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Abstract
For cooperative games with externalities, the problem of optimally partitioning a set of 
players into disjoint exhaustive coalitions is called coalition structure generation, and is a 
fundamental computational problem in multi-agent systems. Coalition structure generation 
is, in general, computationally hard and a large body of work has therefore investigated 
the development of efficient solutions for this problem. However, the existing methods are 
mostly limited to deterministic environments. In this paper, we focus attention on uncertain 
environments. Specifically, we define probabilistically monotone partition function games, 
a subclass of the well-known partition function games in which we introduce uncertainty. 
We provide a constructive proof that an exact optimum can be found using a greedy 
approach, present an algorithm for finding an optimum, and analyze its time complexity.

Keywords  Coalition formation · Cooperative games · Partition function games · 
Optimization · Uncertainty

1  Introduction

A key open problem in multi-agent systems research is how to organise agents into disjoint 
teams so as to maximise some overall welfare measure. This coalition structure generation 
(CSG) problem is in general computationally complex: NP-hard even under quite mod-
est assumptions. For this reason, there have been many studies directed at finding easy 
instances of the problem (see [2, 3, 17, 35, 37] for some examples and [32] for a detailed 
survey).

Coalition/cooperative game theory provides a conventional framework for modelling 
CSG problems [9, 34, 40]. A coalition game is defined by a pair comprised of a set of 
agents and a function that maps coalitions to values. A widely studied subclass of coali-
tion games are characteristic function games (CFGs). For a CFG, the value of a coalition 
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depends only on its members. A relatively less well studied subclass of coalition games are 
partition function games (PFGs). For a PFG, the value of a coalition depends on its mem-
bers as well as on the make-up of the non-members. CFGs are a proper subclass of PFGs 
and CFGs are the most well studied coalition games. Except for a few recent ones, most of 
the existing methods for solving the CSG problem are for CFGs [32].

Existing solutions for the CSG problem for PFGs were devised either by placing con-
straints on externalities or else on the function that maps coalition structures to values (see 
Sect.  6 for details). A common feature of existing work is that it is focussed on games 
whose properties are known with certainty (we will call such games deterministic). How-
ever, stochasticity is inherent to many multi-agent settings. Given this, the goal of our pre-
sent work is to investigate how to solve the CSG problem for stochastic environments in 
which some aspects of the problem are not known with certainty. To this end, we build 
on our prior work [17] in which we considered the CSG problem for PFGs with priority 
ordered players and a restricted class of value functions, viz., those that satisfy a certain 
monotonicity property, and devised a polynomial time solution. In this previous work, the 
notion of monotonicity was deterministic in the sense that, with probability one, the func-
tion that maps coalition structures to values satisfies monotonicity. In this paper, we relax 
the deterministic monotonicity assumption by allowing a certain degree of non-monoto-
nicity. Specifically, we replace the deterministic monotonicity restriction by probabilistic 
monotonicity. Probabilistic monotonicity means that the value function obeys monotonicity 
with a certain probability 0 < p ≤ 1 (for the deterministic case p = 1 ). For probabilistically 
monotone PFGs with priority ordered players, we devise an algorithm for optimally solv-
ing the CSG problem and characterize its time complexity.

