ 1 & 0	w1 	 2

3g
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The operators UDW , POW , MPOW and PSOW defined below, respect the equivalence
�W in that if OPW is any of these operators and a; b 2 A are such that a �W b then
OPWðAÞ 3 a () OPWðAÞ 3 b.

We first define the set UDWðAÞ of undominated alternatives in A.

Definition 5 (The Undominated set UDWðAÞ.) For A 2 M we define UDWðAÞ to be the
set of a 2 A such that there does not exist c 2 A such that c�Wa.

Thus, the element a of A is not in UDWðAÞ if and only if there exists some c 2 A such
that c is at least as good as a in every scenario, and strictly better in at least one scenario.
The set UDWðAÞ is a natural generalisation of the Pareto-optimal elements, and is some-
times referred to as the set of undominated elements in A.

Proposition 5 gives some basic properties of the relationships between function UDW
and the three dominance relations; in particular, part (ii) shows that it preserves equivalences
between sets of alternatives, and implies that UDWðAÞ is non-empty for non-empty A.

Proposition 5 Assume that W � U and A 2 M. Then, UDWðAÞ is non-empty and the
following hold.

(i) For B 2 M and, for < being any of <W
889, <W

898 or <W
988, we have A<B ()

UDWðAÞ<UDWðBÞ.
(ii) UDWðAÞ �W

898 A and UDWðAÞ �W
889 A. Hence, if A is non-empty then UDWðAÞ is

also.

We next define the Possibly Optimal Set POWðAÞ.

Definition 6 (OwðAÞ and Possibly Optimal Set POWðAÞ.) For each w 2 U and A 2 M we
define OwðAÞ to be all elements a of A that are optimal in A in scenario w, i.e., such that for
all b 2 A, a<wb. For W � U we define POWðAÞ to be

S
w2W OwðAÞ, the set of alternatives

that are optimal in some scenario, i.e., optimal for some consistent user preference model.

Next we define the possibly strictly optimal Set PSOWðAÞ:

Definition 7 (SOW
w ðAÞ and Possibly Strictly Optimal Set PSOWðAÞ.) We define SOW

w ðAÞ
to be all elements a of A such that a�wb, for all b 2 A with b 6�W a. These elements a are
said to be strictly optimal in scenario w. We then define PSOWðAÞ, the set of possibly
strictly optimal elements, to be

S
w2W SOW

w ðAÞ, i.e., all the elements that are strictly optimal
in some scenario in W.

For equivalence-free A 2 M, the set PSOWðAÞ consists of all alternatives a 2 A that are
uniquely optimal in some scenario w 2 W (i.e., OwðAÞ ¼ fag). It can be easily seen that
PSOWðAÞ � POWðAÞ \ UDWðAÞ.

It is convenient to have a notation for the set of scenarios in which a is optimal in A:

Definition 8 (OptAWðaÞ) We define, for a 2 A, OptAWðaÞ to consist of all scenarios w 2 W in
which a is optimal in A, i.e., a 2 OwðAÞ.
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Thus, a is possibly optimal (a 2 POWðAÞ) if and only if the set OptAWðaÞ is non-empty; this
is because both hold if and only if there exists a scenario w in which a is optimal
(a 2 OwðAÞ).

For B � A, the next result shows that utility-equivalence of B and A can be expressed in
terms of the sets OptAWðbÞ: we have B �W

889 A if and only if
S

b2B Opt
A
WðbÞ ¼ W; this

follows because each is equivalent to the condition that in every scenario there exists some
element of B that is optimal, i.e., for all w 2 W there exists b 2 B with b 2 OwðAÞ.

Lemma 1 Let W � U and let A 2 M. For B � A, B �W
889 A if and only ifS

b2B Opt
A
WðbÞ ¼ W. In particular,

S
a2A Opt

A
WðaÞ ¼ W.

We now define the maximally possibly optimal elements to be those that are optimal in a
maximal set of scenarios.

Definition 9 (Maximally Possibly Optimal Set MPOWðAÞ.) For A 2 M, we define
MPOWðAÞ to consist of all a 2 A such that there exists no b 2 A such that
OptAWðbÞ%OptAWðaÞ.

In other words, if alternative a in A is not maximally possibly optimal in A then there exists
an alternative b in A that is optimal in every scenario that a is optimal (and at least one more
scenario).

Example 1 continued: We have the set of undominated elements
UDWðAÞ ¼ fð10; 4Þ; ð7; 5Þ; ð6; 6Þ; ð4; 7Þg. Abbreviating w to just its first component w1 we
have W ¼ ½0; 23�, and OptAWð10; 4Þ ¼ ½13 ; 23�; OptAWð6; 6Þ ¼ f13g, OptAWð4; 7Þ ¼ ½0; 13� and

OptAWð11; 1Þ ¼ OptAWð7; 5Þ ¼ ;. Thus, POWðAÞ ¼ fð10; 4Þ; ð6; 6Þ; ð4; 7Þg. We have

PSOWðAÞ ¼ MPOWðAÞ ¼ fð10; 4Þ; ð4; 7Þg and fð10; 4Þ; ð4; 7Þg �W
889 A. The PSOW

operator thus leads here to stronger filtering than the POW operator. In Fig. 1 we can see a
graphical interpretation of OptAWðð4; 7ÞÞ ¼ ½0; 13�, i.e., w1 2 ½0; 13� is an interval in which there
is no line strictly above the line associated to (4, 7). We have ð4; 7Þ 2 PSOWðAÞ because for
any w1 2 ½0; 13Þ the line associated to (4, 7) is (strictly) above all the other lines, and

ð6; 6Þ 2 POWðAÞ because at w ¼ 1
3 there is no line (strictly) above the line associated to

(6, 6). h

We now give some basic properties of the operator PSOW. Part (i) shows that for any
utility-equivalent subset B of an equivalence-free set A contains any possibly strictly optimal
elements. Part (ii) is used to show part (iii), which implies that the relation <W

889 could be
used for computing PSOWðAÞ.

Proposition 6 Consider any W � U and a set A 2 M.

(i) For B � A, if B �W
889 A then for all a 2 PSOWðAÞ there exists b 2 B with b �W a.

If, in addition, A is �W-free then B 
 PSOWðAÞ.
(ii) If a 2 A n PSOWðAÞ then

S
b2Anfag Opt

A
WðbÞ ¼ W and so A n fag �W

889 A.

(iii) For �W-free A, PSOWðAÞ is the set of all a 2 A such that A n fag 6 <W
889fag.
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Maintaining utility equivalence: let A 2 M and let OP be a function that maps subsets of A
to subsets of A. GivenW and its associated set of utility functions, we say that OP maintains
utility-equivalence [over A] if OPðBÞ �W

889 B for all subsets B of A.
The following result states relationships between the different operators, and shows that

we can replace A and B by (for instance) POWðAÞ and POWðBÞ, respectively, in testing
A<W

889B. It shows that UDW , MPOW and POW all maintain utility-equivalence for arbitrary
A, which implies that each maps a non-empty set to a non-empty set. Example 2 shows that
PSOW does not always maintain utility-equivalence. However, in Sects. 5.2 and 6 we give
sufficient conditions for it to maintain utility-equivalence.

Proposition 7 Assume that W � U and A 2 M. Then the following hold:

(i) PSOWðAÞ � MPOWðAÞ \ UDWðAÞ � MPOWðAÞ � POWðAÞ � A.
(ii) OPWðAÞ �W

889 A if OPWðAÞ is any of the following: UDWðAÞ, POWðAÞ,
MPOWðAÞ, POWðAÞ \ UDWðAÞ, or MPOWðAÞ \ UDWðAÞ. Thus, A<W

889B ()
OPWðAÞ<W

889OPWðBÞ.

An immediate consequence of part (ii) is that OPWðAÞ is non-empty if OPWðAÞ is any of
the following: MPOWðAÞ \ UDWðAÞ, MPOWðAÞ, POWðAÞ \ UDWðAÞ, or POWðAÞ.

Example 2 Let W ¼ fw1;w2;w3g, let A ¼ fa; b; cg and suppose that a �w1 b�w1c; and
b �w2 c�w2a; and c �w3 a�w3b. A is equivalence-free, and no alternative dominates any
other alternative; e.g., a 6 �Wb because b�w2a. Thus, UDWðAÞ ¼ A. We have fa; bg �W

889
A since in every scenario either a or b is optimal in A. Similarly, fa; cg and fb; cg are utility-
equivalent to A. However, it is not the case that fa; bg �W

898 A because neither a or b

dominate c. We have OptAWðaÞ ¼ fw1;w3g because a is optimal in scenarios w1 and w3, and

we have OptAWðbÞ ¼ fw1;w2g, and OptAWðcÞ ¼ fw2;w3g. Since these three sets are non-
empty, each alternative is possibly optimal, and because none contains any other, each
alternative is maximally possibly optimal. Hence, POWðAÞ ¼ MPOWðAÞ ¼ A. However,
there are no possibly strictly optimal alternatives, i.e. PSOWðAÞ ¼ ;. The reason is that we
have Ow1 ¼ fa; bg, and Ow2 ¼ fb; cg, and Ow3 ¼ fb; cg, so there are no uniquely optimal
alternatives. Hence, PSOWðAÞ is not utility-equivalent to A, i.e., PSOWðAÞ 6�W

889 A.

5 Setwise-minimal equivalent subsets and the possibly strictly optimal
elements

In this section we consider the issue of replacing A with an (utility-)equivalent subset of A
that is minimal. This relates with Question (1) in the introduction. We show that, for
equivalence-free set A of alternatives, the set of possibly strictly optimal elements PSOWðAÞ
is the intersection of all the minimal equivalent subsets. Also, we give a sufficient condition
for PSOWðAÞ to be utility-equivalent with A (W being A-extendable), and in this case,
PSOWðAÞ is the unique minimal utility-equivalent subset of A.

Setwise-minimal equivalent subsets: We may want to reduce A to a utility-equivalent
subset that cannot be reduced any further, i.e., there is no proper subset of it that is also
utility equivalent to A. Theorem 1 determines when there is a unique such subset.
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Definition 10 (SMEWðAÞ.) We define SMEWðAÞ to be the set of subsets B of A that are
setwise-minimal equivalent to A, i.e., such that B �W

889 A and there does not exist any strict

subset C of B such that C �W
889 A.

In Sect. 7.1 we give a simple method for finding setwise-minimal equivalent subsets.

5.1 Relating SMEWðAÞ and PSOWðAÞ in the general case

Theorem 1 below gives some relationships between PSOWðAÞ, SMEWðAÞ and the domi-
nance relation <W

889, for equivalence-free A. Any setwise-minimal equivalent subset of A
contains PSOWðAÞ, the set of possibly strictly optimal elements. The latter set is equal to the
intersection of all the setwise-minimal equivalent subsets, and is equivalent to A if and only
if there is a unique minimal equivalent subset, which is thus equal to PSOWðAÞ.

The condition that PSOWðAÞ is equivalent to A holds in the linear multi-objective case
considered in Sect. 11 below (see Theorem 3), and so then PSOWðAÞ is the unique minimal
equivalent subset of A.

Theorem 1 Let W � U be a set of scenarios and assume that A (2 M) is �W -free. Then
the following hold:

(i)
T

B2SMEWðAÞ B ¼ PSOWðAÞ;
(ii) PSOWðAÞ �W

889 A if and only if SMEWðAÞ is a singleton, which is if and only if
PSOWðAÞ is the unique setwise-minimal equivalent subset for A.

Proof (i): First consider any B 2 SMEWðAÞ, and thus, B �W
889 A. Proposition 6 implies that

B 
 PSOWðAÞ. Hence,
T

B2SMEWðAÞ B 
 PSOWðAÞ.
Conversely, consider any a 2 A n PSOWðAÞ. Proposition 6 implies A n fag �W

889 A.
Since A is finite, there exists a subset C of A n fag that is setwise-minimal equivalent to A,
and so C 2 SMEWðAÞ and C 63 a, which implies that

T
B2SMEWðAÞ B 63 a. This proves thatT

B2SMEWðAÞ B � PSOWðAÞ, and thus,
T

B2SMEWðAÞ B ¼ PSOWðAÞ.
(ii): Now let us assume that SMEWðAÞ is a singleton, say fBg. By definition, B �W

889 A,

and, by the first part, B ¼ PSOWðAÞ, showing that PSOWðAÞ �W
889 A.

Conversely, assume that PSOWðAÞ �W
889 A, which implies that there exists some subset

C of PSOWðAÞ such that C 2 SMEWðAÞ. Using the first part we have
PSOWðAÞ ¼

T
B2SMEWðAÞ B � C � PSOWðAÞ. Thus, C ¼ PSOWðAÞ ¼

T
B2SMEWðAÞ B and

so PSOWðAÞ 2 SMEWðAÞ, and any element of SMEWðAÞ contains PSOWðAÞ. By defini-
tion of SMEWðAÞ this implies that SMEWðAÞ ¼ fPSOWðAÞg. h

In Example 1 of Sect. 3.3, A is equivalence-free, and there is a unique minimal equivalent
subset, i.e., fð10; 4Þ; ð4; 7Þg, which is equal to PSOWðAÞ. In Example 2 of Sect. 4, A ¼
fa; b; cg is equivalence-free. The minimal equivalent subsets are fa; bg, fb; cg and fb; cg.
Their intersection is empty, as is PSOWðAÞ.

Proposition 8 relates PSOW to some properties of choice functions. A choice function
Opt : 2C ! 2C satisfies the Heritage property if OptðAÞ \ B � OptðBÞ holds for any sub-
sets B and A such that B � A � C. It satisfies the Outcast property if OptðAÞ ¼ OptðBÞ
whenever OptðAÞ � B � A � C. A choice function Opt over X is said to be path inde-
pendent [21, 47] if it satisfies OptðA [ BÞ ¼ OptðOptðAÞ [ BÞ for any A;B � C. This holds
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if and only if Opt satisfies the Heritage and Outcast properties. [1, 21]. The path inde-
pendence property allows the computation of the best elements to be performed in a
modular way [45, 47, 72]. The proposition shows that if PSOW maintains equivalence with
respect to �W

889 then it satisfies the important property of path independence. Part (i) relates
to the Heritage property for choice functions, and (ii) relates to the Outcast property.

Proposition 8 Consider an arbitrary set of scenarios W (� U) and suppose A;B 2 M
with B � A.

(i) PSOWðAÞ \ B � PSOWðBÞ; and
(ii) if PSOWðAÞ �W

889 A, and PSOWðAÞ � B then PSOWðBÞ ¼ PSOWðAÞ;
(iii) if PSOWðBÞ �W

889 B for all B � A then PSOW satisfies path independence on 2A, i.
e., for any subsets B and C of A, PSOWðB [ CÞ ¼ PSOWðPSOWðBÞ [ CÞ.

5.2 The case of A-extendable W

In this section we consider a condition, that W is A-Extendable, which is sufficient for the
function PSOW to maintain utility-equivalence (i.e., for the equivalence PSOWðBÞ �W

889 B
to hold for all subsets B of A); thus, by Theorem 1, given this condition, PSOWðAÞ is equal
to the unique setwise-minimal equivalent subset for equivalence-free A. Because of
Proposition 8(iii) above, the sufficient condition also implies that PSOW , viewed as a
function on 2A, satisfies path independence. In Sect. 6 we show that this sufficient condition
holds for a large class of utility functions, including the linear case. Our algorithms for
computing the minimal equivalent subset for A make use of the utility-equivalence property,
i.e., that PSOWðAÞ �W

889 A.
Loosely speaking, W is A-Extendable if for every element w of W there exists an

element w0 whose preference ordering is more precise than (or equal to) that for w, and such
that w0 totally orders non-equivalent elements of A. If this latter condition holds we say that

w0 is total over A given W, and W6¼
A is defined to be the set of all such w0.

Definition 11 [Total w over W, and W6¼
A .] Given w 2 W � U and A 2 M, we say that w is

total over A given W if for all a; b 2 A, either a�wb or b�wa or a �W b. Let W6¼
A be the set

of all w 2 W that are total over A given W.

Definition 12 ( A-Extendable.) Consider W � U and A 2 M. For w;w0 2 W, we say that
w0 extends w over A if for any a; b 2 A, if a�wb then a�w0b. (Thus, if a<w0b then a<wb.)

We say that W is A-Extendable if for all w 2 W there exists w0 2 W that is total over A

given W (i.e., w0 2 W6¼
A ) and that extends w over A.

Consider a set of scenarios W like in Example 1, and consider an arbitrary finite set A of
pairs of real numbers. Not every element of W is necessarily total over A. For instance, if A
contains the pairs (3, 2) and (0, 4) then w ¼ ð0:4; 0:6Þ ranks (3, 2) the same as it ranks (0, 4),
i.e., ð3; 2Þ �w ð0; 4Þ, even though ð3; 2Þ 6�W ð0; 4Þ. However, W is A-Extendable, i.e., any
scenario in W can be extended to one that is total over A. To illustrate this for w, consider
positive �[ 0; then w0 ¼ ð0:4þ �; 0:6� �Þ will have ð3; 2Þ�w0 ð0; 4Þ, and, if we choose � to
be sufficiently small we will have for all a; b 2 A, (i) if a�wb then a�w0b; and (ii) if a �w0 b
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then a ¼ b. (The fact that A is finite is crucial for this to hold.) By (i), w0 extends w over A,

and by (ii), w0 is total over W, i.e., w0 2 W6¼
A .

The results of Sect. 6 show that the A-Extendable property holds very often for con-
tinuous sets of scenarios W; roughly speaking, it holds if fwðaÞ is a completely smooth
function of w. Extendability also holds for classes of discrete W such as for the sets of
lexicographic preference models defined from the compositional preference languages in
[70].

We give three lemmas that enable the proof of Theorem 2 below. The following result,
which follows almost immediately from the definitions, shows that the distinction between
PSO and PO disappears when all scenarios are total.

Lemma 2 Suppose that subset T ofW only contains w that are total over A givenW. Then
for all B � A, PSOT ðBÞ ¼ POT ðBÞ.

Note that for any w 2 W6¼
A , relations �w and �W are equal (when viewed as relations on A)

and so, �W6¼
A
¼ �W ; we therefore have the following result:

Lemma 3 Suppose that W � U and that A (2 M) is such that W6¼
A is non-empty. Then, for

all a; b 2 A, a �W6¼
A
b () a �W b.

Lemma 4 shows that, under the assumption that W is A-Extendable, reducing W to W6¼
A

does not affect PSOW or the relation <W
889 on subsets of A. The reason is that each element

of W is extended by some element of W6¼
A .

Lemma 4 Suppose that W is A-Extendable. Let V ¼ W6¼
A . Then, for any B;C � A, we have

(i) B<V
889C () B<W

889C.
(ii) PSOVðBÞ ¼ PSOWðBÞ.

The theorem below shows that PSOW maintains utility-equivalence over subsets of A if W
is A-Extendable.

Theorem 2 Suppose that A 2 M and that the set of scenarios W (� U) is A-Extendable.
Then, for any B � A, we have B �W

889 PSOWðBÞ ¼ POW6¼
A
ðBÞ.

Proof Let V ¼ W6¼
A , which is non-empty because W is A-Extendable. By Proposition 7,

B �V
889 POVðBÞ, and so B �W

889 POVðBÞ, by Lemma 4(i). By Lemma 2, since each w 2 V is
total over B, we have POVðBÞ is equal to PSOVðBÞ, which equals PSOWðBÞ by Lemma 4
(ii), completing the proof. h

Theorem 2 and Proposition 8 immediately imply the corollary below, stating that extend-
ability implies path independence of the operator PSOW. (It also follows by considering the
equality PSOWðBÞ ¼ POW6¼

A
ðBÞ given by Theorem 2, since for any set W0, POW0 satisfies

path independence.)
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Corollary 1 Suppose that A 2 M and that W is A-Extendable. Then, PSOW on 2A satisfies
path independence, i.e., for any subsets B and C of A,
PSOWðB [ CÞ ¼ PSOWðPSOWðBÞ [ CÞ.

6 PSOWðAÞ as unique minimal equivalent set in the continuous case

The results in this section show that for continuous sets W of user models, under natural
assumptions on the utility functions, we have that the set of possibly strictly optimal
alternatives PSOWðAÞ is the unique minimal equivalent set for A. In particular, we show that
a particular property, the Identity property, is sufficient for W being A-Extendable (see
Sect. 5.2) and hence for PSO maintaining utility-equivalence. The Identity property, which
holds for important classes of function, states essentially that if two utility functions over W
are equal locally, i.e., within a neighbourhood of a point in W, then they are globally equal.
This property holds for linear utility functions (where fwðaÞ ¼ w � â) and other polynomial
(and analytic) functions. The results also imply that in the linear case and when W is
convex, PSOWðAÞ ¼ MPOWðAÞ; this enables then a method for computing the minimal
equivalent set by computing MPOWðAÞ.

In this section we will be considering, for a given alternative a, how fwðaÞ varies as a
function of w. It is then convenient to make the following definition:

For each a 2 X, we define function f a on U by f aðwÞ ¼ fwðaÞ, for each w 2 U.
For a; b 2 X, and W � U we define Wa 6¼b ¼ fw 2 W : f aðwÞ 6¼ f bðwÞg. These are the

scenarios for which a has different utility from b. Recalling the definition of W6¼
A from

Sect. 5.2, we have, for A 2 M, that W6¼
A is equal to the set of all elements w of W such that

f aðwÞ 6¼ f bðwÞ holds for all a; b 2 A with a 6�W b. Thus,

W6¼
A ¼

\

a;b2A:a 6�Wb

Wa6¼b:

We recall some basic topological definitions for subsetsW of IRp. For �[ 0 let B�ðwÞ be the
set of elements of IRp that are within Euclidean distance � of w, and let
BW
� ðwÞ ¼ B�ðwÞ \W, i.e., the set of elements of W that are within Euclidean distance � of

w. Subset W0 of W is said to be open (in the standard topology of IRp induced on W) if and
only if for every w 2 W0 there exists some �[ 0 such that BW

� ðwÞ � W0, i.e.,

B�ðwÞ \W � W0. For example, it can be shown that W6¼
A and Wa 6¼b (for a; b 2 X) are open

sets of W.
SubsetW0 ofW is said to be closed if its complementW nW0 inW is an open set inW.

