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Abstract

In a decision-making problem, there is often some uncertainty regarding the user prefer-
ences. We assume a parameterised utility model, where in each scenario we have a utility
function over alternatives, and where each scenario represents a possible user preference
model consistent with the input preference information. With a set 4 of alternatives avail-
able to the decision-maker, we can consider the associated utility function, expressing, for
each scenario, the maximum utility among the alternatives. We consider two main problems:
firstly, finding a minimal subset of A that is equivalent to it, i.e., that has the same utility
function. We show that for important classes of preference models, the set of possibly
strictly optimal alternatives is the unique minimal equivalent subset. Secondly, we consider
how to compare A to another set of alternatives B, where 4 and B correspond to different
initial decision choices. This is closely related to the problem of computing setwise max
regret. We derive mathematical results that allow different computational techniques for
these problems, using linear programming, and especially, with a novel approach using the
extreme points of the epigraph of the utility function.

Keywords Possibly strictly optimal alternatives - Multi-criteria decision making - Multi-
criteria utility theory - Multi-objective decision support systems - Preference elicitation
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1 Introduction

In a decision-making problem, there can often be uncertainty regarding the user preferences.
Suppose that, in a particular situation, 4 is the set of alternatives that are available to the
decision-maker. This is interpreted in a disjunctive fashion, in that the user is free to choose
any element o of A. However, as is common, we do not know precisely the user’s prefer-
ences. The preference information available to the system is represented in terms of a set of
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user preference models, parameterised by a set (of scenarios) VWV where, associated with
each scenario w € W, is a (real-valued) utility function f,, over alternatives.

Each element w of W is viewed as representing a possible model of the user’s prefer-
ences that is consistent with the preference information we know. If we knew that w were
the true scenario, so that f,, represents the user’s preferences over alternatives, then we
would be able to choose a best element of 4 with respect to f,,, leading to a utility value
Uty (w) = max,ey f,r (). However, the situation will frequently be ambiguous given a non-
singleton set W of possible user models or scenarios.

The set W incorporates what we know about the user preferences; for example, if we
have learned that the user regards alternative f§ as at least as good as alternative y, then W
will only include scenarios w such that f,,(f) > (7).

This framework is fairly general; for instance, the utility function f,, may be based on a
decomposition of utility, using, for example, an additive representation for a combinatorial
problem (e.g., [37, 42, 58, 62]). Also, f,,(«) could represent the expected utility of alter-
native o given that w is the correct user model, based on a probabilistic model with
parameter w, for example in a multi-objective influence diagram [22, 41, 43], with «
corresponding to a policy.

We consider, in particular, the following related pair of questions:

(1) Are there elements of A that can be eliminated unproblematically? In particular, is
there a strict subset 4’ of 4 that is equivalent to A?

(2) Given a choice between one situation, in which the available alternatives are 4, and
another situation, in which alternatives B are available, is A at least as good as B in
every scenario?

Regarding (1), we need to be able to eliminate unimportant choices, which can help to make
the list of options manageable, in particular, if we want to display the alternatives to the user.
We interpret this as finding a minimal subset 4’ of 4 such that Uz, (w) = Uty (w) for every
scenario w € W. In this situation, we say that 4 and A’ are utility-equivalent.

Question (2) concerns a case in which the user may have a choice between (I) being able
to obtain any of the set of alternatives A, and (II) any alternative in B (and thus, the user
could obtain any alternative in 4 U B). Sets 4 and B may correspond to different choices
X =a and X = b of a fundamental variable X, and determining that 4 dominates B may
lead us to exclude X = b, thus simplifying the problem. For instance, 4 might correspond to
hotels in Paris, and B to hotels in Lisbon, for a potential weekend away. It can be useful to
determine if one of these clearly dominates the other; if, for instance, 4 dominates B, then
there may be no need for the system and the user to further consider B, and may therefore
focus on Paris rather than Lisbon. We interpret this task as determining if in every scenario
the utility of 4 is at least that for B, i.e., Uty(w) > Utz(w) for all w € W. We can this
relation utility-dominance.

The focus of this paper is to determine important properties of the utility-dominance and
utility-equivalence relations, and to derive computational procedures, in order to find a
minimal equivalent subset, and for testing dominance between 4 and B; we also determine
properties and a computational technique for a form of maximum regret, that can be viewed
as a degree of dominance, and which corresponds to setwise max regret defined in [62, 65],
and relates to the value of a query. The main computational procedures are based on linear
programming (LP), or, alternatively, a novel method using the extreme points of the epi-
graph of the utility function (which we abbreviate to EEU). These procedures have been
compared and evaluated in [59].
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From the computational perspective we focus especially on the case in which each
alternative o is associated with a multi-attribute utility vector ¢, based on a weighted average
user preference model. Each utility vector is then an element of IR, representing a number p
of scales of utility (or objectives); each scenario w is a (typically normalised non-negative)
vector in [RP, with o=, f if and only if the weighted sum of & with respect to w is at least

that of f. An input preference of o over f§ then leads to a linear constraint on the weights
vector w, and we can define the set of consistent preference models WV as the convex
polytope generated by a set of input preferences of this form.

Given a finite set of alternatives 4, we define the notion of setwise-minimal equivalent
subset, and we show relationships with the set PSO)y(A) of possibly strictly optimal ele-
ments, where W is the set of parameters relating to a family of user preference models. It
suffices to consider sets A of alternatives that are equivalence-free, i.e., such that no two
alternatives in 4 have identical utility in all scenarios. For equivalence-free A, the set
PSOy(A) consists of those alternatives o € A that are such that there exists some scenario
in W for which o is the only optimal alternative in 4.

The main contributions of the paper are as follows:

— we give sufficient conditions for the set PSO),(A) of possibly strictly optimal
alternatives to be utility-equivalent with 4. These apply for many natural situations
including when the user preferences models are linear, and the set VW of parameters
defining the set of user preference models is convex.

— We show that then PSOy(A) is the unique minimal equivalent subset of A4, for
equivalence-free 4 (i.e., when no two alternatives in 4 have identical utility in all
scenarios in V). Furthermore, the PSO,y operator can be used to filter query sets to
avoid the potential of a partially inconsistent answer.

— We derive sophisticated computational methods for computing utility dominance,
setwise max regret and for computing the unique minimal equivalent subset. These
include both linear programming methods, and extreme point methods using the
epigraph of the utility functions. To increase the efficiency, a number of pre-processing
methods are developed, using the properties we derive for dominance relations between
sets. Our algorithms are experimentally tested based on randomly generated instances.

This paper extends an earlier work [60], including further theoretical results with proofs of
theorems, propositions and lemmas, and new experimental results related to a new imple-
mentation of our algorithms fixing some runtime exceptions related to precision issues (see
Sect. 13). Part of this work is also included in the first author’s PhD thesis [56].

Section 2 discusses related work. Section 3 gives the formal setup, defining dominance
relations between sets of alternatives, and giving basic properties. Section 4 discusses
different ways of defining optimal alternatives in a set, including the possibly strictly
optimal set. Section 5 defines the setwise minimal equivalent set, for a set of alternatives,
and explores the relationship between such sets and the possibly strictly optimal set. Sec-
tion 6 considers continuous spaces of scenarios, and gives a sufficient condition for
equivalence of the possibly strictly optimal set with the input set of alternatives. Section 7
considers the problem of reducing the size of a set A, whilst maintaining equivalence.
Section 8 defines a form of maximum regret in this context, shows how it relates to
dominance, and gives properties that will be useful for computation. Section 9 discusses the
importance of the possibly optimal and possibly strictly optimal alternatives in incremental
preference elicitation. Section 10 describes the EEU method. Section 11 brings together the
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computational techniques for the weighted multi-attribute utility case. Sections 12 and 13
describe the implementation and experimental testing, and Sect. 14 concludes the paper.

