
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:27
https://doi.org/10.1007/s10458-022-09555-9

1 3

Optimal coalition structures for probabilistically monotone
partition function games

Shaheen Fatima1  · Michael Wooldridge2

Accepted: 15 March 2022 / Published online: 19 April 2022
© The Author(s) 2022

Abstract
For cooperative games with externalities, the problem of optimally partitioning a set of
players into disjoint exhaustive coalitions is called coalition structure generation, and is a
fundamental computational problem in multi-agent systems. Coalition structure generation
is, in general, computationally hard and a large body of work has therefore investigated
the development of efficient solutions for this problem. However, the existing methods are
mostly limited to deterministic environments. In this paper, we focus attention on uncertain
environments. Specifically, we define probabilistically monotone partition function games,
a subclass of the well-known partition function games in which we introduce uncertainty.
We provide a constructive proof that an exact optimum can be found using a greedy
approach, present an algorithm for finding an optimum, and analyze its time complexity.

Keywords  Coalition formation · Cooperative games · Partition function games ·
Optimization · Uncertainty

1  Introduction

A key open problem in multi-agent systems research is how to organise agents into disjoint
teams so as to maximise some overall welfare measure. This coalition structure generation
(CSG) problem is in general computationally complex: NP-hard even under quite mod-
est assumptions. For this reason, there have been many studies directed at finding easy
instances of the problem (see [2, 3, 17, 35, 37] for some examples and [32] for a detailed
survey).

Coalition/cooperative game theory provides a conventional framework for modelling
CSG problems [9, 34, 40]. A coalition game is defined by a pair comprised of a set of
agents and a function that maps coalitions to values. A widely studied subclass of coali-
tion games are characteristic function games (CFGs). For a CFG, the value of a coalition

 *	 Shaheen Fatima
	 S.S.Fatima@lboro.ac.uk

	 Michael Wooldridge
	 Michael.Wooldridge@cs.ox.ac.uk

1	 University of Loughborough, Loughborough, UK
2	 University of Oxford, Oxford, UK

http://orcid.org/0000-0002-6068-2942
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09555-9&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 2 of 45

depends only on its members. A relatively less well studied subclass of coalition games are
partition function games (PFGs). For a PFG, the value of a coalition depends on its mem-
bers as well as on the make-up of the non-members. CFGs are a proper subclass of PFGs
and CFGs are the most well studied coalition games. Except for a few recent ones, most of
the existing methods for solving the CSG problem are for CFGs [32].

Existing solutions for the CSG problem for PFGs were devised either by placing con-
straints on externalities or else on the function that maps coalition structures to values (see
Sect. 6 for details). A common feature of existing work is that it is focussed on games
whose properties are known with certainty (we will call such games deterministic). How-
ever, stochasticity is inherent to many multi-agent settings. Given this, the goal of our pre-
sent work is to investigate how to solve the CSG problem for stochastic environments in
which some aspects of the problem are not known with certainty. To this end, we build
on our prior work [17] in which we considered the CSG problem for PFGs with priority
ordered players and a restricted class of value functions, viz., those that satisfy a certain
monotonicity property, and devised a polynomial time solution. In this previous work, the
notion of monotonicity was deterministic in the sense that, with probability one, the func-
tion that maps coalition structures to values satisfies monotonicity. In this paper, we relax
the deterministic monotonicity assumption by allowing a certain degree of non-monoto-
nicity. Specifically, we replace the deterministic monotonicity restriction by probabilistic
monotonicity. Probabilistic monotonicity means that the value function obeys monotonicity
with a certain probability 0 < p ≤ 1 (for the deterministic case p = 1 ). For probabilistically
monotone PFGs with priority ordered players, we devise an algorithm for optimally solv-
ing the CSG problem and characterize its time complexity.

The need for optimal coalition structures arises in many real-world applications. For
example, in the formation of supply chains [18, 26]. In such a setting, several different
manufacturers of components form coalitions to achieve what they cannot do individu-
ally. Externalities arise, for example, from the requirement that all components ultimately
conform to the same standards. The cost of standardisation procedures incurred by any
coalition depends on the number and structure of other coalitions. Another application is
in job scheduling [19]. In a job scheduling problem, there is a set of jobs and a set of
machines. Each job must be allocated to a machine such that the overall cost of processing
jobs is minimized. For further applications of cooperative games, [12] is a comprehen-
sive set of references. In all such applications, the general problem of optimal coalition
structure determination involves a combinatorial search. In many cases, the search space is
not always unstructured – often there is some form of inherent regularity in at least a part
of the space. For example, consider an airline crew scheduling problem, which requires
organising staff into coalitions based on individual characteristics, and optimally schedul-
ing the coalitions. The players, i.e., the crew, are ordered in that any non-optimal place-
ment of an individual in the early part of a schedule can propagate inefficiencies down
the chain and reduce the value of the entire partition. It is possible that the earlier in the
schedule a non-optimality is introduced, the greater the reduction in the value of the parti-
tion as a whole, relative to the optimum. In other words, the search space is structured in
that there is a relation between how close a partition is to the optimum, and the value of
that partition. The closer a structure is to the optimum, the more likely it is to have a higher
value. A lack of certainty in the values can arise because the number of all possible coali-
tion structures is too huge to enable an accurate measurement of their values. It is therefore
important to consider such uncertainties.

To the best of our knowledge, we are the first to consider the CSG problem in an uncer-
tain environment. The key contributions of this paper are:

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 3 of 45  27

1.	 Developed a new model of probabilistic monotonicity in partition function games, that
extends previously studied deterministic monotonicty.

2.	 Analysed the model and constructively proved that an exact optimum can be found.
3.	 Devised a greedy algorithm for solving the CSG problem for probabilistic monotone

partition function games.
4.	 Analysed the time complexity of the devised algorithm.

The remainder of the article is organised as follows. Section 2 provides background. Sec-
tion 3 is a description of the model under investigation and Sect. 4 of the proposed method.
An algorithm for solving the CSG problem is in Sect. 5. A review of related literature is
in Sects. 6 and 7 concludes. Appendix A collects together all our theorems and proofs.
Appendix B is a description of an algorithm for generating the partitions of a set, and an
analysis of its time complexity.

2 � Background

There is a finite non-empty set of players N = {1, ..., n} (see Table 1 for a summary of key
notation). The term coalition refers to a non-empty subset of N. The symbol C possibly
with sub/superscripts denotes a coalition and C denotes the set of all coalitions of N.

A coalition structure is an exhaustive partition of a set of players into mutually disjoint
coalitions. Formally:

Definition 1  For any coalition C, let �C denote the set of all coalition structures over C.
Then {C1,C2,… ,Ck} ∈ �C iff

C = {C | C ⊆ N,C ≠ �}

∪k
i=1

Ci = C, ∀i Ci ≠ �, and ∀i∀j ≠ i Ci ∩ Cj = �.

Table 1   A summary of notation
N = {1,… , n} The set of players
C1≤i≤n A coalition of players; Ci ⊆ N

ℙi The top ith priority player
� 𝛥 ⊆ N , � = {ℙ1,… ,ℙ�}

� � = |�|
� A coalition structure over the set N
� i
�

The index of the coalition in � to which
player i belongs

�N The set of all coalition structures over N
�

�
The set of all optimal coalition structures

�1
(Bell(n−1)−Bell(n−2))2

3

�2(k) Bell2(n−k−2)

3

� Bell2(n−�−2)

3

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 4 of 45

The symbol � possibly with sub/superscripts will denote a coalition structure. An
embedded coalition is a coalition together with a specification of how the non-members are
organised into coalitions. It is formally defined as follows:

Definition 2  Let E denote the set of all embedded coalitions. Then

Definition 3  A characteristic function game (CFG) is a pair (N, v1) where v1 ∶ 2N → ℝ
and 2N denotes the set of all subsets of N. A partition function game is a pair (N, v2) where
v2 ∶ E → ℝ.

Thus CFGs are a subclass of PFGs.

Definition 4  The value of a coalition structure over N is given by an objective function
v ∶ �N

→ ℝ.

In the literature on CSG, the function that maps coalition structures to values, i.e., the
objective function v, is a social welfare function. It is commonly assumed to be the sum
of coalition values. In the proposed model (described in Sect. 3), however, the value of
a structure does not have to be the sum of the values of its coalitions but could be any
function.

The CSG problem then is to find an optimal structure, i.e., a structure � such that v(�)
is the highest between all coalition structures. For n player games, the number of all pos-
sible structures is Bell(n) [5, 6] where

with Bell(0) = Bell(1) = 1 . Since Bell(n) ∼ �(nn) [6], a brute force method for PFGs (and
CFGs) is not a feasible.

Given the computational complexity of CSG, it is natural to investigate easy instances
of the problem. In prior work [17], we showed how the CSG problem for PFGs can be
solved optimally in polynomial time, provided that the set N is ordered and the objective
function is deterministically monotonic. Our goal now is to generalize this method to sto-
chastic environments where monotonicity is satisfied with a certain probability. Monoto-
nicity is defined in terms of a player ordering.

2.1 � Player ordering

In the definition of both CFGs and PFGs, the term coalition refers to a set of players, i.e.,
there is no notion of ordering. Nevertheless, the Shapley value [36], a well-known axi-
omatic solution for CFGs, and its adaptation [27] to PFGs are motivated by a bargaining
procedure in which the players are assigned a random ordering and coalition formation is
viewed as a sequential process that happens as per the ordering. In generalized CFGs [28],
attention is paid to ordering within the definition of a game. A generalized CFG is defined
in terms of a set of players and a characteristic function that maps orderings on coalitions
to numbers.

E = {(C,�) | C ∈ � ∈ �N}

Bell(n) =

n−1∑
i=0

(
n − 1

i

)
× Bell(i)

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 5 of 45  27

The notion of ordering is prevalent not only in the definition of cooperative games and
solutions to them, but also in their applications to computationally hard optimization prob-
lems such as matching, network optimisation, and scheduling [12, 22]. In the context of
these applications, the notion of ordering is used to determine computationally easy prob-
lem instances. For example, consider scheduling. In a scheduling problem [39], there is a
set of jobs and a set of machines. Each job must be allocated to a machine and, for each
machine, an ordering over its allocated jobs must be determined such that the overall cost
of processing jobs as per the order is minimized. Computationally easy instances of this
problem are sought by imposing restrictions such as the cost function being monotonic,
and the set of jobs being an ordered set. In particular, much of the scheduling literature
[19, 20] has focussed on a restricted class of objective functions called priority-generating
functions. An objective function is said to be priority-generating if a related function called
priority function exists which imposes an ordering over the set of jobs by assigning to jobs
certain values called priorities. Crucially, priorities are assigned to jobs such that, based on
priorities, the optimal schedule can be found in polynomial time. Thus, if a priority func-
tion can be found for a given objective function, and it takes polynomial time to compute
job priorities using the function, then the scheduling problem can be solved in polynomial
time [39].

Motivated by the above observations, in prior work [17] we took a priority-based
approach and showed how the CSG problem for PFGs can be solved optimally in polyno-
mial time provided the set N is ordered and the function v is monotonic (see Sect. 2.2). The
CSG problem is related to scheduling in that players are analogous to jobs and coalitions
to machines. A crucial difference though between existing priority-based scheduling meth-
ods [19, 20, 39] and [17] is that the former require job priorities as an input, while latter
requires only the existence of player priorities to be known without requiring the actual
priorities as problem input.

2.2 � Monotonicity

In [17], the players are assumed to be priority ordered, and monotonicity of the objective
function v is defined in terms of a distance metric d. For any two structures �1 and �2 ,
d(�1,�2) denotes the distance between �1 and �2.

Definition 5  (Deterministic monotonicity) For any two structures �1 and �2 , and a unique
optimum �:

with probability one. 	� ◻

Then a PFG is deterministically monotonic if, for some player ordering, v is monotonic.
It was shown that deterministic monotonicity is a property that can be satisfied by PFGs
with positive only, negative only, and mixed externalities. Further, deterministic monoto-
nicity was shown to be satisfiable for a wide range of objective functions, i.e., the value of
a partition is not restricted to be the sum of the values of its coalitions but can be any func-
tion of these values. Illustrations of deterministically monotonic PFGs, and a polynomial
time method for solving the CSG problem for deterministically monotonic PFGs are in
[17]. Our aim now is to generalise this method to probabilistic monotonicity.

(1)d(�,𝜋1) < d(�,𝜋2) ⇒v(𝜋1) > v(𝜋2)

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 6 of 45

3 � Coalition structure generation in stochastic environments

The players to be partitioned are given by the set N. The priority ordering referred to in
Sect. 2.1 exists over certain players in N. The set of these ordered players is denoted 𝛥 ⊆ N
with � = |�| . Each player in N − � is called a non-priority player. Let ℙi ∈ � denote the top
ith priority player, i.e., the ordering is ℙ1 ≻ ⋯ ≻ ℙ𝛿 . The quality of a coalition structure
depends on how the priority players are positioned in the structure. The higher up a player
is in the ordering, the more important it is to have the player in its optimal position.

Any coalition that contains at least one priority player is called a priority coalition. An
ordering over � induces an ordering over the priority coalitions: they are ordered as per the
priorities of their highest priority members. Suppose hpm(X) denotes the highest priority
member of coalition X. Suppose that the priority players are spread over m coalitions. Then
these m coalitions form a sequence (C1,C2,… ,Cm) such that, ℙ1 ∈ C1 , and if ℙx ≻ ℙy and
ℙx = hpm(Ci) and ℙy = hpm(Cj) , then i < j . For any coalition structure over N, there is no
ordering over coalitions comprised solely of non-priority players.

We consider stochastic environments modelled as probabilistically monotone PFGs for
which it is known that a priority ordering exists, but the ordering itself is unknown, i.e.,
the identities of the priority players ℙ1,… ,ℙ� are unknown. Solving the CSG problem
requires determining these identities and an optimal way of partitioning the players in N.
To achieve this, we represent coalition structures as described in Sect. 3.1. In Sect. 3.2,
we introduce a distance metric, in terms of which we define probabilistic monotonicity in
Sect. 3.3. The proposed method for solving the CSG problem is described in Sect. 4.

3.1 � Representation

Let ℙ denote the sequence (ℙ1,… ,ℙ�) . For any k ≤ � , ℙ|k will denote the k element prefix
of ℙ , i.e., ℙ|k = (ℙ1,… ,ℙk) . ℙE

|k is defined as

where Perm(�) denotes the set of all permutations of � . A coalition structure over � is rep-
resented as a sequence � = (x1, x2,… , x�) such that xi ∈ {1,… , �} is the index of the coali-
tion to which player ℙi belongs. Then the set of all structures over � is:

�|k will denote the k element prefix of � = (x1, x2,… , x�) . �E
|k will denote the set of all those

sequences in �� whose k element prefix is �|k.