The need for optimal coalition structures arises in many real-world applications. For 
example, in the formation of supply chains [18, 26]. In such a setting, several different 
manufacturers of components form coalitions to achieve what they cannot do individu-
ally. Externalities arise, for example, from the requirement that all components ultimately 
conform to the same standards. The cost of standardisation procedures incurred by any 
coalition depends on the number and structure of other coalitions. Another application is 
in job scheduling [19]. In a job scheduling problem, there is a set of jobs and a set of 
machines. Each job must be allocated to a machine such that the overall cost of processing 
jobs is minimized. For further applications of cooperative games, [12] is a comprehen-
sive set of references. In all such applications, the general problem of optimal coalition 
structure determination involves a combinatorial search. In many cases, the search space is 
not always unstructured – often there is some form of inherent regularity in at least a part 
of the space. For example, consider an airline crew scheduling problem, which requires 
organising staff into coalitions based on individual characteristics, and optimally schedul-
ing the coalitions. The players, i.e., the crew, are ordered in that any non-optimal place-
ment of an individual in the early part of a schedule can propagate inefficiencies down 
the chain and reduce the value of the entire partition. It is possible that the earlier in the 
schedule a non-optimality is introduced, the greater the reduction in the value of the parti-
tion as a whole, relative to the optimum. In other words, the search space is structured in 
that there is a relation between how close a partition is to the optimum, and the value of 
that partition. The closer a structure is to the optimum, the more likely it is to have a higher 
value. A lack of certainty in the values can arise because the number of all possible coali-
tion structures is too huge to enable an accurate measurement of their values. It is therefore 
important to consider such uncertainties.

To the best of our knowledge, we are the first to consider the CSG problem in an uncer-
tain environment. The key contributions of this paper are: 
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1.	 Developed a new model of probabilistic monotonicity in partition function games, that 
extends previously studied deterministic monotonicty.

2.	 Analysed the model and constructively proved that an exact optimum can be found.
3.	 Devised a greedy algorithm for solving the CSG problem for probabilistic monotone 

partition function games.
4.	 Analysed the time complexity of the devised algorithm.

The remainder of the article is organised as follows. Section 2 provides background. Sec-
tion 3 is a description of the model under investigation and Sect. 4 of the proposed method. 
An algorithm for solving the CSG problem is in Sect. 5. A review of related literature is 
in Sects.  6 and 7 concludes. Appendix  A collects together all our theorems and proofs. 
Appendix B is a description of an algorithm for generating the partitions of a set, and an 
analysis of its time complexity.

2 � Background

There is a finite non-empty set of players N = {1, ..., n} (see Table 1 for a summary of key 
notation). The term coalition refers to a non-empty subset of N. The symbol C possibly 
with sub/superscripts denotes a coalition and C denotes the set of all coalitions of N.

A coalition structure is an exhaustive partition of a set of players into mutually disjoint 
coalitions. Formally:

Definition 1  For any coalition C, let �C denote the set of all coalition structures over C. 
Then {C1,C2,… ,Ck} ∈ �C iff

C = {C | C ⊆ N,C ≠ �}

∪k
i=1

Ci = C, ∀i Ci ≠ �, and ∀i∀j ≠ i Ci ∩ Cj = �.

Table 1   A summary of notation
N = {1,… , n} The set of players
C1≤i≤n A coalition of players; Ci ⊆ N

ℙi The top ith priority player
� 𝛥 ⊆ N , � = {ℙ1,… ,ℙ�}

� � = |�|
� A coalition structure over the set N
� i
�

The index of the coalition in � to which 
player i belongs

�N The set of all coalition structures over N
�

�
The set of all optimal coalition structures

�1
(Bell(n−1)−Bell(n−2))2

3

�2(k) Bell2(n−k−2)

3

� Bell2(n−�−2)

3
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The symbol � possibly with sub/superscripts will denote a coalition structure. An 
embedded coalition is a coalition together with a specification of how the non-members are 
organised into coalitions. It is formally defined as follows:

Definition 2  Let E denote the set of all embedded coalitions. Then

Definition 3  A characteristic function game (CFG) is a pair (N, v1) where v1 ∶ 2N → ℝ 
and 2N denotes the set of all subsets of N. A partition function game is a pair (N, v2) where 
v2 ∶ E → ℝ.

Thus CFGs are a subclass of PFGs.

Definition 4  The value of a coalition structure over N is given by an objective function 
v ∶ �N

→ ℝ.

In the literature on CSG, the function that maps coalition structures to values, i.e., the 
objective function v, is a social welfare function. It is commonly assumed to be the sum 
of coalition values. In the proposed model (described in Sect.  3), however, the value of 
a structure does not have to be the sum of the values of its coalitions but could be any 
function.