2 Related work

Multiattribute utility theory (MAUT) [37] involves numerical representations of user
preferences with respect to alternatives evaluated over multiattribute spaces. Imprecisely
specified multiattribute utility theory (ISMAUT) [68] is one of the earliest attempt to deal
with parameterised utility information representing user preferences with linear inequalities
and reducing the set of alternatives to those that are not dominated by any other alternative.
Related research such as [33] and [67], deals with similar issues.

A major division in recent work on parameterised user preference models is whether a
Bayesian model is assumed over the scenarios (corresponding to the different user prefer-
ence models), or if there is a purely qualitative (logical) representation of the uncertainty
over scenarios, where all we represent is that the scenario is in a set V. Bayesian
approaches include [12, 13, 20, 64]. Work involving a qualitative uncertainty representation
includes [7, 14, 18, 42, 62]. Linear imprecise preference models, including those based on a
simple form of MAUT model, have been considered in work such as [18, 36, 41, 49]
including in a conversational recommender system context [19, 62, 63].

Parameterised preference models are commonly used with interactive preference elici-
tation approaches (see, e.g., [9, 30, 38, 54, 57]). In this context, the purpose is to explore the
alternatives based on different interactions with the decision-maker and without listing all
the available alternatives. The parameterisation represents different decision-maker’s pref-
erence scenarios, and the likelihood or the restrictions on the parameters represent the
information obtained by the interaction with the decision-maker. Methods that iteratively
interact with the decision-maker to reduce the uncertainty about a parameterised preference
models are also called Incremental [3, 10, 40]. In general, the purpose of such methods is to
recommend alternatives to the decision-maker without defining a precise utility function
using methods such as the minimax regret criterion (see Sect. 8). A typical interactive
approach consists of the following steps:

1. Computation: generate some undominated solutions.

2. Interaction: show to the decision-maker some of the generated solutions asking to input
new preference information.

3. Termination: interruption of the elicitation process by the decision-maker or if some
specified stopping criterion has been satisfied.

Different approaches have been explored to generate new queries for the decision-maker
(see, e.g., [52]). A classical interactive approach is based on a comparison of alternatives
(see, e.g., [53, 75]), i.e., the preference elicitation system asks the decision-maker to specify
their preference between a set of alternatives, and the response is used to reduce the
uncertainty of the preference model. Ideally, the uncertainty of the preference model should
be reduced to a scenario in which we have a unique optimal alternative according to the
preference information collected. However, often this is unfeasible or requires too many
interactions with the decision-maker. Because of this, the parameterisation of utility func-
tions leads to different notions of optimality that can be used to classify alternatives (see, e.
g [71]).

In Sect. 4 we consider a number of operators representing different notions of optimality.
The set UDyy(A) is a subset of 4 not including strictly dominated alternatives, a natural
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generalisation of the Pareto-optimal elements, appears in many contexts, e.g., [36, 42].
Possibly optimal POy, (A) (also known as potentially optimal) elements have been con-
sidered in many publications, such as [6, 10, 28, 29, 33, 72]. See Sect. 11 for details and
references about the computation of UDy,(A) and POy (A) for linear and convex utility
functions. The possibly strictly optimal set PSOyy(A) and the maximally possibly optimal
set MPOyy(A) have been considered much less [46, 70, 71]. Regret-based decision making
has a long history, with recent work in Al including [7, 14, 18]. We describe in Sect. 8 the
relationship between the dominance relation >;’V/V\ﬂ and setwise max regret [62, 65]. See
Sect. 11 for details and references about the computation of the setwise max regret and the
setwise minimax regret for linear and convex utility functions.

3 Basic terminology and dominance relations between sets

In this section we give some basic definitions, in particular regarding utility-dominance and
related dominance relations, and utility-equivalence. Section 3.1 describes the basic set up,
involving a parameterised family of utility functions over a set Q of alternatives. There are
natural dominance and equivalence relations induced between alternatives, as described in
Sect. 3.2. The utility of a finite subset of alternatives is defined to be the maximum utility
over the alternatives in the set. This leads to a natural (utility-)dominance relation between
finite sets of alternatives, and the corresponding utility-equivalence relation, as described in
Sect. 3.3, where 4 utility-dominates B if and only if in every compatible scenario, the utility
of A4 is at least as great as the utility of B. We also define two computationally simpler
dominance relations between sets, which are useful as sufficient conditions for utility-
dominance.

3.1 Uncertain preference structures

We consider a (possibly infinite) set Q of alternatives, and another set I/, the elements of
which we call scenarios, that corresponds with a set of user preference models. With each
scenario w € U is associated a utility function f,, on Q, i.e., a function from Q to IR; this
gives rise to a total pre-order =, on Q given by o=, <= f.(a) >fu(B), for o, f € Q.

For each w € U, we also define associated relations >, and =,, in the standard way:
o>, f if and only if o=, f and —(f=,,0), which is if and only if f,,(a) > f£,,(f). We define
o =, p if and only if o=, and fi=,a, which is if and only if f,,(a) = £, ().

Notation M: We use the symbol M to represent the set of finite non-empty subsets of
the set of alternatives Q.

Each 4 € M gives rise to a function giving values of utility for each element of /. This
expresses how good the set 4 is, with respect to different user models.

Definition 1 (Utilities associated with A.) We define, for we U, Uty(w) to be
maxyeq fr (o).

We do not a priori assume anything about the functions f,,; however certain mathematical
results make additional assumptions, such as continuity with respect to w. Of particular
interest in this paper is the case when f, («) is a linear function of w, where U = IR? for
some p, and so f,,(o) can be written as Y %, aw(i) = (a1, ..., 0) - w, for some reals o,
with a; representing how good alternative « is with respect to objective/criterion i. We then
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write the vector (o, ...,,) as d. Thus, in the linear case, for each o € Q there exists an
associated vector & € IR”, and f,,(«) = d - w for all w € U.

If o € IRP then we could set & = o, giving a simple weighted sum utility function.
However, this linear function case also covers more complex preference models, including
GAI representations [16, 31], Ordered Weighted Averages [73], and preference models
based on Choquet integrals [7, 32], since the utility functions in these cases are linear in the
parameter w (although not linear with respect to a in the latter two cases). For the GAI and
Choquet representations, there are a larger number of parameters, so the dimension p of the
utility and parameter spaces is larger.

3.2 Dominance and equivalence between alternatives

Very often we will have information that restricts the set of scenarios (i.e., user models). In
particular, the user may previously have answered some queries, and we then only consider
the set W of user models compatible with their answers.

For W C U we define relation =)y, on Q by a=y,f <= for all w € W, a=,,f. Thus,
o= holds if and only if o is at least as good as f§ in every scenario in WW. We define >~y to
be the strict part of =y, i.e., for o, f € Q, a>-p if and only if o=y and f %o Thus,
o> f if and only if « is at least as good as f§ in every scenario in W, and strictly better in at
least one scenario in W. Relation >)y is transitive and acyclic. We define equivalence
relation =)y to be the symmetric part of =), given by a =)y f if and only if o=y and
BEwo.

We define the notion of being equivalence-free. Alternatives o and f§ are equivalent, i.e.,
o =w P, if and only if o =, f for all w € W. It can be unnecessary to include two
equivalent alternatives « and /5 in a set of alternatives 4, since « should be acceptable if and
only if f is acceptable. In an equivalence-fiee set of alternatives no two alternatives are
equivalent:

Definition 2 (Equivalence-free) We say that 4 (€ M) is =)y-free (or equivalence-free) if
for all o, f € A, we have o #yy f.