Example 1  Consider a PFG with n = 3 players who are members of an airline crew. There
are Bell(3) = 5 possible coalition structures. Let � = 3 . Column 1 of Table 2 shows how
coalition structures will be represented. For three players, there are six possible orderings
of players as illustrated in Columns 2 to 7. How the representation of a particular struc-
ture is interpreted depends on the player ordering ℙ . For example, for ℙ = (1, 2, 3) (see
Column 2), we have ℙ1 = 1 , ℙ2 = 2 , and ℙ3 = 3 . The representation (1, 1, 1) (see Row 1,
Column 2) means the structure comprised of the single grand coalition C1 = {1, 2, 3} . The

ℙ
E
|k = {X | X ∈ Perm(�) and X|k = ℙ|k}

(2)𝛱𝛥 = {(x1,… , x𝛿) | x1 = 1, xi>1 ∈ {1,… ,max(x1,… , xi−1) + 1}}

�E
|k = {X | X ∈ �� and X|k = �|k}

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 7 of 45  27

representation (1, 1, 2) (see Row 2, Column 2) is the structure ({1, 2}, {3}) in which the
two top priority players are together in the coalition C1 and the player ℙ3 is in the singleton
coalition C2 . However, the same representation (1, 1, 2) for the ordering ℙ = (1, 3, 2) (see
Row 2, Column 3) is the structure ({1, 3}, {2}) . The remaining entries in the table may be
interpreted similarly. 	� ◻

Let �
�

 denote the set of all optimal structures over N. For any � ∈ �N , � i
�
 will denote

the index of the coalition to which player i belongs in the structure � . We assume that the
optima are unique up to the positions of the top 3 < 𝛿 ≤ n − 3 priority players, i.e., for any
two distinct optimal structures �1 ∈ �

�
 and �2 ∈ �

�
 , �ℙi

�1
= �

ℙi

�2
 for each 1 ≤ i ≤ �.

3.2 � Distance measure

To measure the distance between any two structures �1 and �2 over N, we define a metric d
in terms of the positions of the priority players, i.e., in terms of the restriction of �1 and �2
to � . A restriction1 can be represented as described in Sect. 3.1.

Theorem 1  The distance function d obeys all metric axioms.

Proof  The axioms are identity, symmetry, and triangle inequality.

Identity	� For any coalition structure �1 over N, d(�1
|� ,�

1
|�) = 0 . For any coali-

tion structure �2 over N, if �1
|� ≠ �2

|� , then d(�1
|� ,�

2
|�) ≠ 0.

(3)d(�1

|� ,�
2

|�) = � − max
1≤i≤�

{�1

|i = �2

|i}

Table 2   An illustration of the coalition structure representation and semantics for each one of the six pos-
sible player orderings for n = 3 player games

(1) (2) (3) (4) (5) (6) (7)
Repre-
senta-
tion

ℙ = (1, 2, 3) ℙ = (1, 3, 2) ℙ = (2, 1, 3) ℙ = (2, 3, 1) ℙ = (3, 1, 2) ℙ = (3, 2, 1)

(1) (1, 1, 1) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3})

(2) (1, 1, 2) ({1, 2}, {3}) ({1, 3}, {2}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 3}, {2}) ({2, 3}, {1})

(3) (1, 2, 1) ({1, 3}, {2}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 3}, {2})

(4) (1, 2, 2) ({1}, {2, 3}) ({1}, {2, 3}) ({2}, {1, 3}) ({2}, {1, 3}) ({3}, {1, 2}) ({3}, {1, 2})

(5) (1, 2, 3) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3})

1  The restriction of a structure � = (C1,C2,…) over N to some s ⊆ N is �|s = (C1 ∩ s,C2 ∩ s,…) . Note
that, in Sect. 3.1, ’|’ is used in a slightly different way; in �|k , k ∈ {1,… , �} . The meaning of ’|’ should be
clear from context.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 8 of 45

Symmetry	� For any two coalition structures �1 and �2 over N,
d(�1

|� ,�
2
|�) = d(�2

|� ,�
1
|�).

Triangle inequality	� For any three coalition structures �1 , �2 , and �3 over N,
d(�1

|� ,�
2
|�) ≤ d(�1

|� ,�
3
|�) + d(�2

|� ,�
3
|�).

	� Let max
1≤i≤�

{�1
|i = �2

|i} = k , max
1≤i≤�

{�1
|i = �3

|i} = x , and max
1≤i≤�

{�2
|i = �3

|i} = y where
1 ≤ k ≤ � , 1 ≤ x ≤ � , and 1 ≤ y ≤ � . Consider each one of the following
possibilities:

�x > k ∶	� For this case, y = k . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − x + � − k ≥ � − k , and
d(�1

|� ,�
2
|�) = � − k.

x < k ∶	� For this case, y = x . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − x + � − x ≥ � − k , and
d(�1

|� ,�
2
|�) = � − k.

x = k ∶	� For this case, y ≥ k . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − k + � − y ≥ � − k , and
d(�1

|� ,�
2
|�) = � − k . 	� ◻

	� ◻

3.3 � Probabilistic monotonicity

Let � be the set of all ordered pairs of coalition structures over N. Formally,

For a game of n players, |�| = Bell(n) × (Bell(n) − 1) . Then, for a player ordering, proba-
bilistic monotonicity of an objective function v is defined as follows.

Definition 6  (Probabilistic monotonicity) For a random pair (�1,�2) ∈ � such that
�1 ∉ �

�
 and �2 ∉ �

�
 , and any optimal structure � ∈ �

�

with a certain probability. Specifically, for a random pair (�1,�2) ∈ � such that nei-
ther �1 nor �2 is an optimum, the probability that v(𝜋1) > v(𝜋2) conditional on
d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2
|𝛿) is

For a random pair (�1,�2) ∈ � such that any one element of the pair, say �1 , is an opti-
mum, v(𝜋1) > v(𝜋2) with probability 1. 	� ◻

Definition 7  A PFG2 (N, v2, v) is probabilstically monotonic if v is probabilistically mono-
tone for some player ordering. 	� ◻

� = {(�1,�2) | �1 ∈ �N and �2 ∈ �N and �1 ≠ �2}

(4)d(�|𝛿 ,𝜋1
|𝛿) < d(�|𝛿 ,𝜋2

|𝛿) ⇒v(𝜋1) > v(𝜋2)

p

(
v(𝜋1) > v(𝜋2) | d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2
|𝛿)
)

≤1

2  In the literature on coalition game theory, a PFG is defined as a pair (N, v2) . We include the objective
function v in the definition of a PFG.

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 9 of 45  27

Probabilistic monotonicity is modelled as follows. Let the set � be defined as follows:

Let the functions f ∶ � → � , rd ∶ � → {<,=,>} , and rv ∶ � → {<,=,>} be defined as
follows. For any (x, y) ∈ � , f (x, y) = (rd(x, y), rv(x, y)) where

and

The set � can be partitioned into nine pairwise disjoint subsets as follows:

1.	 �ee = {(x, y) | (x, y) ∈ � and f (x, y) is (=,=)}

2.	 �eg = {(x, y) | (x, y) ∈ � and f (x, y) is (=,>)}.
3.	 �el = {(x, y) | (x, y) ∈ � and f (x, y) is (=,<)}

4.	 �ge = {(x, y) | (x, y) ∈ � and f (x, y) is (>,=)}

5.	 �gg = {(x, y) | (x, y) ∈ � and f (x, y) is (>,>)}

6.	 �gl = {(x, y) | (x, y) ∈ � and f (x, y) is (>,<)}

7.	 �le = {(x, y) | (x, y) ∈ � and f (x, y) is (<,=)}

8.	 �lg = {(x, y) | (x, y) ∈ � and f (x, y) is (<,>)}

9.	 �ll = {(x, y) | (x, y) ∈ � and f (x, y) is (<,<)}

Then � is the union of these nine subsets:

Between all these nine subsets, only �ee , �eg , �el , �gl , and �lg satisfy monotonicity. The
union of these is denoted �MON:

Definition 8  Each pair in �MON is called a monotonicity-satisfying pair.

Probabilistic monotonicity is modelled by a probability distribution (see Table 3)
induced by the function v over the set � . As per Table 3,

� = {(u, v) | u ∈ {<,=,>} and v ∈ {<,=,>}}.

rd(x, y) =

⎧
⎪⎨⎪⎩

< if d(��𝛿 , x�𝛿) < d(��𝛿 , y�𝛿)
= if d(��𝛿 , x�𝛿) = d(��𝛿 , y�𝛿)
> if d(��𝛿 , x�𝛿) > d(��𝛿 , y�𝛿)

rv(x, y) =

⎧
⎪⎨⎪⎩

< if v(x) < v(y)

= if v(x) = v(y)

> if v(x) > v(y)

(5)� = �ee ∪ �eg ∪ �el ∪ �ge ∪ �gg ∪ �gl ∪ �le ∪ �lg ∪ �ll.

(6)�MON = �ee ∪ �eg ∪ �el ∪ �gl ∪ �lg.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 10 of 45

Since the elements of � are ordered pairs, we have the following :

1.	 peg = pel because (�1,�2) ∈ Seg iff (�2,�1) ∈ Sel.
2.	 pge = ple because (�1,�2) ∈ Sge iff (�2,�1) ∈ Sle.
3.	 pgg = pll because (�1,�2) ∈ Sgg iff (�2,�1) ∈ Sll.
4.	 pgl = plg because if (�1,�2) ∈ Sgl iff (�2,�1) ∈ Slg.

For probabilistic monotonicity, pge ≥ 0 , pgg ≥ 0 , ple ≥ 0 , and pll ≥ 0 . In contrast, for deter-
ministic monotonicity, each one of the probabilities pge , pgg , ple , and pll is zero. Example 2
is an illustration of probabilistic monotonicity.

Example 2  Consider a game with n = 3 players who are members of an airline crew. Let
N = {1, 2, 3} , ℙ = (1, 2, 3) and � = 3 . There are 5 structures possible and 20 possible
ordered pairs of structures as listed in Table 4 (the corresponding probability distrubution
is shown in Table 5). Suppose the optimum is � = ({1, 3}, {2}) , which is represented as
the sequence (1, 2, 1) enclosed in oval. Consider Row 4. �1 is further away from the opti-
mum than is �2 and yet v(𝜋1) > v(𝜋2) . This is a violation of monotonicity. Likewise, mono-
tonicity is violated in the rows 11, 15, and 17. There is no violation in any of the remaining
rows.

Clearly, the number of rows in which monotonicity is violated cannot be arbitrary. If
we want to manage computational complexity, the degree of non-monotonicity must be
bounded.

Definition 9  (Degree of non-monotonicity) The degree of non-monotonicity D is the sum
of the cardinalities of �ge , �gg , �le , and �ll.

p

(
v(𝜋1) > v(𝜋2) | d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2

|𝛿)
)

=
plg

ple + plg + pll
.

Table 3   Probability distribution
induced by v on �

Element of � Probability

(=,=) pee =
|�ee|
|�|

(=,>) peg =
|�eg|
|�|

(=,<) pel =
|�el|
|�|

(>,=) pge =
|�ge|
|�|

(>,>) pgg =
|�gg|
|�|

(>,<) pgl =
|�gl|
|�|

(<,=) ple =
|�le|
|�|

(<,>) plg =
|�lg|
|�|

(<,<) pll =
|�ll|
|�|

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 11 of 45  27

Let � denote Bell
2(n−�−2)

3
 and suppose that D satisfies the relation

for some 3 < 𝛿 ≤ n − 3 and n > 7 . Our aim then is to solve the following CSG problem:

D = |�ge| + |�gg| + |�le| + |�ll| ◻

D < �

Table 4   An illustration of probabilistic monotonicity for a 3 player game with ℙ = (1, 2, 3) . The optimal
structure � = ({1, 3}, {2}) is represented as (1, 2, 1). Each row corresponds to an element of the set � . Four
(viz. those in rows 4, 11, 15, and 17 highlighted in grey) out of the twenty elements of � violate monotonic-
ity

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 12 of 45

CSG problem definition: For a probabilistically monotone PFG (N, v2, v) with
the degree of non-monotonicity known to be bounded above by � , find the identities of
ℙ1,… ,ℙ� and an optimal structure � where

given as input N and the function rv induced by v.
Note that the actual values of coalition structures as given by v are not part of the input.

Rather, only the relation between the values of any two structures is part of the problem
input.

4 � The proposed method

In Sect. 4.1 is a brief overview of the three key steps of the proposed method for finding ℙ
and an optimal structure � . Details of Step 1 are in Sect. 4.2, Step 2 in Sect. 4.3, and Step
3 in Sect. 4.4. A complete formulation of the method is given as an algorithm in Sect. 5.

4.1 � CSG method: overview

Step 1	� Determine who the two top priority players are, and their optimal coalitions. At
the end of this step, ℙ|2 and �|2 will become known.

Step 2	� For each 3 ≤ i ≤ � , determine the identity of the player ℙi and its optimal coali-
tion. At the end of this step, ℙ|� and �|� will become known.

Step 3	� Determine ℙ and �.

Consider Step 1. To begin, we know that ℙ1 ∈ N , so there are n possibilities for the
identity of ℙ1 . We also know that ℙ1 must belong to the first coalition (denoted C�

1
 ) in � .

Then, for any one possibility for the identity of ℙ1 , say ℙ1 = x , we know that there must be
n − 1 possibilities for the identity of ℙ2 , i.e, ℙ2 ∈ N − {x} , and that there must be two pos-
sibilities for its optimal coalition, i.e., ℙ2 must be a member of either C�

1
 or C�

2
 . Let Z be

the set of all these possibilities and let each element of Z be a quadruple defined as follows:

� ∈

{
� | arg max

�∈�N

v(�)

}

Table 5   Probability distribution
table for the game given in
Table 4

Element of � Probability

(=,=) pee = 0.1

(=,>) peg = 0.05

(=,<) pel = 0.05

(>,=) pge = 0

(>,>) pgg = 0.1

(>,<) pgl = 0.3

(<,=) ple = 0

(<,>) plg = 0.3

(<,<) pll = 0.1

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 13 of 45  27

The semantics of quadruple (x, y, 1, z) is that, it is possible that ℙ1 = x , ℙ2 = y , x belongs
to the coalition C�

1
 , and y belongs to the coalition C�

z
 in � . For example, the quadruple

(2, 3, 1, 2) means that ℙ1 = 2 , ℙ2 = 3 , 2 ∈ C�

1
 , and 3 ∈ C�

2
 is a possibility. We find it con-

venient to introduce terminology for referring to certain pairs of elements of Z.