For example, it can be shown that OptAWðaÞ (the set of elements inW that make a optimal in
A) is always a closed set in W. For arbitrary subset W0 of W, its closure ClðW0Þ is defined
to be the intersection of all closed sets in W that contain W0, which is the unique smallest
closed set containing W0. If ClðW0Þ ¼ W then we say that W0 is dense in W; this means
that for every element of W there exists an arbitrarily close element of W0.

6.1 The Identity property

We first define the Identity property, which in Sect. 6.2 we show is sufficient forW being A-
Extendable and hence for PSOW maintaining utility-equivalence (by Theorem 2). We go on
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to show that the Identity property holds for sets of linear functions of the scenario parameter
w, as well as for sets of multivariate polynomials.

Definition 13 (Identity Property.) Let F be a set of continuous real-valued functions on a
subset W of IRp (and similarly, for an arbitrary metric space W). We say that F satisfies the
Identity property if for every f ; g 2 F, if f and g agree on any non-empty open subset of W
then they agree on W. In other words, if there exists a non-empty open subset T of W such
that for all w 2 T , f ðwÞ ¼ gðwÞ then for all w 2 W, f ðwÞ ¼ gðwÞ.

Thus, F satisfies the Identity property if and only if when two of the functions are locally
equal then they are globally equal. Loosely speaking, it holds for classes of functions that
are completely smooth.

Observation: If the Identity property holds for F and G � F then the Identity property
holds for G.

6.1.1 The Identity property for linear functions of w

The Identity property holds for classes of natural functions, in particular, for linear
functions.

Proposition 9 Assume that each a in finite set A is associated with a vector â 2 IRp. Let W
be a convex subset of IRp, and define, for each a 2 A, the function f a by f aðwÞ ¼ â � w,
representing the utility of alternative a in scenario w. Then the set of functions ff a : a 2 Ag
satisfies the Identity Property.

Note that we’re not making any assumptions at all on the form of the function that maps a to
â. (It can also be shown that the assumption that W is convex can be considerably
weakened.)

6.1.2 The Identity Property for multivariate polynomials

Consider, for instance, a convex set W � IRp, and where, for each a 2 A, the function f a is
a multivariate polynomial function of the components of w. For example, the function g
given as follows is a multivariate polynomial in p ¼ 3 variables w1, w2 and w3 (with these
three variables being the components of w): gðwÞ ¼ 3w1 � 4:5w2 þ 2w1w2�
�3:2w1w2w2

3 þ w3
2w

2
3 þ 9w2

1w3.
More generally for the multivariate polynomial case, f aðwÞ can be written asP
s rsðaÞGsðwÞ where the sum is finite and each s corresponds with a p-dimensional vector

of non-negative integer indices, and GsðwÞ is the corresponding product wsð1Þ
1 � � �wsðpÞ

p , and

each rs is a function on A.
If W is a convex set (or similarly, a finite union of convex sets of the same dimension)

and for each a 2 A we have that f a is some multivariate polynomial function of the com-
ponents of w (2 W) then the set of functions ff a : a 2 Ag satisfies the Identity Property.

To see that this is the case, the first step is to rewrite the multivariate polynomial in terms
of k components wi, where k is the dimension of W. This is always possible; for example, if
k ¼ p� 1 then we just have the constraint

P
i wi ¼ 1, so we can replace wp by

1� ðw1 þ � � � þ wp�1Þ, and multiply out to obtain a multivariate polynomial in p� 1
variables. To show the Identity Property we need to show that if two multivariate
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polynomials are equal in a neighbourhood of u 2 W then they are equal on the whole of W.
By taking the difference between the multivariate polynomials this is equivalent to: if a
multivariate polynomial is equal to zero in a neighbourhood of u then it is equal to zero on
all of W, i.e., it is the zero function. Now, this is the case since if a multivariate polynomialP

s rsGsðvÞ equals zero for all v 2 IRk close to u then each rs has to be zero. The latter fact
can be shown by reasoning as follows. For any fixed values of variables w1; . . .;wk�1 close
to values u1; . . .; uk�1 we can consider the multivariate polynomial as a (univariate) poly-
nomial in wk , which is zero in an interval around uk , and thus, by a basic classical result, is
equal to the zero polynomial. Hence, for each power of uk , the corresponding coefficient is
zero, where the corresponding coefficient is a multivariate polynomial in the k � 1 variables
fw1; . . .;wk�1g. Iterating this for k � 1; k � 2; . . .; 1 implies that each coefficient rs is equal
to zero, as required.

6.1.3 An example when the identity property does not hold

We have shown that the Identity property holds some for some important classes of smooth
functions. Here we give an example of a very small set of functions where the Identity
property fails to hold.

Example 3 Consider an example based on Example 2 of Sect. 4, again with A ¼ fa; b; cg
but with W being a convex subset of IRp. Suppose that disjoint non-empty regions W1, W2

and W3 of W are such that W1 [W2 [W3 ¼ W, and that for all w1 2 W1, w2 2 W2 and
w3 2 W3 we have fw1ðaÞ ¼ fw1ðbÞ[ fw1ðcÞ; fw2ðbÞ ¼ fw2ðcÞ[ fw2ðaÞ; and
fw3ðcÞ ¼ fw3ðaÞ[ fw3ðbÞ. As in Example 2 we have PSOWðAÞ being empty. The Identity
property does not hold for the set of functions ff a; f b; f cg because, for instance, f aðw1Þ ¼
f bðw1Þ for all w1 in any open ball contained inW1, so the two functions f a are f b are locally
equal, but they are not globally equal, since f aðw2Þ 6¼ f bðw2Þ for w2 2 W2. The functions
cannot all be smooth, and in fact there must be discontinuities in the functions at the
boundaries between the regions. Even if we retract the assumption that the union of the three
regions covers W, we will still have that the Identity property fails, for the same reason.

6.2 Consequences of the identity property

The lemma below establishes equivalent forms of the Identity property. For our purposes the

key implication is (a) ) (c), i.e., that the Identity property implies that W6¼
A is dense in W.

The Identity property (a) implies the property (b) that for every non-equivalent a; b 2 A,
Wa6¼b is dense in W, i.e., for every element w in W, there is an arbitrarily close element in
W that distinguishes a and b. If this were not the case, then there would be an open set (a
neighbourhood) containing w in which every scenario makes a and b equal, i.e., f aðw0Þ ¼
f bðw0Þ for all w0 in the open set; but the Identity property would then imply that f a ¼ f b, i.
e., a and b are equivalent, contradicting the assumption. From (b) it can be shown that (c)

W6¼
A is dense in W, using the fact that W6¼

A is a finite intersection of open dense sets Wa6¼b.

Lemma 5 Let A 2 M and assume, for each a 2 A, that the function f a is a real-valued
continuous function on the metric space W. The three conditions below are equivalent, i.e.,
if one holds then the other two also hold.
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(a) The set of functions ff a : a 2 Ag on W satisfies the Identity property.
(b) For all a; b 2 A with a 6�W b, we have ClðWa6¼bÞ ¼ W.

(c) ClðW6¼
AÞ ¼ W.

If the topological closure ClðW6¼
AÞ of W

6¼
A is equal to W then for any element w in W, we

can find arbitrarily close other elements w0 that totally order (non-equivalent elements of) A.
Because of the finiteness of A and the continuity of the functions f a this implies that we can
then find such an element w0 2 W that extends w, showing that W is A-Extendable.

Lemma 6 Let A 2 M and assume, for each a 2 A, that the function f a is a real-valued

continuous function on the metric space W. If W equals the topological closure ClðW6¼
AÞ of

W6¼
A then W is A-Extendable.

Putting Lemmas 5 and 6 together we obtain the following result showing that the Identity
property is a sufficient condition for W to be A-Extendable.

Proposition 10 Let A 2 M and assume, for each a 2 A, that the function f a is a real-
valued continuous function on the metric space W. If the set of functions ff a : a 2 Ag on
W satisfies the Identity property then W is A-Extendable.

Proposition 10, together with Theorem 2, implies that the Identity property is sufficient for
PSOW to maintain utility-equivalence, and the existence of unique minimal equivalent
subset for a set A.

Theorem 3 Let C 2 M and assume, for each a 2 C, that the function f a is a real-valued
continuous function on the metric space W, and that the set of functions ff a : a 2 Cg
satisfies the Identity property. Then the following hold, for all non-empty A � C.

(i) PSOWðAÞ �W
889 A.

(ii) If A is �W-free then there exists a unique setwise-minimal equivalent subset for A, i.
e., SMEWðAÞ is a singleton, and this equals PSOWðAÞ.

Proof (i): Since ff a : a 2 Cg satisfies the Identity property, by Proposition 10, W is A-
Extendable, and thus, PSOWðAÞ �W

889 A, using Theorem 2.
(ii): If A is �W-free then, by part (i) and Theorem 1, PSOWðAÞ is the unique setwise-

minimal equivalent subset for A. h

Theorem 3 immediately implies that PSOW maintains utility-equivalence for the linear case
(by Proposition 9), as well as for other cases such as for multivariate polynomial utility
functions. The assumption thatW is convex can be substantially weakened, e.g., toW being
a finite union of convex sets of the same dimension.

Corollary 2 Assume that each a in finite set A is associated with a vector â 2 IRp. Let W be
a convex subset of IRp, and define, for each a 2 A, the function f a by f aðwÞ ¼ â � w,
representing the utility of alternative a in scenario w. Then we have PSOWðAÞ �W

889 A.
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We observed earlier that an alternative a is possibly optimal (a 2 POWðAÞ) if and only if the
set of scenarios OptAWðaÞ (� W) is non-empty (see Definition 8 in Sect. 4). When the
Identity property holds (including the cases of linear and polynomial utility functions), we
have a related statement regarding possibly strict optimality, namely: a is possibly strictly
optimal if and only if OptAWðaÞ has a non-empty interior, which corresponds, at least in the

linear case, with OptAWðaÞ having the same dimension as W (this follows from Auxiliary

Lemma 15 in the appendix, since OptAWðaÞ is then convex). In the running example (see the
continuation of Example 1 in Sect. 4), the alternative (6, 6) is possibly optimal but not
possibly strictly optimal, which is reflected by OptAWð6; 6Þ ¼ f13g, being a non-empty set of
smaller dimension than W.

Proposition 11 Let C 2 M and assume, for each a 2 C, that the function f a is a real-
valued continuous function on the metric space W, and that the set of functions
ff a : a 2 Cg satisfies the Identity property. Suppose that A � C. For a 2 A, we have
a 2 PSOWðAÞ if and only if OptAWðaÞ contains a non-empty open set, i.e., has a non-empty
interior.

We show below that for the linear case with convexW, we have that the maximally possible
optimal elements are the same as the possibly strictly optimal elements, so that
MPOW ¼ PSOW . We use this property as a basis of our algorithm for computing the set of
possibly strictly optimal elements (which equals the minimal equivalent set) in Sect. 12.1.

Corollary 3 Assume that W is a convex subset of IRp, and consider A 2 M and assume
that for each a 2 A there exists â 2 IRp such that for all w 2 IRp, fwðaÞ ¼ w � â. Then
MPOWðAÞ ¼ PSOWðAÞ.

7 Filtering algorithms for minimal equivalent subsets, PSOWðAÞ
and MPOWðAÞ

this section includes two simple kinds of filtering to reduce the input set of alternatives, both
of which can be used for the computation of the possibly strictly optimal elements. In
Sect. 7.1 we use a simple filtering method to compute a setwise-minimal equivalent set, and
thus, in certain circumstances, PSOWðAÞ (such as when the hypotheses of Theorem 3 or
Corollary 2 hold). We use this in a linear programming algorithm for computing the set of
Possibly Optimal elements in Sect. 11.3 below, which is used in the method (a) in
Sect. 12.1.

In Sect. 7.2 we show how the set of maximally possibly optimal elements MPOWðAÞ can
be computed using a certain dominance relation between alternatives in A. This therefore
gives another method for computing PSOWðAÞ when PSOWðAÞ ¼ MPOWðAÞ (cf. Corol-
lary 3 above). We use this in the (b) algorithm in Sect. 12.1 below.

7.1 Filtering with relations on sets

A simple way of generating a minimal equivalent subset of A is to sequentially delete
elements a of A that are not needed for maintaining equivalence, i.e., such that
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A n fag<W
889fag, since then A n fag �W

889 A. This is what is done in the operation

FilterrðA;<W
889Þ defined below, to produce a minimal equivalent subset of A,1

For a 2 A, defineFilterðA; a;<W
889Þ to beA n fag ifA n fag<W

889fag; otherwise it equalsA.
More generally, for B � A, we define FilterðA;B;<Þ to be A n B if A n B<B; otherwise it

equals A.
Let us label A as a1; . . .; an, where n ¼ jAj. Formally, the labelling is a bijection r from

f1; . . .; ng to A (so that rðiÞ ¼ ai), and let K be the set of all n! labellings. We define
FilterrðA;<W

889Þ iteratively as follows. We set A0 ¼ A. For i ¼ 1; . . .; n, we set

Ai ¼ FilterðAi�1; ai;<W
889Þ. We then define FilterrðA;<W

889Þ to be An, i.e., the set remaining

after iteratively deleting elements from A that are dominated with respect to relation <W
889.

As the proposition below states, when applying the filtering operation FilterrðA;<W
889Þ,

(i) equivalence is always maintained; and (ii) we always obtain a minimal equivalent subset,
and any such subset can be achieved for some ordering. Part (iii) implies that for any
labelling r we have FilterrðA;<W

889Þ ¼ PSOWðAÞ if PSOWðAÞ �W
889 A and A is equiva-

lence-free.

Proposition 12 Let W (� U) be a set of scenarios, let A 2 M and let r be any labelling of
A. Then we have:

(i) A �W
889 FilterrðA;<W

889Þ � A.

(ii) SMEWðAÞ ¼ fFilterrðA;<W
889Þ : r 2 Kg.

(iii) If A is �W-free and PSOWðAÞ �W
889 A then FilterrðA;<W

889Þ ¼ PSOWðAÞ for any
labelling r.

Hence, we can generate a setwise minimal equivalent subset of A by choosing any labelling
r and computing FilterrðA;<W

889Þ. Furthermore, this will be equal to PSOWðAÞ, and be the
unique setwise minimal equivalent subset, if the operator PSOW maintains utility-equiva-
lence, such as in the linear case (see Corollary 2).

7.2 A structure for computation of MPOWðAÞ

The maximally possibly optimal elements of A are those that are undominated with respect
to a certain strict partial order (OptAW-dominance) as defined below. This leads to a simple
method for computing MPOWðAÞ, by iteratively deleting elements, if one has a method for
testing the OptAW-dominance relation.

Definition 14 ( OptAW-dominance.) Let W (� U) be a set of scenarios and let A 2 M. For

a; b 2 X, we say that a OptAW -dominates b if a; b 2 A and OptAWðaÞ%OptAWðbÞ. For b 2 A,

we say that b is OptAW -dominated if there exists a such that a OptAW-dominates b; otherwise,

b is OptAW -undominated.

1 One can define FilterrðA;�W
889Þ analogously, using the strong strict version of the dominance relation (see

the remark after Proposition 3) with the result being POWðAÞ, irrespective of r, and without requiring any
conditions on A; see Algorithm 1 and Theorem 1 in [10].
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Lemma 7 LetW (� U) be a set of scenarios and let A 2 M.MPOWðAÞ is the set of OptAW-

undominated elements (of A). OptAW-dominance is an irreflexive transitive relation on A, and

if a is OptAW-dominated then there exists OptAW-undominated b that OptAW -dominates a.

The fact that OptAW-dominance is a strict partial order means that one can iteratively delete

OptAW-dominated elements from A until one reaches the set of OptAW -undominated elements,
i.e., MPOWðAÞ. The result below formally expresses this fact.

Proposition 13 Let W (� U) be a set of scenarios and let A 2 M. Let A1; . . .;Ak be a
sequence of sets with (i) A1 ¼ A; (ii) Ai%Aiþ1 for i ¼ 1; . . .; k � 1; (iii) every element of

Ai n Aiþ1 is OptAW -dominated by some element in Ai; and (iv) every element of Ak is not

OptAW-dominated by any other element of Ak. Then Ak ¼ MPOWðAÞ.

Proof Every element of A n Ak is OptAW -dominated by some element in Ai, for some

i 2 f1; . . .; k � 1g, so is OptAW -dominated. Thus, by Lemma 7, Ak 
 MPOWðAÞ. If a 2 Ak

were OptAW-dominated, then, by Lemma 7, there would exists some OptAW -undominated

element b, (i.e., b 2 MPOWðAÞ) that OptAW-dominates it, which would contradict (iv), since

Ak 
 MPOWðAÞ. Thus, every element of Ak is OptAW-undominated, i.e., Ak � MPOWðAÞ,
and hence Ak ¼ MPOWðAÞ. h

8 Setwise max regret

Minimax Regret [39, 51] is a decision criterion used in decision-making problems under
uncertainty. In the context of artificial intelligence, it can be used to recommend an alter-
native that minimises the max regret (i.e., the worst-case loss) with respect to a utility
function and all the available alternatives [13, 14, 17, 50]. Applications include, for
example, the elicitation of multi-attribute utilities (see, e.g., [10, 18, 66]), or the elicitation of
preferences for ranking and voting problems (see, e.g., [7, 8, 40]).

The utility-dominance condition A<W
889B states that in every scenario, the set of alter-

natives A is at least as good as the set B; or, equivalently, UtAðwÞ�UtBðwÞ for all w 2 W,
by Proposition 3. A natural related numerical measure is setwise max regret SMRWðA;BÞ
defined below which is a generalisation of the max regret and expresses how much worse A
could be than B, i.e., the maximum regret of choosing A over B [59, 62, 65]. For example, a
set minimising the SMR could be used as a recommendation set in a decision-making
problem.

Recommendation sets can also be used in elicitation, where they are treated as choice
queries (i.e., queries of the kind “Among alternatives a, b, and c, which one do you
prefer?“) with the goal of reducing uncertainty to improve the quality of future recom-
mendations; that is, reducing minimax regret. To minimise the number of interactions with
the decision-maker, we need to carefully choose the queries to reduce the uncertainty as fast
as possible. Ideally, evaluating a question at a given iteration should take into account all
future questions and possible responses (e.g., [13, 34]). However, in practice, this evaluation
is often carried out myopically. It turns out [65] that optimal recommendation sets with
respect to SMR are also myopically optimal in an elicitation sense, as they ensure the highest
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worst-case (with respect to the possible query’s responses) reduction of minimax regret a
posteriori.

Definition 15 ( SMRWðA;BÞ.) For W � U and finite subsets A and B of the set of alter-
natives, X we define the setwise max regret SMRWðA;BÞ to be supw2W UtBðwÞ � UtAðwÞ.

When A � B, SMRWðA;BÞ is non-negative and equals the setwise max regret SMRðA;WÞ
defined in [62]; that paper defines a method that involves finding a subset A of B (among a
particular class of subsets, e.g., all those of a fixed cardinality k) that minimises
SMRWðA;BÞ.2 A can then be considered as a maximally informative query, to be used in an
incremental elicitation process for finding an optimal element of B. SMRWðA;BÞ is closely
related also to the notion of setwise max regret defined in [5].

Regarding UtAðwÞ as the utility achieved from set A in scenario w (and similarly, for
UtBðwÞ), we have that SMRWðA;BÞ is the worst-case loss of utility (or maximum regret) if
we choose set A instead of set B. For instance if A is a subset of B, and SMRWðA;BÞ is very
close to zero, then we might consider that A is a sufficiently close approximation of B,
simplifying the set of choices for the user. We have SMRWðA;BÞ	 0 if and only if A<W

889B
(see Proposition 14 below). The problem of computing SMRWðA;BÞ is thus strongly related
to that of determining A<W

889B.

The definitions and results from earlier sections (apart from Sect. 6), regarding <W
889,

SME, PO, PSO and UD, depended only on the orderings <w, for w 2 W, and so were
ordinal, in the sense that they are not affected by any strictly monotonic transformations of
each function fw (where the monotonic transformations can be different for each w).
However, this is not the case for SMR, which has much weaker invariance properties.

We say that SMRWðA;BÞ is achieved if there exists w 2 W such that
UtBðwÞ � UtAðwÞ ¼ SMRWðA;BÞ, so that then SMRWðA;BÞ is equal to
maxw2W UtBðwÞ � UtAðwÞ. We will mainly be interested in situations in which SMRWðA;BÞ
is achieved; this always happens, for instance, if for each a 2 X, fwðaÞ is a continuous
function of w, and W is compact.

Proposition 14 shows the connections between setwise max regret and (i) utility domi-
nance, (ii) the possibly optimal alternatives and (iii) the possibly strictly optimal alterna-
tives. (i) relates the function SMRW with the relation <W

889: the setwise max regret is strictly
positive if and only if A does not utility-dominate B. (ii) relates the function SMRW with the
Possibly Optimal operator POW : setwise max regret is strictly negative if and only if no
element of B is possibly optimal in A [ B; and (iii) with the Possibly Strictly Optimal
operator PSOW.

Proposition 14 Consider A;B 2 M and W � U.

(i) SMRWðA;BÞ	 0 if and only if A<W
889B.

(ii) If SMRWðA;BÞ is achieved then SMRWðA;BÞ� 0 if and only if
POWðA [ BÞ \ B 6¼ ;.

(iii) For equivalence-free A, and a 2 A, we have that SMRWðA n fag; fagÞ[ 0 if and
only if PSOWðAÞ 3 a.

2 In contrast, in generating PSOWðBÞ we are finding a minimal subset A of B such that SMRWðA;BÞ ¼ 0
(under appropriate assumptions, such as those for Theorem 3).
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Proposition 15 gives a pair of important decomposability properties, with (i) being more
useful computationally. We make use of (i) in the methods for computing SMRWðA;BÞ in
Sects. 10 and 11.2. (ii) is a slight generalisation of the important Observation 4 in [62].

Proposition 15 Consider A;B 2 M and W � U.

(i) SMRWðA;BÞ ¼ maxb2B SMRWðA; fbgÞ.
(ii) SMRWðA;BÞ ¼ maxa2POWðAÞ SMROptAWðaÞðfag;BÞ.

The following result shows that we can pre-process A and B using UDW and <W
898 without

changing the value of setwise max regret. We use this property in Sect. 9, and in the
algorithmic methods in Sects. 11.3 and 12.2.