One can reduce any A4 to an equivalence-free set 4’ by including exactly one element in 4’ of
each =yy-equivalence class in A4.

3.3 Dominance relations between sets

Given a set of scenarios W, we will define three relations, =5, =%, and =Y, , between
sets of alternatives 4 and B in M, that specify when A is better than B. These relations are
based on a set WV of scenarios, and the corresponding set of relations, »=,,, for w € W. In this
paper we focus especially on the relation &\Zv\ﬂ, with the other two relations being useful
computationally. AR;V\HB holds if and only if in every scenario w € W, there’s an element
of A that is at least as good as any element of B. The relation thus relates to Question (2) in
the introduction. This section gives some basic properties of these three dominance relations
between sets, that are useful for our algorithmic methods.

Definition 3 (Dominance relations ky"\ﬂ, >;\L/‘§V and %’3"@) For subset W of U, we define
binary relations =5, and =% and =%, on M as follows. Consider any 4, B € M.
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— A=1).B holds if and only if for all € B and for all w € W there exists o € 4 such that
o= -

— A%\%VB holds if and only if for all f € B there exists o € A such that for all w € W,
o= .

- A;%B holds if and only if there exists & € 4 such that for all f € B and forallw € W,
o= p-

In the notation in the subscript for the three relations (such as V3V in relation =)%), the first
V symbol relates to the quantification for all § € B, the second V symbol relates to for all
w € W, and the 3 symbol relates to there exists o« € A.

Relation %y\ﬂ and its corresponding equivalence relation are the main foci of attention in
this paper. However, for computational reasons we consider relations k‘v’gv and %’3/‘\;\7, which
allow computationally efficient sufficient conditions for A%;VVHB.

Since each relation =, is a total pre-order, and A4 is finite (as is B), we have A>§V\GB if
and only if for all w € W there exists o € 4 such that for all § € B, a3=,,f.

Relations >F‘v/§v and >F]3/$v can be written in terms of =y:

— A=)%,B holds if and only if for all B € B there exists o € 4 such that a=yyp, i.e., every
element of B is ’=)y-dominated by some element of 4.

- A>‘E|/\\;VB holds if and only if there exists & € 4 such that for all § € B, o=y, i.e., there’s
some element o of A4 that is better than every element of B in every scenario.

The three relations are all transitive, and are nested: =%, C ='% C =2V, Thus, for
example, AH\%\,B implies A&b‘}\ﬂB. We also have chaining properties for the three relations.
These are valuable, for instance, if we are comparing a number of sets 4;,i = 1,.. ., K, since
if we determine that A,'>,-§VVHA]» and 4; >;1V/V\GA;(, then we do not need to check that A,«>;\L/‘/v3Ak,
since it is implied.

Proposition 1 For any W C U we have >F¥v - klgv - >;§V\ﬂ. Also, =y and each of the

: w
relations, =y,

k\%v and %g\\;v, is transitive. Furthermore, we have the following chaining properties:

(i) If 4=0% B and B:=Y), C then 4%, C.
(i) If %IV is any of the relations >F1v/vv3: >F1v/\§v or >F]3/\\;v then A?%B and B&IVC implies
A=Y, C.

Corresponding equivalence relations: As well as being transitive, relations =)V and =%,
are reflexive (relation > on M is reflexive if for all A C Q, A=A4). Because the relation k\?’\ﬂ
is reflexive and transitive, its symmetric part, defined by 4 =)V B if and only if 4>=))-B and
B?)v/vvaAr is an equivalence relation. Similarly, we define the relation Ey‘gv to be the sym-
metric part of >F)\;gv with 4 Eg\gv B if and only if A>,-1\%VB and B%%VA. Therefore we have
A E%v B if and only if (i) for all f € B there exists o € A such that o=, f; and (ii) for all
o € A there exists § € B such that o=y 5. Proposition 1 implies that E\L/gv C Eg\}\ﬂ.
Clearly, kb"\ﬂ and ?)\gv determine the corresponding equivalence relations; conversely,
%b"\ﬂ and ?\%v can be expressed in terms of their corresponding equivalence relations:
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Proposition 2 For all A,B€ M, A=-B < A=\ AUB; and A=V)\\B
A E%v AUB.

The following result shows how the relation =1V and its corresponding equivalence
relation =)V can be expressed in terms of the utility functions. For this reason, we refer to
the relation Evy\‘;a as utility-equivalence, and the relation >;§VV3 as utility-dominance. Part (iii)

gives another representation of the relation ?’3"\;\7 that allows efficient computation.

Proposition 3  Consider any W C U and A,B € M.

(i) A=WB < forallwe W, Uty(w) > Utp(w).
(i) A=0.B < forallwe W, Uty(w) = Utp(w).
(iii) A=Y, B if and only if there exists o € 4 such that for all w € W, f;,(at) > Utp(w).

One can also consider a (strong form of) strict dominance 4 >>1V/V\ﬂ B defined as for all
w €W, Uty(w) > Utp(w); this corresponds with the dominance relation defined in Defi-
nition 2 of [10].

Example 1 Let 4 = {(11,1),(10,4),(7,5),(6,6),(4,7)} and B = {(11,2),(8,5)} be sets
of utility vectors of hotels in Paris and Lisbon respectively. For example, the first value of
each utility vector could be a score for the location and the second value could be a score for
cleanliness, where the higher the score, the better. We assume linear utility functions of the
form f,, (o) = w-o. Let U = {(w1,w2) : wi,wy >0 & wy + wy = 1}, representing differ-
ent normalised weightings of the two criteria. We assume that the user has an associated
weights vector that is unknown and we want to recommend to the user a trip to Paris or
Lisbon based on her preferences on the available hotels. Suppose then that we ask the user
for her preference between the hotel with utility vector (10, 4) and the hotel with utility
vector (11, 2). An input preference of (10, 4) over (11, 2) implies w - (10,4) >w - (11,2)
and so 2w,>w; and thus, w;< %, leading to the set of scenarios
W={(w,w) :wi+w=1&0<w < %} This example is illustrated in Fig. 1, and it
is easy to see that Akg\}\ﬂB since for 0 <wy < % there is no line above the line associated to
(4,7) € 4, and for § <w; < £ there is no line above the line associated to (10,4) € 4, i.e.,
AP € B s.t. f,,(B) > Uty(w) for any w € W. Therefore in this case we can recommend to
the user the trip to Paris.

Note that, 4 ¥ B since the line associated to (8,5) € B is above the line associated to
any o € 4 in at least one point w € W.

All three relations satisfy obvious monotonicity properties with respect to 4, B and W:
see Proposition 4 below. In addition, for = being either =) or =%, to determine if 43=B it
is sufficient to check that 4%={f} holds for each € B. We call this property Right
Decomposition:

Definition 4 (Right Decomposition) We say that relation > on M satisfies the Right
Decomposition property if 4B if and only if A>{f} holds for each f € B.

Relations kb"\ﬂ and ?gv satisfy the Right Decomposition property; it turns out that this can

be useful computationally, as it means that, for = being either ;b‘)\ﬂ or k\‘gv, to determine if
A=B it is sufficient to check that 43={f} holds for each f§ € B.