Definition 10  For any x ∈ N and any y ∈ N − {x} , (x, y, 1, 1) and (y, x, 1, 1) are each oth-
ers’ partners, and (x, y, 1, 2) and (y, x, 1, 2) are each others’ partners. A partner pair is in
one of the following forms:

•	 ((x, y, 1, 1), (y, x, 1, 1))
•	 ((x, y, 1, 2), (y, x, 1, 2))

Lemmas 1 and 2 readily follow from the definition of Z and that of a partner pair.

Lemma 1  All the following assertions are true.

•	 |Z| = 2 × n × (n − 1).
•	 Every element in Z has a unique partner in Z.
•	 Every element in Z is the partner of a unique element in Z. 	� ◻

Lemma 2  Any two partner pairs of Z must be in one of the following forms:

1.	
(
(i, t, 1, 1), (t, i, 1, 1)

)
 ,
(
(j, s, 1, 1), (s, j, 1, 1)

)
2.	

(
(i, t, 1, 2), (t, i, 1, 2)

)
 ,
(
(j, s, 1, 2), (s, j, 1, 2)

)
3.	

(
(i, t, 1, 2), (t, i, 1, 2)

)
 ,
(
(j, s, 1, 1), (s, j, 1, 1)

)
4.	

(
(i, t, 1, 1), (t, i, 1, 1)

)
 ,
(
(i, t, 1, 2), (t, i, 1, 2)

)

where i ∈ N , j ∈ N − {i} , s ∈ N − {i, j} , and t ∈ N − {i, j} . 	� ◻

We use (i, j, x, y) ⊧ � as short for (ℙ1 = i ∧ ℙ2 = j ∧ ℙ1 ∈ C𝕆

x
∧ ℙ2 ∈ C𝕆

y
) and

(i, j, x, y) ̸⊧ � as short for ¬(ℙ1 = i ∧ ℙ2 = j ∧ ℙ1 ∈ C𝕆

x
∧ ℙ2 ∈ C𝕆

y
) . Now, we know that

there is a unique z ∈ Z such that z ⊧ � and for each z̄ ∈ Z , z̄ ̸⊧ � iff z ≠ z̄ . This observation
leads to the definition of set Z̄:

Since only one element of Z corresponds to � , we get |Z̄| = |Z| − 1.
Step 1 (details in Sect. 4.2) involves doing three different tests T1, T2, and T3 with

appropriate arguments in such a way that at least |Z| − 2 elements of Z̄ can be determined.
Once this is done, one of the elements in Z − Z̄ must correspond to � and this concludes
Step 1. For Step 2, we define a further test T4 details of which are in Sect. 4.3.

(7)Z = {(x, y, 1, z) | x ∈ N, y ∈ N − {x}, z ∈ {1, 2}}

Z̄ = {z̄ ∈ Z | z̄ ̸⊧ �}

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 14 of 45

4.2 � CSG method: Step 1

Sect. 4.2.1 gives a definition of the tests T1, T2, and T3. Section 4.2.2 is a specification of
the parameters of these tests. Section 4.2.3 describes how these tests can be used to find an
element of �MON . Section 4.2.4 describes how these tests can be used to determine who the
two top priority players are and their positions in an optimal structure.

4.2.1 � The tests T1, T2, T3

The tests T1, T2, and T3 are defined as follows:

T1	� For any i ∈ N and j ∈ N − {i} , the test T1(i, j) compares the values of any two struc-
tures �1 ∈ �N and �2 ∈ �N such that

�∗	� in �1 , the players i and t belong to different coalitions but j and s belong to
the same coalition, and

∗	� in �2 , the players i and t belong to the same coalition but j and s belong to
different coalitions

	� where t is an arbitrary element of N − {i, j} and s is an arbitrary element of
N − {i, j} . The values of i, j, s, and t are determined on the basis of the elements
in Z (see Theorem 5 for details). Let S1

T1
(i, j) denote the set of all those structures

in which the players i and t belong to different coalitions but j and s belong to
the same coalition. Let S2

T1
(i, j) denote the set of all those structures in which the

players i and t belong to the same coalition but j and s belong to different coali-
tions. The test T1(i, j) uses rv to compare the value of any structure from S1

T1
(i, j)

to the value of any structure from S2
T1
(i, j).

T2	� For any i ∈ N and any j ∈ N − {i} , the test T2(i, j) compares the values of any two
structures �1 ∈ �N and �2 ∈ �N such that

�∗	� in �1 , i and t are apart, and j and s are apart, and
∗	� in �2 , i and t are together, and j and s are together

	� where t is an arbitrary element of N − {i, j} and s is an arbitrary element of
N − {i, j} . The values of i, j, s, and t are determined on the basis of the elements
in Z (see Theorem 5 for details) Let S1

T2
(i, j) denote the set of all those structures

in which the players i and t belong to different coalitions, and j and s belong to
different coalitions. Let S2

T2
(i, j) denote the set of all those structures in which

the players i and t belong to the same coalition, and j and s belong to the same
coalition. The test T2(i, j) uses rv to compare the value of any structure from
S1
T2
(i, j) to the value of any structure from S2

T2
(i, j).

T3	� For any i ∈ N and j ∈ N − {i} , the test T3(i, j) compares the values of any two struc-
tures �1 ∈ �N and �2 ∈ �N such that

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 15 of 45  27

�∗	� in �1 , i and j are apart, and
∗	� in �2 , i and j are together.

	� Let S1
T3
(i, j) denote the set of all those structures in which the players i and j

belong to different coalitions. Let S2
T3
(i, j) denote the set of all those structures

in which the players i and j belong to the same coalition. The test T3(i, j) uses rv
to compare the value of any structure from S1

T3
(i, j) to the value of any structure

from S2
T3
(i, j).

4.2.2 � The universes of T1, T2, T3

By definition, there are several different ways of doing tests T1(i, j), T2(i, j), and T3(i, j)
for any i and j. The set of all these possibilities is defined in terms of the universe of a test.

Definition 11  For each 1 ≤ a ≤ 3 , the set UTa(i, j) = S1
Ta
(i, j) × S2

Ta
(i, j) is called the uni-

verse of Ta(i, j). 	� ◻

Lemma 3  For each 1 ≤ a ≤ 3 , the sets S1
Ta
(i, j) and S2

Ta
(i, j) are disjoint.

Proof  By definition of S1
Ta
(i, j) and S2

Ta
(i, j) given in Sect. 4.2.1. 	� ◻

Let �1 denote (Bell(n−1)−Bell(n−2))
2

3
 . Then as per the definition of � given in Sect. 3.3,

�1 > �.

Theorem 2  For any two distinct players i and j, there are

1.	
(
Bell(n − 1) − Bell(n − 2)

)2
= 3�1 distinct ways of doing T1(i, j).

2.	
(
(Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2)

)
> 3�1 distinct ways of doing

T2(i, j).
3.	

(
(Bell(n) − Bell(n − 1)) × Bell(n − 1)

)
> 3�1 distinct ways of doing T3(i, j).

Proof 

1.	 By Lemma 3 and Theorem 19 (see Appendix A).
2.	 By Lemma 3 and Theorem 20 (see Appendix A).
3.	 From Lemma 3 and Theorem 21 (see Appendix A).

	� ◻

For any n ≥ 5 and any two distinct players i and j, the cardinalities of the universes
of T1, T2, and T3 are lower bounded as per the following assertions (see Theorem 23 in
Appendix A for proof):

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 16 of 45

1.	 |UT1(i, j)| > 3�

2.	 |UT2(i, j)| > 3�

3.	 |UT3(i, j)| > 3�

Theorem 22 (see Appendix A) gives the relation between the cardinalities of UT1(i, j) ,
UT2(i, j) , and UT3(i, j).

4.2.3 � Monotonicity‑satisfying relations for T1, T2, T3

For any 1 ≤ a ≤ 3 , the universe of Ta(i, j) can be partitioned into three disjoint subsets
U<

Ta
(i, j) , U=

Ta
(i, j) , and U>

Ta
(i, j) as follows:

∗	� U<

Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) < v(y)}

∗	� U=
Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) = v(y)}

∗	� U>

Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) > v(y)}

 Then, the set of monotonicity-satisfying relations for a test is defined as follows:

Definition 12  For any 1 ≤ a ≤ 3 , and any two distinct players i and j, the set of monotonic-
ity-satisfying relations for Ta(i, j) is

Lemma 4  Consider any 1 ≤ a ≤ 3 . For any x ∈ {<,=,>} , x ∈ MSRTa(i, j) if |Ux
Ta
(i, j)| > � ,

i.e.,

Proof  By problem definition D < � . So if |Ux
Ta
(i, j)| > � for any x, then at least one ele-

ment of Ux
Ta
(i, j) must belong to SMON . 	� ◻

Theorem 3  Consider any 1 ≤ a ≤ 3 . For any two distinct players i and j, each one of the
following assertions must true.

1.	 More than 2� elements of the universe of Ta(i, j) must obey monotonicity.
2.	 The set of monotonicity-satisfying relations for Ta(i, j) must be non-empty.

Proof  The universe of T1(i, j) contains more than 3� elements (see Theorem 23 in Appen-
dix A for proof). By the CSG problem definition given in Sect. 3, D < � . So more than 2�
elements of the universe of T1(i, j) must obey monotonicity.

Since |UT1(i, j)| > 3� (see Theorem 23 in Appendix A), at least one of the three
sets U<

T1
(i, j) , U=

T1
(i, j) , or U>

T1
(i, j) must contain � or more elements. Otherwise,

|U<

T1
(i, j)| + |U=

T1
(i, j)| + |U>

T1
(i, j)| < 3� which is impossible. If |Ux

T1
(i, j)| ≥ � for any x,

then at least one element of Ux
T1
(i, j) must belong to SMON because D < � . So the set of

monotonicity-satisfying relations for T1(i, j) must be non-empty.
By Theorem 23 (see Appendix A), |UT2(i, j)| > 3� and |UT3(i, j)| > 3� . Thus for each

one of the two tests T2(i, j) and T3(i, j), more than 2� elements of their universe must obey

MSRTa(i, j) = {x | x ∈ {<,=,>}, rv(𝜋1,𝜋2) = x, (𝜋1,𝜋2) ∈ UTa(i, j) ∩ SMON} ◻

∀x ∈ {<,=,>} |Ux
Ta
(i, j)| > � ⇒ x ∈ MSRTa(i, j)

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 17 of 45  27

Ta
bl

e 
6  

S
te

p
1:

 P
ro

ba
bi

lis
tic

 m
on

ot
on

ic
ity

 in
du

ce
d

im
pl

ic
at

io
ns

La
be

l
Im

pl
ic

at
io

n

X
1

(i
,
t,
1
,
1
)
⊧

�
∨
(t
,
i,
1
,
1
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
1
(i
,
j)

∧
𝜋
2
∈
S
2 T
1
(i
,
j)

R ⇒
v(
𝜋
1
)
<
v(
𝜋
2
))

X
2

(i,
t,
1,
2)

⊧
�
∨
(t,

i,
1,
2)

⊧
�

L ⇒

(

∀�
1 ,
�2

(�
1,
� 2
)
∈

S M
O
N

∧
�1

∈
S1 T1

(i,
j)

∧
�2

∈
S2 T1

(i,
j)

R ⇒
v(
�1

)>
v(
�2

))

X
3

(j
,
s
,
1
,
1
)
⊧

�
∨
(s
,
j,
1
,
1
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
1
(i
,
j)

∧
𝜋
2
∈
S
2 T
1
(i
,
j)

R ⇒
v
(𝜋

1
)
>
v
(𝜋

2
))

X
4

(j
,
s
,
1
,
2
)
⊧

�
∨
(s
,
j,
1
,
2
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
1
(i
,
j)

∧
𝜋
2
∈
S
2 T
1
(i
,
j)

R ⇒
v
(𝜋

1
)
<
v
(𝜋

2
))

X
5

(i
,
t,
1
,
2
)
⊧

�
∨
(t
,
i,
1
,
2
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
2
(i
,
j)

∧
𝜋
2
∈
S
2 T
2
(i
,
j)

R ⇒
v(
𝜋
1
)
>
v(
𝜋
2
))

X
6

(s
,
j,
1
,
1
)
⊧

�
∨
(j
,
s
,
1
,
1
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
2
(i
,
j)

∧
𝜋
2
∈
S
2 T
2
(i
,
j)

R ⇒
v
(𝜋

1
)
<
v
(𝜋

2
))

X
7

(i
,
t,
1
,
2
)
⊧

�
∨
(t
,
i,
1
,
2
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
3
(i
,
t)

∧
𝜋
2
∈
S
2 T
3
(i
,
t)

R ⇒
v
(𝜋

1
)
>
v
(𝜋

2
))

X
8

(i
,
t,
1
,
1
)
⊧

�
∨
(t
,
i,
1
,
1
)
⊧

�
L ⇒

(∀
𝜋
1
,
𝜋
2
(𝜋

1
,
𝜋
2
)
∈

S
M
O
N

∧
𝜋
1
∈
S
1 T
3
(i
,
t)

∧
𝜋
2
∈
S
2 T
3
(i
,
t)

R ⇒
v
(𝜋

1
)
<
v
(𝜋

2
))

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 18 of 45

monotonicity, and the set of their monotonicity-satisfying relations must be non-empty. 	
� ◻

Probabilistic monotonicity induces the implications X1 to X8 listed in Table 6. In order
make deductions on the basis of any implication, it is necessary to ensure that its anteced-
ant is satisfied. Observe that each one of the implications X1 to X8 has �1 ∈ S1

Ta
(i, j) (for

each 1 ≤ a ≤ 3 ) and �2 ∈ S2
Ta
(i, j) as part of the antecedant of

R

⇒ . Given the definitions of
S1
Ta
(i, j) and S2

Ta
(i, j) , it is straightforward to find a pair (�1,�2) such that �1 ∈ S1

Ta
(i, j) and

�2 ∈ S2
Ta
(i, j) . Observe also that each one of the implications X1 to X8 has (�1,�2) ∈ SMON as

part of the antecedant of
R

⇒ . But the key question is how can a pair (�1,�2) be found such
that (�1,�2) ∈ SMON when SMON is not part of the problem input (as per the problem defini-
tion given in Sect. 3)? The answer lies in Theorem 4.

Theorem 4  Consider any 1 ≤ w ≤ 3 . If D < � , then for any two distinct players i and j, at
least � and at most 3� − 2 invocations to rv are needed to compute an element of the set of
monotonicity-satisfying relations for Tw(i, j).