Lemma 8 Consider any A;B 2 M.

(i) If A0 �W
889 A and B0 �W

889 B then SMRWðA0;B0Þ ¼ SMRWðA;BÞ.
(ii) SMRWðUDWðAÞ;UDWðBÞÞ ¼ SMRWðA;BÞ.
(iii) If B0 � B and A<W

898B n B0 and SMRWðA;BÞ� 0 then SMRWðA;B0Þ ¼
SMRWðA;BÞ.

9 Implications for incremental preference elicitation

In recent years there has been considerable focus in the AI preference community on
incremental preference elicitation techniques, a form of active learning, see e.g.,
[6, 10, 11, 14, 20, 62, 64]. We argue that the notion of being possibly strictly optimal is
important here.

Let a and b be alternatives. Preference model w is said to satisfy a preference statement
a� b if fwðaÞ� fwðbÞ, i.e., a is at least as good as b given w. For set of alternatives A the
preference statement a�A means a� b for all b 2 A. Thus, for a 2 A, a scenario w satisfies
the preference statement a�A if and only if (given w) a is a most preferred element in A,
a 2 OwðAÞ, i.e., w makes a optimal in A. This holds if and only if w 2 OptAWðaÞ.

In incremental elicitation a common strategy is to generate a small set of alternatives A,
and to ask the user which element of A is most preferred. If they reply “a” then this is
interpreted as a�A. We will then update W to the set of all w 2 W such that a is a most
preferred option in A, i.e., we update W to OptAWðaÞ.

There can be forms of inconsistency, of different kinds, between the user answers and the
model we have of the user. We say that, given set of preference models W, alternative a is a
feasible answer to query A if OptAWðaÞ is non-empty, i.e., there exists some user preference
model in W under which a is optimal in A.

ForW � IRp we say that a is a strongly feasible answer to query A (givenW) if OptAWðaÞ
has a non-empty interior (with respect to the induced topology forW). For standard cases, e.
g., when W is convex, this holds if and only if OptAWðaÞ has the same dimension as W. In
the example in Fig. 1, with the query fð11; 1Þ; ð10; 4Þ; ð7; 5Þ; ð6; 6Þ; ð4; 7Þg, the elements
(11, 1) and (7, 5) are infeasible answers; e.g., (10, 4) is strongly feasible because the
dimension of OptAWð10; 4Þ ¼ ½13 ; 23� is 1, i.e., the same dimension as W. Alternative (6, 6) is
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feasible but not strongly feasible, because OptAWð6; 6Þ ¼ f13g and so has smaller dimension
than W.

The following result, which is an immediately consequence of Proposition 11, charac-
terises feasible and strongly feasible answers to queries.

Proposition 16 Consider A 2 M and W � IRp.

(i) a is a feasible answer to query A given W if and only if a 2 POWðAÞ.
(ii) If the set of functions ff a : a 2 Ag satisfies the Identity property, we have that a is a

strongly feasible answer to query A given W if and only if a 2 PSOWðAÞ.

Thus, the feasible answers are the possibly optimal elements, and the strongly feasible
answers are exactly the possibly strictly optimal elements, in cases where the Identity
property holds, such as for utility values that are linear or polynomial in w.

If the user chooses a from A, and a is not a feasible answer to A, then we get an
inconsistency, since the updated W will be empty. Suppose now, on the other hand, a is not
a strongly feasible answer to A. We can still consistently update W, so this is a less strong
kind of inconsistency; however, such an answer would be seriously troubling. For instance,
suppose W � IRp, and consider any probability distribution over W, regarding which is the
true user model w, such that (as one would expect) the probability distribution is compatible
with the measure of the sets. If a is not a strongly feasible answer to query A then the
probability that w is such that a�A holds would be zero (since OptAWðaÞ has then measure
zero in W, being of lower dimension than W). A choice, by the user, of a would hence
correspond with an event of probability zero.

To ensure that every answer to a query A is feasible, we thus require that POWðAÞ ¼ A.
And, to ensure that every answer to A is strongly feasible, we require that PSOWðAÞ ¼ A, i.
e., that every element of A is strictly possibly optimal in A.

We thus argue that the standard methods for generating queries in incremental preference
learning should be modified to ensure that every element in the query set is strictly possibly
optimal.3 Since Theorem 3 implies that PSOWðAÞ is non-empty, (and indeed equivalent to
A) we can therefore replace a potential query A by PSOWðAÞ.

It is shown in [62, 63, 65] that choosing a subset A, of the set of available alternatives B,
that maximises setwise regret SMRWðA;BÞ (among small subsets) is a desirable and well-
founded choice for an informative query. However, it can easily happen that, for such a
query A, we have PSOWðAÞ 6¼ A and even POWðAÞ 6¼ A. Such a choice of A is then in
danger of leading to an inconsistency, as described above. Fortunately, one can easily solve
this problem by replacing A by PSOWðAÞ, since if A maximises setwise regret then
PSOWðAÞ also maximises setwise regret (assuming the Identity property, as holds for linear
functions or polynomial functions of w) because SMRWðPSOWðAÞ;BÞ ¼ SMRWðA;BÞ, by
Theorem 3 and Lemma 8(i).

3 Learning an inconsistency could in theory be useful information, allowing the potential of updating the
model in some way to restore consistency; however, this would probably have a heavy computational cost,
and in a practical application, one will want to avoid the incremental elicitation procedure breaking down.

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 25 of 66    44 



10 Using extreme points of the epigraph of the utility function
for testing A<W

889B and computing SMRWðA,BÞ

This section derives extreme point methods for the related problems of computing utility-
dominance and setwise max regret. More precisely, the method involves (what is known as)
the epigraph of the utility function, which is defined below. The key result is Theorem 4
which shows that utility dominance and setwise max regret can be computed using the
extreme points of the epigraph.

Computing the extreme points of convexW can lead for the linear case to an easy way of
testing if a<Wb (for a; b 2 IRp): it is easy to see that a<Wb holds if and only if for each

extreme point w of W, we have w � ðâ� b̂Þ� 0 [36]. Similarly, it follows immediately that
standard maximum regret over the convex polytope W can be computed using the extreme
points of W, as observed e.g., in [55]. However, for setwise max regret it is not sufficient to
consider the extreme points of W. Here we develop a novel extreme points method for
testing A<W

889B and computing SMRWðA;BÞ, by moving to a higher dimensional space.
Given W, the utility function UtAðwÞ (over w 2 W) can be viewed as a subset of

W  IR, and we can test A<W
889B by considering such subsets. Let us define CðW;AÞ �

W  IR � IRp  IR to be fðw; rÞ : w 2 W; r�UtAðwÞg, i.e., the epigraph [15] of the
utility function UtA on W. If W is convex and compact and for all a 2 A, fwðaÞ is a convex
and continuous function of w 2 W, then CðW;AÞ is a closed convex set. We write
ExtðCðW;AÞÞ for the extreme points of CðW;AÞ.

The following result leads to two different ways of testing whether the condition A<W
889B

holds or not. Firstly, we can compute the extreme points of both CðW;AÞ and CðW;A [ BÞ;
by (ii), these two sets of extreme points are equal if and only if A<W

889B. Alternatively, we

can test A<W
889B, using part (iii), after computing ExtðCðW;AÞÞ. We can compute the

pairwise max regret SMRWðA;BÞ as maxb2B SMRWðA; fbgÞ (see Proposition 15), and use
part (iv) below.

Theorem 4 Consider any finite subsets A and B of IRp, any b 2 IRp, and any compact and
convex subset W of IRp, and assume that for all a 2 A [ B [ fbg, fwðaÞ is a convex and
continuous function of w 2 W.

(i) A<W
889B () CðW;AÞ � CðW;BÞ () CðW;AÞ ¼ CðW;A [ BÞ.

(ii) A<W
889B if and only if ExtðCðW;AÞÞ ¼ ExtðCðW;A [ BÞÞ.

(iii) A<W
889B holds if and only if for all ðw; rÞ 2 ExtðCðW;AÞÞ and for all b 2 B we

have fwðbÞ	 r.
(iv) SMRWðA; fbgÞ ¼ max ffwðbÞ � r : ðw; rÞ 2 ExtðCðW;AÞÞg.

Continuing the running example, it can be seen from Fig. 1 that the set ExtðCðW;AÞÞ of the
extreme points of the epigraph is equal to fð0; 7Þ; ð13 ; 6Þ ð23 ; 8Þg, where we are again

abbreviating w to just its first component w1, so that e.g., ð13 ; 6Þ represents the pair

ðw;UtAðwÞÞ with w ¼ ð13 ; 23Þ. Then, using Theorem 4(iv), SMRWðA; fð5:5; 6:5ÞgÞ is equal to
maxð�0:5; 16 ;�2 1

6Þ ¼ 1
6 [ 0; for instance, the middle term in the max equals

fwðð5:5; 6:5ÞÞ � 6 ¼ 1
3 � 5:5þ 2

3 � 6:5� 6 ¼ 1
6. Because SMRWðA; fð5:5; 6:5ÞgÞ is strictly

positive, we have that A 6 <W
889fð5:5; 6:5Þg, using Proposition 14(i). Note that the key

123

   44 Page 26 of 66 Auton Agent Multi-Agent Syst           (2022) 36:44 



extreme point ð13 ; 6Þ of the epigraph does not involve any extreme point of W, so this
example illustrates the fact that it is not sufficient to just consider the extreme points of W.

11 The linear and convex case

Here we focus on the case in which the utility fwðaÞ is a linear function of w, and when the
set of scenarios W is a compact and convex subset of IRp. The results are of most interest
when W is also a convex polytope, and thus expressible in terms of linear constraints (so is
equal to the intersection of closed half-spaces).

Section 11.1 considers the computation of dominance with respect to the relations <W
898

and <W
988, making use of the extreme points of W. These are useful as sufficient conditions

for utility-dominance for the convex polytope case, since then the set of extreme points is
finite. In Sect. 11.2 we give a result that, for the convex polytope case, leads to a
straightforward linear programming method for computing setwise max regret and hence
(because of the relationship between the two shown in Proposition 14(i)) utility-dominance.

In Sect. 10 we showed how the extreme points of the epigraph of the utility function can
be used to compute utility-dominance. Section 11.4 shows how the extreme points of the
epigraph can be used to compute the minimal equivalent subset. In particular, it is shown
how to compute OptAW -dominance, and thus, by the method of Sect. 7.2, the set of maxi-
mally possibly optimal elements; the results of Sect. 6 (Theorem 3, Corollary 2 and
Corollary 3) imply that this is equal to the minimal equivalent subset (of an equivalence-free
set of alternatives).

We now consider the situation in which we are especially interested, where an alternative
a in X corresponds with a multi-attribute utility vector â, and the utility functions are linear
in the parameter w, with fwðaÞ ¼ â � w, i.e.,

Pp
i¼1 wiâi, andW is a compact convex subset of

IRp. We therefore have, for a; b 2 X, a<wb if and only if ðâ� b̂Þ � w� 0. Also,
UtAðwÞ ¼ maxa2A w � â.

Of particular interest in the case in which W is also a convex polytope, being defined by
a finite number of linear inequalities. Given a finite set K ¼ fki : i ¼ 1; . . .; kg of vectors in
IRp, and corresponding real numbers ri, we can defineW to be the set of w 2 U such that for
all i ¼ 1; . . .; k, w � ki � ri. In particular, such linear inequalities can arise from input pref-

erences of the form a is preferred to b, leading to the constraint w � ðâ� b̂Þ� 0.
This form of preferences has been studied a great deal; for instance, UDWðAÞ consists of

the non-dominated alternatives in A for a multiobjective program (MOP) given a cone (with
the cone generated as the dual of W) [25, 69, 74]. Often the elements of W are assumed to
be non-negative and normalised, so for each w 2 W we have for all i ¼ 1; . . .; p, wi � 0, andPp

i¼1 wi ¼ 1. Then, without any additional preferences (so that W is just the unit ðp� 1Þ-
simplex), relation <W is the Pareto ordering on alternatives, and UDWðAÞ is set of Pareto-
optimal alternatives, with the supported alternatives being also in POWðAÞ. UDWðAÞ can be
computed by discarding the alternatives b 2 A if there exists a 2 A such that fwðaÞ� fwðbÞ
for all the extreme points w of W, and fwðaÞ[ fwðbÞ for at least one extreme points w of W
(see, e.g., [36]). POWðAÞ can be computed by discarding all alternatives b 2 A for which
there does not exists w 2 W such that fwðbÞ� fwðaÞ for all a 2 A n fbg, which can be
checked by testing the satisfiability of the constraints with a linear programming solver (see,
e.g., [2, 4]).
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11.1 Testing A<W
898B and A<W

988B

The following simple result is useful for computing relations <W
898 and <W

988 when W is a
compact convex polytope (when its set of extreme points is finite). For E � IRp, CHðEÞ is
defined to be the convex hull of E.

Proposition 17 Assume that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Let W;W0 � IRp. If
CHðWÞ ¼ CHðW0Þ then <W ¼ <W0 . In particular, if W is a compact convex subset of IRp

and W0 ¼ ExtðWÞ is the set of extreme points of W then <W ¼ <W0 . Furthermore, binary

relations <W
898 and <W0

898 are equal; and <W
988 equals <W0

988, and A<W
988B holds if and only if

there exists a 2 A such that for all w 2 W0, fwðaÞ�UtBðwÞ.

Because of Proposition 17, there is a simple way of testing if a<Wb (for a; b 2 IRp): a<Wb

holds if and only if for each extreme point w of W, we have w � ðâ� b̂Þ� 0. This can then
be used for the relations <W

898 and <W
988, using, for example, A<W

898B if and only if for all
b 2 B there exists a 2 A such that a<Wb.

In Sect. 10 we gave a method, based on the extreme points of the epigraph of the utility
function, for computing SMRW and testing dominance; in Sect. 11.2 we give a straight-
forward LP method related to the approaches used in [5, 10, 62]. In Sect. 11.4 we give a
result that enables one to compute the minimal equivalent subset using the extreme points of
the epigraph.

11.2 Linear programming for computing SMRWðA,BÞ, and testing A<W
889B

The definitions easily imply that SMRWðA; fbgÞ equals maxw2W fwðbÞ � UtAðwÞ. Thus, for
real-valued x, we have SMRWðA; fbgÞ� x if and only if there exists w 2 W such that for all

a 2 A, w � ðb̂� âÞ� x. This leads to the following characterisation.

Proposition 18 Assume that W is a compact subset of IRp, and that for w 2 IRp; a 2 IRp,
fwðaÞ ¼ w � â. Consider A 2 M and b 2 IRp. Then SMRWðA; fbgÞ is equal to the maximum
value of x such that there exists w 2 IRp satisfying the constraints (i) w 2 W; and (ii) for all

a 2 A, w � ðb̂� âÞ� x.

For the case in which W is a compact convex polytope, we can use a linear programming
solver to compute SMRWðA; fbgÞ. Applying this for each b 2 B allows us to compute
SMRWðA;BÞ, which, by Proposition 15, equals maxb2B SMRWðA; fbgÞ (see, e.g., [62, 65]).
We can also use this method to test if A<W

889B, since, by Proposition 14(i), A<W
889B holds if

and only if SMRWðA;BÞ	 0, i.e., if and only if for all b 2 B, SMRWðA; fbgÞ	 0.
An optimal recommendation set of a given size k with respect to SMR is also myopically

optimal in an elicitation sense [65]. A straightforward approach to compute a subset A of B
with jAj ¼ k with minimum setwise max regret is computing SMRWðA;BÞ for all the subsets
A with jAj ¼ k. However, this approach is very computational demanding, and in the
literature we can find alternative heuristic strategies based on the max regret to compute
queries for elicitation purposes (see, e.g., [14, 62, 65]). In [59], we proposed an efficient
branch and bound method to compute the set with minimum setwise max regret, which
allows avoiding the computation of the setwise max regret for some subsets. In the latter
work, we used the novel algorithm to compute SMRWðA;BÞ presented in this paper (see
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Sect. 12.2) showing better time performance with respect to the standard method based on
linear programming for the values k and p considered. ([62, 65]).

11.3 Linear programming for computing the minimal equivalent subset
and the possibly strictly optimal elements

From Theorem 3 and Corollary 2 it follows that PSOWðAÞ is the minimal equivalent subset
for the �W-free set A 2 M. Because of Proposition 12, we can compute PSOWðAÞ with the
method FilterrðA;<W

889Þ defined in Sect. 7.1. This iteratively excludes elements a from A if

A n fag<W
889fag, i.e., a 62 PSOWðAÞ. At each iteration i we have then a set Ai such that

PSOWðAÞ � Ai � A. Thus, since PSOWðAÞ �W
889 A, we have also that Ai �W

889 A, which

implies then Ai n fag �W
889 A n fag. Thus, using Lemma 8(i) and Proposition 14(iii), we can

exclude ai from Ai at each iteration i if SMRWðAi n faig; faigÞ	 0, where SMRWðAi n
faig; faigÞ can be computed following the linear programming approach of Proposition 18.

11.4 Using the extreme points of the epigraph to compute the Minimal
Equivalent Subset, and the set of possibly optimal elements

We next prove some key properties relating to the sets OptAWðaÞ and their relationship with

the extreme points of the epigraph of the utility function. Recall that OptAWðaÞ is the set of
scenarios in W in which a is optimal in A (see Definition 8). It is convenient to have an
abbreviation (EA

WðaÞ) for the set ExtðOptAWðaÞÞ.

Definition 16 (EA
WðaÞ.) For a 2 A 2 M and W � IRp we define EA

WðaÞ to be

ExtðOptAWðaÞÞ, the set of extreme points of OptAWðaÞ (see Definition8).

For the linear case with convexW, for a 2 A, the set OptAWðaÞ is convex. Theorem 3 implies
that PSOWðAÞ is the unique minimal equivalent subset of an (equivalence-free) set A 2 M.
Corollary 3 implies that PSOWðAÞ ¼ MPOWðAÞ, and, by definition, MPOWðAÞ consists of
all a 2 A such that there does not exist b 2 A such that OptAWðbÞ%OptAWðaÞ, i.e., such that b

OptAW-dominates a (see Definition 14 in Sect. 7.2). Hence, PSOWðAÞ is equal to the set of

OptAW-undominated elements of A.

It turns out (see part (ii) of Proposition 19 below) that the condition OptAWðbÞ%OptAWðaÞ
is equivalent to EA

WðbÞ%EA
WðaÞ. This is the basis of our method, described in Sect. 12.1

below, for efficiently computing the minimal equivalent set PSOWðAÞ using the extreme
points of the epigraph.

Proposition 19 Assume that W is a convex subset of IRp, and that for w 2 IRp; a 2 IRp,
fwðaÞ ¼ w � â. Consider A 2 M, a 2 A, w 2 W.

(i) For any a 2 A, OptAWðaÞ is a convex subset of W.

(ii) If W is compact and a; b 2 A, then OptAWðaÞ � OptAWðbÞ () EA
WðaÞ � EA

WðbÞ, i.
e., ExtðOptAWðaÞÞ � ExtðOptAWðbÞÞ.
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The second part of Proposition 19 may seem surprising, since it certainly does not generally
hold for convex sets (for instance, consider a convex set C1 that contains another convex set
C2, but where their boundaries are disjoint; then ExtðC1Þ \ ExtðC2Þ ¼ ;).4

Part (i) of the following result gives a way of computing EA
WðaÞ: by projecting the

extreme points of the epigraph, ExtðCðW;AÞÞ onto their W component. Part (ii) leads to a
useful sufficient conditions for an element a to be OptAW-dominated in Proposition 21(iii)
below.

Proposition 20 Assume that W is a convex subset of IRp, and that for w 2 IRp; a 2 IRp,
fwðaÞ ¼ w � â. Consider A 2 M, w 2 W, and a; b 2 A.

(i) EA
WðaÞ ¼ fw 2 IRp : ðw;w � âÞ 2 ExtðCðW;AÞÞg.

(ii) If W is compact then dimðOptAWðaÞÞ\jEA
WðaÞj.

The next proposition gives properties that are the basis for the extreme points method for
computing the unique minimal equivalent subset (which equals PSOWðAÞ ¼ MPOWðAÞ)
for the linear convex case. Recall that b OptAW-dominates a if and only if

OptAWðaÞ$OptAWðbÞ (see Definition 14).

Proposition 21 Assume that W is a compact convex subset of IRp, and that for
w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Consider A 2 M and a; b 2 A.

(i) b OptAW-dominates a if and only if EA
WðaÞ$EA

WðbÞ,
(ii) If EA

WðaÞ ¼ EA
WðbÞ and a 6�W b then both a and b are OptAW-dominated.

(iii) If jEA
WðaÞj 	 dimðWÞ then a is OptAW-dominated.

Because of Proposition 13(i) we can compute MPOWðAÞ (which, by Corollary 3 equals
PSOWðAÞ) by incrementally deleting OptAW-dominated elements from A (and redefining A

to be the reduced set). By Proposition 21, b OptAW-dominates a if and only if
EA
WðaÞ$EA

WðbÞ, where the sets EA
WðaÞ for a 2 A can be computed using Proposition 20.

Proposition 21 gives also extra useful sufficient conditions for an element a to be OptAW-

dominated. In those cases, the proofs that a is OptAW-dominated makes use of the equality
between MPOWðAÞ and PSOWðAÞ. (To use these sufficient conditions, we do not, of
course, need to find any OptAW-dominating element b of a—it is sufficient to know implicitly
that such an element b has to exist.)

12 The structure of the algorithms

In this section we make use of mathematical results in previous sections in developing
computational methods for computing the minimal equivalent set PSOWðAÞ and testing
dominance between sets, for the case of multi-attribute utility vectors, with the set of
scenarios W being a convex polytope, and with linear utility functions.

4 In fact, if OptAWðaÞ$OptAWðbÞ then OptAWðbÞ is of higher dimension than OptAWðaÞ, and

T \ OptAWðbÞ ¼ OptAWðaÞ, where T is the affine hull of OptAWðaÞ (the vector subspace of IRp generated by

OptAWðaÞ). This is because for any w 2 OptAWðaÞ, we have w 2 OptAWðbÞ, which implies that w � ðb̂� âÞ ¼ 0.