@ Springer



Auton Agent Multi-Agent Syst (2022)36:44 Page 9 of 66 44

12
" A'={(11,1):(7,5),(6,6)} (11’2)
— A"={(10,4),(4,7)} ff’
101 == B={(11,2).(8,5)} 111l

7

fu(:)

0 1/3 2/3 1
w1

Fig. 1 fu(x) and f,(f) for each a€Ad and fe€B, where 4=4"U4A"={(11,1),(10,4),
(7,5),(6,6),(4,7)}, B={(11,2),(8,5)} and w e W= {(wy,w2) : wi + w2 =1 & 0<w; < %}

Proposition 4 For any W C U. Let =" be any Of?)\;vva’ %\%V and #13/\\;\7, andletA',B € M
and let A C A" and let B C B, and let W CW. If A="B then AW B'. Relations kbv\ﬂ
and =), satisfy Right Decomposition and are reflexive. If A O B then A3=Y-B and A:=)% B.

4 Some choice functions associated with the set )V of scenarios

Given a finite set 4 of alternatives, and a set of scenarios (i.e., user models) WV, some
alternatives may very well be of less interest than others. It is therefore often desirable to
define a reduced, i.e., filtered, set OP)y(A) of alternatives, by eliminating elements that are
considered to be non-optimal. OPyy will be a choice function, i.e., it maps a finite set 4 of
alternatives to a subset of A. There are a variety of the different natural ways of defining
such a choice function OPy,. We consider UDyy(A), which removes strictly dominated
alternatives from 4, and POyy(A), which removes alternatives that are not possibly optimal,
i.e., not optimal with respect to any scenario in W, and two refined variations, MPO,y(A)
and PSOyy(A). MPOyy(A) consists of alternatives in 4 that are optimal in a maximal set of
scenarios.

Our focus is especially on PSOyy(A), the set of possibly strictly optimal alternatives; for
equivalence-free 4, this is the set of alternatives that are uniquely optimal in some scenario,
i.e., they are (strictly) better than any other element of A. Our interest in PSOyy(A) is
particularly because of the close relationship with minimal equivalent subsets (shown in
later sections such as Sects. 5 and 6). The operators PO,y, UDyy and MPO,y can all be
useful in the efficient computation of PSOyy(A). This section gives basic properties of these
operators, and their relationships with utility-dominance and utility-equivalence. POy,
UDyy and MPOyy all always maintain utility-equivalence, i.e., for any 4 € M, POy, (A),
UDyy(A) and MPOyy(A) are all utility-equivalent with 4. Although PSOyy, does not
maintain utility-equivalence in general, we will later show that for many natural forms of
uncertain preference structure, PSO,y does maintain utility-equivalence.
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The operators UDyy, POy, MPO,y and PSOyy defined below, respect the equivalence
=)y in that if OPyy is any of these operators and a, f € 4 are such that « =y f then
OPy(A) 20 < OPy(A) 2 f.

We first define the set UDyy(A) of undominated alternatives in A.

Definition 5 (The Undominated set UDyy(A).) For 4 € M we define UDy(A) to be the
set of o € 4 such that there does not exist y € 4 such that y>-yya.

Thus, the element o of 4 is not in UDyy(A) if and only if there exists some y € 4 such
that vy is at least as good as o in every scenario, and strictly better in at least one scenario.
The set UDyy(A) is a natural generalisation of the Pareto-optimal elements, and is some-
times referred to as the set of undominated elements in A.

Proposition 5 gives some basic properties of the relationships between function UDyy
and the three dominance relations; in particular, part (ii) shows that it preserves equivalences
between sets of alternatives, and implies that UDyy(A) is non-empty for non-empty A.

Proposition 5 Assume that W CU and A € M. Then, UDyy(A) is non-empty and the
following hold.

(i) For B € M and, for = being any of =1V, ='% or =%, we have 4=B <

UDyy(A)=UDyy(B).
(i) UDw(A) =Y, A and UDyy(A) =V A. Hence, if 4 is non-empty then UDyy(A) is
also.

We next define the Possibly Optimal Set POy (A).

Definition 6 (O,,(A) and Possibly Optimal Set PO,y (A).) For each w € U and 4 € M we
define Oy, (A) to be all elements « of 4 that are optimal in 4 in scenario w, i.e., such that for
all p € 4, a=,,p. For W C U we define POyy(A) to be |,y Ow(A), the set of alternatives
that are optimal in some scenario, i.e., optimal for some consistent user preference model.

Next we define the possibly strictly optimal Set PSOy(A):

Definition 7 (SO)Y(A) and Possibly Strictly Optimal Set PSOyy(A).) We define SO!Y(A)
to be all elements o of 4 such that o>, for all § € A with § %y a. These elements o are
said to be strictly optimal in scenario w. We then define PSOyy(A), the set of possibly
strictly optimal elements, to be |,y SOK,V (A), i.e., all the elements that are strictly optimal
in some scenario in W.

For equivalence-free 4 € M, the set PSOy,(A) consists of all alternatives o € A4 that are
uniquely optimal in some scenario w € W (i.e., Ow(A) = {a}). It can be easily seen that
PSOw(A) C POy (A) N UDy(A).

It is convenient to have a notation for the set of scenarios in which o is optimal in A4:

Definition 8 (Opt)),(c)) We define, for & € 4, Optjy, () to consist of all scenarios w € W in
which o is optimal in 4, i.e., & € Oy(A).
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Thus, o is possibly optimal (& € POy (A)) if and only if the set Optj),(c) is non-empty; this
is because both hold if and only if there exists a scenario w in which « is optimal
(o € Oy (A)).

For B C A4, the next result shows that utility-equivalence of B and 4 can be expressed in
terms of the sets Opty,(f): we have B =V 4 if and only if Uses Opt)y,(8) = W; this
follows because each is equivalent to the condition that in every scenario there exists some
element of B that is optimal, i.e., for all w € W there exists € B with § € Oy (A).

Lemma 1 Let WCU and let A€ M. For BCA4, BE@EA if and only if
Uges Optyy,(B) = W. In particular, | J ., Optyy, (o) = W.

We now define the maximally possibly optimal elements to be those that are optimal in a
maximal set of scenarios.

Definition 9 (Maximally Possibly Optimal Set MPOy,(A).) For 4 € M, we define
MPOy(A) to consist of all o €A such that there exists no f €4 such that

Optyy, () 20ptyy, ().

In other words, if alternative o in A is not maximally possibly optimal in 4 then there exists
an alternative f§ in A that is optimal in every scenario that o is optimal (and at least one more
scenario).

Example 1  continued: We have the set of undominated elements
UDy(A) = {(10,4),(7,5),(6,6),(4,7)}. Abbreviating w to just its first component w; we
have W =0,2], and Opty,(10,4) = [},2]; Opt},(6,6) = {1}, Opty,(4,7) =[0,1] and
Opty,(11,1) = Opty,(7,5) = 0. Thus, POw(A) = {(10,4),(6,6), (4,7)}. We have
PSOWw(A) = MPOwy(A) = {(10,4),(4,7)} and {(10,4),(4,7)} =W, 4. The PSOp
operator thus leads here to stronger filtering than the PO,y operator. In Fig. 1 we can see a
graphical interpretation of Optj,((4,7)) = [0,4], i.e., w; € [0,1] is an interval in which there
is no line strictly above the line associated to (4, 7). We have (4,7) € PSOy(A) because for
any wy € [0,%) the line associated to (4, 7) is (strictly) above all the other lines, and
(6,6) € POy (A) because at w =1 there is no line (strictly) above the line associated to
(6, 6). O

We now give some basic properties of the operator PSOyy. Part (i) shows that for any
utility-equivalent subset B of an equivalence-free set A contains any possibly strictly optimal
elements. Part (ii) is used to show part (iii), which implies that the relation ?\Zvva could be
used for computing PSOyy(A).

Proposition 6 Consider any W C U and a set A € M.