The CSG problem then is to find an optimal structure, i.e., a structure � such that v(�) 
is the highest between all coalition structures. For n player games, the number of all pos-
sible structures is Bell(n) [5, 6] where

with Bell(0) = Bell(1) = 1 . Since Bell(n) ∼ �(nn) [6], a brute force method for PFGs (and 
CFGs) is not a feasible.

Given the computational complexity of CSG, it is natural to investigate easy instances 
of the problem. In prior work [17], we showed how the CSG problem for PFGs can be 
solved optimally in polynomial time, provided that the set N is ordered and the objective 
function is deterministically monotonic. Our goal now is to generalize this method to sto-
chastic environments where monotonicity is satisfied with a certain probability. Monoto-
nicity is defined in terms of a player ordering.

2.1 � Player ordering

In the definition of both CFGs and PFGs, the term coalition refers to a set of players, i.e., 
there is no notion of ordering. Nevertheless, the Shapley value [36], a well-known axi-
omatic solution for CFGs, and its adaptation [27] to PFGs are motivated by a bargaining 
procedure in which the players are assigned a random ordering and coalition formation is 
viewed as a sequential process that happens as per the ordering. In generalized CFGs [28], 
attention is paid to ordering within the definition of a game. A generalized CFG is defined 
in terms of a set of players and a characteristic function that maps orderings on coalitions 
to numbers.

E = {(C,�) | C ∈ � ∈ �N}

Bell(n) =

n−1∑
i=0

(
n − 1

i

)
× Bell(i)
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The notion of ordering is prevalent not only in the definition of cooperative games and 
solutions to them, but also in their applications to computationally hard optimization prob-
lems such as matching, network optimisation, and scheduling [12, 22]. In the context of 
these applications, the notion of ordering is used to determine computationally easy prob-
lem instances. For example, consider scheduling. In a scheduling problem [39], there is a 
set of jobs and a set of machines. Each job must be allocated to a machine and, for each 
machine, an ordering over its allocated jobs must be determined such that the overall cost 
of processing jobs as per the order is minimized. Computationally easy instances of this 
problem are sought by imposing restrictions such as the cost function being monotonic, 
and the set of jobs being an ordered set. In particular, much of the scheduling literature 
[19, 20] has focussed on a restricted class of objective functions called priority-generating 
functions. An objective function is said to be priority-generating if a related function called 
priority function exists which imposes an ordering over the set of jobs by assigning to jobs 
certain values called priorities. Crucially, priorities are assigned to jobs such that, based on 
priorities, the optimal schedule can be found in polynomial time. Thus, if a priority func-
tion can be found for a given objective function, and it takes polynomial time to compute 
job priorities using the function, then the scheduling problem can be solved in polynomial 
time [39].

Motivated by the above observations, in prior work [17] we took a priority-based 
approach and showed how the CSG problem for PFGs can be solved optimally in polyno-
mial time provided the set N is ordered and the function v is monotonic (see Sect. 2.2). The 
CSG problem is related to scheduling in that players are analogous to jobs and coalitions 
to machines. A crucial difference though between existing priority-based scheduling meth-
ods [19, 20, 39] and [17] is that the former require job priorities as an input, while latter 
requires only the existence of player priorities to be known without requiring the actual 
priorities as problem input.

2.2 � Monotonicity

In [17], the players are assumed to be priority ordered, and monotonicity of the objective 
function v is defined in terms of a distance metric d. For any two structures �1 and �2 , 
d(�1,�2) denotes the distance between �1 and �2.