This then implies that w0 � ðb̂� âÞ ¼ 0 for any w0 2 T, and so T \ OptAWðbÞ ¼ OptAWðaÞ.
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12.1 Computing the minimal equivalent set and the set of Possibly Optimal
elements

Given A 2 M, we aim to generate a subset A0 � A with A0 �W
889 A, and such that for any

strict subset A00 of A0, A00 6�W
889 A. Theorem 3 implies that there exists a unique minimal

equivalent set, i.e., SMEWðAÞ has a unique element, say, A0, and this equals PSOWðAÞ. To
compute PSOWðAÞ, first we pre-process by eliminating elements of A not in UDWðAÞ since
from Proposition 7 it follows that PSOWðAÞ � UDWðAÞ. At the same time we can make A
equivalence-free. Then we have two different methods for computing PSOWðAÞ.

(a) Multiple (i.e., jAj) tests of the form A n fag<W
889fag, which can be achieved using a

linear programming approach as described in Sect. 11.3.
(b) For each a 2 A we compute EA

WðaÞ using Proposition 20(i), by computing the
extreme points of the epigraph. We eliminate any element a such that
jEA

WðaÞj 	 dimðWÞ, by Proposition 21(iii) of Sect. 11.4. For each pair a; b of the
remaining elements, we eliminate a if EA

WðaÞ$EA
WðbÞ; we eliminate b if

EA
WðbÞ$EA

WðaÞ; and we eliminate both if EA
WðbÞ ¼ EA

WðaÞ, which is justified by
Proposition 21(i) and Proposition 21(ii) of Sect. 11.4. Finally we arrive at a set of
OptAW-undominated alternatives, which by Proposition 13 is equal to MPOWðAÞ, and
thus equal to PSOWðAÞ by Corollary 3.

Regarding the computation of the set POWðAÞ of possibly optimal elements of A in W, also
in this case we can first compute UDWðAÞ and make A equivalence free. Then we can use
one of the following two methods.

(i) A well-known approach in the literature (see, e.g., [4]) consists into iteratively
excluding elements a from A if a 62 POWðAÞ. This iterative procedure is similar to
that described in Sect. 7.1. The difference is regarding the method used to evaluate
the exclusion of the elements of A since in this case we want to compute POWðAÞ.
At each iteration i we have then a set Ai such that POWðAÞ � Ai � A, and we have
that ai 2 POWðAÞ (and then ai 2 Aiþ1) if and only if there exists w 2 W such that
ðâi � âÞ � w� 0 for all a 2 Ainfaig, which can be evaluated with a LP solver.

(ii) We can use Proposition 20(i) to compute EA
WðaÞ for each a 2 A evaluating the

extreme points of the epigraph of A over W. Then, since a 2 POWðAÞ if and only if
OptAWðaÞ 6¼ ;, which is if and only if jEA

WðaÞj[ 0, we can eliminate a from A if
jEA

WðaÞj ¼ 0. The resulting set equals POWðAÞ.

12.2 Testing dominance between sets A<W
889B and computing SMRWðA,BÞ

We focus first on testing the dominance condition A<W
889B, for given finite sets A;B of

alternatives, i.e., A;B 2 M. Our algorithm includes three steps of increasing complexity,
with the first two steps being pre-processing that helps the efficiency of the algorithm.

The first stage of the algorithm is a pre-processing step, using a necessary and a sufficient

condition for dominance between sets. Proposition 22(i) below shows that A<W0

889B is a

necessary condition for A<W
889B, and A<W0

988B is a sufficient condition. Part (i) follows using
Proposition 17 and nestedness (Proposition 1), and monotonicity with respect to W
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(Proposition 4). Parts (ii) and (iii), which follow from Proposition 3, give efficient methods
of computing the necessary condition and the sufficient condition.

Proposition 22 Assume that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Let W be a compact and
convex subset of IRp and let W0 ¼ ExtðWÞ be the set of extreme points of W. Then

(i) A<W0

988B ) A<W
889B ) A<W0

889B.

(ii) A<W0

988B holds iff there exists a 2 A such that for all w 2 W0, fwðaÞ�UtBðwÞ.
(iii) A<W0

889B holds iff for each w 2 W0 there exists a 2 A such that fwðaÞ�UtBðwÞ.

The second stage of the algorithm is another pre-processing step, whose correctness is
shown by the following result, which easily follows using Proposition 5 and the definitions.

Lemma 9

(i) A<W
889B if and only if UDWðAÞ<W

889UDWðBÞ.
(ii) Suppose that A<W

898C. Then A<W
889B if and only if A<W

889B n C.

We describe below the three stages of our method for testing whether or not A<W
889B holds.

(1) We use Proposition 22 to efficiently test (a) a necessary condition A<W0

889B, where

W0 ¼ ExtðWÞ is the set of extreme points of W; and (b) a sufficient condition,
whether there exists a 2 A such that for all w 2 W0, fwðaÞ�UtBðwÞ; (the conditions
can be tested together, by first computing UtBðwÞ for each w 2 W0). If (a) is false
then we know that A 6 <W

889B (because of monotonicity with respect to W); if (b) is

true then we know that A<W
889B holds. If the necessary condition is false, or the

sufficient condition is true, then we need go no further.
(2) We perform a second pre-processing stage involving reducing the sets A and B; this

step has complexity proportional to jAjjBj. We replace A by UDWðAÞ and B by
UDWðBÞ. We then eliminate all elements b from B such that for some a 2 A, a<Wb.
If B becomes empty then we can stop, since we then have A<W

889B.

(3) We determine whether A<W
889B holds using one of the methods in Sects. 11.2 and 10,

i.e., doing either (a), (b) or (c) below:

(a) We check if SMRWðA; fbgÞ	 0 for all b 2 B using linear programming, as
described in Proposition 18 of Sect. 11.2.

(b) Using Theorem 4(ii) of Sect. 10, i.e., testing if ExtðCðW;AÞÞ equals
ExtðCðW;A [ BÞÞ.

(c) Using Theorem 4(iii) of Sect. 10, i.e., testing if fwðbÞ	 r for all b 2 B and for
all ðw; rÞ 2 ExtðCðW;AÞÞ.

The method can be easily adapted to compute SMRWðA;BÞ. We cannot use the Stage (1)
pre-processing, but the first part of Stage (2) can be used as pre-processing for the com-
putation of SMRWðA;BÞ, because SMRWðA;BÞ ¼ SMRWðUDWðAÞ;UDWðBÞÞ by Lemma 8
(ii). By Theorem 4(iv) we have that SMRWðA; fbgÞ ¼ maxffwðbÞ � r :
ðw; rÞ 2 ExtðCðW;AÞÞg. Thus, method (c) can be adapted to also compute SMRWðA; fbgÞ.
Similarly method (a) can be adapted to compute SMRWðA; fbgÞ for each b 2 B.
SMRWðA;BÞ can then be computed as maxb2B SMRWðA; fbgÞ by Proposition 15. However,
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the implementation of the methods (a) and (c) for testing the dominance is slightly more
efficient than the implementation for computing SMRWðA;BÞ since we can stop the exe-
cution as soon as we find a lower bound for SMRWðA;BÞ greater than zero, i.e., when we
find b 2 B such that SMRWðA; fbgÞ[ 0 for method (a), and b 2 B and ðw; rÞ 2
ExtðCðW;AÞÞ such that fwðbÞ[ r for method (c).

Although we focus on non-strict dominance, the same algorithms can also be used to test
the strong strict dominance A �W

889 B given as for all w 2 W, UtAðwÞ[UtBðwÞ. In par-

ticular, under the conditions of Theorem 4, we have A �W
889 B () SMRWðA;BÞ\0,

which is if and only if for all ðw; rÞ 2 ExtðCðW;AÞÞ and for all b 2 B we have fwðbÞ\r.

13 Experimental testing

In this section we show some experimental results, and we analyse the computational cost of
the procedures presented in Sect. 12 for filtering a set of alternatives maintaining equiva-
lence and for testing the dominance between sets. We considered linear utility functions
fwðaÞ ¼ w � â in all our experiments, with the setW of feasible scenarios w being a subset of
the unit ðp� 1Þ-simplex defined by the intersection of q randomly generated half-spaces
representing input user preferences. Specifically, we choose q (consistent) random user
preferences of the form awi þ bwj � cwk (meaning that the user prefers a units of wi and b
units of wj to c units of wk), like in [41]. The sets A and B of utility vectors used in our
experiments are randomly generated. See Appendix B for details about our random problem
generator. All experiments were performed on computer facilitated by an Intel(R) Xeon(R)
E5620 2.40 GHz processor with 32 GB of RAM. We used CPLEX 12.8 [35] as the linear
programming solver, and we used the Python library pycddlib [61] for computing the
extreme points of a convex polytope. CPLEX is an industrial tool highly optimised which
has been commercialised for the first time more than 30 years ago and continuously
improved. Pycddlib is a wrapper for the Komei Fukuda’s cddlib library [26] based on the
double description method [27, 44]. It is worth noticing that the comparison of our algo-
rithms may not be fair since pycddlib may not be as highly optimised as CPLEX. For
example, we noticed that we could incur runtime exceptions related to precision issues if we
do not approximate real numbers with fractions, and the use of fractions slowed down our
algorithms up to 5 times for the CPLEX-based implementations and up to 15 times for the
pycddlib-based implementations. We first show the experimental results for our main pro-
cedures as a whole, i.e., including the preliminary steps such us the UDW filtering. After
that, we will show the performances of some specific operations.

For convenience of notation, denote PSOWðAÞ by PSOðA;WÞ, POWðAÞ by POðA;WÞ
and SMRWðA;BÞ by SMRðA;B;WÞ.

13.1 Comparison of algorithms for computing PSOðA,WÞ

Here we describe some experimental results for the two methods presented in Sect. 12.1 to
compute PSOðA;WÞ; the first based on a linear programming solver (PSOLP) (see
Sect. 12.1(a)), and the second based on the evaluation of the extreme points of the epigraph
CðW;AÞ (PSOEP) (see Sect. 12.1(b)). The results are an average over 100 experiments.

In Table 1 we show the performances of the methods PSOLP and PSOEP with respect to
dimðWÞ and q ¼ 3 randomly generated user preferences. As expected, increasing dimðWÞ
the computation time and the size of the output set increased. PSOEP was faster than PSOLP

for dimðWÞ	 4. However, PSOLP scaled better with respect to dimðWÞ; in fact, with

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 33 of 66    44 



dimðWÞ ¼ 7, PSOLP was around 1.5 times slower than its average execution time with
dimðWÞ ¼ 6, on the other hand, PSOEP was 4 times slower. This is presumably related to
the exponential growth of the number of extreme points of the epigraph with respect to
dimðWÞ (see Table 5).

In Table 2 we show the performances of the methods PSOLP and PSOEP with respect to
the number of user preferences q and considering fixed dimðWÞ ¼ 4. The two methods
performed similarly under this configuration. As expected, by increasing the number of user
preferences, the size of PSOðA;WÞ decreases, and the execution time tends to reduce.

In Fig. 2 we can see the execution time with dimðWÞ ¼ 3 and q ¼ 0 of the methods
PSOLP and PSOEP with respect to the size of the input set A. As we can see, in our
experiments the two methods scaled very roughly linearly in this setting.

13.1.1 Computational cost

Let n ¼ jAj be the size of the input set and q the number of inequalities representing user
preferences. The computational cost of PSOLP is then OðnCLPðnþ qÞÞ, where CLPðnþ qÞ is
the computational cost of the linear programming solver with nþ q constraints.

Let p ¼ dimðWÞ þ 1 be the size of the utility vectors in A, m ¼ jC0ðW;AÞj the number
of extreme points of CðW;AÞ, and CEPðCðW;AÞÞ the computational cost of computing the

Table 1 Average execution time of the methods PSOLP and PSOEP for computing the minimal equivalent
subset with respect to dimðWÞ. The last column shows the average size of the sets filtered with the PSO
operator The experiments relates to randomly generated sets A with size jAj ¼ 100 and q ¼ 3 randomly
generated user preferences. The timings include the UD filtering on the input set

DimW PSOLPðA;WÞ[s] PSOEPðA;WÞ[s] jPSOðA;WÞj

2 0.083 0.045 4.27

3 0.238 0.164 9.15

4 0.645 0.641 14.95

5 1.109 2.419 22.92

6 1.964 10.786 31.76

7 2.726 43.379 39.98

Table 2 Average execution time of the methods PSOLP and PSOEP for computing the minimal equivalent
subset with respect to q. The last column shows the average size of the filtered sets. The experiments relates to
randomly generated sets A with size jAj ¼ 100 and dimðWÞ ¼ 4. The timings include the UD filtering on the
input set

q PSOLPðA;WÞ PSOEPðA;WÞ jPSOðA;WÞj

0 0.438 0.743 22.86

3 0.648 0.644 14.98

6 0.543 0.531 10.02

9 0.48 0.484 7.92

12 0.479 0.502 6.89

15 0.444 0.465 4.97
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extreme points of CðW;AÞ. For details regarding the computational cost of computing the
extreme points of a convex polytope see, e.g., [24]. PSOEP computes EA

WðaÞ for each a 2 A
that has a computational cost of OðCEPðCðW;AÞÞ þ nmpÞ since we first need to compute
the extreme points of CðW;AÞ, and then for each ðw; rÞ 2 ExtðCðW;AÞ we need to check if
we have that w 2 EA

WðaÞ for each a 2 A, which can be done by checking if w � a ¼ r. Once
we have computed EA

WðaÞ for each a 2 A, we have to check if EA
Wða1Þ � EA

Wða2Þ or
EA
Wða2Þ � EA

Wða1Þ for each couple a1; a2 2 A. Assuming that EA
WðaiÞ is an ordered set, this

operation has a computational cost of Oðn2mpÞ, since jEA
WðaÞj is O(m); however, if we

suppose that the number jEA
WðaÞj of extreme points associated with an element a is 1

n the
number of extreme points of CðW;AÞ, i.e., OðmnÞ, the computational cost of this operation is
reduced to OðnmpÞ. Thus, the whole computational cost of PSOEP can then be approximated
as OðCEPðCðW;AÞÞ þ nmpÞ.

13.2 Algorithms comparison for testing A<W
889B

In this section we show some experimental results for the three methods presented in
Sect. 12.2 to determine whether the condition A<W

889B holds, for given sets A and B of
alternatives. The first makes use of a linear programming solver (TLP) (Sect. 12.2(a)), the
second compares the extreme point sets of the two epigraph CðW;AÞ and CðW;A [ BÞ
(TEU) (Sect. 12.2(b)), and the third evaluates the value function fwðbÞ ¼ w � b for all b 2 B
and the the extreme points w of the epigraph CðW;AÞ (TEE) (Sect. 12.2(b)). In our
experimental results, testing the necessary condition and the sufficient condition (Sect. 12.2
(1)) and filtering out elements of B dominated by elements of A (Sect. 12.2(2)) was enough
to evaluate A<W

889B for the majority of our experiments (see Sect. 13.4). Thus, to assess the
performances of the methods (a), (b) and (c) of Sect. 12.2, we considered an average of 100

Fig. 2 Average execution time in seconds of the methods PSOLP (orange triangle) and PSOEP (grey circle) to
compute PSOðA;WÞ with respect to the initial set size of A, with dimðWÞ ¼ 3 and q ¼ 0. The timings
include the UD filtering
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experiments where the necessary condition succeeded, the sufficient condition failed and the
filtering of B didn’t reduce its size to zero.

As we can see from Table 3 and Table 4, TLP was in general the fastest method and
scaled better, and TEE performed slightly better than TEU. The percentage of dominance is
on average above 50%. This means that given two input sets A and B generated with our
random problem generator, B is likely to be dominated by A once the necessary condition is
satisfied. This may not be surprising since the necessary condition is satisfied if and only if
UtAðwÞ�UtBðwÞ for all w 2 W0.

In Fig. 3 we can see the execution time with dimðWÞ ¼ 3 and q ¼ 0 of the methods TLP,
TEU and TEE with respect to the size of the input set A. As we can see, in our experiments the
two methods scaled roughly linearly when fixing dimðWÞ and q. The peak for jAj ¼ 700 is
due to the randomness of the experiments; in this case, the UD filtering was on average less
effective in reducing the size of A. We can see the same anomaly in Fig. 4 which reports the
timing of the UD filtering.

Table 3 Average execution time of the methods TLP, TEU and TEE for testing A<W
889B with respect to

dimðWÞ. The last column shows the percentage of times that A<W
889B was true. The results relate to

experiments with input set size jAj ¼ jBj ¼ 100 and q ¼ 3 user preferences, where the necessary condition
was true and the sufficient condition was false, and where the filtering did not reduce the size of B to zero. The
reported timings include testing the sufficient and the necessary condition, and the filtering of the input sets

dimðWÞ TLP[s] TEU[s] TEE[s] Dominance[%]

2 0.118 0.118 0.112 48%

3 0.284 0.306 0.287 60%

4 0.794 0.943 0.873 61%

5 1.38 2.176 1.936 64%

6 1.922 5.649 4.661 60%

7 2.878 18.194 16.579 71%

Table 4 Average execution time of the methods TLP, TEU and TEE for testing A<W
889B with respect to q. The

last column shows the percentage of times that A<W
889B was true. The results relate to experiments with input

set size jAj ¼ jBj ¼ 100 and dimðWÞ ¼ 4, where necessary condition was true and the sufficient condition
was false, and where the filtering did not reduce the size of B to zero. The timings include testing the
sufficient and the necessary condition, and the filtering of the input sets

q TLP[s] TEU[s] TEE[s] Dominance[%]

0 0.172 0.358 0.313 66%

3 0.872 1.015 0.956 70%

6 0.945 1.051 1.001 56%

9 0.918 1.029 0.973 64%

12 0.96 1.063 1.01 66%

15 1.052 1.162 1.102 60%
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13.2.1 Computational cost

The computational cost of TLP is OðnCLPðT þ nÞÞ, where CLPðT þ nÞ is the computational
cost of the linear programming solver with T þ n constraints. Let mA ¼ jC0ðW;AÞj and
mA[B ¼ jC0ðW;A [ BÞj be the number of extreme points of CðW;AÞ and CðW;A [ BÞ, and
let CEPðCðW;AÞÞ and CEPðCðW;A [ BÞÞ be the computational cost of computing the
extreme points of CðW;AÞ and CðW;A [ BÞ. The computational cost of TEE is then

Fig. 3 Average execution time in seconds of the methods TLP (yellow square), TEU (grey circle) and TEE

(orange triangle) to evaluate A<W
889B with respect to the initial set size of A, with dimðWÞ ¼ 3 and q ¼ 0. The

timings include the UD filtering

Fig. 4 Average execution time in seconds of the UDW filtering (grey circle), the A<W0

898B filtering (yellow
square), and testing the necessary condition and sufficient condition of A<W

889B (orange triangle) with q ¼ 0
and dimðWÞ ¼ 4 with respect to the size of the input sets A and B
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OðCEPðCðW;AÞÞ þ nmApÞ, and supposing that the sets ExtðCðW;AÞÞ and ExtðCðW;A [
BÞÞ are ordered, the computational cost of TEU is OðCEPðCðW; A [ BÞÞ þ mA[BpÞ. For a
generic evaluation of the computational cost of the above methods, we are supposing
A ¼ B ¼ n, but the size of B can be much smaller than the size of A (see Table 7 and
Table 8).

13.3 Computation of the extreme points

For the preliminaries step we need first to compute the extreme points W0 of the convex
polytope W. The extreme points of the epigraph CðW;AÞ and CðW;BÞ are instead com-
puted after the preliminaries step for the methods TEUðA;B;WÞ and TEEðA;B;WÞ to test
the dominance and the method PSOEPðA;WÞ to compute the minimal equivalent subset.

Tables 5 and 6 show the number of extreme points ofW, the number of extreme points of
the epigraph CðW;AÞ and the corresponding computational time with respect to the
dimension of W (Table 5) and the number of user preferences (Table 6). The results are an
average of 100 instances with three randomly generated user preferences for the results in
Table 5, and dimðWÞ ¼ 5 for Table 6. The number of extreme points and the computational
time with respect to dimðWÞ increase roughly linearly for W and exponentially for
CðW;AÞ. Each user preference is a half-space with a corresponding hyper-plane that may
redefine the boundaries of the convex polytope W, thus increasing the number of extreme
points of W and then the corresponding computational time. On the other hand, the number
of extreme points of the epigraph and the corresponding computational time both decrease,

Table 5 Average number of extreme points (EP) of W and of the epigraph CðW;AÞ and corresponding
computational time with respect to dimðWÞ, with jAj ¼ 100 and p ¼ 3

dimðWÞ #EP W #EP CðW;AÞ time[s] EP W time[s] EP CðW;AÞ

2 4.34 10.62 0.0015 0.004

3 6.88 41.01 0.0021 0.0165

4 8.89 132.35 0.0026 0.0674

5 10.23 448.42 0.003 0.3127

6 11.34 1464.34 0.0037 1.495

7 12.63 4532.4 0.0043 6.5583

Table 6 Average number of extreme points (EP) of W and of the epigraph CðW;AÞ and corresponding
computational time with respect to the number of user preferences p, with jAj ¼ 100 and dimðWÞ ¼ 4

q #EP W #EP CðW;AÞ time[s] EP W time[s] EP CðW;AÞ

0 5.0 198.55 0.0012 0.1028

3 8.77 129.9 0.0026 0.0642

6 16.08 99.95 0.0052 0.0496

9 19.87 85.78 0.008 0.0444

12 23.19 81.39 0.0117 0.0471

15 25.94 64.67 0.015 0.0406
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as one increases the number of user preferences (Table 6). This is because the user pref-
erences reduce the hyper-volume of W; therefore, since the epigraph is built over W, the
intersection of W with the half-spaces representing the user preferences can exclude some
of the extreme points of the epigraph.

For details regarding the computational cost of computing the extreme points of a convex
polytope see, e.g., [24].

13.4 Preliminaries step

The preliminary steps are the operations executed on the input sets before testing the
dominance A<W

889B or computing the SME, i.e., testing the necessary and the sufficient

condition (Sect. 12.2(1)), and the <W0

898 filtering (Sect. 12.2(2)) for the dominance, and the
UDW filtering for both dominance and SME. In Table 8, Table 7 and Fig. 4, we show some
experimental results of the preliminary steps. The results are an average of 100 experiments

in which the necessary condition is true, the sufficient condition is False, and the <W0

898
filtering did not reduce the size of B to zero.