(i) For B C 4,if B =)\, 4 then for all & € PSOyy(A) there exists f € B with § =y o
If, in addition, 4 is =)y-free then B D PSSOy (A).
(i) 1f o € 4\ PSOw(A) then Ugey 1,y Optin(B) = W and so 4\ {a} =25 4.
(iii)  For =y-free 4, PSOy(A) is the set of all o € 4 such that 4\ {a} £ {a}.
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Maintaining utility equivalence: let A € M and let OP be a function that maps subsets of A
to subsets of 4. Given WV and its associated set of utility functions, we say that OP maintains
utility-equivalence [over A] if OP(B) =)V B for all subsets B of 4.

The following result states relationships between the different operators, and shows that
we can replace 4 and B by (for instance) POy (A) and PO,y (B), respectively, in testing
A;b\}\ﬂB. It shows that UDyy,, MPO,y and POy all maintain utility-equivalence for arbitrary
A, which implies that each maps a non-empty set to a non-empty set. Example 2 shows that
PSSO,y does not always maintain utility-equivalence. However, in Sects. 5.2 and 6 we give
sufficient conditions for it to maintain utility-equivalence.

Proposition 7 Assume that W C U and A € M. Then the following hold:

(i) PSOw(A) C MPOy(A) NUDy(A) € MPOy(A) C PO(A) C A.

(i) OPw(A) =V A if OPy(A) is any of the following: UDyy(A), POw(A),
MPOyy(A), POy (A) N UDy(A), or MPOyy(A) N UDyy(A). Thus, A=0-B <
OPyy(A)=00Pw(B).

An immediate consequence of part (ii) is that OPyy(A) is non-empty if OPy,(A) is any of
the following: MPOyy,(A) N UDyy(A), MPOyy(A), POy (A) NUDyy(A), or POy (A).

Example 2 Let W = {w1,wp, w3}, let 4 = {a, 8,7} and suppose that o =,, f>,,7; and
B =, Vw0 and y =, 0>, f. 4 is equivalence-free, and no alternative dominates any
other alternative; e.g., o /yyf8 because B, . Thus, UDy(A) = A. We have {a, B} =5
A since in every scenario either o or f§ is optimal in A. Similarly, {o, y} and {f, y} are utility-
equivalent to 4. However, it is not the case that {o, fi} E\‘gv A because neither o or f8
dominate y. We have Opt{}v(oc) = {wy, ws} because o is optimal in scenarios w; and w3, and
we have Opt{}v([)’) = {w, w2}, and Opt{}v(y) = {w,, ws}. Since these three sets are non-
empty, each alternative is possibly optimal, and because none contains any other, each
alternative is maximally possibly optimal. Hence, POy (A) = MPOy,(A) = A. However,
there are no possibly strictly optimal alternatives, i.e. PSOyy(A) = (). The reason is that we
have Oy, = {«, f}, and Oy, = {f,7}, and Oy, = {f, 7}, so there are no uniquely optimal
alternatives. Hence, PSOyy(A) is not utility-equivalent to 4, i.e., PSOyy(A) ?_é\?)va A.

5 Setwise-minimal equivalent subsets and the possibly strictly optimal
elements

In this section we consider the issue of replacing 4 with an (utility-)equivalent subset of 4
that is minimal. This relates with Question (1) in the introduction. We show that, for
equivalence-free set 4 of alternatives, the set of possibly strictly optimal elements PSOyy(A)
is the intersection of all the minimal equivalent subsets. Also, we give a sufficient condition
for PSOw(A) to be utility-equivalent with 4 WV being A-extendable), and in this case,
PSOyy(A) is the unique minimal utility-equivalent subset of 4.

Setwise-minimal equivalent subsets: We may want to reduce 4 to a utility-equivalent
subset that cannot be reduced any further, i.e., there is no proper subset of it that is also
utility equivalent to 4. Theorem 1 determines when there is a unique such subset.

@ Springer



Auton Agent Multi-Agent Syst (2022)36:44 Page 13 of 66 44

Definition 10 (SMEyy(4).) We define SME,y(4) to be the set of subsets B of 4 that are
setwise-minimal equivalent to 4, i.e., such that B Eb\}\ﬂ A and there does not exist any strict
subset C of B such that C E\ZVH A.

In Sect. 7.1 we give a simple method for finding setwise-minimal equivalent subsets.

5.1 Relating SME);(A) and PSO),(A) in the general case

Theorem 1 below gives some relationships between PSOy(A), SMEyy(4) and the domi-
nance relation H;VVH, for equivalence-free 4. Any setwise-minimal equivalent subset of 4
contains PSOyy(A), the set of possibly strictly optimal elements. The latter set is equal to the
intersection of all the setwise-minimal equivalent subsets, and is equivalent to 4 if and only
if there is a unique minimal equivalent subset, which is thus equal to PSOy,(A).

The condition that PSOy(A) is equivalent to 4 holds in the linear multi-objective case
considered in Sect. 11 below (see Theorem 3), and so then PSOyy(A) is the unique minimal
equivalent subset of A.

Theorem 1 Let W C U be a set of scenarios and assume that A (€ M) is =yy-free. Then
the following hold:

(M) nBeSMEW(A) B =PSOwy(A);
(i) PSOw(A) =¥ A if and only if SMEy(4) is a singleton, which is if and only if
PSOy(A) is the unique setwise-minimal equivalent subset for 4.

Proof  (i): First consider any B € SME)y(4), and thus, B =)V A. Proposition 6 implies that
B 2 PSOyw(A). Hence, (\zesm,y(a) B 2 PSOW(A).

Conversely, consider any o € 4\ PSOy(A). Proposition 6 implies 4\ {o} =}V 4.
Since 4 is finite, there exists a subset C of 4 \ {o} that is setwise-minimal equivalent to 4,
and so C € SMEyy(4) and C Z o, which implies that (\zcgup,,(a) B Z o This proves that
ﬂB€SMEW(A) B C PSOy(A), and thus, ﬂBeSMEW(A) B =PSOw(A).

(ii): Now let us assume that SMEy(4) is a singleton, say {B}. By definition, B =V 4,
and, by the first part, B = PSOyy(A), showing that PSO(A) =1V A.

Conversely, assume that PSOyy(A) =)V; A, which implies that there exists some subset
C of PSOw(A) such that C & SMEp(4). Using the first part we have
PSOw(A) = Npesmp,ya) B € C € PSOw(A). Thus, € = PSOpw(A) = Ngesu,,(a) B and
so PSOyy(A) € SMEy(A), and any element of SME,y(4) contains PSOyy(A). By defini-
tion of SME)y(4) this implies that SME,y(4) = {PSOw(A)}. O

In Example 1 of Sect. 3.3, 4 is equivalence-free, and there is a unique minimal equivalent
subset, i.e., {(10,4), (4,7)}, which is equal to PSOy,(A). In Example 2 of Sect. 4, 4 =
{a, B, 7} is equivalence-free. The minimal equivalent subsets are {o, S}, {f,7} and {f,y}.
Their intersection is empty, as is PSOyy(A).

Proposition 8§ relates PSOyy to some properties of choice functions. A choice function
Opt : 2€ — 2C satisfies the Heritage property if Opt(A) N B C Opt(B) holds for any sub-
sets B and 4 such that B C 4 C C. It satisfies the Outcast property if Opt(A) = Opt(B)
whenever Opt(A) C B C A C C. A choice function Opt over Q is said to be path inde-
pendent [21, 47] if it satisfies Opt(A U B) = Opt(Opt(A) U B) for any 4, B C C. This holds
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if and only if Opt satisfies the Heritage and Outcast properties. [1, 21]. The path inde-
pendence property allows the computation of the best elements to be performed in a
modular way [45, 47, 72]. The proposition shows that if PSO,y maintains equivalence with
respect to =)V then it satisfies the important property of path independence. Part (i) relates
to the Heritage property for choice functions, and (ii) relates to the Outcast property.