Proof  By Lemma 4, ∀x ∈ {<,=,>} , |Ux
Tw
(i, j)| > � implies that x ∈ MSRTw(i, j) (i.e., at

least one element of Ux
Tw
(i, j) must belong to SMON ). Further, if |Ux

Tw
(i, j)| < � , there is no

guarantee that x ∈ MSRTw(i, j) . Now, suppose the elements of UTw(i, j) are arranged in some
arbitrary sequence denoted u1, u2,… . Suppose the function rv is applied to the elements of
UTw(i, j) in the order u1, u2,… . Based on what is returned by rv , one of the following sce-
narios must occur:

•	 Let a ∈ {<,=,>} . The function rv returns rv(ui) = a for each 1 ≤ i ≤ � , so
a ∈ MSRTw(i, j) and a monotonicity-satisfying relation is found with � invocations to rv .
Note that this means that an element of Ua

Tw
(i, j) must belong to SMON.

•	 Let a, b and c be any three pairwise distinct elements of {<,=,>} . Suppose rv is applied
to the first 3(� − 1) elements of the sequence u1, u2,… and it is found that

 At this stage, |Ua
Tw
(i, j)| = |Ub

Tw
(i, j)| = |Uc

Tw
(i, j)| = � − 1 . Next, rv is applied to u3�−2 .

Then regardless of the outcome of rv(u3�−2) , one of the three cardinalities |Ua
Tw
(i, j)| ,

|Ub
Tw
(i, j)| or |Uc

Tw
(i, j)| must be � and therefore a monotonicity-satisfying relation will be

found with 3� − 2 invocations to rv . Say a is monotonicity-satisfying, then an element
of Ua

Tw
(i, j) must belong to SMON.

•	 If it is neither of the above two scenarios, then a monotonicity-satisfying relation, say a,
will be found with more than � but fewer than 3� − 2 applications of rv . Consequently,
an element of Ua

Tw
(i, j) must belong to SMON.

	� ◻

(8)rv(ui) =

⎧
⎪⎨⎪⎩

a for each i such that mod(i, 3) = 0

b for each i such that mod(i, 3) = 1

c for each i such that mod(i, 3) = 2

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 19 of 45  27

4.2.4 � Application of tests T1, T2, and T3

Those elements of Z that do not correspond to an optimal solution can be eliminated using
the tests T1, T2, and T3 with suitable arguments, as characterized in Theorem 5.

Theorem 5  If Z contains at least two partner pairs, then ∃ a 1 ≤ a ≤ 3 such that at least
one partner pair can be eliminated by doing Ta (with suitable arguments) at most 3� − 2
times.

Proof  As per Lemma 2, any two partner pairs of Z must be in one of the following forms:

Case 1 ∶	�
(
(i, t, 1, 1), (t, i, 1, 1)

)
 ,
(
(j, s, 1, 1), (s, j, 1, 1)

)
Case 2 ∶	�

(
(i, t, 1, 2), (t, i, 1, 2)

)
 ,
(
(j, s, 1, 2), (s, j, 1, 2)

)
Case 3 ∶	�

(
(i, t, 1, 2), (t, i, 1, 2)

)
 ,
(
(j, s, 1, 1), (s, j, 1, 1)

)
Case 4 ∶	�

(
(i, t, 1, 1), (t, i, 1, 1)

)
 ,
(
(i, t, 1, 2), (t, i, 1, 2)

)

 where i ∈ N , j ∈ N − {i} , s ∈ N − {i, j} , and t ∈ N − {i, j}.
Consider Case 1 which gives rise to two possibilities: either t = s or else t ≠ s . No mat-

ter which one of these two possibilities holds, Theorem 3 guarantees that the set of mono-
tonicity-satisfying relation for T1(i, j) must be non-empty. By Theorem 4, at most 3� − 2
comparisons are needed to compute a monotonicity-satisfying relation for T1(i, j).

∗	� If either > or = is a monotonicity-satisfying relation for T1(i, j), then the pair
((i, t, 1, 1), (t, i, 1, 1)) must be eliminated from Z. Because, by the implication X1 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(i, t, 1, 1) ⊧̸ � and (t, i, 1, 1) ⊧̸ � . Consequently, ((i, t, 1, 1), (t, i, 1, 1)) ∉ Z . Equivalently,
((i, t, 1, 1), (t, i, 1, 1)) ∈ Z̄.

∗	� If either < or = is a monotonicity-satisfying relation for T1(i, j), then the pair
((j, s, 1, 1), (s, j, 1, 1)) must be eliminated from Z. Because, by the implication X3 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(j, s, 1, 1) ̸⊧ � and (s, j, 1, 1) ̸⊧ � . Consequently, ((j, s, 1, 1), (s, j, 1, 1)) ∉ Z . Equivalently,
((j, s, 1, 1), (s, j, 1, 1)) ∈ Z̄.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination
of at least one pair of elements is guaranteed for Case 1.

Consider Case 2 which also gives rise to two possibilities: either t = s or else t ≠ s . No
matter which one of these two possibilities holds, Theorem 3 guarantees that the set of
monotonicity-satisfying relation for T1(i, j) must be non-empty. By Theorem 4, at most
3� − 2 comparisons are needed to compute a monotonicity relation for T1(i, j).

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 20 of 45

∗	� If either > or = is a monotonicity-satisfying relation for T1(i, j), then the pair
((j, s, 1, 2), (s, j, 1, 2)) must be eliminated from Z. Because, by the implication X4 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(i, t, 1, 2) ⊧̸ � and (j, s, 1, 2) ̸⊧ � . Consequently, ((j, s, 1, 2), (s, j, 1, 2)) ∉ Z . Equivalently,
((j, s, 1, 2), (s, j, 1, 2)) ∈ Z̄.

∗	� If either < or = is a monotonicity-satisfying relation for T1(i, j), then the pair
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X2 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ � . Consequently, ((i, t, 1, 2), (t, i, 1, 2)) ∉ Z . Equivalently,
((i, t, 1, 2), (t, i, 1, 2)) ∈ Z̄.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination
of at least one pair of elements is guaranteed for Case 2.

Consider Case 3 which also gives rise to two possibilities: either t = s or else t ≠ s . No
matter which one of these two possibilities holds, Theorem 3 guarantees that the set of
monotonicity-satisfying relation for T2(i, j) must be non-empty. By Theorem 4, at most
3� − 2 comparisons are needed to compute a monotonicity relation for T2(i, j).

∗	� If the monotonicity-satisfying relation for T2(i, j) is either “<" or “ = ", then the pair
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X5 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ �.

∗	� If the monotonicity-satisfying relation for T2(i, j) is either “ = " or “>", then the pair
((j, s, 1, 1), (s, j, 1, 1)) must be eliminated. Because, by the implication X6 given in
Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(j, s, 1, 1) ̸⊧ � and (j, s, 1, 1) ̸⊧ �.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination
of at least one pair of elements is guaranteed for Case 3.

Consider Case 4. By Theorem 3 guarantees that the set of monotonicity-satisfying rela-
tion for T3(i, t) must be non-empty. By Theorem 4, at most 3� − 2 comparisons are needed
to compute a monotonicity relation for T3(i, t).

∗	� If the monotonicity-satisfying relation for T3(i, t) is either “<" or “ = ", then the pair
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X7 given
in Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the conse-
quent of

L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other words,
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ �.

∗	� If the monotonicity-satisfying relation for T3(i, t) is either “ = " or “>", then the pair
((i, t, 1, 1), (t, i, 1, 1)) must be eliminated. Because, by the implication X8 given in
Table 6, the antecedant of

R

⇒ is true but its consequent is false. This makes the

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 21 of 45  27

consequent of
L

⇒ false. By contrapositive, the antecedant of
L

⇒ must be false. In other
words, (i, t, 1, 1) ⊧̸ � and (t, i, 1, 1) ⊧̸ �.

 Thus, regardless of what the monotonicity-satisfying relation for T3(i, t) is, the elimination
of at least one pair of elements is guaranteed for Case 4. 	� ◻

Theorem 5 forms the basis for Step 1, i.e., for computing the set {ℙ1,ℙ2} of the two
top priority players and the coalitions to which they belong in � . Specifically, Step 1 is
achieved as follows:

•	 Initialize Z as per Equation 7.
•	 While Z contains more than one partner pair, choose a relevant test (i.e., T1, T2, or T3

as per Theorem 5) and do it in order to eliminate from Z those elements that do not cor-
respond to �.

At the end of Step 1, Z contains one partner pair. At this stage, the set {ℙ1,ℙ2} is known
although we do not know which one of these two players is ℙ1 and which one is ℙ2 . How-
ever, knowledge about the identities of ℙ1 and ℙ2 is unnecessary for computing � as long as
the set {ℙ1,ℙ2} is known.

4.3 � CSG method: Step 2

At this stage, the set {ℙ1,ℙ2} comprised of the two top priority players is known, and it is
also known if the two top priority players are together in � or if they are apart. The identity
of each ℙi , for 3 ≤ i ≤ n , and its optimal coalition remains to be found. Step 2 is for find-
ing this in a series of stages. In Stage i, 3 ≤ i ≤ n , the identity of ℙi and the coalition C�

j
 to

which ℙi belongs will be found using the test T4. We will first describe T4 and then explain
how it is used.

In general, consider any stage k > 2 where the identities and optimal positions of the
top k priority players have already been found. Let �(k) be the number of coalitions in �|k .
Let Q(k) = N − {ℙ1,… ,ℙk} . There are |Q(k)| = n − k possibilities for the identity of ℙk+1 ,
and �(k) + 1 possibilities for its optimal coalition. Let V(k) be a set of all these possibilities:

The semantics of (x, y) is that, it is possible that ℙk+1 = x and x belongs to the coalition C�

y

in � . Thus |V(k)| = (n − k) × (�(k) + 1) . The problem now is to find an (x, y) ∈ V(k) such
that (x, y) ⊧ � . The test T4 is for finding such an element by eliminating from V(k) those
elements that do not correspond to �.

The remainder of this section is organised as follows. Section 4.3.1 gives a definition of
the test T4. Section 4.3.2 is a specification of the parameters of T4. Section describes how
T4 can be used to find an element of �MON . Section 4.3.4 describes how T4 can be used to
determine the identities of players ℙ3 …ℙ� and their positions in an optimal structure.

4.3.1 � The test T4

The test T4 is defined as follows. For any two distinct elements (a, b) and (c, d) of V(k),
the test T4(k, a, b, c, d) uses rv to compare the values of any two structures �1 ∈ �N and
�2 ∈ �N such that

(9)V(k) = {(x, y) | x ∈ Q(k), y ∈ {1,… , �(k) + 1}}

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 22 of 45

∗	� in �1 , each one of the k top priority players belongs to its respective optimal coalition,
player a belongs to Cb , player c belongs to any coalition except Cd , and

∗	� in �2 , each one of the k top priority players belongs to its respective optimal coalition,
player c belongs to Cd , player a belongs to any coalition except Cb.

 Let S1
T4
(k, a, b, c, d) denote3 the set of all those structures in which each one of the k top pri-

ority players belongs to its respective optimal coalition, the player a belongs to Cb , and the
player c belongs to any coalition except Cd . Let S2

T4
(k, a, b, c, d) denote the set of all those

structures in which each one of the k top priority players belongs to its respective optimal
coalition, the player c belongs to Cd , and the player a belongs to any coalition except Cb .
Lemma 5 follows readily from the definitions of S1

T4
(k, a, b, c, d) and S2

T4
(k, a, b, c, d).

Lemma 5  The sets S1
T4
(k, a, b, c, d) and S2

T4
(k, a, b, c, d) are disjoint.

The test T4(k, a, b, c, d) uses rv to compare the value of any structure from
S1
T4
(k, a, b, c, d) to the value of any structure from S2

T4
(k, a, b, c, d).

4.3.2 � The universe of T4

For any k, a, b, c, and d, there are several ways of doing T4(k, a, b, c, d). The set of all these
possibilities is given by the universe of T4(k, a, b, c, d).

Definition 13  The set UT4(k, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) is called the

universe of T4(k, a, b, c, d).

Lemma 6 characterises the number of different ways of doing T4.

Lemma 6  For any 2 ≤ k ≤ n − 1 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k),

and there are |UT4(x, a, b, c, d)| distinct ways of doing T4(k, a, b, c, d).

Proof  By Lemma 5, S1
T4
(x, a, b, c, d) and S2

T4
(x, a, b, c, d) are disjoint. Thus there are

|UT4(x, a, b, c, d)| = |S1
T4
(k, a, b, c, d)| × |S2

T4
(k, a, b, c, d)| distinct ways of doing the test

T4(x, a, b, c, d). 	� ◻

Theorem 6 characterises a bound on the cardinality of UT4(x, a, b, c, d).

Theorem 6  For any 2 < k < n − 2 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) , the cardinal-
ity of UT4(k, a, b, c, d) satisfies the following relation:

Proof  We are given that UT4(x, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) .

Now, in some of the structures in S1
T4
(k, a, b, c, d) , the k + 1 top priority players are

|UT4(x, a, b, c, d)| = |S1
T4
(k, a, b, c, d)| × |S2

T4
(k, a, b, c, d)|,

|UT4(k, a, b, c, d)| > Bell2(n − k − 2)

3  Note that k, a, b, c, and d are the parameters of T4 and hence their respective domains are as defined in
Equation 9.

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 23 of 45  27

split into �(k) coalitions, while in others they are split into �(k) + 1 coalitions. Let
S11
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) denote the set of structures of the former type and

S12
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) that of the latter type, where S11

T4
(k, a, b, c, d) and

S12
T4
(k, a, b, c, d) are disjoint. Consider each one of these two cases:

Case 1	� The k + 1 top priority players are split into �(k) coalitions. The set of all such
structures is S11

T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) . The structures in S11

T4
(k, a, b, c, d)

are similar with regard to the positions of the k top priority players, but differ in
terms of the positions of the remaining Q(k) players. There are various ways of
organising the players in Q(k) whilst keeping the positions of ℙ1,… ,ℙk fixed,
to get coalition structures over N. The players in Q(k) − {a, c} can be partitioned
into 1 ≤ t ≤ |Q(k)| − 2 unordered coalitions in Stirling((|Q(k) − 2|, t) different
ways4. Some of these t unordered coalitions may be merged with the coalitions
C1,… ,C�(k) such that no two unordered coalitions are merged with the same coa-
lition in {C1,… ,C�(k)} . Let 0 ≤ w ≤ Min(�(k), t) be the number of merged coali-
tions. Let S111

T4
(k, a, b, c, d) ⊂ S11

T4
(k, a, b, c, d) denote the set of all those structures

in which each one of the k top priority players is in its optimal coalition, a ∈ Cb ,
and for some specific x ≠ d , c ∈ Cx . Then

Case 2	� The k + 1 top priority players are split into �(k) + 1 coalitions. The set of all such
structures is S12

T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) . The structures in S12

T4
(k, a, b, c, d)

are similar with regard to the positions of the k top priority players, but differ in
terms of the positions of the remaining Q(k) players. There are various ways of
organising the players in Q(k) whilst keeping the positions of ℙ1,… ,ℙk fixed,
to get coalition structures over N. The players in Q(k) − {a, c} can be partitioned
into 1 ≤ t ≤ |Q(k)| − 2 unordered coalitions in Stirling((|Q(k) − 2|, t) different
ways. Some of these t unordered coalitions may be merged with the coalitions
C1,… ,C�(k) such that no two unordered coalitions are merged with the same coa-
lition in {C1,… ,C�(k)} . Let 0 ≤ w ≤ Min(�(k) + 1, t) be the number of merged
coalitions. Let S121

T4
(k, a, b, c, d) ⊂ S12

T4
(k, a, b, c, d) denote the set of all those struc-

tures in which each one of the k top priority players is in its optimal coalition,
a ∈ Cb , and for some specific x ≠ d , c ∈ Cx . Then

(10)

|S111
T4

(k, a, b, c, d)| = |Q(k)| − 2t =1
∑(

Stirling(|Q(k)| − 2, t) ×Min(�(k), t)w = 0

∑{(
�(k)

w

) (
t

w

)
w!