Testing the necessary and the sufficient condition was the fastest operation performed
before evaluating A<W

889B. The computational cost of this operation is OðnjW0jpÞ. The
necessary condition failed or the sufficient condition succeeded in most experiments,
allowing the algorithm to stop early. This happened from 98:5% to 94% (depending on
dimðWÞ) of the random problems generated with the set-up of the experiments of Table 7,
and from 96% to 99:2% (depending on the number of user preferences) of the random
problems generated with the set-up of the experiments of Table 8. Therefore, since the
execution time was a small fraction of the time spent by UDW (see Table 7 and Table 8), it
looks like that this is a very worthwhile check for testing A<W

889B.
We used the UDW filtering to reduce the size of the input sets A and B before evaluating

UDWðAÞ<W0

898UDWðBÞ when testing the dominance, and to reduce the size of the input set

A before computing PSOWðAÞ. The computational cost of this operation is Oðn2jW0jpÞ and
it seems to speed up the overall execution for both testing A<W

889B and computing
PSOWðAÞ. For example, the UDW filtering on 100 randomly generated input set A with
jAj ¼ 100, dimðWÞ ¼ 4 and three user preferences, reduced the input set size to an average
of 24 elements with an average execution time of 0.3 s. The execution time of PSOWðAÞ

Table 7 Average execution time in seconds for testing the necessary condition and the sufficient condition of

A<W
889B (NSc), the UDW filtering and the A<W0

898B filtering (Filt898), and number of elements of
A0 ¼ UDWðAÞ, B0 ¼ UDWðBÞ and B00 ¼ fb 2 B0 : 8a 2 A; a 6 <Wbg with q ¼ 3 and jAj ¼ jBj ¼ 100 with
respect to dimðWÞ

dimðWÞ NSc[s] UDW [s] Filt898[s] jA0j jB0j jB00j

2 0.013 0.084 0.007 8.0 6.56 2.37

3 0.018 0.202 0.041 16.0 14.03 4.01

4 0.025 0.559 0.161 28.05 23.33 8.89

5 0.025 0.889 0.357 41.28 36.21 14.8

6 0.024 1.189 0.52 55.3 46.72 24.28

7 0.026 1.614 0.901 67.35 57.43 28.66
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over the same experimental set-up with and without the input set A filtered by UDW was on
average 0.37 and 0.89 s respectively for PSOLP and 0.38 and 1.1 s for PSOEP.

The <W0

898 filtering is part of the pre-processing to further reduce the size of B after the
UDW filtering and before evaluating the dominance. The computational cost of this oper-
ation is Oðn2jW0jpÞ. This filtering improved the overall execution time of our experiments
since it reduced the size of the set UDWðBÞ by more than half in average (see jB0j and jB00j
of Table 7 and Table 8). For example, the <W0

898 filtering on 100 randomly generated input set
filtered by UDW filtering, with initial input sets size jAj ¼ jBj ¼ 100, dimðWÞ ¼ 4 and three
user preferences, reduced the average size of UDWðBÞ from 23.46 to 8.8 elements with an
average execution time of 0.17 s. The execution time of testing testing A<W

889B over the

same experimental set-up with and without the set UDWðBÞ filtered by the <W0

898 filtering
was on average 0.04 and 0.17 s respectively for TLP, 0.18 and 0.21 s for TEU, and 0.12 and
0.24 s for TEE. In some of the experiments with the necessary condition true and the

sufficient condition false, the <W0

898 filtering has been enough for testing A<W
889B since it

reduced the size of B to zero. This happened from 22:5% to 1% (depending on dimðWÞ) of
the random problems generated for the results in Table 8, and from 18% to 11:5% (de-
pending on the number of user preferences) of the random problems generated for the
results in Table 7.

The UDW filtering and the <W0

898 filtering can be executed in any order. However, the
overall execution time of our experiments was faster executing first the UDW filtering. This

may be because the A<W0

898B filtering compares every element of B with every element of A
in the worst case, and thus there may be several redundant comparisons if A 6¼ UDWðAÞ
since for a; b 2 A with a<W0

898b we have that if b<W0

898c with c 2 B, then a<W0

898c. As we can

see in Fig. 3, the <W0

898 filtering seems to scale better and be faster than the UDW filtering,
but this is because it is executed after the UDW filtering. In fact, the UDW filtering would be

faster than the <W0

898 filtering if the filtering order was inverted.

13.5 POðA,WÞ and SMRðA,B,WÞ

Here we describe some experimental results for the computation of the set of possibly
optimal alternatives POðA;WÞ and the setwise max regret SMRWðA; B;WÞ using well-

Table 8 Average execution time in seconds for testing the necessary condition and the sufficient condition of

A<W
889B (NSc), the UDW filtering and the A<W0

898B filtering (Filt898), and number of elements of
A0 ¼ UDWðAÞ, B0 ¼ UDWðBÞ and B00 ¼ fb 2 B0 : 8a 2 A; a 6 <Wbg with dimðWÞ ¼ 4 and jAj ¼ jBj ¼ 100
with respect to the number of user preferences

q NSc[s] UDW [s] Filt898[s] jA0j jB0j jB00j

0 0.002 0.044 0.014 44.07 35.93 15.91

3 0.026 0.616 0.173 28.77 24.63 7.86

6 0.05 0.694 0.161 19.02 16.82 5.69

9 0.076 0.7 0.112 14.29 10.94 3.39

12 0.095 0.752 0.08 11.44 8.05 3.08

15 0.114 0.822 0.079 10.14 7.79 3.0
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known methods based on linear programming (POLPðA;WÞ, see 12.1(a), and
SMRLPðA;B;WÞ, see 12.2(3)(a)) and our novel methods based on the extreme points of the
epigraph (POEPðA;WÞ, see 12.1(b), and SMREPðA;B;WÞ, see 12.2(3)(c)).

In Tables 9 and 10 we show some experimental results for the computation of POðA;WÞ
with respect to dimðWÞ and the number q of user preferences. Our method POEPðA;WÞ
performed better for dimðWÞ	 4. However, POLPðA;WÞ scaled better with respect to
dimðWÞ. This may be because of the exponential grow of the number of extreme points of
the epigraph with respect to dimðWÞ.

In Fig. 5 we show how POLPðA;WÞ and POEPðA;WÞ scaled with respect to the size of
the input sets. The timings include the UD filtering and it seems that the overall execution
time scaled very roughly linearly.

Table 11 and Table 12 show the execution time of our experiments for the computation of
SMRðA;B;WÞ with B � A with respect to dimðWÞ and the size of B. Table 11 shows the
timings of SMRLPðA;B;WÞ and Table 12 those of SMREPðA;B;WÞ. Also in this case the
method based on linear programming scaled better. However, SMREPðA;B;WÞ was in
average the fastest.

Table 9 Average execution time of the methods POLP and POEP for computing the minimal equivalent subset
with respect to dimðWÞ. The last column shows the average size of the filtered sets. The experiments relates
to randomly generated sets A with size jAj ¼ 100 and q ¼ 3 randomly generated user preferences. The
timings include the UD filtering on the input set

DimW POLPðA;WÞ[s] POEPðA;WÞ[s] jPOðA;WÞj

2 0.084 0.042 4.37

3 0.243 0.128 9.23

4 0.67 0.439 15.16

5 1.177 1.309 23.49

6 2.067 5.148 32.57

7 2.889 18.927 41.27

Bold values highlight the best average timings

Table 10 Average execution time of the methods POLP and POEP with respect to the number of user
preferences q. The last column shows the average size of the filtered sets. The experiments relates to
randomly generated sets A with size jAj ¼ 100 and dimðWÞ ¼ 4. The timings include the UD filtering on the
input set

q POLPðA;WÞ POEPðA;WÞ jPOðA;WÞj

0 0.428 0.358 23.36

3 0.675 0.436 15.32

6 0.557 0.412 10.14

9 0.492 0.395 7.97

12 0.487 0.422 7.0

15 0.448 0.415 4.99

Bold values highlight the best average timings
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14 Discussion

We defined natural notions of equivalence and dominance for a general model of sets of
multi-attribute utility, and proved general properties. Computationally we focused especially
on the linear (weighted sum) case and we proved that there is a unique setwise-minimal
equivalent subset of any (equivalence-free) set of utility vectors A. This set then equals the
set of possibly strictly optimal alternatives PSOðAÞ, and is a compact representation of the
utility function for A, giving the utility achievable with A for each scenario. We show that
filtering a query with the PSO operator avoids the potential of inconsistency in the user
response. Along with pre-processing techniques we developed a linear programming
method for generating PSOðAÞ, and a method based on computing the extreme points of the
epigraph of the utility function (EEU), as well as related methods for testing dominance. We
implemented the approaches and our testing on random problems showed that both methods

Fig. 5 Average execution time in seconds of the methods POLP (orange triangle) and POEP (grey circle) to
compute POðA;W with respect to the initial set size of A, with dimðWÞ ¼ 3 and q ¼ 0. The timings include
the UD filtering

Table 11 Average execution time in seconds to compute SMRLPðA;B;WÞ using the linear programming
solver, varying dimðWÞ and jBj. A is a set of 100 undominated elements and B � A. A and B are randomly
generated for each repetition of the experiment

jBj ¼ 2 jBj ¼ 3 jBj ¼ 4 jBj ¼ 5 jBj ¼ 6

dimðWÞ ¼ 1 0.671 0.680 0.708 0.699 0.737

dimðWÞ ¼ 2 0.707 0.705 0.719 0.718 0.730

dimðWÞ ¼ 3 0.688 0.697 0.713 0.736 0.753

dimðWÞ ¼ 4 0.714 0.726 0.773 0.760 0.771

dimðWÞ ¼ 5 0.713 0.742 0.752 0.764 0.782

dimðWÞ ¼ 6 0.729 0.739 0.765 0.794 0.806

Bold values highlight better average timings with respect to the results of Table 12
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scaled to substantially sized problems, with the EEU method being better for lower
dimensions. Our methods can be directly applied to reduce the set of utility vectors derived
for a multi-objective influence diagram [41] or a multi-objective optimisation problem [42].

Our experimental testing assumed inputs in which the sets A are represented explicitly. In
some situations, the sets are more naturally represented combinatorially, as a set of con-
straints or a SAT formula. However, the fundamental properties that are the bases of our
algorithms still apply, and these can enable the methods to be adapted for the linear convex
case. Specifically, the minimal equivalent set corresponds with the set of possibly strictly
optimal elements, and PSOW is equal to MPOW and satisfies Path Independence (by
Proposition 8 and Corollaries 2 and 3). In particular, it would interesting to explore the use
of AND/OR Branch-and-Bound algorithms, similar to those used for calculating the pos-
sibly optimal alternatives in [72]. The fact that PSOW satisfies Path Independence and
translation invariance means that it satisfies the additive decomposition property (see
Proposition 1 of [72]), which is fundamental for the AND/OR B &B algorithms.

A further natural application of our model and methods is for computing the Value of
Information [23] for a multi-objective influence diagram. Each observable variable gener-
ates a Value of Information function which is a utility function UtA, so different observable
variables can be compared using the relation <W

889.
Although we focus especially on the case where fwðaÞ is linear in w, which covers a wide

range of important preference models, it would also be interesting to develop computational
procedures for non-linear cases (such as quadratic utility models) based on our more general
characterisation results, such as Theorems 3 and 4.

A proofs appendix

This appendix includes all the proofs of the results in the paper that do not appear in the
main body of the paper, and includes also auxiliary lemmas that are used to prove these
results.

Results in Sect. 3

For the convenience of the reader, we recall the definitions of the three dominance relations
from Definition 3. Consider any W � U and A;B 2 M.

Table 12 Average execution time in seconds to compute SMREPðA;B;WÞ using the extreme points of the
epigraph, varying dimðWÞ and jBj. A is a set of 100 undominated elements and B � A. A and B are randomly
generated for each repetition of the experiment

jBj ¼ 2 jBj ¼ 3 jBj ¼ 4 jBj ¼ 5 jBj ¼ 6

dimðWÞ ¼ 1 0.012 0.014 0.016 0.016 0.018

dimðWÞ ¼ 2 0.025 0.034 0.042 0.048 0.054

dimðWÞ ¼ 3 0.042 0.066 0.092 0.117 0.141

dimðWÞ ¼ 4 0.072 0.121 0.177 0.236 0.299

dimðWÞ ¼ 5 0.105 0.194 0.317 0.427 0.602

dimðWÞ ¼ 6 0.153 0.290 0.511 0.788 1.085

Bold values highlight better average timings with respect to the results of Table 11

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 43 of 66    44 



– A<W
889B holds if and only if for all b 2 B and for all w 2 W there exists a 2 A such that

a<wb.
– A<W

898B holds if and only if for all b 2 B there exists a 2 A such that for all w 2 W,
a<wb.

– A<W
988B holds if and only if there exists a 2 A such that for all b 2 B and for all w 2 W,

a<wb.

Proposition 1 For any W � U we have <W
988 � <W

898 � <W
889. Also, <W and each of the relations, <W

889,
<W

898 and <W
988, is transitive. Furthermore, we have the following chaining properties:

(i) If A<W
898B and B<W

988C then A<W
988C.

(ii) If <W
� is any of the relations <W

889, <W
898 or <W

988 then A<W
988B and B<W

� C implies

A<W
988C.

Proof The nesting properties <W
988 � <W

898 � <W
889 follow easily from the definitions.

(i): Assume that A<W
898B and B<W

988C. Since B<W
988C, there exists an alternative b in B such that for all c 2 C,

b<Wc. Since A<W
898B, there exists a 2 A such that a<Wb. Since<W is transitive and a<Wb and b<Wc for all

c 2 C, then a<Wc for all c 2 C, which implies A<W
988C.

(ii): By the nesting properties it follows thatB<W
898C impliesB<W

889C andB<W
988C impliesB<W

889C. Thus, if (ii)
is true when< equals<W

889, then it is true also for the other two cases. We then need to prove that A<W
988B and

B<W
889C impliesA<W

988C: since there existsa 2 A such that for allb 2 Ba<Wb (A<W
988B), and for all c 2 C there

exists b 2 B such that b<Wc (B<W
889C), then, by the transitivity of <W , there exists a 2 A such that such that

a<Wc for all c 2 C, i.e., A<W
988C.

Transitivity of <W
988 is implied by (ii).

Transitivity of<W
889: we have transitivity of<

fwg
988, which is the same as<fwg

889, and thus transitivity of<W
889, as the

intersection of an arbitrary set of transitive relations is transitive.
Transitivity of<W

898: SupposeA<W
898B andB<W

898C and consider any c 2 C. BecauseB<W
898C, there existsb 2 B

suchb<Wc.A<W
898B implies there exists a 2 A such that a<Wb, and thus for the transitivity of<W , a<Wc for all

c 2 C, proving that A<W
898C.h

Proposition 2 For all A;B 2 M, A<W
889B () A �W

889 A [ B; and A<W
898B () A �W

898 A [ B.

Proof We prove the result for <W
889; the result for <W

898 follows in exactly the same way. The definition easily
implies that A [ B<W

889A holds for any A;B 2 M. It is then sufficient to show A<W
889B () A<W

889A [ B,
which again easily follows by the definition. h

Proposition 3 Consider any W � U and A;B 2 M.

(i) A<W
889B () for all w 2 W, UtAðwÞ�UtBðwÞ.

(ii) A �W
889 B () for all w 2 W, UtAðwÞ ¼ UtBðwÞ.

(iii) A<W
988B if and only if there exists a 2 A such that for all w 2 W, fwðaÞ�UtBðwÞ.
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Proof (i): [For all w 2 W, UtAðwÞ�UtBðwÞ] if and only if [for all w 2 W, maxb2B fwðbÞ	 maxa2A fwðaÞ],
which is if and only if for all w 2 W, for all b 2 B, fwðbÞ	 maxa2A fwðaÞ. This holds if and only if for all
w 2 W and b 2 B there exists a 2 A such that fwðaÞ� fwðbÞ, which is if and only if A<W

889B.
(ii): A �W

889 B holds if and only if A<W
889B and B<W

889A, which by (i) is if and only if for all w 2 W,
UtBðwÞ	UtAðwÞ and UtBðwÞ�UtAðwÞ, which is if and only if UtWB ¼ UtWA .
(iii): For a 2 X, fag<W

988B () fag<W
889B. Then, A<W

988B if and only if there exists a 2 A such that
fag<W

988B, which is if and only if there exists a 2 A such that for all w 2 W, fwðaÞ�UtBðwÞ, using part (i).h

Results in Sect. 4

We give a simple fundamental property of the set UDWðAÞ, which is used to prove e.g.,
Proposition 5 below.

Auxiliary Lemma 1 Consider any A 2 M.

(i) If a 2 A n UDWðAÞ then there exists c 2 UDWðAÞ such that c�Wa.
(ii) If a 2 A then there exists c 2 UDWðAÞ such that c<Wa.

Proof (i): Consider any a 2 A n UDWðAÞ. By the definition of UDWðAÞ, for any b 2 A n UDWðAÞ there
exists b0 2 A such that b0�Wb. Let a1 ¼ a. We construct a sequence a1; a2; . . ., where for each i ¼ 1; 2; . . .,
we have aiþ1�Wai, where we stop the sequence when we reach an element ai such that either (a) ai has
appeared earlier in the sequence, or (b) ai 2 UDWðAÞ. Because A is finite, there must be a last element ak in
the sequence. Transitivity of �W implies that if 1	 i\k then ak�Wai, so, in particular, ak�Wa. If (a) ak ¼ ai
for some i\k then ak�Wak which contradicts the fact that �W is irreflexive. Thus, we have (b) ak 2
UDWðAÞ and ak�Wa, showing part (i).
(ii): Consider any a 2 A. If a 2 A n UDWðAÞ then, by part (i), there exists c 2 UDWðAÞ such that c<Wa.
Otherwise, a 2 UDWðAÞ, and, by reflexivity of <W we have a<Wa, so we can let c ¼ a. h

Proposition 5 Assume that W � U and A 2 M. Then, UDWðAÞ is non-empty and the following hold.

(i) For B 2 M and, for < being any of <W
889, <W

898 or <W
988, we have A<B ()

UDWðAÞ<UDWðBÞ.
(ii) UDWðAÞ �W

898 A and UDWðAÞ �W
889 A. Hence, if A is non-empty then UDWðAÞ is

also.

Proof Auxiliary Lemma 1(ii) immediately implies that UDWðAÞ is non-empty. We next prove part (ii).
Auxiliary Lemma 1(ii) implies that for all a 2 A there exists c 2 UDWðAÞ such that c<Wa, and thus,
UDWðAÞ<W

898A. Since UDWðAÞ � A, by Proposition 4, we have A<W
898UDWðAÞ, and hence,

UDWðAÞ �W
898 A. Proposition 1 implies that <W

898 � <W
889 and hence �W

898 � �W
889. Thus we also have

UDWðAÞ �W
889 A.

Part (ii) implies part (i) when < is either <W
889 or <W

898. This is because, if � is the corresponding equivalence
relation, then UDWðAÞ � A and UDWðBÞ � B. Then, A<B implies UDWðAÞ � A<B � UDWðBÞ, and thus,
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UDWðAÞ<UDWðBÞ by transitivity of <. Similarly, UDWðAÞ<UDWðBÞ implies A<UDWðAÞ<UDWðBÞ<B
and thus, A<B.
Finally, we will prove that A<W

988B () UDWðAÞ<W
988UDWðBÞ. We have, by part (ii), A<W

898UDWðAÞ and
B<W

898UDWðBÞ. First suppose, A<W
988B. We have UDWðAÞ<W

898A<W
988B<W

898UDWðBÞ. Applying parts (a)
and (b) of Proposition 1 implies UDWðAÞ<W

988UDWðBÞ.
Now, assume that UDWðAÞ<W

988UDWðBÞ. We have A<W
898UDWðAÞ<W

988UDWðBÞ <W
898B. Applying again

parts (a) and (b) of Proposition 1 we obtain A<W
988B. h

Equivalence relation �W on M: We extend the notation �W as an equivalence relation on
M as follows: A �W B () for all a 2 A there exists b 2 B such that a �W b, and vice
versa, i.e., for all b 2 B there exists a 2 A such that a �W b. We then have, A �W

898 B if and
only if for every undominated element of A there exists an equivalent element in B, and vice
versa.

Lemma 1 Let W � U and let A 2 M. For B � A, B �W
889 A if and only if

S
b2B Opt

A
WðbÞ ¼ W. In particular,

S
a2A Opt

A
WðaÞ ¼ W.

Proof We first prove that
S

a2A Opt
A
WðaÞ ¼ W. By definition we have

S
a2A Opt

A
WðaÞ � W. Now, consider

any w 2 W. OwðAÞ is clearly non-empty (since A is finite and <w is a total pre-order), so let a be some
element of it. Then OptAWðaÞ 3 w, so

S
a2A Opt

A
WðaÞ 
 W.

Since B � A, we have B �W
889 A () B<W

889A () for all w 2 W and for all a 2 A there exists b 2 B such
that b<wa. This holds if and only if for all w 2 W there exists b 2 B such that for all a 2 A, b<wa, i.e., for all
w 2 W there exists b 2 B such that OptAWðbÞ 3 w, which is equivalent to

S
b2B Opt

A
WðbÞ 
 W, i.e.,

S
b2B Opt

A
WðbÞ ¼ W. h

In the following lemma we give some basic properties of the operator POW which can be
easily proved.

Auxiliary Lemma 2 Assume that W � U and A 2 M. Then, the following all hold.

(i) POWðAÞ is non-empty, and for all w 2 W, OwðAÞ is non-empty.
(ii) For all w 2 W and for all a 2 A n OwðAÞ there exists c 2 OwðAÞ such that c�wa,

and thus, there exists c 2 POWðAÞ such that c�wa.
(iii) For B � X we have A<W

889B () POWðAÞ<W
889B; and B<W

889A ()
B<W

889POWðAÞ. Thus, if B is also finite then A<W
889B () POWðAÞ<W

889POWðBÞ.
(iv) POWðAÞ �W

889 A.

Proposition 6 Consider any W � U and a set A 2 M.