Proposition 8 Consider an arbitrary set of scenarios W (C U) and suppose A,B € M
with B C A.

(i) PSOw(A) NB C PSOy(B); and
(i) if PSOw(A) =05 A, and PSOyy(A) C B then PSOyy(B) = PSOyy(A);
(i) if PSOw(B) E\%a B for all B C A then PSOy satisfies path independence on 24, i.
e., for any subsets B and C of 4, PSO),(B U C) = PSOy,(PSO(B) U C).

5.2 The case of A-extendable VWV

In this section we consider a condition, that W is A-Extendable, which is sufficient for the
function PSO)y to maintain utility-equivalence (i.e., for the equivalence PSOyy(B) Eg‘éa B
to hold for all subsets B of 4); thus, by Theorem 1, given this condition, PSOyy(A) is equal
to the unique setwise-minimal equivalent subset for equivalence-free 4. Because of
Proposition 8(iii) above, the sufficient condition also implies that PSOyy, viewed as a
function on 24, satisfies path independence. In Sect. 6 we show that this sufficient condition
holds for a large class of utility functions, including the linear case. Our algorithms for
computing the minimal equivalent subset for 4 make use of the utility-equivalence property,
i.e., that PSOy(A) =15 A.

Loosely speaking, W is A-Extendable if for every element w of W there exists an
element w’ whose preference ordering is more precise than (or equal to) that for w, and such
that w' totally orders non-equivalent elements of 4. If this latter condition holds we say that

w' is total over A given VW, and W7 is defined to be the set of all such .

Definition 11 [Total w over W, and ij.] Givenw € W C U and 4 € M, we say that w is

total over 4 given W if for all o, f € 4, either a>,,f or f>,,0 or & =)y f. Let Wj be the set
of all w € W that are total over 4 given W.

Definition 12 ( 4-Extendable.) Consider W C U and 4 € M. For w,w' € W, we say that
w extends w over 4 if for any a, § € 4, if a>,,f then o=, f. (Thus, if o=, § then o=, 5.)
We say that W is A-Extendable if for all w € W there exists w € W that is total over 4

given W (ie.,, W € ij) and that extends w over 4.

Consider a set of scenarios }V like in Example 1, and consider an arbitrary finite set 4 of
pairs of real numbers. Not every element of WV is necessarily total over 4. For instance, if 4
contains the pairs (3, 2) and (0, 4) then w = (0.4, 0.6) ranks (3, 2) the same as it ranks (0, 4),
ie., (3,2) =, (0,4), even though (3,2) #)y (0,4). However, W is A-Extendable, i.e., any
scenario in YV can be extended to one that is total over 4. To illustrate this for w, consider
positive € > 0; then w' = (0.4 + ¢€,0.6 — €) will have (3,2)>,,(0,4), and, if we choose € to
be sufficiently small we will have for all o, f € 4, (i) if >, then o>, f; and (ii) if & =,/
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then o = f8. (The fact that 4 is finite is crucial for this to hold.) By (i), w' extends w over 4,
and by (ii), w' is total over W, i.e., w' € Wf.

The results of Sect. 6 show that the A-Extendable property holds very often for con-
tinuous sets of scenarios W; roughly speaking, it holds if f,, (o) is a completely smooth
function of w. Extendability also holds for classes of discrete WV such as for the sets of
lexicographic preference models defined from the compositional preference languages in
[70].

We give three lemmas that enable the proof of Theorem 2 below. The following result,
which follows almost immediately from the definitions, shows that the distinction between
PSO and PO disappears when all scenarios are total.

Lemma 2 Suppose that subset T of W only contains w that are total over A given W. Then
for all B C 4, PSOr(B) = PO7(B).

Note that for any w € W7, relations =,, and =,y are equal (when viewed as relations on 4)
and so, =2 = Sw; we therefore have the following result:
A

Lemma 3 Suppose that W C U and that A (¢ M) is such that Wj is non-empty. Then, for
alw,fed, o=, f = a=pyp
A

Lemma 4 shows that, under the assumption that W is 4-Extendable, reducing W to ij
does not affect PSOyy, or the relation &&VH on subsets of 4. The reason is that each element

of W is extended by some element of Wj.

Lemma 4 Suppose that VV is A-Extendable. Let )V = Wj Then, for any B,C C A, we have

(i) BrlsC < B=].C.
(i) PSOy(B) = PSOw(B).

The theorem below shows that PSO,y maintains utility-equivalence over subsets of 4 if W
is A-Extendable.

Theorem 2 Suppose that A € M and that the set of scenarios VW (C U) is A-Extendable.
Then, for any B C A, we have B E\Zv\ﬂ PSOw(B) = PO, (B).
A

Proof Let)V = Wf, which is non-empty because W is A-Extendable. By Proposition 7,
B =5 POy(B), and so B =)V POy(B), by Lemma 4(i). By Lemma 2, since each w € V is
total over B, we have POy,(B) is equal to PSOy,(B), which equals PSOyy(B) by Lemma 4
(i), completing the proof. O

Theorem 2 and Proposition 8 immediately imply the corollary below, stating that extend-

ability implies path independence of the operator PSO,y. (It also follows by considering the

equality PSOyy(B) = PO, (B) given by Theorem 2, since for any set W', PO,y satisfies
A

path independence.)
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Corollary 1 Suppose that A € M and that W is A-Extendable. Then, PSOyy on 24 satisfies
path independence, ie, for —any subsets B and C of A,
PSOy(B U C) = PSOy,(PSOy,(B) UC).

6 PSO,,(A) as unique minimal equivalent set in the continuous case

The results in this section show that for continuous sets ¥V of user models, under natural
assumptions on the utility functions, we have that the set of possibly strictly optimal
alternatives PSOyy(A) is the unique minimal equivalent set for A. In particular, we show that
a particular property, the Identity property, is sufficient for WV being A-Extendable (see
Sect. 5.2) and hence for PSO maintaining utility-equivalence. The Identity property, which
holds for important classes of function, states essentially that if two utility functions over W
are equal locally, i.e., within a neighbourhood of a point in WV, then they are globally equal.
This property holds for linear utility functions (where f,,(«) = w - d) and other polynomial
(and analytic) functions. The results also imply that in the linear case and when W is
convex, PSOyy(A) = MPOyy(A); this enables then a method for computing the minimal
equivalent set by computing MPOyy(A).

In this section we will be considering, for a given alternative o, how f,,(a) varies as a
function of w. It is then convenient to make the following definition:

For each o € Q, we define function /* on U by f*(w) = f,.(«), for each w € U.

For o, € Q, and W C U we define W,.5 = {w € W : f*(w) # fP(w)}. These are the

scenarios for which o has different utility from f. Recalling the definition of Wj from
Sect. 5.2, we have, for 4 € M, that Wf is equal to the set of all elements w of W such that
f*(w) # fP(w) holds for all o, f € A4 with o %y B. Thus,

F _
Wi= (] W
o, fed:aFEwf

We recall some basic topological definitions for subsets W of IR”. For € > 0 let B.(w) be the
set of elements of IR’ that are within Euclidean distance ¢ of w, and let
B (w) = B.(w) N W, i.e., the set of elements of WV that are within Euclidean distance ¢ of
w. Subset W of W is said to be open (in the standard topology of /R? induced on W) if and
only if for every we€ W there exists some e >0 such that B (w) CW, ie,
B.(w) N W C W For example, it can be shown that Wf and W,g (for o, f € Q) are open
sets of W.