})

(11)

|S121
T4

(k, a, b, c, d)| = |Q(k)| − 2t = 1

∑(
Stirling(|Q(k)| − 2, t) ×Min(�(k) + 1, t)w = 0

∑{(
�(k) + 1

w

) (
t

w

)
w!

})

4  Stirling(n, i) is the Stirling number of the second kind [21]. It gives the number of ways of partitioning
a set {1, 2,… , n} of n labeled objects into i non-empty disjoint parts. On the other hand, the Bell number
Bell(n) is the number of all possible partitions of {1, 2… , n}.

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 24 of 45

 From Equations 10 and 11, it is evident that |S111
T4

(k, a, b, c, d)| < |S121
T4

(k, a, b, c, d)| . Now,
since �(k) ≥ 1 , we get

This implies that

where |Q(k)| = n − k . Then, by the definitions of Bell and Stirling numbers,
Bell(n) =

∑n

i=1
Stirling(n, i) . Thus,

Since S111
T4

(k, a, b, c, d) ⊂ S11
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) , we get

|S1
T4
(k, a, b, c, d)| > |S111

T4
(k, a, b, c, d)| and therefore

Analogously,

Since S1
T4
(k, a, b, c, d) and S2

T4
(k, a, b, c, d) are disjoint (see Lemma 5), S111

T4
(k, a, b, c, d) and

S121
T4

(k, a, b, c, d) are disjoint, and since UT4(k, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) ,

we have:

	� ◻

4.3.3 � Monotonicity‑satisfying relations for T4

For any 2 < k ≤ n − 1 , the universe of T4(k, a, b, c, d) can be partitioned into three disjoint
subsets U<

T4
(k, a, b, c, d) , U=

T4
(k, a, b, c, d) , and U>

T4
(k, a, b, c, d) as follows:

∗	� U<

T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) < v(y)}

∗	� U=
T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) = v(y)}

∗	� U>

T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) > v(y)}

 Then the set of monotonicity-satisfying relations for T4(k, a, b, c, d) is defined as follows:

Definition 14  For any 2 < k < n , any (a, b) ∈ V(k) , and (c, d) ∈ V(k) , the set of monoto-
nicity-satisfying relations for T4(k, a, b, c, d) is

For 2 < k < 𝛿 , let �2(k) be defined as follows:

Min(�(k), t)w = 0
∑{(

�(k)

w

)
×

(
t

w

)
× w!

}
≥ 1.

|S111
T4

(k, a, b, c, d)| > |Q(k)| − 2t = 1
∑

Stirling(|Q(k)| − 2, t)

|S111
T4

(k, a, b, c, d)| > Bell(n − k − 2).

|S1
T4
(k, a, b, c, d)| > Bell(n − k − 2).

|S2
T4
(k, a, b, c, d)| > Bell(n − k − 2).

|UT4(k, a, b, c, d)| > Bell2(n − k − 2).

MSRT4(k, a, b, c, d) = {x | rv(�1,�2) = x, (�1,�2) ∈ UT4(k, a, b, c, d) ∩ SMON} ◻

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 25 of 45  27

Lemma 7  For each 2 < k < 𝛿,

Proof  Follows readily from the definitions of � , �1 , and �2(k) . 	� ◻

Theorem 7  If D < � , then for each 2 < k ≤ 𝛿 , each one of the following assertions must be
true:

1.	 More than 2�2(k) elements of the universe of T4(k, a, b, c, d) must obey monotonicity.
2.	 The set of monotonicity-satisfying relations for T4(k, a, b, c, d) must be non-empty.

Proof  Consider any 2 < k ≤ 𝛿 . By Lemma 6, there are |UT4(k, a, b, c, d)| distinct ways
of doing T4(k, a, b, c, d) for any (a, b) ∈ V(k) and any (c, d) ∈ V(k) . By Theorem 6,
|UT4(k, a, b, c, d)| > Bell2(n − k − 2) . That is, |UT4(k, a, b, c, d)| > 3�2 . By Lemma 7,
�2(k) > � . By the CSG problem definition of Sect. 3, D < � . So D < �2(k) . There-
fore, more than 2�2 elements of the universe of T4(k, a, b, c, d) must therefore obey
monotonicity.

Since |UT4(k, a, b, c, d)| > 3�2(k) , it follows that at least one of the three sets
U<

T4
(k, a, b, c, d) , U=

T4
(k, a, b, c, d) , or U>

T1
(i, j) must contain �2(k) or more elements. Other-

wise, |U<

T4
(k, a, b, c, d)| + |U=

T4
(k, a, b, c, d)| + |U>

T4
(k, a, b, c, d)| < 3�2(k) which is impos-

sible. If |Ux
T4
(k, a, b, c, d)| > �2(k) for any x, then at least one element of Ux

T4
(k, a, b, c, d)

must belong to SMON because D < �2(k) . So the set of monotonicity-satisfying relations for
T4(k, a, b, c, d) must be non-empty. 	� ◻

Probabilistic monotonicity induces the implications Xab and Xcd listed in Table 7. For
2 < k ≤ 𝛿 , these implications will be used to determine the identity of ℙk and its optimal
coalition, by eliminating those elements from V(k) that do not correspond to an optimum.

�2(k) =
Bell2(n − k − 2)

3
.

�1 > �2(k) > �.

Table 7   Probabilistic
monotonicity induced
implication for stage 2 < k ≤ 𝛿 .
These are used to make
deductions based on the outcome
of T4(k, a, b, c, d)

Label Implication

Xab

(
(a, b) ⊧ �

)
L

⇒

(
∀𝜋1,𝜋2 (𝜋1,𝜋2) ∈ S

MON

∧ 𝜋1 ∈ S
1

T4
(k, a, b, c, d) ∧ 𝜋2 ∈ S

2

T4
(k, a, b, c, d)

R

⇒ v(𝜋1) > v(𝜋2)

)

Xcd

(
(c, d) ⊧ �

)
L

⇒

(
∀𝜋1,𝜋2 (𝜋1,𝜋2) ∈ S

MON

∧ 𝜋1 ∈ S
1

T4
(k, a, b, c, d) ∧ 𝜋2 ∈ S

2

T4
(k, a, b, c, d)

R

⇒ v(𝜋1) < v(𝜋2)

)

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 26 of 45

In order to use these implications, a pair (�1,�2) must be found in the universe of T4 such
that (�1,�2) ∈ SMON . Since SMON is unknown, the question ‘how to find such a pair?’ is
answered in Theorem 8.

Theorem 8  Consider any 2 < k ≤ 𝛿 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . If D < � ,
then at least � and at most 3� − 2 invocations to rv are needed to compute an element of
the set of monotonicity-satisfying relations for T4(k, a, b, c, d).

Proof  Consider any 2 < k ≤ 𝛿 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . We are given
that D < � . By Lemma 7, D < �2(k) . So for any x ∈ {<,=,>} , x ∈ MSRT4(k, a, b, c, d)
if |Ux

T4
(k, a, b, c, d)| > � . Further, if |Ux

T4
(k, a, b, c, d)| < � , there is no guarantee that

x ∈ MSRT4(k, a, b, c, d) . Suppose the elements of UT4(k, a, b, c, d) are arranged in some
arbitrary sequence denoted u1, u2,… . Suppose the function rv is applied to the elements of
UT4(k, a, b, c, d) in the order u1, u2,… . Based on the outcomes of these tests, one of the fol-
lowing scenarios will occur:

•	 Let x denote an element of {<,=,>} . The outcomes of the tests are rv(ui) = x for each
1 ≤ i ≤ � , so x ∈ MSRT4(k, a, b, c, d) and a monotonicity-satisfying relation is found
with � invocations to rv . Note that this means that an element of Ux

T4
(k, a, b, c, d) must

belong to SMON.
•	 Let x, y and z be any three pairwise distinct elements of {<,=,>} . When rv is applied to

the first 3(� − 1) elements of the sequence u1, u2,… it is found that

 At this stage, |Ux
T4
(k, a, b, c, d)| = |Uy

T4
(k, a, b, c, d)| = |Uz

T4
(k, a, b, c, d)| = � − 1 .

Next, rv is applied to u3�−2 . Then regardless of the outcome of rv(u3�2(k)−2
) , one of the

three cardinalities |Ux
T4
(k, a, b, c, d)| , |Uy

T4
(k, a, b, c, d)| or |Uz

T4
(k, a, b, c, d)| must be �

and therefore a monotonicity-satisfying relation will be found with 3� − 2 invocations
to rv . Say x is monotonicity-satisfying, then an element of Ux

T4
(k, a, b, c, d) must belong

to SMON.
•	 If it is neither of the above two scenarios, then a monotonicity-satisfying relation, say x,

will be found with more than � but fewer than 3� − 2 applications of rv . Consequently,
an element of Ux

T4
(k, a, b, c, d) must belong to SMON.

	� ◻

4.3.4 � Application of test T4

Theorem 9  Consider any 2 < k ≤ 𝛿 and suppose that D < � . Then if |V(k)| ≥ 2 and (a, b)
and (c, d) are any two distinct elements of V(k), then at least one element of V(k) can be
deleted by doing T4(k, a, b, c, d) at most 3� − 2 times.

Proof  Consider any 2 < k ≤ 𝛿 . Consider any two distinct elements (a, b) and (c, d) of V(k).
By Theorem 7, the set of monotonicity-satisfying relations for T4(k, a, b, c, d) must be

(12)rv(ui) =

⎧
⎪⎨⎪⎩

x for eachi such thatmod(i, 3) = 0

y for eachi such thatmod(i, 3) = 1

z for eachi such thatmod(i, 3) = 2

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 27 of 45  27

non-empty. By Theorem 8, at most 3� − 2 invocations to rv are needed to compute a mono-
tonicity-satisfying relation for T4(k, a, b, c, d).

∗	� If either < or = is a monotonicity-satisfying relation for T4(k, a, b, c, d), then element
(a, b) must be eliminated from V(k). Because, by the implication Xab given in Table 7,
the antecedant of

R

⇒ is true but its consequent is false. This makes the consequent of
L

⇒
false. By contrapositive, the antecedant of

L

⇒ must be false. In other words, (ca, b) ̸⊧ �
and (a, b) must therefore be eliminated from V(k).

∗	� If either > or = is a monotonicity-satisfying relation for T4(k, a, b, c, d), then element
(c, d) must be eliminated from V(k). Because, by the implication Xcd given in Table 7,
the antecedant of

R

⇒ is true but its consequent is false. This makes the consequent of
L

⇒
false. By contrapositive, the antecedant of

L

⇒ must be false. In other words, (c, d) ̸⊧ �
and (c, d) must therefore be eliminated from V(k).

 Thus, regardless of what the monotonicity-satisfying relation for T4(k, a, b, c, d) is, at least
one element of V(k) can be deleted by doing T4(k, a, b, c, d) at most 3� − 2 times. 	� ◻

4.4 � The CSG method: Step 3

At this stage, ℙ1,… ,ℙ� and �|� have been determined. An element of �E
|� with the highest

value remains to be found. As per Definition 6, for non-optimal structures, probabilistic
monotonicity does not hold beyond � . An exhaustive search is therefore needed over the
space of all those structures in �E

|�

5 � CSG algorithm

The complete CSG method (described in Sect. 4) is summarised as Algorithm 1, the input
to which is a set of players N, a mapping rv , and a bound � such that

Lines 1 to 8 constitute Step 1 (described in Sect. 4.2) of the method during which ℙ1 , ℙ2 ,
and �|2 are determined. In Line 1, Z is initialized. In the while loop of Line 2, elements
from Z are eliminated by doing relevant tests. In Line 3, any two elements of Z are con-
sidered to choose a test Ta (where a ∈ 1, 2, 3 as given in Theorem 5) to do. Then in Line
4, 3� arbitrary elements of the universe of Ta are generated using the method described in
Appendix B. In Line 5, a monotonicity-satisfying relation is computed for Ta, and, on the
basis of this relation, elements of Z are eliminated as per as per Theorem 4. Once the while
loop is exited, ℙ1 , ℙ2 , and �|2 become known in Line 8.

Lines 9 to 18 constitute Step 2 (described in Sect. 4.3) of the method. Within the for
loop of Line 9, V(k) is initialized. The while loop in Line 11 is for eliminating elements of
V(k) by doing T4. In Line 12, any two elements of V(k) are considered to do T4 (as given
in Theorem 5). Then in Line 13, 3� arbitrary elements of the universe of T4 are generated
using the method described in Appendix B. In Line 14, a monotonicity-satisfying relation
is computed for T4 as per Theorem 8. Then, on the basis of this relation, elements of V(k)

� =
Bell2(n − � − 2)

3

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 28 of 45

are eliminated as per as per Theorem 9. When the for loop of Line 9 is exited, ℙ|� and �|�
become known in Line 17.

Line 19 is Step 3 (described in Sect. 4.4), i.e., an exhaustive search over the space of all
those structures in �E

|�.

Theorem 10  If the degree of non-monotonicity D satisfies D < � where

for some 3 < 𝛿 ≤ n − 3 and any n > 7 , then the time complexity of searching the part of the
search space that satisfies probabilistic monotonicity is O(n3 × ((n − �)!)2).

Proof  The time complexity of Step 1: Lines 1 to 8 of Algorithm 1 constitute Step 1. By
Lemma 1, the set Z initially contains 2n(n − 1) elements. The time taken for Line 1 is
O(n2) . Since any two elements of Z may be considered, Line 3 takes constant time. Line 4,

� =
Bell2(n − � − 2)

3

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 29 of 45  27

as per Appendix B, takes �(�) time. Line 5 (by Theorem 4 involves at most 3� invocations
to rv ), will take take O(�) time. Line 6 takes constant time. So the time to run the entire
while loop of Line 2 will be O(n2�) (since initially |Z| = 2n(n − 1) , and each computed
MSRTa will result in the elimination of at least one partner pair from Z).