(i) For B � A, if B �W
889 A then for all a 2 PSOWðAÞ there exists b 2 B with b �W a.

If, in addition, A is �W-free then B 
 PSOWðAÞ.
(ii) If a 2 A n PSOWðAÞ then

S
b2Anfag Opt

A
WðbÞ ¼ W and so A n fag �W

889 A.

(iii) For �W-free A, PSOWðAÞ is the set of all a 2 A such that A n fag 6 <W
889fag.
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Proof (i) Assume that B �W
889 A. By Lemma 1,

S
b2B Opt

A
WðbÞ ¼ W. Consider any a 2 PSOWðAÞ. Then

there exists w 2 W such that SOW
w ðAÞ 3 a. Also, there exists b 2 B such that OptAWðbÞ 3 w, and so,

OwðAÞ 3 b. The definition of SOW
w ðAÞ implies that b �W a. In particular, if A is �W -free then for all

a 2 PSOWðAÞ, a 2 B, so B 
 PSOWðAÞ.
(ii): Suppose that a 2 A n PSOWðAÞ and consider any w 2 W. Then OwðAÞ 6¼ fag so there exists
b 2 OwðAÞ n fag, and thus, OptAWðbÞ 3 w. This shows that

S
b2Anfag Opt

A
WðbÞ ¼ W, and thus, by Lemma 1,

A n fag �W
889 A.

(iii): Consider arbitrary a 2 A. We will prove part (iii) by showing that a 62 PSOWðAÞ () A n fag<W
889fag.

First suppose that a 62 PSOWðAÞ; then by Proposition 6(ii), A n fag �W
889 A, and thus, A n fag<W

889fag.
Now assume that A n fag<W

889fag, which implies, using Proposition 2, that A n fag �W
889 A. Since A is �W -

free, we have by part (i) that A n fag 
 PSOWðAÞ, showing that a 62 PSOWðAÞ. h

Proposition 7 Assume that W � U and A 2 M. Then the following hold:

(i) PSOWðAÞ � MPOWðAÞ \ UDWðAÞ � MPOWðAÞ � POWðAÞ � A.
(ii) OPWðAÞ �W

889 A if OPWðAÞ is any of the following: UDWðAÞ, POWðAÞ,
MPOWðAÞ, POWðAÞ \ UDWðAÞ, or MPOWðAÞ \ UDWðAÞ. Thus, A<W

889B ()
OPWðAÞ<W

889OPWðBÞ.

Proof (i) follows easily from the definitions. Regarding (ii): we first show that
MPOWðAÞ \ UDWðAÞ �W

889 A. Since MPOWðAÞ \ UDWðAÞ � A we have A<W
889MPOWðAÞ \ UDWðAÞ.

We need to show the converse, that MPOWðAÞ \ UDWðAÞ<W
889A. Consider any w 2 W and a 2 A; it is

sufficient to show that there exists b 2 MPOWðAÞ \ UDWðAÞ with b<wa. Finiteness of A implies that there
exists c 2 A such that (a) c 2 OwðAÞ, i.e., w 2 OptAWðcÞ, and (b) there does not exist d 2 A with
OptAWðdÞ%OptAWðcÞ, and thus, c 2 MPOWðAÞ. There exists b 2 UDWðAÞ with b<Wc, which implies that
b 2 MPOWðAÞ \ UDWðAÞ and b<wa, as required.
Now, if MPOWðAÞ \ UDWðAÞ � B � A then A<W

889B<W
889MPOWðAÞ \ UDWðAÞ<W

889A and so A �W
889 B.

Using part (i), we thus have OPWðAÞ �W
889 A if OPWðAÞ is any of the following: UDWðAÞ, POWðAÞ,

MPOWðAÞ, POWðAÞ \ UDWðAÞ, or MPOWðAÞ \ UDWðAÞ. h

Results in Sect. 5

Proposition 8 Consider an arbitrary set of scenarios W (� U) and suppose A;B 2 M with B � A.

(i) PSOWðAÞ \ B � PSOWðBÞ; and
(ii) if PSOWðAÞ �W

889 A, and PSOWðAÞ � B then PSOWðBÞ ¼ PSOWðAÞ;
(iii) if PSOWðBÞ �W

889 B for all B � A then PSOW satisfies path independence on 2A, i.
e., for any subsets B and C of A, PSOWðB [ CÞ ¼ PSOWðPSOWðBÞ [ CÞ.

Proof (i) Consider any a 2 PSOWðAÞ \ B. Then there exists w 2 W such that SOW
w ðAÞ contains a. If b 2 B

is such that a 6�W b then b 2 A and so, since a is strictly optimal within A in scenario w, we have a�wb,
which shows that a 2 SOW

w ðBÞ and hence, a 2 PSOWðBÞ.
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(ii) Now assume that PSOWðAÞ �W
889 A and PSOWðAÞ � B (� A). Part (i) implies PSOWðAÞ � PSOWðBÞ.

Consider now any element b 2 PSOWðBÞ; it is sufficient to show that b 2 PSOWðAÞ. So, to prove a
contradiction, let us assume that b 62 PSOWðAÞ. Let C ¼ fc 2 PSOWðBÞ : c �W bg. We have
C \ PSOWðAÞ ¼ ;, so PSOWðAÞ � PSOWðBÞ n C � PSOWðBÞ � A. Since PSOWðAÞ �W

889 A we have
PSOWðBÞ n C �W

889 PSOWðBÞ. Since b 2 PSOWðBÞ there exists w 2 W that makes b strictly optimal in B, i.
e., such that b 2 SOW

w ðBÞ. If c 2 BnC then f cðwÞ\f bðwÞ. In particular, this holds for c 2 PSOWðBÞ n C, and
thus, PSOWðBÞ n C 6�W

889 PSOWðBÞ, which is the required contradiction.
(iii) It is well known (see e.g., Proposition 1 of [21]) that path independence is equivalent to the pair of
properties expressed by (i) and (ii), so (iii) follows from (i) and (ii). h

Lemma 2 Suppose that subset T of W only contains w that are total over A given W. Then for all B � A,
PSOT ðBÞ ¼ POT ðBÞ.

Proof For any w that is total over A given W, we have OwðBÞ ¼ SOW
w ðBÞ, which implies the result, by

definitions of PSOT ðBÞ and POT ðBÞ. h

Lemma 4 Suppose that W is A-Extendable. Let V ¼ W6¼
A . Then, for any B;C � A, we have

(i) B<V
889C () B<W

889C.
(ii) PSOVðBÞ ¼ PSOWðBÞ.

Proof (i) ): Assume B<V
889C, and consider arbitrary c 2 C and w 2 W. Since W is A-Extendable, there

exists w0 that is total over A given W (so w0 2 V) that extends w over A. Since we have B<V
889C, there exists

b 2 B such that b<w0c. But, b<w0c implies that b<wc, showing that B<W
889C.

The ( part of (i) is immediate from monotonicity with respect to W (see Proposition 4).
(ii): First assume that b 2 PSOVðBÞ, so there exists w 2 V such that b 2 SOV

wðBÞ. But since, by Lemma 3,
b �V c () b �W c for b; c 2 A, we have SOV

wðBÞ ¼ SOW
w ðBÞ, and thus, b 2 SOW

w ðBÞ, so b 2 PSOWðBÞ.
Conversely, assume that b 2 PSOWðBÞ, so there exists w 2 W such that b 2 SOW

w ðBÞ. Since W is A-
Extendable, there exists w0 2 V that extends w over A. Consider any c 2 B such that c 6�V b, and so c 6�W b.
Since b 2 SOW

w ðBÞ, b�wc, and thus, b�w0c, since w0 extends w. This shows that b 2 SOV
w0 ðBÞ, and thus,

b 2 PSOVðBÞ, as required. h

Results in Sect. 6

We define for W � U and a; b 2 X,

– Wa� b ¼ fw 2 W : f aðwÞ� f bðwÞg;
– Wa[b ¼ fw 2 W : f aðwÞ[ f bðwÞg;
– Wa¼b ¼ fw 2 W : f aðwÞ ¼ f bðwÞg.
For instance, Wa� b is the set of scenarios w 2 W in which a is at least as good as b.
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Auxiliary Lemma 3 Assume that f a and f b are real-valued continuous functions on the metric space W. Then
Wa[ b and Wa6¼b are open subsets of W.

Proof Consider any a; b 2 X. The function G : W ! IR, given by GðwÞ ¼ fwðaÞ � fwðbÞ, is continuous.
Then Wa[ b ¼ G�1ðð0;1ÞÞ, and Wa6¼b ¼ G�1ðIR n f0gÞÞ. Since ð0;1Þ and IRnf0g are open subsets of the
reals, G�1ðð0;1ÞÞ and G�1ðIRnf0gÞÞ are open, so Wa[ b and Wa6¼b are open. h

Recall that OptAWðaÞ is the set of elements in W that make a optimal in A. Similarly, we

define SOptAWðaÞ to be the set of elements in W that make a strictly optimal in A.

Definition of SOptAWðaÞ:
We define, for a 2 A, SOptAWðaÞ to consist of all scenarios w 2 W in which a is strictly

optimal, i.e., a 2 SOW
w ðAÞ. Thus, a 2 PSOWðAÞ () SOptAWðaÞ 6¼ ;. Also, w 2

SOptAWðaÞ if and only if w 2 W and f aðwÞ[ f bðwÞ for all b 2 A such that a 6�W b.
The next two results give some basic properties.

Auxiliary Lemma 4 Let W � U and let A 2 M, and let a 2 A.

(i) OptAWðaÞ ¼
T

b2A Wa�b and SOptAWðaÞ ¼
T

b2A:a 6�Wb Wa[b.

(ii) W6¼
A �

S
c2A SOpt

A
WðcÞ.

Proof (i): w 2 OptAWðaÞ if and only if for all b 2 A, f aðwÞ� f bðwÞ, which is if and only if for all b 2 A,
w 2 Wa�b, i.e., w 2

T
b2A Wa�b.

Similarly, w 2 SOptAWðaÞ if and only if w 2 W and f aðwÞ[ f bðwÞ for all b 2 A such that a 6�W b, which is if
and only if w 2

T
b2A:a6�Wb Wa[ b.

(ii): Consider any w 2 W6¼
A , so that f

aðwÞ 6¼ f bðwÞ holds for all a; b 2 A with a 6�W b. Let a be an element of
A with maximal value of f aðwÞ. Then, for all b 2 A such that a 6�W b, we have f aðwÞ[ f bðwÞ; thus,
w 2 SOptAWðaÞ, proving that w 2

S
c2A SOpt

A
WðcÞ.

h

Auxiliary Lemma 5 Let A 2 M and assume, for each a 2 A, that the function f a is a real-valued continuous
function on the metric space W. Then SOptAWðaÞ is an open subset of W and OptAWðaÞ is a closed subset of
W.

Proof By Auxiliary Lemmas 4 and 3, SOptAWðaÞ is a finite intersection of open subsets of W, and thus is
open, and OptAWðaÞ is an intersection of closed subsets of W, and thus is closed. h

The small result below regarding closure of topological spaces will be useful in proving the
equivalence expressed in Lemma 5.
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Auxiliary Lemma 6 Let ðX ; sÞ be a topological space and for i ¼ 1; . . .;m, let Ti be subsets of X. If each Ti is
an open subset of X (i.e., Ti 2 s) then ClðT1 \ � � � \ TmÞ ¼ X if and only if for all i ¼ 1; . . .;m, ClðTiÞ ¼ X.

Proof For any i ¼ 1; . . .;m, ClðTiÞ is a closed set containing T1 \ � � � \ Tm, so
ClðT1 \ � � � \ TmÞ � ClðTiÞ � X. Hence, if ClðT1 \ � � � \ TmÞ ¼ X then for all i ¼ 1; . . .;m, ClðTiÞ ¼ X.
For the converse, we need to show that for all i ¼ 1; . . .;m, ClðTiÞ ¼ X implies that ClðT1 \ � � � \ TmÞ ¼ X.
It is sufficient to prove this for the case when m ¼ 2, since we can then apply this iteratively, to show that first
ClðT1 \ T2Þ ¼ X and then ClððT1 \ T2Þ \ T3Þ ¼ X, using the fact that T1 \ T2 is an open set, and so on, to
prove that ClððT1 \ � � � \ Tm�1Þ \ TmÞ ¼ X.
So, assume that ClðT1Þ ¼ ClðT2Þ ¼ X; we need to show that ClðT1 \ T2Þ ¼ X. Let S ¼ X n ClðT1 \ T2Þ,
which is an open set. We have ðS \ T1Þ \ T2 ¼ ;, and S \ T1 is an open set, so ClðT2Þ ¼ X implies that
S \ T1 ¼ ; (else X n ðS \ T1Þ is a closed set between T2 and X). Similarly, ClðT1Þ ¼ X then implies that
S ¼ ;, so ClðT1 \ T2Þ ¼ X. h

Proposition 9 Assume that each a in finite set A is associated with a vector â 2 IRp. LetW be a convex subset
of IRp, and define, for each a 2 A, the function f a by f aðwÞ ¼ â � w, representing the utility of alternative a in
scenario w. Then the set of functions ff a : a 2 Ag satisfies the Identity Property.

Proof Consider any a; b 2 A and any non-empty open subset T of W, and suppose that f aðwÞ ¼ f bðwÞ for all
w 2 T . To prove the Identity property it is sufficient to show that f aðwÞ ¼ f bðwÞ for all w 2 W. Consider an
arbitrary element w of W, and any element u of T. Because T is an open subset of W, it contains some open
ball around u, and so there exists some �[ 0 such that �wþ ð1� �Þu is in T. Let v ¼ �wþ ð1� �Þu. Since
u 2 T we have â � u ¼ b̂ � u, and hence ðâ� b̂Þ � u ¼ 0. Since v 2 T we have ðâ� b̂Þ � v ¼ 0. Thus,

0 ¼ ðâ� b̂Þ � v ¼ �ðâ� b̂Þ � wþ ð1� �Þðâ� b̂Þ � u ¼ �ðâ� b̂Þ � w, which implies that ðâ� b̂Þ � w ¼ 0, and
therefore, f aðwÞ ¼ f bðwÞ. h

Lemma 5 Let A 2 M and assume, for each a 2 A, that the function f a is a real-valued continuous function on
the metric space W. The three conditions below are equivalent, i.e., if one holds then the other two also hold.

(a) The set of functions ff a : a 2 Ag on W satisfies the Identity property.
(b) For all a; b 2 A with a 6�W b, we have ClðWa6¼bÞ ¼ W.

(c) ClðW6¼
AÞ ¼ W.

Proof Note that, for a;b 2 A we have a �W b if and only if f a and f b agree on W. Consider an arbitrary pair
of elements a;b 2 A such that a 6�W b. To prove the equivalence of (a) and (b) it is sufficient to show that (I)
f a and f b agree on some non-empty open subset T of W if and only if (II) ClðWa6¼bÞ 6¼ W. (This is because
(a) fails to hold if and only if there exists a and b with a 6�W b such that (I) holds; and (b) fails to hold if and
only there exists a and b with a 6�W b and (II).) But (I) implies that Wa 6¼b � W n T , where W n T is closed,
and thus, ClðWa6¼bÞ � W n T 6¼ W, showing (II). Conversely, (II) implies that WnClðWa6¼bÞ is a non-empty
open subset on which f a and f b agree, showing (I).

Now, using Auxiliary Lemma 3, W6¼
A is the intersection of a finite number of open sets, i.e.,T

a;b2A:a6�Wb Wa6¼b, and thus, the equivalence of (b) and (c) follows immediately from Auxiliary Lemma 6. h
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Lemma 6 Let A 2 M and assume, for each a 2 A, that the function f a is a real-valued continuous function on

the metric space W. If W equals the topological closure ClðW6¼
AÞ of W

6¼
A then W is A-Extendable.

Proof Assume that ClðW6¼
AÞ ¼ W, and consider any w 2 W. To show that W is A-Extendable, we need to

show that there exists w0 that is total over A given W that extends w over A.
Let d be the minimum value of jfwðaÞ � fwðbÞj over all a;b 2 A such that fwðaÞ 6¼ fwðbÞ. Because A is finite,

we have d[ 0. Since the topological of closure of W6¼
A equals W, there exists a sequence of elements of W6¼

A

that tend to w. In particular, there exists some w0 2 W6¼
A such that jfwðaÞ � fw0 ðaÞj\d=3 for all a 2 A. By

definition of d, we have, for any a;b 2 A, that fwðaÞ � fwðbÞ[ 0 implies fwðaÞ � fwðbÞ� d. Then, fw0 ðaÞ �
fw0 ðbÞ ¼ ðfw0 ðaÞ � fwðaÞÞ þ ðfwðbÞ � fw0 ðbÞÞþ ðfwðaÞ � fwðbÞÞ[ � d

3 � d
3 þ d ¼ d

3 [ 0. Thus,
fw0 ðaÞ[ fw0 ðbÞ. We have shown that, for any a;b 2 A if a�wb then a�w0b; this implies that w0 extends w
over A, where w0 is total over A given W. h

Proposition 11 Let C 2 M and assume, for each a 2 C, that the function f a is a real-valued continuous
function on the metric space W, and that the set of functions ff a : a 2 Cg satisfies the Identity property.
Suppose that A � C. For a 2 A, we have a 2 PSOWðAÞ if and only if OptAWðaÞ contains a non-empty open
set, i.e., has a non-empty interior.

Proof We first show that ClðW0Þ ¼ W, where W0 ¼
S

c2A SOpt
A
WðcÞ, which is equal to

S
c2PSOWðAÞ SOpt

A
WðcÞ, since SOptAWðcÞ is empty if c 62 PSOWðAÞ. By Auxiliary Lemma 4,

W6¼
A � W0 � W, and thus, since ClðW6¼

AÞ ¼ W (by Lemma 5), we have ClðW0Þ ¼ W.
Now suppose that a 2 PSOWðAÞ. Then SOptAWðaÞ is a non-empty subset of OptAWðaÞ, and it is open by
Auxiliary Lemma 5. Conversely, suppose that OptAWðaÞ contains a non-empty open set T. If SOptAWðaÞ is non-
empty then a 2 PSOWðAÞ and we’re done; so, to prove a contradiction, assume that SOptAWðaÞ is empty. For
b with a 6�W b we have SOptAWðbÞ \ OptAWðaÞ ¼ ; so SOptAWðbÞ \ T ¼ ;; this also holds for all b 2 A with
a �W b, since for such b we have SOptAWðbÞ ¼ SOptAWðaÞ ¼ ;. Hence, W0 \ T ¼ ; (recall that
W0 ¼

S
c2A SOpt

A
WðcÞ). This implies that W n T is a closed set containing W0 and thus, ClðW0Þ � W n T;

but ClðW0Þ ¼ W, which contradicts the assumption that T is non-empty.
h

Corollary 3 Assume that W is a convex subset of IRp, and consider A 2 M and assume that for each a 2 A
there exists â 2 IRp such that for all w 2 IRp, fwðaÞ ¼ w � â. Then MPOWðAÞ ¼ PSOWðAÞ.

Proof We always have MPOWðAÞ 
 PSOWðAÞ (see Proposition 7) so it is sufficient to show that
MPOWðAÞ � PSOWðAÞ, by showing that an arbitrary element c of MPOWðAÞ is in PSOWðAÞ.
Let A0 consist of all a 2 PSOWðAÞ such that a 6�W c. Corollary 2 implies that PSOWðAÞ �W

889 A and thus,
that PSOWðAÞ is non-empty. If A0 were empty then we would have c 2 PSOWðAÞ, as required. Let us now
consider the case in which A0 is non-empty. For any a 2 A0, by definition of PSOWðAÞ, we do not have
OptAWðaÞ ¼ OptAWðcÞ, so, because c 2 MPOWðAÞ, OptAWðcÞ 6� OptAWðaÞ, and hence there exists wa 2 W such
that wa 2 OptAWðcÞ n OptAWðaÞ. Let w equal 1

jA0 j
P

a2A0 wa. Convexity of W implies that w 2 W. Consider any

b 2 A0. Since, for any a 2 A0, wa 2 OptAWðcÞ, wa � ĉ� wa � b̂� 0, and this is strictly positive if a ¼ b, since

wa 62 OptAWðaÞ. Thus, w � ĉ� w � b̂ ¼ 1
jA0 j

P
a2A0 ðwa � ĉ� wa � b̂Þ[ 0. This shows that w 62 OptAWðbÞ for all

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 51 of 66    44 



b 2 A0, and w 2 OptAWðcÞ, which implies that c 2 PSOWðBÞ where B ¼ PSOWðAÞ [ fcg. Corollary 2 implies
that PSOWðAÞ �W

889 A. Since, PSOWðAÞ � B � A, Proposition 8 implies that PSOWðBÞ ¼ PSOWðAÞ, and
hence, c 2 PSOWðAÞ, as required. h

Results in Sect. 7

We define FilterðA; a;<W
898Þ and FilterrðA;<W

898Þ analogously to FilterðA; a;<W
889Þ and

FilterrðA;<W
889Þ, respectively.

Auxiliary Lemma 7 Let < be either <W
889 or <W

898, and let � be the corresponding equivalence relation. Let
A;A0 2 M and let r be any labelling of A. Then we have:

(i) If A0 � A and A0<A n A0 then A � A0;
(ii) for B � A, FilterðA;B;<Þ � A.
(iii) A � FilterrðA;<Þ � A.
(iv) FilterrðA;<W

898Þ � UDWðAÞ.
(v) FilterrðA;<W

898Þ �W UDWðAÞ.
(vi) SMEWðAÞ ¼ fFilterrðA;<W

889Þ : r 2 Kg.
(vii) FilterrðA;<W

889Þ � POWðAÞ.

Proof Part (i) follows immediately using Proposition 2. (ii) follows from (i). (iii) follows from iterative
application of (ii).
Regarding (iv) and (v): suppose that ai 2 A n FilterrðA;<W

898Þ. Then, using the notation above, Ai 63 ai, i.e.,
ai 62 FilterðAi�1; ai;<W

898Þ, and thus, there exists c 2 Ai�1 with c<Wa. If ai 2 UDWðAÞ this implies that
c �W a. Applying this iteratively, we see that if ai 2 UDWðAÞ n FilterrðA;<W

898Þ then there exists c 2
FilterrðA;<W

898Þ with c �W ai.
Now assume that ai 2 A n UDWðAÞ; then, by Auxiliary Lemma 1, there exists b 2 UDWðAÞ with b�Wai; by
the above argument, there exists c 2 FilterrðA;<W

898Þ with c �W b and thus, c�Wai. We have
c 2 FilterrðA;<W

898Þ � Ai�1, which implies that ai 62 Ai, and thus, ai 62 FilterrðA;<W
898Þ. This proves (iv)

FilterrðA;<W
898Þ � UDWðAÞ.