Subset W of W is said to be closed if its complement W \ W in W is an open set in W.
For example, it can be shown that Opty,(«) (the set of elements in }V that make o optimal in
A) is always a closed set in V. For arbitrary subset W of W, its closure CI(WV') is defined
to be the intersection of all closed sets in W that contain W, which is the unique smallest
closed set containing W'. If CI(W') = W then we say that W' is dense in W, this means
that for every element of W there exists an arbitrarily close element of W'.

6.1 The Identity property

We first define the Identity property, which in Sect. 6.2 we show is sufficient for W being 4-
Extendable and hence for PSO,y maintaining utility-equivalence (by Theorem 2). We go on
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to show that the Identity property holds for sets of linear functions of the scenario parameter
w, as well as for sets of multivariate polynomials.

Definition 13  (Identity Property.) Let F be a set of continuous real-valued functions on a
subset W of IR” (and similarly, for an arbitrary metric space V). We say that F satisfies the
Identity property if for every f', g € F, if fand g agree on any non-empty open subset of W
then they agree on W. In other words, if there exists a non-empty open subset 7 of JV such
that for all w € T, f(w) = g(w) then for all w € W, f(w) = g(w).

Thus, F satisfies the Identity property if and only if when two of the functions are locally
equal then they are globally equal. Loosely speaking, it holds for classes of functions that
are completely smooth.

Observation: If the Identity property holds for /" and G C F then the Identity property
holds for G.

6.1.1 The Identity property for linear functions of w

The Identity property holds for classes of natural functions, in particular, for linear
functions.

Proposition 9 Assume that each o in finite set A is associated with a vector 4. € IR. Let VW
be a convex subset of IRP, and define, for each o € A, the function f* by f*(w) = d-w,
representing the utility of alternative o in scenario w. Then the set of functions {f* : a € A}
satisfies the Identity Property.

Note that we’re not making any assumptions at all on the form of the function that maps « to
@. (It can also be shown that the assumption that W is convex can be considerably
weakened.)

6.1.2 The Identity Property for multivariate polynomials

Consider, for instance, a convex set YV C IR, and where, for each o € 4, the function f/* is
a multivariate polynomial function of the components of w. For example, the function g
given as follows is a multivariate polynomial in p = 3 variables w;, w, and ws (with these
three variables being the components of w): g(w)=3w; —4.5w; + 2wiwy—
—3.2w1w2w§ + w%w% + 9W%W3.

More generally for the multivariate polynomial case, f*(w) can be written as
> re(or) G (w) where the sum is finite and each © corresponds with a p-dimensional vector

of non-negative integer indices, and G, (w) is the corresponding product wi(l) . -w;(f’), and

each r; is a function on 4.

If W is a convex set (or similarly, a finite union of convex sets of the same dimension)
and for each o € 4 we have that /* is some multivariate polynomial function of the com-
ponents of w (€ W) then the set of functions {f* : o € A} satisfies the Identity Property.

To see that this is the case, the first step is to rewrite the multivariate polynomial in terms
of k components w;, where £ is the dimension of W. This is always possible; for example, if
k=p—1 then we just have the constraint > ,w; =1, so we can replace w, by
1 —(wi+---+wy_1), and multiply out to obtain a multivariate polynomial in p —1
variables. To show the Identity Property we need to show that if two multivariate
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polynomials are equal in a neighbourhood of # € )V then they are equal on the whole of W.
By taking the difference between the multivariate polynomials this is equivalent to: if a
multivariate polynomial is equal to zero in a neighbourhood of u then it is equal to zero on
all of W, i.e., it is the zero function. Now, this is the case since if a multivariate polynomial
3. 7.G.(v) equals zero for all v € IR* close to u then each r, has to be zero. The latter fact
can be shown by reasoning as follows. For any fixed values of variables wy, ..., w;_; close
to values uy,...,ux—; we can consider the multivariate polynomial as a (univariate) poly-
nomial in wg, which is zero in an interval around uy, and thus, by a basic classical result, is
equal to the zero polynomial. Hence, for each power of uy, the corresponding coefficient is
zero, where the corresponding coefficient is a multivariate polynomial in the £ — 1 variables
{wi,...,wg_1}. lterating this for k — 1,k — 2, ..., 1 implies that each coefficient r; is equal
to zero, as required.

6.1.3 An example when the identity property does not hold

We have shown that the Identity property holds some for some important classes of smooth
functions. Here we give an example of a very small set of functions where the Identity
property fails to hold.

Example 3 Consider an example based on Example 2 of Sect. 4, again with 4 = {o, 8,7}
but with W being a convex subset of /R”. Suppose that disjoint non-empty regions Wy, W,
and W5 of W are such that W, U W, U W5 = W, and that for all w; € Wy, w, € W, and
w3 € W3 we have fwl (0() :fWI (ﬁ) >fW1 ("/), fwz (ﬁ) :fwz ('V) >f;1,2(06); and
Sy (9) =Sy (@) > fu, (). As in Example 2 we have PSOyy(A) being empty. The Identity
property does not hold for the set of functions {f*,f#, f7} because, for instance, f*(w;) =
f*(w) for all w; in any open ball contained in W, so the two functions /* are f* are locally
equal, but they are not globally equal, since /*(w,) # f#(w,) for wy € W,. The functions
cannot all be smooth, and in fact there must be discontinuities in the functions at the
boundaries between the regions. Even if we retract the assumption that the union of the three
regions covers VW, we will still have that the Identity property fails, for the same reason.

6.2 Consequences of the identity property

The lemma below establishes equivalent forms of the Identity property. For our purposes the
key implication is (a) = (c), i.e., that the Identity property implies that Wf is dense in W.
The Identity property (a) implies the property (b) that for every non-equivalent o, § € 4,
Whzp is dense in W, i.e., for every element w in MV, there is an arbitrarily close element in
W that distinguishes o and f3. If this were not the case, then there would be an open set (a
neighbourhood) containing w in which every scenario makes o and f equal, i.e., f*(w') =
fP(w') for all w' in the open set; but the Identity property would then imply that f* = ¥, i.
e., « and f are equivalent, contradicting the assumption. From (b) it can be shown that (c)
Wff is dense in W, using the fact that ij is a finite intersection of open dense sets W,.g.

Lemma 5 Let A € M and assume, for each o € A, that the function f* is a real-valued

continuous function on the metric space W. The three conditions below are equivalent, i.e.,
if one holds then the other two also hold.
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(a) The set of functions {f* : « € A} on W satisfies the Identity property.
(b) For all «, f € A with o #yy f§, we have CI(W,.5) = W.

©) CIW%)=W.

If the topological closure Cl(Wf) of Wf is equal to W then for any element w in W, we
can find arbitrarily close other elements w' that totally order (non-equivalent elements of) 4.
Because of the finiteness of 4 and the continuity of the functions f* this implies that we can
then find such an element w' € W that extends w, showing that WV is 4-Extendable.

Lemma 6 Let A € M and assume, for each o. € A, that the function f* is a real-valued
continuous function on the metric space WW. If W equals the topological closure Cl(Wf) of
ij then W is A-Extendable.

Putting Lemmas 5 and 6 together we obtain the following result showing that the Identity
property is a sufficient condition for WV to be 4-Extendable.

Proposition 10 Let A € M and assume, for each o € A, that the function f* is a real-
valued continuous function on the metric space W. If the set of functions {f* : o € A} on
W satisfies the Identity property then W is A-Extendable.