The time complexity of Step 2: Lines 9 to 18 of Algorithm 1 constitute Step 2. Consider
any 3 ≤ k ≤ � , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . By the definition of V(k) given in
Equation 9, |V(k)| = (n − k) × (�(k) + 1) . Since |V(k) = (n − k) × (�(k) + 1) , the time taken
by Line 10 will be O(n2) . Since any to elements of V(k) may be considered, Line 12 will
take constant time. As per Appendix B, the time taken by Line 13 will be �(�) . By Theo-
rem 8, at most 3� invocations to rv are needed to compute MSRT4 . So the time to run Line
14 will be O(�) . Once MSRT4 is computed, eliminations in Line 15 (as per Theorem 9)
can be performed in constant time. Since k < n , �(k) ≤ n , and 𝛿 < n , at most n3 × (3� − 2)
invocations to rv will be needed to complete all iterations of the for loop. The time com-
plexity of Step 2 is therefore O(n3 × �) which is O(n3 × ((n − �)!)2).

The time to search the search space that satisfies probabilistic monotonicity, i.e., the
time to run Step 1 and Step 2 is O(n3 × ((n − �)!)2)) . 	� ◻

As shown in Theorem 10, the time to run the CSG algorithm over the probabilistically
monotonic part of the search space is decreasing in � , or equivalently, increasing in the
degree of non-monotonicity. Depending on � , the time complexity may or may not be poly-
nomial in n (see Table 8 �).

6 � Literature review

The problem of optimally partitioning a set of players has been studied from various per-
spectives. From a system-wide perspective, the aim is to maximize a social welfare func-
tion. From the perspective of individual players, the aim is to find solutions that are sta-
ble [10, 11], or those that are Pareto optimal [1]. We have taken the societal perspective.
Regardless of whether optimization is for individuals or for the society, the literature on
optimal partitioning can broadly be divided into two categories: partitioning for determin-
istic environments and partitioning for stochastic environments.

Deterministic environments: Finding a socially optimal structure for CFGs where the
value of a structure is the sum of the values of its coalitions is NP-complete [35]. Numer-
ous approaches such as dynamic programming [30, 42], branch-and-bound [33], and hybrid
methods [25] have been used to solve the CSG problem for CFGs. Ueda et al. [41] showed
how concise representation schemes for characteristic functions can be used to efficiently

Table 8   Illustration of � for
various values of �

� n − � �

n − 3 3 1/3
n − 4 4 4/3
⋮ ⋮ ⋮

5 n − 5 Bell2(n−7)

3

4 n − 4 Bell2(n−6)

3

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 30 of 45

solve the CSG problem. Within the context of CFGs, Dang et al. [13], Chalkiadakis et al.
[8], and Habib et al. [23] addressed the CSG problem for overlapping coalitions.

Compared to CFGs, there are relatively fewer solutions for the CSG problem for PFGs.
Rahwan et al. [31] showed how to find optimal partitions for PFGs by restricting exter-
nalities to positive only or negative only but not mixed. Their method prunes the search
space on the basis of bounds on the values of groups of coalitions. Epstein et al. [15] used
a distributed approach to solve the CSG problem for PFGs with positive only or negative
only externalities. Banerjee and Kraemer [4] used a branch-and-bound approach to solve
the CSG problem for PFGs by restricting externalities on the basis of agent types. In [15,
31], and [4], the value of a partition is the sum of the values of its coalitions. In contrast,
we consider probabilistically monotone PFGs for which the value of a structure does not
necessarily have to be the sum but can be any function of the values of its coalitions.

For CFGs where the value of a coalition depends both on its members and the tasks the
members execute, and the value of a structure is the sum of the values of its constituent
coalitions, Prantare and Heintz [29] used a branch-and-bound approach to find an anytime
solution to the CSG problem.

Stochastic environments: Compared to deterministic cooperative games, the literature
on stochastic games is rather small. Charnes and Granot [10, 11] addressed the problem
of finding stable solutions to stochastic CFGs for which the values of coalitions are not
deterministic but rather random variables with given distribution functions. Suijs et al. [38]
showed how certain insurance scenarios can be modelled as CFGs with stochastic pay-
offs and stable solutions determined. This framework was later applied for modelling water
resources [14]. A key distinction between all this work on stochastic models and ours is
that they take an economic perspective and pay attention to finding stable solutions. In
contrast, we take an algorithmic perspective and address the problem of finding coalition
structures that are socially optimal.

For CFGs with the value of a coalition structure given by the sum of the values of its
coalitions, Matsumara et al. [24] proposed a framework for probabilistic coalition structure
generation. In this model, each agent can belong to no more than one coalition and there is
uncertainty about the membership of an agent in a coalition. For this framework, approxi-
mation algorithms are given for finding an optimal structure. The key differences between
their work and ours is that they consider CFGs, while we consider PFGs. Another differ-
ence is that they assume that the value of a coalition structure is the sum of the values of its
coalitions, while we allow the value of a coalition structure to be any function of the values
of its coalitions. Yet another difference is that their method requires the values of coalitions
as an input. In contrast, our method does not require the values of coalitions as input nor
does it require the values of coalition structures. Rather, our method only requires the rela-
tion (given by rv ) between the values of structures.

For stochastic environments, a different strand of work on coalition formation has dealt
with situations requiring coalitions to form repeatedly. This opens up the possibility of
introducing learning. For CFGs, Chalkiadakis and Boutilier [7] considered scenarios where
agents are typed and there is uncertainty about agent types, and proposed a Bayesian learn-
ing framework for coalition formation.

In summary, the key distinguishing features of our work are as follows. Unlike existing
work, we solve the CSG problem for PFGs in a stochastic setting. Further, in the existing
work on stable solutions for stochastic CFGs, the values of coalitions are random vari-
ables with known probability distribution functions. However, our CSG algorithm does not
require a known probability distribution function; it is sufficient to know that the degree of
non-monotonicity is within a certain bound. Yet another difference is that, unlike existing

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 31 of 45  27

CSG methods for PFGs, we do not restrict the value of a partition to be the sum of the val-
ues of its coalitions, but allow it to be any function of the values of its coalitions. Finally,
unlike the existing CSG methods for both CFGs and PFGs, our CSG algorithm does not
require the values of structures to be known; rather it is sufficient to know the relation
(given by rv ) between the values of structures.

7 � Conclusions

In this paper, we considered the problem of optimally partitioning a set of players into dis-
joint exhaustive coalitions. We focussed on solving this problem in the context of probabil-
istically monotone partition function games with priority-ordered players. For such games,
we showed how an optimum can be found knowing just that a priority ordering exists but
without knowing the actual ordering. We presented a greedy algorithm for solving the
problem. The time complexity of the algorithm depends on the degree of non-monotonic-
ity. We showed how the time complexity varies with the degree of non-monotonicity.

There are various avenues for further research. We considered PFGs where the prop-
erty of monotonicity is violated with a certain non-zero probability. In the future, it will
be interesting to consider situations where the probability that any two random structures
violate monotonicity depends on the distance between them and their closest optima; those
structures that are further away from an optimum are more likely to violate monotonicity
than those that are closer. Another possibility is to consider situations where a player can
be a member of multiple coalitions as opposed being a member of a single coalition.

Appendix A: Theorems and proofs

Theorem 11  Let a and b be any two distinct players. Let �0 be the set of all those struc-
tures of n players such that a and b belong to different coalitions, i.e.,

Then |�0| = Bell(n) − Bell(n − 1).

Proof  The set �0 can be written as

where �0a is the set of all structures in which a and b belong to the same coalition.

Since a and b are in the same coalition, these two players may be regarded as a sin-
gle player. So there will n − 1 players to be arranged in coalitions. We therefore have
|�0a| = Bell(n − 1) . Since |�N| = Bell(n) , |�0| = Bell(n) − Bell(n − 1) . 	� ◻

Theorem 12  Let K ⊆ N be a set of k players. Let �1 be the set of all those structures of n
players such that all the players in K belong to the same coalition, i.e.,

�0 = {� ∈ �N | �a
�
≠ �b

�
}

�0 = �N −�0a

�0a = {� ∈ �N | �a
�
= �b

�
}

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 32 of 45

Then |�1| = Bell(n − k + 1).

Proof  Since all the players in K belong to the same coalition, this set may be treated as a
single player. This means we have n − k + 1 players and therefore |�1| = Bell(n − k + 1) . 	
� ◻

Theorem 13  Let a, b, c, and d be any four distinct players. Let �2 be the set of all those
structures of n players such that a and c are in the same coalition, b and d are in the same
coalition, and a and b in different coalitions, i.e.,

Then |�2| = Bell(n − 2) − Bell(n − 3).

Proof  The set �2 has the following composition:

where

and

Treating a and c as a single player, and b and d as another single player, we get
|�2a| = Bell(n − 4 + 2) = Bell(n − 2) . Then, treating a, b, c, and d as a single player, we
get |�2b| = Bell(n − 4 + 1) = Bell(n − 3) . Thus, |�2| = Bell(n − 2) − Bell(n − 3) . 	� ◻

Theorem 14  Let K ⊆ N be a set of k players, and let i ∉ K . Let �3 be the set of all those
structures of n players such that all the players in K belong to the same coalition, and i
does not belong to that coalition, i.e.,

Then |�3| = Bell(n − k + 1) − Bell(n − k).

Proof  Let �3a be the set of all structures in which all the players in K belong to the same
coalition. Let �3b be the set of all structures in which all the players in K ∪ {i} belong to
the same coalition.

Then

�1 = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
}

�2 = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
, �a

�
≠ �b

�
}

�2 = �2a −�2b

�2a = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
}

�2b = {� ∈ �N | �a
�
= �b

�
= �c

�
= �d

�
}.

�3 = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
, �a

�
≠ � i

�
}

�3a = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
}

�3b = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
= � i

�
}

�3 = �3a −�3b.

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 33 of 45  27

By Theorem 12, |�3a| = Bell(n − k + 1) and |�3b| = Bell(n − k) . Thus
|�3| = Bell(n − k + 1) − Bell(n − k) . 	� ◻

Theorem 15  Let a, b, and c be any three distinct players. Let �4 be the set of all those
structures of n players such that a, b, and c belong to three different coalitions, i.e.,

Then, |�4| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2).

Proof  The set �4 has the following composition:

where

By Theorem 11, |�4a| = Bell(n) − Bell(n − 1) . By substituting K = {a, c} and
i = b in Theorem 14, we get |�4b| = Bell(n − 1) − Bell(n − 2) . By substituting
K = {b, c} and i = a in Theorem 14, we get |�4c| = Bell(n − 1) − Bell(n − 2) . Thus,
|�4| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) . 	� ◻

Theorem 16  Let a, b, c, and d be any four distinct players. Let �5 be the set of all those
structures of n players such that a and b belong to the same coalition, c and d belong to
different coalitions, and neither c nor d belongs to a’s coalition, i.e.,

Then, |�5| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3).

Proof  Treat a and b as a single player. Then we have n − 1 players, three
of whom should be in three different coalitions. By Theorem 15, we get
|�5| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . 	� ◻

Theorem 17  Let a, b, c, and d be any four distinct players. Let �6 be the set of all those
structures of n players such that a, b, c, and d belong to four different coalitions, i.e.,

Then |�6| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3).

Proof  The set �6 has the following composition:

where

�4 = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
}

�4 = �4a −�4b −�4c

�4a = {� ∈ �N | �a
�
≠ �b

�
},

�4b = {� ∈ �N | �a
�
≠ �b

�
, �a

�
= �c

�
}

�4c = {� ∈ �N | �a
�
≠ �b

�
, �b

�
= �c

�
}

�5 = {� ∈ �N | �a
�
= �b

�
, �c

�
≠ �d

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
}

�6 = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
, �b

�
≠ �c

�
, �b

�
≠ �d

�
, �c

�
≠ �d

�
}

�6 = �6a −�6b −�6c −�6d

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 34 of 45

and

By Theorem 15, |�6a| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) . Since in
�6b , a and d are in the same coalition, view them as a single player called
ad . Then the players ad , b and c must be in three different coalitions. Apply-
ing Theorem 15, |�6b| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . In the
same way, |�7c| = |�7d| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . Thus,
|�6| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3) . 	� ◻

Theorem 18  Let a, b, c, and d be any four distinct players. Let �7 be the set of all those
structures of n players such that a and b belong to different coalitions, and c and d belong
to different coalitions, i.e.,

Then |�7| = Bell(n) − 2Bell(n − 1) + Bell(n − 2).

Proof  The set �7 has the following composition:

where

Then

By Theorem 13, |�7a| = |�7c| = Bell(n − 2) − Bell(n − 3) . By Theorem16,
|�7b| = |�7d| = |�7e| = |�7f | = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . By
Theorem 17, |�7g| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3) . Thus,
|�7| = Bell(n) − 2Bell(n − 1) + Bell(n − 2) . 	� ◻

Theorem 19  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T1
(i, j) , S2

T1
(i, j) , and

UT1(i, j) are:

�6a = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
},

�6b = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �a

�
= �d

�
},

�6c = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �b

�
= �d

�
},

�6d = {� ∈ � | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �c

�
= �d

�
}.

�7 = {� ∈ �N | �a
�
≠ �b

�
, �c

�
≠ �d

�
}

�7 = �7a ∪�7b ∪�7c ∪�7d ∪�7e ∪�7f ∪�7g.

�7a = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
, �a

�
≠ �b

�
}.

�7b = {� ∈ �N | �a
�
= �c

�
, �b

�
≠ �d

�
, �a

�
≠ �b

�
�a
�
≠ �d

�
}.

�7c = {� ∈ �N | �a
�
= �d

�
, �b

�
= �c

�
, �a

�
≠ �b

�
}.

�7d = {� ∈ �N | �a
�
= �d

�
, �b

�
≠ �c

�
, �a

�
≠ �b

�
�a
�
≠ �c

�
}.

�7e = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �d

�
, �b

�
= �c

�
�b
�
≠ �d

�
}.

�7f = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
= �d

�
�b
�
≠ �c

�
}.

�7g = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
�b
�
≠ �c

�
�b
�
≠ �d

�
�c
�
≠ �d

�
}.