We showed that for a 2 UDWðAÞ there exists c 2 FilterrðA;<W
898Þ with c �W a; and also,

FilterrðA;<W
898Þ � UDWðAÞ. Together these imply (v): FilterrðA;<W

898Þ �W UDWðAÞ.
(vi) Firstly, we observe that if a 2 FilterrðA;<Þ then FilterrðA;<Þ n fag 6 <fag. (This follows using the fact
that if ai ¼ a then Ai ¼ FilterðAi�1; faig;<Þ 3 ai in the sequence of sets, i.e., Ai�1 n faig 6 <faig, which, by
monotonicity, implies FilterrðA;<Þ n faig 6 <faig, since FilterrðA;<Þ � Ai�1.) This implies, using Propo-
sition 2, that no strict subset of FilterrðA;<Þ is equivalent to A. In particular, for the case in which < equals
<W

889, we obtain that FilterrðA;<W
889Þ 2 SMEWðAÞ.

Conversely, for B 2 SMEWðAÞ; to complete the proof of (vi) we will show that there exists r 2 K such that
FilterrðA;<W

889Þ ¼ B. We choose r to list the elements of B last. Now, B<W
889A, and so, B<W

889fag for each
a 2 A n B. This implies that FilterrðA;<W

889Þ � B. Since, we have FilterrðA;<W
889Þ �W

889 A, and
B 2 SMEWðAÞ, by definition of SMEWðAÞ we have FilterrðA;<W

889Þ ¼ B.
(vii): By part (vi) it is sufficient to prove that if B 2 SMEWðAÞ then B � POWðAÞ. We will show that if
a 2 A n POWðAÞ then B n fag �W

889 B which implies a 62 B, by definition of SMEWðAÞ.
So, assume that a 62 POWðAÞ. Then OptAWðaÞ ¼ ; so

S
b2Bnfag Opt

A
WðbÞ ¼

S
b2B OptAWðbÞ, which equals W

using Lemma 1, using the fact that B �W
889 A (since B 2 SMEWðAÞ). Applying Lemma 1 again, we have that

B n fag �W
889 B. h

123

   44 Page 52 of 66 Auton Agent Multi-Agent Syst           (2022) 36:44 



Proposition 12 immediately follows, using Auxiliary Lemma 7, and with part (iii) also using
Theorem 1. More specifically, part (i) is implied by Auxiliary Lemma 7(iii); part (ii) is
Auxiliary Lemma 7(vi); and, under the assumptions of part (iii), Theorem 1 implies that
SMEWðAÞ ¼ fPSOWðAÞg, so part (ii) then implies that FilterrðA;<W

889Þ ¼ PSOWðAÞ for
every labelling r.

Lemma 7 Let W (� U) be a set of scenarios and let A 2 M. MPOWðAÞ is the set of OptAW -undominated
elements (of A). OptAW -dominance is an irreflexive transitive relation on A, and if a is OptAW -dominated then
there exists OptAW -undominated b that OptAW -dominates a.

Proof a 2 MPOWðAÞ if and only if there does not exist b 2 A with OptAWðbÞ%OptAWðaÞ, i.e., a is OptAW -

undominated. The definition immediately implies that OptAW -dominance is an irreflexive transitive relation.
Together with finiteness of A this implies that if a is OptAW -dominated then there exists OptAW -undominated b
that OptAW -dominates a. h

Results in Sect. 8

Proposition 14 and Proposition 15 follow immediately from parts of the following lemma.

Auxiliary Lemma 8

(i) SMRWðA;BÞ is monotonically decreasing in A, monotonically increasing in B
and monotonically increasing in W, i.e., if A0 
 A, and B0 � B, and W0 � W
then SMRW0ðA0;B0Þ 	 SMRWðA;BÞ.

(ii) SMRWðA;BÞ ¼ maxb2B SMRWðA; fbgÞ
(iii) SMRWðA;BÞ	 0 if and only if A<W

889B.
(iv) If SMRWðA;BÞ is achieved then SMRWðA;BÞ� 0 if and only if

POWðA [ BÞ \ B 6¼ ;.
(v) If A0 �W

889 A and B0 �W
889 B then SMRWðA0;B0Þ ¼ SMRWðA;BÞ.

(vi) If A0 � A and B0 � B and A0<W
889A n A0 and B0<W

889B n B0 then
SMRWðA0;B0Þ ¼ SMRWðA;BÞ.

(vii) If B0 � B and A<W
889B n B0 and SMRWðA;BÞ� 0 then SMRWðA;B0Þ ¼

SMRWðA;BÞ.
(viii) SMRWðA;BÞ ¼ maxa2POWðAÞ SMROptAWðaÞðfag;BÞ.
(ix) For equivalence-free A, and a 2 A, SMRWðA n fag; fagÞ[ 0 if and only if

a 2 PSOWðAÞ.

Proof It is convenient to note that SMRWðA;BÞ can be written as supw2W RegwðA;BÞ, where RegwðA;BÞ is
defined to be maxb2B fwðbÞ �maxa2A fwðaÞ.
(i): The fact that A0 
 A and B0 � B implies that for all w 2 U, RegwðA0;B0Þ 	RegwðA;BÞ. Then
SMRW0 ðA;BÞ ¼ supw2W0 RegwðA0;B0Þ 	 supw2W RegwðA0;B0Þ 	 supw2W RegwðA;BÞ ¼ SMRWðA;BÞ.
(ii): maxb2B SMRWðA; fbgÞ ¼ maxb2B supw2W RegwðA; fbgÞ, which equals supw2W maxb2B

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 53 of 66    44 



RegwðA; fbgÞ ¼ supw2W RegwðA;BÞ ¼ SMRWðA;BÞ.
(iii): SMRWðA;BÞ	 0, i.e., supw2W UtBðwÞ � UtAðwÞ	 0, if and only if UtBðwÞ	UtAðwÞ for all w 2 W,
which is if and only if A<W

889B, by Proposition 3.
Regarding (iv): Assume that SMRWðA;BÞ is achieved; then SMRWðA;BÞ� 0 if and only if there exists
w 2 W such that RegwðA;BÞ� 0. Now, RegwðA;BÞ� 0 if and only if maxb2B fwðbÞ �maxa2A fwðaÞ� 0,
which is if and only if there exists b 2 B such that for all c 2 A [ B, fwðbÞ� fwðcÞ. This implies that
RegwðA;BÞ� 0 if and only if i.e., B \ OwðA [ BÞ is non-empty. Thus, SMRWðA;BÞ� 0 if and only if
B \

S
w2W OwðA [ BÞ is non-empty, i.e., POWðA [ BÞ \ B 6¼ ;.

(v) follows because SMRW just depends on the utility function. This then implies (vi), using Proposition 2.
Regarding (vii): Assume that B0 � B and A<W

889B n B0 and SMRWðA;BÞ� 0. (ii) implies that
SMRWðA;BÞ ¼ maxðSMRWðA;B0Þ; SMRWðA;B n B0ÞÞ, and (iii) implies that SMRWðA;B n B0Þ 	 0. Thus,
SMRWðA;B0Þ � SMRWðA;B n B0Þ and so SMRWðA;B0Þ ¼ SMRWðA;BÞ.
(viii): SMRWðA;BÞ ¼ supw2W UtBðwÞ � UtAðwÞ, which can be written as maxa2POWðAÞ
supw2OptAWðaÞ UtBðwÞ � UtAðwÞ, since

S
a2POWðAÞ Opt

A
WðaÞ ¼

S
a2A OptAWðaÞ ¼ W, using Lemma 1. For

w 2 OptAWðaÞ, UtAðwÞ ¼ fwðaÞ, so supw2OptAWðaÞ UtBðwÞ � UtAðwÞ ¼ supw2OptAWðaÞ UtBðwÞ � fwðaÞ, which

equals SMROptAWðaÞðfag;BÞ, showing the result.

(ix): Consider equivalence-free A, and a 2 A. Then, SMRWðA n fag; fagÞ[ 0 ()
supw2W fwðaÞ � UtAnfagðwÞ[ 0, which is if and only if there exists w 2 W such that for all c 2 A n fag,
fwðaÞ[ fwðcÞ, which, since A is equivalence-free, holds if and only if PSOWðAÞ 3 a. h

Lemma 8 Consider any A;B 2 M.

(i) If A0 �W
889 A and B0 �W

889 B then SMRWðA0;B0Þ ¼ SMRWðA;BÞ.
(ii) SMRWðUDWðAÞ;UDWðBÞÞ ¼ SMRWðA;BÞ.
(iii) If B0 � B and A<W

898B n B0 and SMRWðA;BÞ� 0 then SMRWðA;B0Þ ¼
SMRWðA;BÞ.

Proof (i) follows immediately from Auxiliary Lemma 8(v).
(ii): By Proposition 5, UDWðAÞ �W

889 A and UDWðBÞ �W
889 B. Part (i) then implies the result.

(iii): Assume B0 � B and A<W
898B n B0 and SMRWðA;BÞ� 0. Auxiliary Lemma 8(ii) implies

SMRWðA;BÞ ¼ maxðSMRWðA;B0Þ; SMRWðA;B n B0ÞÞ. Because A<W
898B n B0, we have by Auxiliary Lemma 8

(iii) that SMRWðA;B n B0Þ 	 0. Thus, SMRWðA;B n B0Þ 	 SMRWðA;B0Þ and therefore,
SMRWðA;B0Þ ¼ SMRWðA;BÞ. h

Results in Sect. 9

Proposition 16 Consider A 2 M and W � IRp.

(i) a is a feasible answer to query A given W if and only if a 2 POWðAÞ.
(ii) If the set of functions ff a : a 2 Ag satisfies the Identity property, we have that a is a

strongly feasible answer to query A given W if and only if a 2 PSOWðAÞ.

Proof (i): a is a feasible answer to query A given W if and only if OptAWðaÞ is non-empty, i.e., a 2 POWðAÞ.
(ii) follows immediately from Proposition 11. h
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Results in Sect. 10

We first give two basic lemmas involving the set J aW defined below.

Definition 17 For any W � U, and any a 2 IRp we define J aW to be the set fðw; rÞ : w 2 W & r� fwðaÞg.

Auxiliary Lemma 9

(i) If W is closed and fwðaÞ is a continuous function of w then J aW is a closed subset of
IRp  IR.

(ii) If W is convex and fwðaÞ is a convex function of w then J aW is convex. (fwðaÞ is a
convex function means that for any s 2 ð0; 1Þ, and any w1;w2 2 IRp,
fwðaÞ	 sfw1ðaÞ þ ð1� sÞfw2ðaÞ where w ¼ sw1 þ ð1� sÞw2.)

Proof (i): Showing J aW is closed if W is closed and fwðaÞ is continuous: Suppose ðw; rÞ 62 J aW . Either (a)
w 62 W or (b) r\fwðaÞ. If (a) w 62 W then the fact that W is closed implies that there’s an open set S in IRp

containing w and such that S \W ¼ ;. Let S0 ¼ S  ða; bÞ for any open interval (a, b) of IR containing r.
Then S0 is an open ball in IRp  IR, and ðw; rÞ 2 S0 and S0 \ J aW ¼ ;.
If (b) r\fwðaÞ: let � ¼ 1

3 ðfwðaÞ � rÞ. By continuity of fwðaÞ, there exists d[ 0 such that for all w0 2 IRp with
jw0 � wj\d we have jfw0 ðaÞ � fwðaÞj\�. Let Sd ¼ fw0 2 IRp : jw0 � wj\dg. Let S00 ¼ Sd  ðr � �; r þ �Þ
which contains ðw; rÞ. For any ðw0; r0Þ 2 S00, jfw0 ðaÞ � fwðaÞj\� and jr0 � rj\� so jfw0 ðaÞ � r0j[ �, since
jfwðaÞ � rj ¼ 3�. Thus, S00 is an open set containing ðw; rÞ that is disjoint from J aW .
We’ve shown that for any ðw; rÞ 62 J aW there exists an open set containing ðw; rÞ that is disjoint from J aW ,
which proves that ðIRp  IRÞ n J aW is an open subset of IRp  IR, and thus, J aW is a closed subset.
(ii): Showing J aW is convex if W is convex and fwðaÞ is a convex function: Consider any
ðw1; r1Þ; ðw2; r2Þ 2 J aW , let s 2 ð0; 1Þ and let ðw0; r0Þ ¼ sðw1; r1Þ þ ð1� sÞðw2; r2Þ, so that w0 ¼ sw1 þ ð1�
sÞw2 and r0 ¼ sr1 þ ð1� sÞr2. Since, ðw1; r1Þ; ðw2; r2Þ 2 J aW we have r1 � fw1 ðaÞ and r2 � fw2 ðaÞ. Since fwðaÞ
is a convex function of w we have fw0 ðaÞ	 sfw1 ðaÞ þ ð1� sÞfw2 ðaÞ	 sr1 þ ð1� sÞr2 ¼ r0. Thus,
ðw0; r0Þ 2 J aW , proving that J aW is convex. h

Auxiliary Lemma 10 Consider any finite subset A of IRp, and any W � U, and any a 2 IRp. Then:

(i) CðW; fagÞ ¼ J aW ;
(ii) CðW;AÞ ¼

T
a2A CðW; fagÞ ¼

T
a2A J

a
W .

(iii) If W is closed and for all a 2 A, fwðaÞ is continuous then CðW;AÞ is closed.
(iv) If W is convex and for all a 2 A, fwðaÞ is a convex function of w then CðW;AÞ is

convex.
(v) If W is a convex polytope and for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â then CðW;AÞ is

a convex polytope.

Proof (i): ðw; rÞ 2 CðW; fagÞ if and only if w 2 W and r�UtfagðwÞ ¼ fwðaÞ, so CðW; fagÞ ¼ J aW .
(ii): Given w 2 W, we have ðw; rÞ 2 CðW;AÞ if and only if and r�UtAðwÞ ¼ maxa2A fwðaÞ if and only if for
all a 2 A, r� fwðaÞ, which, by part (i), is if and only if for all a 2 A, ðw; rÞ 2 CðW; fagÞ. Thus,
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CðW;AÞ ¼
T

a2A CðW; fagÞ ¼
T

a2A J
a
W .

(iii): Assume thatW is closed and for all a 2 A, fwðaÞ is continuous. Auxiliary Lemma 9(i) implies that for all
a 2 A, J aW is closed, which implies that CðW;AÞ is closed using (ii), since an intersection of closed sets is
closed.
(iv): Assume thatW is convex and for all a 2 A, fwðaÞ is a convex function of w. Then Auxiliary Lemma 9(ii)
implies that for all a 2 A, J aW is convex, which implies that CðW;AÞ is convex using (ii), since an intersection
of convex sets is convex.
(v): Assume that W is a convex polytope and for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Then, for each a 2 A, J aW is
the intersection of W  IR with a closed half-space, and is thus a convex polytope. Therefore, using (ii),
CðW;AÞ is a convex polytope, since it is the intersection of a finite number of convex polytopes. h

The following technical lemma is important in proving Auxiliary Lemmas 12 and 13 and
thus Theorem 4.

Definition 18 Suppose that A is a finite subset of IRp, andW is a compact subset of IRp, and that for all a 2 A,
fwðaÞ is a continuous function of w 2 W. Define MaxUtWA to be maxa2A supw2W fwðaÞ.

Note that the assumed conditions ensure that MaxUtWA is finite, because a continuous
function on a compact set is bounded. MaxUtWA is also equal to supw2W UtAðwÞ.

For E � IRp we let CHðEÞ be the convex hull of E.

Auxiliary Lemma 11 Assume that W is a compact and convex subset of IRp, and for all a 2 A, fwðaÞ is a
convex and continuous function of w 2 W. There exists real value N such that for all w 2 W, N [UtAðwÞ; in
particular, this holds for any N [MaxUtWA . Define CN ðW;AÞ to be the intersection of CðW;AÞ with the half-
space fðw; rÞ : r	Ng. Assume that W is a convex polytope. Then

(i) CN ðW;AÞ is compact and convex.
(ii) CHðExtðCN ðW;AÞÞÞ ¼ CN ðW;AÞ.
(iii) If ðw; rÞ 2 ExtðCðW;AÞÞ then r ¼ UtAðwÞ.
(iv) ExtðCðW;AÞÞ � CN ðW;AÞ.
(v) ExtðCðW;AÞÞ � ExtðCN ðW;AÞÞ.
(vi) If ðw; rÞ 2 ExtðCN ðW;AÞÞnExtðCðW;AÞÞ then r ¼ N .

Proof Firstly, UtAðwÞ is a continuous function on compact set W so is bounded; we can therefore choose N
and M such that for all w 2 W, M\UtAðwÞ\N . Since for all w 2 W, UtAðwÞ	MaxUtWA , if N 0 [MaxUtWA
then for all w 2 W, UtAðwÞ\N 0.
(i) CN ðW;AÞ is bounded and thus compact, since it is a subset of the cylinderW  ½M ;N �, andW is compact.
CN ðW;AÞ is therefore compact and convex. Using a well-known property of extreme points (e.g., the Krein-
Milman theorem), this implies (ii) CHð ExtðCN ðW;AÞÞÞ ¼ CN ðW;AÞ.
(iii) immediately follows from the fact that the line fðw; r0Þ : r0 �UtAðwÞg is a subset of CðW;AÞ. Since, we
have N [UtAðwÞ, this implies (iv) ExtðCðW;AÞÞ � CN ðW;AÞ. This also implies (v)
ExtðCðW;AÞÞ � ExtðCN ðW;AÞÞ, since if it were the case that ðw; rÞ 2 ExtðCðW;AÞÞ n ExtðCN ðW;AÞÞ then
there would exist a line segment, containing ðw; rÞ as an internal point, within CN ðW;AÞ, and thus, within
CðW;AÞ, which contradicts ðw; rÞ 2 ExtðCðW;AÞÞ.
(vi): Assume that ðw; rÞ 2 ExtðCN ðW;AÞÞ n ExtðCðW;AÞÞ. Now, ðw; rÞ 2 CðW;AÞ n ExtðCðW;AÞÞ, so there
exists a line segment L within CðW;AÞ which has ðw; rÞ as an internal point. Let L0 be the line segment
intersected with the half-space fðw; r0Þ : r0 	Ng. Then L0 � CN ðW;AÞ. Since ðw; rÞ 2 ExtðCN ðW;AÞÞ,
ðw; rÞ cannot be an internal point of L0, (and r 6¼ UtAðwÞ because ðw;UtAðwÞÞ is not an internal point of L)
and so r must equal N. h
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Auxiliary Lemma 12 Assume that W is a compact and convex subset of IRp, and for all a 2 A, fwðaÞ is a
convex and continuous function of w 2 W. Let HðW;AÞ ¼ fðw;UtAðwÞÞ : w 2 Wg. Then
CHðExtðCðW;AÞÞÞ contains HðW;AÞ, i.e., for all w 2 W, CHðExtðCðW;AÞÞÞ contains ðw;UtAðwÞÞ.

Proof Consider any w 2 W. By definition, ðw;UtAðwÞÞ 2 CðW;AÞ. Choose any N [MaxUtWA ; by Auxiliary
Lemma 11, for all w 2 W, N [UtAðwÞ, and ðw;UtAðwÞÞ 2 CN ðW;AÞ. Using Auxiliary Lemma 11(ii),
CHðExtðCN ðW;AÞÞÞ 3 ðw;UtAðwÞÞ so we can write ðw;UtAðwÞÞ as

PJ
j¼1 sjqj where qj 2 ExtðCN ðW;AÞÞ,

and the sj are non-negative reals that sum to 1. We will show that sj ¼ 0 unless qj 2 ExtðCðW;AÞÞ. This then
implies that ðw;UtAðwÞÞ 2 CHðExtðCðW;AÞÞÞ, proving Auxiliary Lemma 12.
So, suppose that there exists k with sk [ 0 and qk 2 CHðExtðCN ðW;AÞÞÞ nExtðCðW;AÞÞ. By Auxiliary
Lemma 11(vi), qk ¼ ðw0;NÞ for some w0 2 W and N [UtAðw0Þ. Let q0 ¼

PJ
j¼1 sjq

0
j, where

q0k ¼ ðw0;UtAðw0ÞÞ, and q0j ¼ qj for j 6¼ k. Then for all j, q0j 2 CðW;AÞ and so, by convexity of CðW;AÞ,
q0 2 CðW;AÞ. Also, q0 can be written as ðw; r0Þ for some r0, and r0\UtAðwÞ (see below). The definition of
CðW;AÞ implies that ðw; r0Þ 62 CðW;AÞ, giving the required contradiction.
In more detail, we have ðw;UtAðwÞÞ � q0 ¼

PJ
j¼1 sjðqj � q0jÞ ¼ skðqk � q0kÞ ¼ skððw0;NÞ�

ðw0;UtAðw0ÞÞÞ ¼ skð0;N � UtAðw0ÞÞ. Then, q0 ¼ ðw; r0Þ where r0 ¼ UtAðwÞ � skðN � UtAðw0ÞÞ\UtAðwÞ.h

The following result states that CðW;AÞ is determined by its extreme points, even though it
is not compact.

Auxiliary Lemma 13 Consider any finite subsets A and B of IRp, and any compact and convex subset W of
IRp, and assume that for all a 2 A [ B, fwðaÞ is a convex and continuous function of w 2 W. Then CðW;AÞ ¼
CðW;BÞ () ExtðCðW;AÞÞ ¼ ExtðCðW;BÞÞ.