Proposition 10, together with Theorem 2, implies that the Identity property is sufficient for
PSO,y to maintain utility-equivalence, and the existence of unique minimal equivalent
subset for a set 4.

Theorem 3 Let C € M and assume, for each o € C, that the function [ is a real-valued
continuous function on the metric space W, and that the set of functions {f* : a« € C}
satisfies the Identity property. Then the following hold, for all non-empty A C C.

(i) PSOw(A) =05 A.
(i) If 4 is =y -free then there exists a unique setwise-minimal equivalent subset for 4, i.
e., SMEy(4) is a singleton, and this equals PSOy,(A).

Proof (i): Since {f* : a € C} satisfies the Identity property, by Proposition 10, W is 4-
Extendable, and thus, PSOy,(A) E)\;Vva A, using Theorem 2.

(ii): If 4 is =yy-free then, by part (i) and Theorem 1, PSOyy(A) is the unique setwise-
minimal equivalent subset for A. (I

Theorem 3 immediately implies that PSO,, maintains utility-equivalence for the linear case
(by Proposition 9), as well as for other cases such as for multivariate polynomial utility
functions. The assumption that WV is convex can be substantially weakened, e.g., to WV being
a finite union of convex sets of the same dimension.

Corollary 2 Assume that each o in finite set A is associated with a vector 6. € IRP. Let Y be

a convex subset of IR’, and define, for each o € A, the function f* by f*(w) =d - w,
representing the utility of alternative o in scenario w. Then we have PSOw(A) =5 A.
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We observed earlier that an alternative o is possibly optimal (« € POyy(A)) if and only if the
set of scenarios Opt{}v(oc) (C W) is non-empty (see Definition 8 in Sect. 4). When the
Identity property holds (including the cases of linear and polynomial utility functions), we
have a related statement regarding possibly strict optimality, namely: « is possibly strictly
optimal if and only if Opt{}v(oc) has a non-empty interior, which corresponds, at least in the
linear case, with Opt{}v(oc) having the same dimension as W (this follows from Auxiliary
Lemma 15 in the appendix, since Opt{}v(oc) is then convex). In the running example (see the
continuation of Example 1 in Sect. 4), the alternative (6, 6) is possibly optimal but not
possibly strictly optimal, which is reflected by Opti,(6,6) = {1}, being a non-empty set of
smaller dimension than W.

Proposition 11 Let C € M and assume, for each o € C, that the function f* is a real-
valued continuous function on the metric space W, and that the set of functions
{f* : a € C} satisfies the Identity property. Suppose that A C C. For a € A we have
% € PSOyw(A) if and only if Optiy,(c) contains a non-empty open set, i.e., has a non-empty
interior.

We show below that for the linear case with convex WV, we have that the maximally possible
optimal elements are the same as the possibly strictly optimal elements, so that
MPOyy = PSO,y. We use this property as a basis of our algorithm for computing the set of
possibly strictly optimal elements (which equals the minimal equivalent set) in Sect. 12.1.

Corollary 3 Assume that W is a convex subset of IR’, and consider A € M and assume
that for each o € A there exists 6 € IR’ such that for all w € IRP, f,,(a) =w-d. Then
MPO,,(A) = PSOyy(A).

7 Filtering algorithms for minimal equivalent subsets, PSO,,(A)
and MPO,,(A)

this section includes two simple kinds of filtering to reduce the input set of alternatives, both
of which can be used for the computation of the possibly strictly optimal elements. In
Sect. 7.1 we use a simple filtering method to compute a setwise-minimal equivalent set, and
thus, in certain circumstances, PSOyy(A) (such as when the hypotheses of Theorem 3 or
Corollary 2 hold). We use this in a linear programming algorithm for computing the set of
Possibly Optimal elements in Sect. 11.3 below, which is used in the method (a) in
Sect. 12.1.

In Sect. 7.2 we show how the set of maximally possibly optimal elements MPO,y(A) can
be computed using a certain dominance relation between alternatives in 4. This therefore
gives another method for computing PSO)y(A) when PSOyy(A) = MPOyy(A) (cf. Corol-
lary 3 above). We use this in the (b) algorithm in Sect. 12.1 below.

7.1 Filtering with relations on sets

A simple way of generating a minimal equivalent subset of A is to sequentially delete
elements o« of A that are not needed for maintaining equivalence, i.e., such that

@ Springer



Auton Agent Multi-Agent Syst (2022)36:44 Page 21 of 66 44

A\ {a}=0¥{a}, since then A4\ {o} =5 A. This is what is done in the operation
Filter,(A; ?)\;Vva) defined below, to produce a minimal equivalent subset of A,
Foro € A, define Filter(4, o; =1V5) tobe A \ {a}if 4 \ {a} =05 {a}; otherwise it equals 4.
More generally, for B C A, we define Filter(A, B; =) to be A \ B if A \ B’=B; otherwise it
equals A4.

Let us label 4 as oy, . . ., o,, where n = |A|. Formally, the labelling is a bijection ¢ from
{1,...,n} to 4 (so that o(i) = o;), and let A be the set of all n! labellings. We define
Filtery(4; =)Y) iteratively as follows. We set 4°=4A4. For i=1,...,n, we set

A" = Filter(A™! 0 3=))5). We then define Filter, (A, =)5) to be A", i.e., the set remaining
after iteratively deleting elements from 4 that are dominated with respect to relation »=)-.

As the proposition below states, when applying the filtering operation Filter,(A; =15),
(i) equivalence is always maintained; and (ii) we always obtain a minimal equivalent subset,

and any such subset can be achieved for some ordering. Part (iii) implies that for any
labelling o we have Filter,(4; =1Y5) = PSOw(A) if PSOy(A) =15 A and 4 is equiva-
lence-free.

Proposition 12 Let W (C U) be a set of scenarios, let A € M and let 6 be any labelling of
A. Then we have:

() A=W, Filter,(4; =)Y5) C A.
(i) SMEw(4) = {Filter,(4; =03) : 6 € A}.
(iii) If 4 is =y-free and PSOyy(A) =5 A then Filter,(A; =)V5) = PSOy(A) for any
labelling o.

Hence, we can generate a setwise minimal equivalent subset of 4 by choosing any labelling
o and computing Filter,(A; =)Y). Furthermore, this will be equal to PSOyy(A), and be the
unique setwise minimal equivalent subset, if the operator PSOyy maintains utility-equiva-
lence, such as in the linear case (see Corollary 2).

7.2 A structure for computation of MPO,,(A)

The maximally possibly optimal elements of A4 are those that are undominated with respect
to a certain strict partial order (Opt’y\v-dominance) as defined below. This leads to a simple
method for computing MPO)y,(A), by iteratively deleting elements, if one has a method for
testing the Opt’,}v-dominance relation.

Definition 14 ( Opt{}v-dominance.) Let W (C U) be a set of scenarios and let 4 € M. For
%, B € Q, we say that o Optjy-dominates f if o, f € 4 and Optﬁv(a);Opt{}V(ﬁ). For € 4,
we say that f is Opt{}‘v-dominated if there exists o such that o Opt‘)}v-dominates B; otherwise,
P is Opt’,}v-undominated.

' One can define Filter, (4, >>1V’V\;3) analogously, using the strong strict version of the dominance relation (see
the remark after Proposition 3) with the result being POyy(A), irrespective of ¢, and without requiring any
conditions on A4; see Algorithm 1 and Theorem 1 in [10].
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Lemma7 Let W (C U) be a set of scenarios and let A € M. MPOyy(A) is the set of Opty,-
undominated elements (of A). Opt{}v—dominance is an irreflexive transitive rel