�7 = �7a +�7b +�7c +�7d�7e +�7f +�7g

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 35 of 45  27

Proof  For any i ∈ N and j ∈ N − {i} , the test T1(i, j) (see Sect. 4.2.1) compares the values
of any two structures �1 and �2 such that

∗	� in �1 , the players i and t (where t is an arbitrary element of N − {i, j} and is determined
on the basis of the elements in Z) belong to different coalitions but j and s (where s is
an arbitrary element of N − {i, j} and is determined on the basis of the elements in Z)
belong to the same coalition, and

∗	� in �2 , the players i and t belong to the same coalition but j and s belong to different
coalitions.

S1
T1
(i, j) denotes the set of all those structures in which the players i and t belong to differ-

ent coalitions but j and s belong to the same coalition. S2
T1
(i, j) denotes the set of all those

structures in which the players i and t belong to the same coalition but j and s belong to
different coalitions.

Since there is no constraint on whether s = t or s ≠ t , must consider both cases.

•	 The case s ≠ t : The set S1
T1
(i, j) has the following composition:

 where

 By Theorem 16, |�T1a| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . |�T1b| is the
number of structures in which t, j, and s belong the same coalition, less the number of
structures in which i, t, j, and s all belong to the same coalition. By Theorem 12 we get
|�T1b| = Bell(n − 2) − Bell(n − 3) . Analogously, |�T1c| = Bell(n − 2) − Bell(n − 3) .
Thus, S1

T1
(i, j) = Bell(n − 1) − Bell(n − 2).

	  Analogously, S2
T1
(i, j) = Bell(n − 1) − Bell(n − 2) , so

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

•	 The case s = t : The set S1
T1
(i, j) has the following composition:

 By Theorem 14, |S1
T1
(i, j)| = Bell(n − 1) − Bell(n − 2) . Next, the set S2

T1
(i, j) has the fol-

lowing composition:

|S1
T1
(i, j)| = Bell(n − 1) − Bell(n − 2)

|S2
T1
(i, j)| = Bell(n − 1) − Bell(n − 2)

|UT1(i, j)| =
(
Bell(n − 1) − Bell(n − 2)

)2

S1
T1
(i, j) = �T1a ∪�T1b ∪�T1c

�T1a = {� ∈ �N | � i
�
≠ � t

�
, � i

�
≠ � j

�
, � t

�
≠ � j

�
, � j

�
= �s

�
}

�T1b = {� ∈ �N | � i
�
≠ � t

�
, � t

�
= � j

�
= �s

�
}

�T1c = {� ∈ �N | � i
�
≠ � t

�
, � i

�
= � j

�
= �s

�
}

S1
T1
(i, j) = {� ∈ �N | � i

�
≠ �s

�
, � j

�
= �s

�
}

S2
T1
(i, j) = {� ∈ �N | � i

�
= �s

�
, � j

�
≠ �s

�
}

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 36 of 45

 By Theorem 14, |S2
T1
(i, j)| = Bell(n − 1) − Bell(n − 2) . Thus

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.
	� ◻

Theorem 20  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T2
(i, j) , S2

T2
(i, j) , and

UT2(i, j) are:

Proof  For any i ∈ N and j ∈ N − {i} , the test T2(i, j) (see Sect. 4.2.1) compares the values
of any two structures �1 and �2 such that

∗	� in �1 , the players i and t are apart, and the players j and s are apart, and
∗	� in �2 , the players i and t are together, and the players j and s are together.

S1
T2
(i, j) denotes the set of all those structures in which the players i and t are apart, and j

and s are apart. S2
T2
(i, j) denotes the set of all those structures in which the players i and t

belong to the same coalition, and j and s belong to the same coalition. Since there is no
constraint on whether s = t or s ≠ t , must consider both cases.

•	 The case s ≠ t:
	  By Theorem 18, |S1

T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2).

	  The set S2
T2
(i, j) has the following composition:

 where

 Consider |�T2a| . Substuting k = 4 in Theorem 12, we get |�T2a| = Bell(n − 3) .
Consider |�T2b| . By Theorem 13, |�T2b| = Bell(n − 2) − Bell(n − 3) .
Add |�T2a| and |�T2b| to get |S2

T2
(i, j)| = Bell(n − 2) . So

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).

•	 The case s = t : The set S1
T2
(i, j) has the following composition:

 where

 By Theorem 15, we have |�T2a| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) .
By Theorem 14, we have |�T2b| = Bell(n − 1) − Bell(n − 2) . So

|S1
T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2)

|S2
T2
(i, j)| = Bell(n − 2)

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2)

S2
T2
(i, j) = �T2a ∪�T2b

�T2a = {� ∈ �N | � i
�
= � t

�
= � j

�
= �s

�
}

�T2b = {� ∈ �N | � i
�
= � t

�
, � j

�
= �s

�
, � i

�
≠ � j

�
}.

S1
T2
(i, j) = �T2a ∪�T2b

�T2a = {� ∈ �N | � i
�
≠ �s

�
, � i

�
≠ � j

�
, �s

�
≠ � j

�
}

�T2b = {� ∈ �N | � i
�
= � j

�
, � i

�
≠ �s

�
}.

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 37 of 45  27

|S1
T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2) . Next, the set S2

T2
(i, j) has the following

composition:

 By Theorem 12 k = 3 , we have |S2
T2
(i, j)| = Bell(n − 2) . So

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).
	� ◻

Theorem 21  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T3
(i, j) , S2

T3
(i, j) , and

UT3(i, j) are:

Proof  For any i ∈ N and j ∈ N − {i} , the test T2(i, j) (see Sect. 4.2.1) compares the values
of any two structures �1 and �2 such that

∗	� in �1 , the players i and j are apart, and
∗	� in �2 , the players i and j are together.

S1
T3
(i, j) denotes the set of all those structures in which the players i and j are apart. S2

T2
(i, j)

denotes the set of all those structures in which the players i and j are together.
By Theorem 11, |S1

T3
(i, j)| = Bell(n) − Bell(n − 1) . Substituting k = 2 in Theorem 12,

|S2
T3
(i, j)| = Bell(n − 1) . Thus, |UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1) . 	� ◻

Theorem 22  The cardinalities of the universes of T1, T2, and T3 are related as follows:

1.	 For any n and any two distinct players i and j, |UT2(i, j)| > |UT1(i, j)|.
2.	 For any n and any two distinct players i and j, |UT3(i, j)| > |UT1(i, j)|.
3.	 For any n, any two distinct players i and j, |UT3(i, j)| > |UT2(i, j)|.
4.	 For any n > 4 , any 2 < k < n − 2 , and any two distinct players i and j,

|UT1(i, j)| > Bell2(n − k − 2).

	� ◻

Proof  *	� For any n, here is proof that |UT2(i, j)| > |UT1(i, j)| : By Theorem 19:

 By Theorem 20:

 Thus, |UT2(i, j)| − |UT1(i, j)| = Bell(n) × Bell(n − 2) − Bell2(n − 1) . Since
Bell(n) × Bell(n − 2) > Bell2(n − 1) , |UT2(i, j)| > |UT1(i, j)|.

*	� For any n, here is proof that |UT3(i, j)| > |UT1(i, j)| : By Theorem 19:

S2
T2
(i, j) = {� ∈ �N | � i

�
= � j

�
= �s

�
}

|S1
T3
(i, j)| = Bell(n) − Bell(n − 1)

|S2
T3
(i, j)| = Bell(n − 1)

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1)

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 38 of 45

 By Theorem 21,

 Clearly |UT3(i, j)| > |UT1(i, j)|.

*	� For any n, here is proof that |UT3(i, j)| > |UT2(i, j)| : By Theorem 20:

 By Theorem 21,

 Clearly, |UT3(i, j)| > |UT2(i, j)|.

*	� For any n and any 2 < k < n − 2 , here is proof that |UT1(i, j)| > Bell2(n − k − 2) .
Since 2 < k < n − 2 and since Bell2(n − k − 2) is decreasing in k, it is
sufficient to prove the above inequality for k = 2 , i.e., it is sufficient
to prove that |UT1(i, j)| > Bell2(n − 4) . We know by Theorem 19 that
|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2 . Since Bell(n) is exponentially increas-
ing in n, for n > 4 , we get

 Thus, we get |UT1(i, j)| > Bell2(n − 4) . This proves that |UT1(i, j)| > Bell2(n − k − 2).

	� ◻

Theorem 23  For any n ≥ 5 , any k ≤ � , and any two distinct players i and j:

1.	 |UT1(i, j)| > 3�

2.	 |UT2(i, j)| > 3�

3.	 |UT3(i, j)| > 3�

4.	 |UT4(k, a, b, c, d)| > 3� for any (a, b) ∈ V(k) , any (c, d) ∈ V(k) , and any k ≤ �.

Proof  By Theorem 22, for any n ≥ 5 , any i and j, and any 2 < k < n − 2 ,
|UT1(i, j)| > Bell2(n − k − 2) . Further, by Theorem 22, |UT2(i, j)| > |UT1(i, j)| and
|UT3(i, j)| > |UT1(i, j)| . Since

where 3 < 𝛿 ≤ n − 3 , we get |UT1(i, j)| > 3� , |UT2(i, j)| > 3� , and |UT3(i, j)| > 3�.
By Theorem 6, |UT4(k, a, b, c, d)| > Bell2(n − k − 2) for any 2 < k < n − 2 , any

(a, b) ∈ V(k) , and any (c, d) ∈ V(k) . Thus, for any (a, b) ∈ V(k) and any (c, d) ∈ V(k) ,
|UT4(k, a, b, c, d)| > 3� for any k ≤ � . 	� ◻

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1).

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1).

Bell(n − 1) − Bell(n − 2) > Bell(n − 4).

� =
Bell2(n − � − 2)

3

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 39 of 45  27

Appendix B: Generating the universes of T1, T2, T3, and T4

By Definition11 and Definition 13, UTa = S1
Ta
× S2

Ta
 for each 1 ≤ a ≤ 4 . For each 1 ≤ a ≤ 3 ,

S1
Ta

 and S2
Ta

 are as defined in Sect. 4.2.1, and S1
T4

 and S2
T4

 are as defined in Sect. 4.3.2. By
Theorem 4, a monotonicity-satisfying relation for Ta (for any 1 ≤ a ≤ 3 ) can be found with
at most 3� − 2 invocations to rv . Then by Theorem 5, at least one element of Z can be
deleted by doing Ta (with a and the arguments to Ta as defined in Theorem 5). Also, by
Theorem 8, a monotonicity-satisfying relation for T4 can be found with 3� − 2 invocations
to rv . Then by Theorem 9, at least one element of V(k) can be deleted by doing T4 (with
arguments as defined in Theorem 9).

Since UTi = S1
Ti
× S2

Ti
 for each 1 ≤ i ≤ 4 , it is sufficient to generate

�√
3�

�
 arbitrary ele-

ments of S1
Ti

 and
�√

3�
�
 arbitrary elements of S2

Ti
 to achieve |UTi| = 3�.

In order to generate the elements of S1
Ti

 or S2
Ti

 for any i, it is convenient to first choose
a suitable representation for coalition structures. To this end, we will represent the set of
players as N = {1,… , n} . Any coalition structure over {1,… , n} will have at most n coali-
tions. Each coalition structure will be represented by a codeword ( codecs ). The codeword
for a coalition structure is a vector of the form (C1,C2,… ,Cn) such that player 1 ≤ x ≤ n
is in the coalition Cx in the structure. Without any loss of generality, assume that the coali-
tions in a structure � are ordered as follows:

coalition Ca will precede a coalition Cb in � if the smallest element of Ca is less than
the smallest element of Cb.

Observe that, with coalitions ordered in this way, coalition structures have the following
property. In any coalition structure, player 1 must belong to the first coalition, player 2
must belong to one of the first two coalitions, and so on. In general, if the players 1,… , k
( 1 ≤ k < n ) belong to the first 1 ≤ m ≤ k non-empty coalitions, then player k + 1 must
belong to one of the first m + 1 coalitions. For example, for a game of five players, the coa-
lition structure {{1, 2}, {3}, {4, 5}} has the codeword:

The following notation will be used for subwords of the codeword of a coalition structure.
For a codeword, the subword beginning at index a and ending at index b will be denoted
codecs|a,b . For example, we have:

With a representation for coalition structures in place, we are now ready to describe a
method (see Algorithm 2) for generating coalition structures in this representation. We will
describe the procedure for generating elements of S1

T1
(i, j) as codewords, given i, j, s, and t

as inputs (the elements of S2
T1
(i, j) can be generated analogously). As per Sect. 4.2.1, the set

S1
T1
(i, j) has the following composition:

and the constraints that must be satisfied by elements of �T1a , �T1b and �T1c are as
follows:

•	 �T1a = {� ∈ �N | � i
�
≠ � t

�
, � i

�
≠ �

j
� , � t

�
≠ �

j
� , �

j
� = �s

�
}

•	 �T1b = {� ∈ �N | � i
�
≠ � t

�
, � t

�
= �

j
� = �s

�
}

codecs({{1, 2}, {3}, {4, 5}}) = (1, 1, 2, 3, 3).

codecs|1,3({{1, 2}, {3}, {4, 5}}) = (1, 1, 2).

S1
T1
(i, j) = �T1a ∪�T1b ∪�T1c

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 40 of 45

•	 �T1c = {� ∈ �N | � i
�
≠ � t

�
, � i

�
= �

j
� = �s

�
}

where i ∈ N , j ∈ N − {i} , s is an arbitrary element of N − {i, j} determined on the basis of
the elements in Z, and t is an arbitrary element of N − {i, j} determined on the basis of the
elements in Z.

The procedure we are going to describe is an adaptation of the method proposed in [16]
for generating all possible partitions of a set {1,… , n} . Since [16] generates all possible
partitions, it must be adapted to generate only those that satisfy the above listed constraints
for �T1a , �T1b and �T1c . The required adaptation is done as follows.

Note that, in the above listed constraints, s may or may not equal t, so need to consider
both cases. However, regardless of whether s = t or not, the players j and s are required
to belong to the same coalition in any coalition structure that belongs to �T1a , �T1b , or
�T1c . Thus, j and s may be treated as a single player. Consequently, the total number of
players will now be reduced to n − 1 . So coalition structures over these n − 1 players must
be generated such that every generated coalition structure satisfies each of the above listed
constraints for �T1a , �T1b , and �T1c.

Without any loss of generality, suppose j < s . Since j and s are treated as a single player,
the set of players will be {1,… , j,… , s − 1, s + 1,… , n} . For convenience, we will encode
the players in this set such that the numbers are all consecutive. The encoding is done by
the mapping codeag ∶ {1… , n} → {1,… , n − 1} defined as follows (distinguish between
codes ( codeag ) for agents and codewords ( codecs ) for partitions):

◦	� codeag(j) = codeag(s) = 1

◦	� codeag(i) = 2

◦	� codeag(t) = 3

◦	� codeag(Xy) = y + 3

 where X = N − {i, j, s, t} and the elements of X are in ascending order with Xy denoting the
yth element of X. Figure 1 is an illustration of this encoding for the example N = {1,… , 9} ,
i = 5 , j = 3 , s = 7 , and t = 8.