Proof If CðW;AÞ ¼ CðW;BÞ then obviously ExtðCðW;AÞÞ ¼ ExtðCðW;BÞÞ. Regarding the converse,
assume that ExtðCðW;AÞÞ ¼ ExtðCðW;BÞÞ. For any w 2 W, ðw;UtAðwÞÞ 2 CðW;AÞ and ðw; rÞ 2 CðW;AÞ
if and only if r�UtAðwÞ. Now, Auxiliary Lemma 12 implies that ðw;UtBðwÞÞ is in the convex hull of
ExtðCðW;BÞÞ, and thus, in the convex hull of ExtðCðW;AÞÞ; hence, by convexity of CðW;AÞ, we have
ðw;UtBðwÞÞ 2 CðW;AÞ, which shows that UtBðwÞ�UtAðwÞ, which holds for an arbitrary element w of W.
This implies CðW;AÞ 
 CðW;BÞ. Switching the roles of A and B in the argument shows also
CðW;AÞ � CðW;BÞ, and thus, CðW;AÞ ¼ CðW;BÞ. h

Theorem 4 Consider any finite subsets A and B of IRp, any b 2 IRp, and any compact and convex subsetW of
IRp, and assume that for all a 2 A [ B [ fbg, fwðaÞ is a convex and continuous function of w 2 W.

(i) A<W
889B () CðW;AÞ � CðW;BÞ () CðW;AÞ ¼ CðW;A [ BÞ.

(ii) A<W
889B if and only if ExtðCðW;AÞÞ ¼ ExtðCðW;A [ BÞÞ.

(iii) A<W
889B holds if and only if for all ðw; rÞ 2 ExtðCðW;AÞÞ and for all b 2 B we

have fwðbÞ	 r.
(iv) SMRWðA; fbgÞ ¼ max ffwðbÞ � r : ðw; rÞ 2 ExtðCðW;AÞÞg.

123

Auton Agent Multi-Agent Syst           (2022) 36:44 Page 57 of 66    44 



Proof Regarding (i): Proposition 3 implies that A<W
889B () for all w 2 W, UtAðwÞ�UtBðwÞ, which is if

and only if CðW;AÞ � CðW;BÞ. Using Auxiliary Lemma 10, CðW;A [ BÞ ¼ CðW;AÞ \ CðW;BÞ. This
implies CðW;AÞ � CðW;BÞ () CðW;AÞ ¼ CðW;A [ BÞ.
(ii): By (i), A<W

889B if and only if CðW;AÞ ¼ CðW;A [ BÞ, which, by Auxiliary Lemma 13 is if and only if
ExtðCðW;AÞÞ ¼ ExtðCðW;A [ BÞÞ.
(iii): Using (i), A<W

889fbg holds if and only if CðW;AÞ � CðW; fbgÞ. Now, CðW;AÞ � CðW; fbgÞ ()
HðW;AÞ � CðW; fbgÞ which is if and only if CHðExtðCðW;AÞÞÞ � CðW; fbgÞ because
HðW;AÞ � CHðExtðCðW;AÞÞÞ � CðW;AÞ, by Auxiliary Lemma 12. Because, by Auxiliary Lemma 10,
CðW; fbgÞ is convex, CHðExtðCðW;AÞÞÞ � CðW; fbgÞ holds if and only if ExtðCðW;AÞÞ � CðW; fbgÞ,
which, using Auxiliary Lemma 10(i), is if and only if for all ðw; rÞ 2 ExtðCðW;AÞÞ, fwðbÞ	 r. Then A<W

889B
holds if and only if for all b 2 B, A<W

889fbg, which holds if and only if for all ðw; rÞ 2 ExtðCðW;AÞÞ and for
all b 2 B we have fwðbÞ	 r.
(iv): For real value x, let us define bx to be such that fwðbxÞ ¼ fwðbÞ � x. Clearly,
SMRWðA; fbxgÞ ¼ SMRWðA; fbgÞ � x. Thus, by Auxiliary Lemma 8(iii), A<W

889fbxg if and only if
SMRWðA; fbxgÞ	 0, which is if and only if SMRWðA; fbgÞ	 x.
So, SMRWðA; fbgÞ	 x if and only if A<W

889fbxg, which by part (iii) is if and only if for all ðw; rÞ 2
ExtðCðW;AÞÞ we have fwðbxÞ	 r. Now, fwðbxÞ	 r () fwðbÞ � x	 r () fwðbÞ � r	 x. Thus,
SMRWðA; fbgÞ	 x if and only if maxffwðbÞ � r : ðw; rÞ 2 ExtðCðW;AÞÞg	 x. Since x is an arbitrary real
number, this implies (iv). h

Results in Sect. 11

Proposition 17 Assume that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Let W;W0 � IRp. If CHðWÞ ¼ CHðW0Þ
then <W ¼ <W0 . In particular, if W is a compact convex subset of IRp and W0 ¼ ExtðWÞ is the set of

extreme points of W then <W ¼ <W0 . Furthermore, binary relations <W
898 and <W0

898 are equal; and <W
988

equals <W0

988, and A<W
988B holds if and only if there exists a 2 A such that for all w 2 W0, fwðaÞ�UtBðwÞ.

Proof Let W00 ¼ CHðWÞ ¼ CHðW0Þ. We will show that <W equals <W00 ; the same proof will show <W0

equals <W00 , and thus, <W ¼ <W0 . SinceW00 
 W, we have <W � <W00 ; to prove the converse, suppose that
a<Wb and consider any w 2 W00. Then, by definition of convex hull, there exists wi 2 W and strictly positive

reals ri, for i ¼ 1. . .; k, such that
Pk

i¼1 ri ¼ 1 and w ¼
Pk

i¼1 riwi. Because a<Wb, for each i ¼ 1. . .; k,

wi � ðâ� b̂Þ� 0, and thus w � ðâ� b̂Þ� 0, showing that w � â�w � b̂. This shows that a<W00b, and thus <W
equals <W00 , and hence, <W ¼ <W0 .
Since W is compact and W0 is the set of extreme points of W we have CHðW0Þ ¼ W and so <W ¼ <W0 .
A<W

898B if and only if for all b 2 B there exists a 2 A such that a<Wb. And A<W
988B if and only if there exists

a 2 A such that for all b 2 B, a<Wb. The first part then implies <W
898 and <W0

898 are equal; and <W
988 equals

<W0

988. And we also have that A<W
988B if and only if there exists a 2 A such that for all w 2 W0,

fwðaÞ�UtBðwÞ. h

Proposition 18 Assume that W is a compact subset of IRp, and that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â.
Consider A 2 M and b 2 IRp. Then SMRWðA; fbgÞ is equal to the maximum value of x such that there exists

w 2 IRp satisfying the constraints (i) w 2 W; and (ii) for all a 2 A, w � ðb̂� âÞ� x.
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Proof Because W is compact and fwðcÞ is a continuous function of w we have that SMRWðA; fbgÞ equals
maxw2W fwðbÞ � UtAðwÞ. Thus, for real-valued x, we have SMRWðA; fbgÞ� x if and only if there exists
w 2 W such that for all a 2 A, fwðbÞ � fwðaÞ� x, i.e., if and only if there exists w 2 IRp satisfying the

constraints (i) w 2 W; and (ii) for all a 2 A, w � ðb̂� âÞ� x. Now, x ¼ SMRWðA; fbgÞ is the maximum value
of x such that SMRWðA; fbgÞ� x, i.e., such that there exists w 2 IRp satisfying the constraints (i) w 2 W; and

(ii) for all a 2 A, w � ðb̂� âÞ� x. h

Proposition 19 Assume that W is a convex subset of IRp, and that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â.
Consider A 2 M, a 2 A, w 2 W.

(i) For any a 2 A, OptAWðaÞ is a convex subset of W.

(ii) If W is compact and a; b 2 A, then OptAWðaÞ � OptAWðbÞ () EA
WðaÞ � EA

WðbÞ, i.
e., ExtðOptAWðaÞÞ � ExtðOptAWðbÞÞ.

Proof (i) By Auxiliary Lemma 4, OptAWðaÞ ¼
T

b2A Wa�b, where Wa� b ¼ fw 2 W : w � ðâ� b̂Þ� 0g,
which is the intersection of a half-space in IRp with W, and is thus convex, since W is convex. Any
intersection of convex sets is convex, so OptAWðaÞ is convex.
(ii) Assume W is compact. By a classical result, since OptAWðaÞ is a compact convex subset of IRp, it is the
convex hull of its extreme points. Then OptAWðaÞ ¼ CHðExtðOptAWðaÞÞ, and OptAWðbÞ ¼ CHðExtðOptAWðbÞÞ.
Thus, if ExtðOptAWðaÞÞ � ExtðOptAWðbÞÞ then CHðExtðOptAWðaÞÞ � CHðExtðOptAWðbÞÞ, and hence,
OptAWðaÞ � OptAWðbÞ.
For the converse, assume that OptAWðaÞ � OptAWðbÞ, and that w is not an extreme point of OptAWðbÞ. We will
show that w is not an extreme point of OptAWðaÞ. If w 62 OptAWðaÞ then obviously w is not an extreme point of
OptAWðaÞ. Now consider the case of w 2 OptAWðaÞ. We thus also have w 2 OptAWðbÞ. Since w is not an
extreme point of the convex set OptAWðbÞ there exists a line segment in OptAWðbÞ containing w, with w not
being an endpoint, i.e., there exists some w1;w2 2 OptAWðbÞ and s 2 ð0; 1Þ such that w ¼ sw1 þ ð1� sÞw2.

Because w1;w2 2 OptAWðbÞ, for i ¼ 1; 2, wi � b̂�wi � â, i.e., wi � ðb̂� âÞ� 0. Also, since w 2 OptAWðaÞ and
w 2 OptAWðbÞ we have w � ðb̂� âÞ ¼ 0. Thus, 0 ¼ w � ðb̂� âÞ ¼ sw1 � ðb̂� âÞ þ ð1� sÞw2 � ðb̂� âÞ, and so,
since both terms are non-negative, they are both zero: w1 � ðb̂� âÞ ¼ w2 � ðb̂� âÞ ¼ 0. Because w1;w2 2
OptAWðbÞ (b is optimal in A with respect to both w1 and w2), this implies that a is optimal in A with respect to
both w1 and w2, i.e., w1;w2 2 OptAWðaÞ. Thus, there exists a line segment in the convex set OptAWðaÞ
containing w, where w is not one of the endpoints of the line segment, so w is not an extreme point of
OptAWðaÞ. h

Auxiliary Lemma 14 Assume that W is a convex subset of IRp, and that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â.
Consider A 2 M, a 2 A, w 2 W. Let Ia ¼ fðw; rÞ 2 IRp  IR : r ¼ w � âg. For K � IRp  IR we write K#

for the projection of K to IRp, i.e., K# ¼ fw 2 IRp : ðw; rÞ 2 Kg.

(iii) OptAWðaÞ ¼ ðCðW;AÞ \ IaÞ#.
(iv) ExtððCðW;AÞ \ IaÞ#Þ ¼ ðExtðCðW;AÞ \ IaÞÞ#.
(v) ExtðCðW;AÞ \ IaÞ ¼ ExtðCðW;AÞÞ \ Ia.
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Proof (i) ðw; rÞ 2 ðCðW;AÞ \ IaÞ if and only if r�UtAðwÞ and w � â ¼ r, which is if and only if

r ¼ w � â ¼ UtAðwÞ, which is if only if w 2 OptAWðaÞ and r ¼ w � â. Thus, OptAWðaÞ ¼ ðCðW;AÞ \ IaÞ#.
(ii) Let us write K ¼ CðW;AÞ \ Ia. First we prove, by contradiction, that ExtðK#Þ � ðExtðKÞÞ#. So, suppose
that there exists some w 2 ExtðK#ÞnðExtðKÞÞ#. Now, w 2 K#, so ðw;w � âÞ 2 K. However, w 62 ðExtðKÞÞ#
implies that ðw;w � âÞ 62 ExtðKÞ. Thus, there exists some ðw1; r1Þ; ðw2; r2Þ 2 K and s 2 ð0; 1Þ such that

ðw;w � âÞ ¼ sðw1; r1Þ þ ð1� sÞðw2; r2Þ. We must have r1 ¼ w1 � â and r2 ¼ w2 � â. w1;w2 2 ðKÞ# and
w ¼ sw1 þ ð1� sÞw2, which contradicts w 2 ExtðK#Þ.
Conversely, we prove, by contradiction, that ExtðK#Þ 
 ðExtðKÞÞ#. Suppose there exists some

w 2 ðExtðKÞÞ# n ExtðK#Þ. Now, becausew 2 ðExtðKÞÞ#, there exists r such that ðw; rÞ 2 ExtðKÞ. Then ðw; rÞ 2
K implies r ¼ w � â, and thus, ðw;w � âÞ 2 ExtðKÞ. Since w 2 K# and w 62 ExtðK#Þ, there exists w1;w2 2 K#

s 2 ð0; 1Þ such that w ¼ sw1 þ ð1� sÞw2. Since w1;w2 2 K#, there exists r1 and r2 such that
ðw1; r1Þ; ðw2; r2Þ 2 K. Then, r1 ¼ w1 � â and r2 ¼ w2 � â, and so ðw;w � âÞ ¼ sðw1; r1Þ þ ð1� sÞðw2; r2Þ,
which contradicts ðw;w � âÞ 2 ExtðKÞ.
(iii) For any convex subsets P andQ of some set we have ExtðPÞ \ Q � ExtðP \ QÞ. To show this, we proceed
with proof by contradiction: suppose that x 2 ExtðPÞ \ Q and x 62 ExtðP \ QÞ. Since x 2 P \ Q but is not in
ExtðP \ QÞ, there exists a line segment in P \ Q that contains x as an internal point. But this line segment is also
in P, contradicting x 2 ExtðPÞ.
The above result shows that ExtðCðW;AÞ \ IaÞ 
 ExtðCðW;AÞÞ \ Ia. To prove the converse, we proceed by
contradiction and assume that there exists some element ðw; rÞ 2 ExtðCðW;AÞ \ IaÞ with
ðw; rÞ 62 ExtðCðW;AÞÞ \ Ia. Since ðw; rÞ 2 CðW;AÞ n ExtðCðW;AÞÞ there exist some ðw1; r1Þ; ðw2; r2Þ 2
CðW;AÞ and s 2 ð0; 1Þ such that ðw; rÞ ¼ sðw1; r1Þ þ ð1� sÞðw2; r2Þ. Now, ðw; rÞ 2 Ia implies that r ¼ w � â;
and ðw1; r1Þ; ðw2; r2Þ 2 CðW;AÞ implies that r1 �UtAðw1Þ�w1 � â and r2 �UtAðw2Þ�w2 � â. We have r ¼
sr1 þ ð1� sÞr2 and so 0 ¼ r � ðw � âÞ ¼ sðr1 � w1 � âÞ þ ð1� sÞðr2 � w2 � âÞ. Since the two parts of the right-
hand-side are non-negative, they must be zero, showing that r1 ¼ w1 � â and r2 ¼ w2 � â. This implies that
ðw1; r1Þ; ðw2; r2Þ 2 CðW;AÞ \ Ia, which contradicts ðw; rÞ 2 ExtðCðW;AÞ \ IaÞ. h

Proposition 20 Assume that W is a convex subset of IRp, and that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â.
Consider A 2 M, w 2 W, and a; b 2 A.

(i) EA
WðaÞ ¼ fw 2 IRp : ðw;w � âÞ 2 ExtðCðW;AÞÞg.

(ii) If W is compact then dimðOptAWðaÞÞ\jEA
WðaÞj.

Proof (i): using parts (i), (ii) and (iii) of Auxiliary Lemma 14, ExtðOptAWðaÞÞ ¼ ðExtðCðW;

AÞÞ \ IaÞ# ¼ fw 2 IRp : ðw;w � âÞ 2 ExtðCðW;AÞÞg.
(ii): Since W is compact, OptAWðaÞ is compact since it is a closed subset of compact set W, and so,
OptAWðaÞ ¼ CHðEA

WðaÞÞ. Let e0 be an arbitrary element of EA
WðaÞ. The dimension of CHðEA

WðaÞÞ is the same
as the dimension of the affine closure of EA

WðaÞ, which equals the dimension of the vector space spanned by
X ¼ fe� e0 : e 2 EA

WðaÞ n fe0gg, which is at most jX j ¼ jEA
WðaÞÞj � 1. This implies that

dimðOptAWðaÞÞ\jEA
WðaÞÞj. h

Auxiliary Lemma 15 Assume that W is a convex subset of IRp, and W0 is a convex subset of W. Let intðW0Þ
be the interior of W0 with respect to the topology on W. The following are equivalent.

(a) intðW0Þ 6¼ ;, i.e., there exists an open set B in IRp such that B \W � W0;
(b) W0 has the same dimension as W.
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Proof From the definition of interior we have intðW0Þ 6¼ ; if and and only ifW0 contains an open set B0 in the
topology on W induced from IRp, which is if and only if there exists an open set B in IRp such that
B \W � W0.
We write affU for the affine hull of convex set U. SinceW0 � W,W0 andW have the same dimension if and
only if affW0 ¼ affW, which is if and only if the interior ofW0 is the same as the relative interior ofW0. The
relative interior of a convex set in IRp is non-empty by [48], Theorem 6.2, page 45, and so, if (b) then (a) the
interior of W0 is non-empty.
If (a) there exists an open set B in IRp such that B \W � W0 then affB \W ¼ affW and so affW0 ¼ affW,
which implies (b) that W0 and W have the same dimension. h

Proposition 21 Assume that W is a compact convex subset of IRp, and that for w 2 IRp; a 2 IRp,
fwðaÞ ¼ w � â. Consider A 2 M and a;b 2 A.

(i) b OptAW-dominates a if and only if EA
WðaÞ$EA

WðbÞ,
(ii) If EA

WðaÞ ¼ EA
WðbÞ and a 6�W b then both a and b are OptAW-dominated.

(iii) If jEA
WðaÞj 	 dimðWÞ then a is OptAW-dominated.

Proof By definition, b OptAW -dominates a if and only if OptAWðaÞ$OptAWðbÞ, which, using Proposition 19(ii),

is if and only if EA
WðaÞ$EA

WðbÞ.
(ii): Assume a 6�W b and EA

WðaÞ ¼ EA
WðbÞ, and so, by Proposition 19(ii), OptAWðaÞ ¼ OptAWðbÞ. This implies

that neither a nor b is strictly optimal, i.e., a; b 62 PSOWðAÞ, so a;b 62 MPOWðAÞ (because and PSOWðAÞ
equals MPOWðAÞ, by Corollary 3). Thus, both a and b are OptAW -dominated, by Lemma 7.
(iii): If jEA

WðaÞj	 dimðWÞ then, by Proposition 20(ii), dimðOptAWðaÞÞ\dimðWÞ. Then, using Auxiliary
Lemma 15, OptAWðaÞ contains no open set in W, which implies that a 62 PSOWðAÞ, by Proposition 11. Thus,
by Corollary 3, a 62 MPOWðAÞ, and so, by Lemma 7, a is OptAW -dominated. h

Results in Sect. 12

Proposition 22 Assume that for w 2 IRp; a 2 IRp, fwðaÞ ¼ w � â. Let W be a compact and convex subset of
IRp and let W0 ¼ ExtðWÞ be the set of extreme points of W. Then

(i) A<W0

988B ) A<W
889B ) A<W0

889B.

(ii) A<W0

988B holds iff there exists a 2 A such that for all w 2 W0, fwðaÞ�UtBðwÞ.
(iii) A<W0

889B holds iff for each w 2 W0 there exists a 2 A such that fwðaÞ�UtBðwÞ.

Proof (i): The first implication holds because A<W0

988B () A<W
988B ) A<W

889B by Proposition 17 and
nestedness (Proposition 1). The second implication holds by monotonicity with respect to W (Proposition 4).
(ii) is an immediate consequence of Proposition 3(iii).

(iii): By Proposition 3(i), A<W0

889B holds and only if for each w 2 W0, UtAðwÞ�UtBðwÞ, that is, if and only if,
for each w 2 W0 there exists a 2 A such that fwðaÞ�UtBðwÞ. h
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Lemma 9

(i) A<W
889B if and only if UDWðAÞ<W

889UDWðBÞ.
(ii) Suppose that A<W

898C. Then A<W
889B if and only if A<W

889B n C.

Proof Part (i) is immediate from Proposition 5. Regarding part (ii), the ) part follows immediately from the
definition; (: A<W

898C implies A<W
889C; the latter together with A<W

889B n C implies A<W
889B from the

definition of <W
889. h

B Random problem generator

This appendix includes a description of the random problem generator that is used for the
experiments in Sect. 13.

Let j 2 f1; . . .; Jg be the index of each set of alternatives Aj that we are going to
generate. Consider now any j. For each criterion i 2 f1; . . .; pg we pick random parameters
ljðiÞ and djðiÞ, and each of the n elements a of Aj is picked independently as follows: for
each criterion i, choose value aðiÞ uniformly in range ½ljðiÞ � djðiÞ; ljðiÞ þ djðiÞ�. Choosing
random parameters ljðiÞ and djðiÞ for Aj: first we randomly pick lj uniformly in range
½�l; l�, and hj is chosen uniformly in range ½0; 2h�, and dj is chosen uniformly in range
½0; 2d�. Then, for each criterion i, ljðiÞ is chosen uniformly in range ½lj � hj; lj þ hj� and
djðiÞ is chosen uniformly in range ½0; 2dj�. The pseudocode is shown in Algorithm 1. The
generated sets will contain only undominated elements if and only if the Boolean input u is
True, and integer numbers if the Boolean input int is True, rational otherwise.

Note that if h and d are both very small, then each hj and dj will be very small, so each
ljðiÞ will be very close to lj. Generating two sets A and B (i.e. J ¼ 2), this would lead to a

case in which we will tend to almost always get that A<W
988B or B<W

988A (since the elements
of e.g., A will be very similar to each other). This will also tend (to a somewhat lesser
extent) to be the case if just h is very small. On the other hand, if h and d are relatively large,
then we will tend to get less dominance. We tried different values of the input parameters,
obtaining the lowest rate of dominance with l ¼ 10, h ¼ 50 and d ¼ 60.

In our random problem generator we also randomly generate q user preferences of the
form awi þ bwj � cwk meaning that the user prefers a units of wi and b units of wj to c units
of wk . We ensure the consistency of such constraints by first randomly picking a normalised
vector w, and only including constraints that are consistent with this vector (e.g., if a
constraint randomly generated that is not consistent with this, then we change the sign of the
constraint to make it consistent). The values a, b and c are rational numbers.
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