With the description of encoding of agents and coalition structures in place, we
are now ready to describe a procedure for generating codewords for the coalition struc-
tures in S1

T1
(i, j) . The method in [16] is used to generate codewords for the partitions of

the n − 1 element set of coded players, i.e., the set {codeag(1),… , codeag(n)} where
|{codeag(1),… , codeag(n)}| = n − 1 . Each generated codeword is then checked to ensure
it satisfies each one of the constraints listed above for �T1a , �T1b , and �T1c . The complete
method is presented as Algorithm 2.

Fig. 1   An illustration of encod-
ing for N = {1,… , 9} , i = 5 ,
j = 3 , s = 7 , and t = 8

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 41 of 45  27

In Algorithm 2, the procedure GENERATE-UNIVERSE is the main routine. The inputs to
it are i, j, s, t, n, and count (the number of elements of S1

T1
 to generate, i.e, count =

√
3� ).

Within GENERATE-UNIVERSE is defined a recursive routine SP (Lines 7 to 40) for generat-
ing the required codewords.

To begin, in Line 41, the list X is set to {1,… , n} − {i, j, s, t} (note that elements of X are
to be in ascending order. The variable index, used to track the number of elements of S1

T1

generated so far, is initialised to zero. Then the procedure SP is invoked in Line 43.
This procedure SP (defined in Lines 7 to 40) is for generating the elements of S1

T1
 recur-

sively: the codewords of all partitions of the set {1,… , n} are obtained from the codewords
of all partitions of the set {1,… , n − 1} by appending Cn to the respective codewords.
The range of values that Cn may assume is 1,… ,max(C1,C2,… ,Cn−1) + 1 . Note that, for
SP(m, p), the parameter m = max(C1,… ,Cp−1) , and the parameter p indicates the current
index of the codeword under consideration. Figure 2 (taken from [16]) is an illustration of
the recursive generation codewords for the set {1, 2, 3, 4}.

The If statement from Line 9 to 39 is for tracking the number of codewords generated
so far. In the If statement between Lines 10 and 29, the elements of a codeword are gener-
ated one-by-one, starting from the first element and going to the (n − 1) th element. Once a
complete n − 1 element codeword is generated, it is transformed to a corresponding n ele-
ment codeword by now treating the players j and s as distinct. The transformed codeword is
saved in Table[index] (see Lines 31 to 37).

In Lines 12 to 23, checks are done to ensure that a codeword satisfies the required con-
straints. This check is done in Lines 12 to 16 for the case s ≠ t , and in Lines 19 to 23 for
the case s = t . For the case s ≠ t , a constraint is violated if any one of the following condi-
tions is true:

◦	� codecs|1,3 = (1, 1, 1)

◦	� codecs|1,3 = (1, 2, 1)

◦	� codecs|1,3 = (1, 2, 2)

 For the case s = t , a constraint is violated if the following condition is true:

◦	� codecs|2,2 ≠ 2

Fig. 2   An illustration of the
genaration of partitions of
N = {1,… , 4}

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 42 of 45

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 43 of 45  27

Once an n − 1 element constraint-satisfying codeword is generated, it is transformed to
a corresponding n element codeword that represents a coalition structure over n players as
follows. Let tcodecs denote a transformed codeword. Transformation involves treating j and
s as distinct players, and is done as follows:

◦	� tcodecs(j) = tcodecs(s) = codecs|1,1
◦	� tcodecs(i) = codecs|2,2
◦	� tcodecs(t) = codecs|3,3
◦	� tcodecs(Xx−3) = codecs|x,x for each 4 ≤ x ≤ n − 1.

 Codeword transformation is illustrated in Figure for the example N = {1,… , 9} , i = 5 ,
j = 3 , s = 7 , t = 8 , and codecs = (1, 2, 3, 3, 2, 4, 4, 5).

Each transformed codeword is saved in Table (see Lines 31 to 37). Each codeword in
Table will be an n element codeword.

Elements of UTa(i, j) for each 2 ≤ a ≤ 4 can also be generated by using Algorithm 2 with
constraint checking conditions suitably modified for each respective case.

We will now analyse the time complexity of generating 3� arbitrary elements of
UT1(i, j) = S1

T1
(i, j) × S2

T1
(i, j) using Algorithm 2.

Theorem 24  For any given i, j, s, and t, 3� arbitrary elements of UTa(i, j) (for each
1 ≤ a ≤ 4 ) can be generated in �(

√
�) time.

Proof  Consider a = 1 for which UT1(i, j) = S1
T1
(i, j) × S2

T1
(i, j) . Algorithm 2 generates �√

3�
�
 elements of S1

Ta
(i, j) ). Now, as per [16], the average time to generate a partition of

{1,… , n} using Algorithm 2 is �(1.6) . Since Algorithm 2 generates
�√

3�
�
 partitions, it

will take �(
√
�) time.

The definition of S2
T1

 is analogous to that of S1
T1

 (see Sect. 4.2.1). Thus,
�√

3�
�
 elements

of S2
T1
(i, j) can be generated in �(

√
�) time. Since UT1(i, j) = S1

T1
(i, j) × S2

T1
(i, j) , the time

taken to generate 3� arbitrary elements of UT1(i, j) will be �(�).
Elements of UTa(i, j) for each 2 ≤ a ≤ 4 can also be generated by using Algorithm 2 with

constraint checking conditions suitably modified for each respective case. Thus, the time
taken to generate 3� distinct elements of UTa(i, j) will be �(�) for each 2 ≤ a ≤ 4 . 	� ◻

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aziz, H., & de Keijzer, B. (2011). Complexity of coalition structure generation. In Proceedings of the
10th international joint conference on AAMAS, pp. 191–198.

http://creativecommons.org/licenses/by/4.0/

	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 44 of 45

	 2.	 Aziz, H., Brandt, F., & Harrenstein, P. (2013). Pareto optimality in coalition formation. Games and
Economic Behavior, 82, 562–581.

	 3.	 Bachrach, Y., Meir, R., Jung, K., & Kohli, P. (2010). Coalitional structure generation in skill games. In
Proceedings of AAAI, pp. 703–708.

	 4.	 Banerjee, B., & Kraemer, L. (2010). Coalition structure generation in multi-agent systems with mixed
externalities. In Proceedings of AAMAS, pp. 175–182.

	 5.	 Bell, E. T. (1934). Exponential numbers. The American Mathematical Monthly, 41(7), 411–419.
	 6.	 Chalkiadakis, G., Elkind, E., & Wooldridge, M. (2011). Computational aspects of cooperative game

theory. Morgan & Claypool.
	 7.	 Chalkiadakis, G., & Boutilier, C. (2012). Sequentially optimal repeated coalition formation under

uncertainty. Autonomous Agents and Multi-Agent Systems, 24, 441–484.
	 8.	 Chalkiadakis, G., Elkind, E., Markakis, E., & Jennings, N. (2010). Cooperative games with overlap-

ping coalitions. Journal of AI Research, 39(1), 179–216.
	 9.	 Charnes, A., & Granot, D. (1976). Coalitional and chance-constrained solutions to n-person games I.

SIAM Journal of Applied Mathematics, 31, 358–367.
	10.	 Charnes, A., & Granot, D. (1977). Coalitional and chance-constrained solutions to n-person games II.

Operations Research, 25, 1013–1019.
	11.	 Curiel, I. (1997). Cooperative game theory and applications. B. V: Springer.
	12.	 Dang, V., Dash, R., Rogers, A., & Jennings, N. (2006). Overlapping coalition formation for efficient

data fusion in multi-sensor networks. In Proceedings of the 21st National Conference on artificial
intelligence (AAAI), pp. 635–640.

	13.	 de Bruijn, N. (1988). Asymptotic methods in analysis. Dover.
	14.	 Dinar, A., Moretti, S., Patrone, F., & Zara, S. (2006). Application of stochastic cooperative games in

water resources. In R. Goetz, D. Berga (Eds.) Frontiers in water resource economics. Natural Resource
Management and Policy, vol. 29. Springer. https://​doi.​org/​10.​1007/0-​387-​30056-2_1

	15.	 Epstein, D., & Bazzan, A. (2013). Distributed coalition structure generation with positive and negative
externalities. In 16th Proceedings of Portugese conference on AI, pp. 408–419. Springer.

	16.	 Er, M. C. (1988). A fast algorithm for generating set partitions. The Computer Journal, 31(3),
283–284.

	17.	 Fatima, S., & Wooldridge, M. (2019). Computing optimal coalition structures in polynomial time.
Journal of Autonomous Agents and Multiagent Systems, 33, 35–83.

	18.	 Fink, A. (2006). Supply chain coordination by means of automated negotiations between autonomous
agents. In B. Chaib-draa, J. Muller (Eds.) Multiagent based supply chain management, pp. 351–372.
Springer.

	19.	 Gawiejnowicz, S. (2020). A review of four decades of time-dependent scheduling: Main results, new
topics, and open problems. Journal of Scheduling, 23, 3–47.

	20.	 Gordon, V., Potts, C., Strusevich, V., & Whitehead, J. (2008). Single machine scheduling models with
deterioration and learning: Handling precedence constraints via priority generation. Journal of Sched-
uling, 11, 357–370.

	21.	 Graham, R., Knuth, D., & Patashnik, O. (1994). Concrete mathematics. Addison Wesley.
	22.	 Granot, D., & Granot, F. (1992). On some network flow games. Mathematics of Operations Research,

17, 792–841.
	23.	 Habib, F., Polukarov, M., & Gerding, E. (2017). Optimising social welfare in multi-resource thresh-

old task games. In Proceedings of principles and practice of multi-agent systems – 20th international
conference.

	24.	 Matsumara, K., Kodric., B., Okimoto, T., & Hirayama, K. (2020). Two approximation algorithms for
probabilistic coalition structure generation with quality bound. Journal of Autonomous Agents and
Multiagent Systems, 34(Article number: 25). https://​doi.​org/​10.​1007/​s10458-​020-​09449-8.

	25.	 Michalak, T., Rahwan, T., Elkind, E., & Wooldridge, M. (2016). A hybrid exact algorithm for com-
plete set partitioning. AI Journal, 230, 139–174.

	26.	 Moyaux, T., Chaib-draa, B., & D’Amours, S. (2006). Supply chain management and multiagent sys-
tems: An overview. In B. Chaib-draa, J. Muller (Eds.) Multiagent based supply chain management, pp.
1–27. Springer.

	27.	 Myerson, R. (1977). Values of games in partition function form. International Journal of Game The-
ory, 6, 23–31.

	28.	 Nowak, A., & Radzik, T. (1994). The shapley value for n-person games in generalized characteristic
function form. Games and Economic Behavior, 6, 150–161.

	29.	 Präntare, F., & Heintz, F. (2020). An anytime algorithm for optimal simultaneous coalition structure
generation and assignment. Journal of Autonomous Agents and Multiagent Systems, 34. https://​doi.​org/​
10.​1007/​s10458-​020-​09450-1.

https://doi.org/10.1007/0-387-30056-2_1
https://doi.org/10.1007/s10458-020-09449-8
https://doi.org/10.1007/s10458-020-09450-1
https://doi.org/10.1007/s10458-020-09450-1

Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 45 of 45  27

	30.	 Rahwan, T., & Jennings, N. R. (2008). An improved dynamic programming algorithm for coalition
structure generation. In Proceedings of the seventh international joint conference on autonomous
agents and multiagent systems, pp. 1417–1420.

	31.	 Rahwan, T., Ramchurn, S., Jennings, N., & Giovanucci, A. (2009). An anytime algorithm for optimal
coalition structure generation. Journal of AI Research, 34, 521–567.

	32.	 Rahwan, T., Michalak, T., Wooldridge, M., & Jennings, N. (2012). Anytime coalition structure genera-
tion in multi-agent systems with positive or negative externalities. AI Journal, 186, 95–122.

	33.	 Rahwan, T., Michalak, T., Wooldridge, M., & Jennings, N. (2015). Coalition structure generation: A
survey. AI Journal, 229, 139–174.

	34.	 Ray, D. (2007). A game-theoretic perspective on coalition formation. Oxford University Press.
	35.	 Sandholm, T., Larson, K., Andersson, A., Shehory, O., & Tohmé, F. (1999). Coalition structure gen-

eration with worst case guarantees. AI Journal, 111, 209–238.
	36.	 Shapley, L. (1953). A value for n-person games. In: H. Kuhn, A. Tucker (Eds.) Contributions to the

theory of games, volume II, pp. 307–317. Princeton University Press.
	37.	 Shrot, T., Auman, Y., & Kraus, S. (2010). On agent types in coalition formation problems. In Proceed-

ings of AAMAS, pp. 757–764.
	38.	 Suijs, J., Waegenaere, A., & Borm, P. (1998). Stochastic cooperative games in insurance. Insurance:

Mathematics and Economics, 22(3–4), 209–228.
	39.	 Tanaev, V., Gordon, V., & Shafransky, Y. (1994). Scheduling theory: Single-stage systems. Dordrecht:

Kluwer.
	40.	 Thrall, R., & Lucas, W. (1963). n-person games in partition function form. Naval Research Logistics

Quarerly, 10, 281–298.
	41.	 Ueda, S., Iwasaki, A., Conitzer, V., Ohta, N., Sakurai, Y., & Yokoo, M. (2018). Coalition structure

generation in cooperative games with compact representations. Journal of Autonomous Agents and
Multiagent Systems, 32, 503–533.

	42.	 Yeh, D. (1986). A dynamic programming approach to the complete set partitioning problem. BIT
Numerical Mathematics, 26(4), 467–474.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Optimal coalition structures for probabilistically monotone partition function games
	Abstract
	1 Introduction
	2 Background
	2.1 Player ordering
	2.2 Monotonicity

	3 Coalition structure generation in stochastic environments
	3.1 Representation
	3.2 Distance measure
	3.3 Probabilistic monotonicity

	4 The proposed method
	4.1 CSG method: overview
	4.2 CSG method: Step 1
	4.2.1 The tests T1, T2, T3
	4.2.2 The universes of T1, T2, T3
	4.2.3 Monotonicity-satisfying relations for T1, T2, T3
	4.2.4 Application of tests T1, T2, and T3

	4.3 CSG method: Step 2
	4.3.1 The test T4
	4.3.2 The universe of T4
	4.3.3 Monotonicity-satisfying relations for T4
	4.3.4 Application of test T4

	4.4 The CSG method: Step 3

	5 CSG algorithm
	6 Literature review
	7 Conclusions
	References