Definition 5  (Deterministic monotonicity) For any two structures �1 and �2 , and a unique 
optimum �:

with probability one. 	�  ◻

Then a PFG is deterministically monotonic if, for some player ordering, v is monotonic. 
It was shown that deterministic monotonicity is a property that can be satisfied by PFGs 
with positive only, negative only, and mixed externalities. Further, deterministic monoto-
nicity was shown to be satisfiable for a wide range of objective functions, i.e., the value of 
a partition is not restricted to be the sum of the values of its coalitions but can be any func-
tion of these values. Illustrations of deterministically monotonic PFGs, and a polynomial 
time method for solving the CSG problem for deterministically monotonic PFGs are in 
[17]. Our aim now is to generalise this method to probabilistic monotonicity.

(1)d(�,𝜋1) < d(�,𝜋2) ⇒v(𝜋1) > v(𝜋2)
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3 � Coalition structure generation in stochastic environments

The players to be partitioned are given by the set N. The priority ordering referred to in 
Sect. 2.1 exists over certain players in N. The set of these ordered players is denoted 𝛥 ⊆ N 
with � = |�| . Each player in N − � is called a non-priority player. Let ℙi ∈ � denote the top 
ith priority player, i.e., the ordering is ℙ1 ≻ ⋯ ≻ ℙ𝛿 . The quality of a coalition structure 
depends on how the priority players are positioned in the structure. The higher up a player 
is in the ordering, the more important it is to have the player in its optimal position.

Any coalition that contains at least one priority player is called a priority coalition. An 
ordering over � induces an ordering over the priority coalitions: they are ordered as per the 
priorities of their highest priority members. Suppose hpm(X) denotes the highest priority 
member of coalition X. Suppose that the priority players are spread over m coalitions. Then 
these m coalitions form a sequence (C1,C2,… ,Cm) such that, ℙ1 ∈ C1 , and if ℙx ≻ ℙy and 
ℙx = hpm(Ci) and ℙy = hpm(Cj) , then i < j . For any coalition structure over N, there is no 
ordering over coalitions comprised solely of non-priority players.

We consider stochastic environments modelled as probabilistically monotone PFGs for 
which it is known that a priority ordering exists, but the ordering itself is unknown, i.e., 
the identities of the priority players ℙ1,… ,ℙ� are unknown. Solving the CSG problem 
requires determining these identities and an optimal way of partitioning the players in N. 
To achieve this, we represent coalition structures as described in Sect.  3.1. In Sect.  3.2, 
we introduce a distance metric, in terms of which we define probabilistic monotonicity in 
Sect. 3.3. The proposed method for solving the CSG problem is described in Sect. 4.

3.1 � Representation

Let ℙ denote the sequence (ℙ1,… ,ℙ�) . For any k ≤ � , ℙ|k will denote the k element prefix 
of ℙ , i.e., ℙ|k = (ℙ1,… ,ℙk) . ℙE

|k is defined as

where Perm(�) denotes the set of all permutations of � . A coalition structure over � is rep-
resented as a sequence � = (x1, x2,… , x�) such that xi ∈ {1,… , �} is the index of the coali-
tion to which player ℙi belongs. Then the set of all structures over � is:

�|k will denote the k element prefix of � = (x1, x2,… , x�) . �E
|k will denote the set of all those 

sequences in �� whose k element prefix is �|k.

Example 1  Consider a PFG with n = 3 players who are members of an airline crew. There 
are Bell(3) = 5 possible coalition structures. Let � = 3 . Column 1 of Table 2 shows how 
coalition structures will be represented. For three players, there are six possible orderings 
of players as illustrated in Columns 2 to 7. How the representation of a particular struc-
ture is interpreted depends on the player ordering ℙ . For example, for ℙ = (1, 2, 3) (see 
Column 2), we have ℙ1 = 1 , ℙ2 = 2 , and ℙ3 = 3 . The representation (1, 1, 1) (see Row 1, 
Column 2) means the structure comprised of the single grand coalition C1 = {1, 2, 3} . The 

ℙ
E
|k = {X | X ∈ Perm(�) and X|k = ℙ|k}

(2)𝛱𝛥 = {(x1,… , x𝛿) | x1 = 1, xi>1 ∈ {1,… ,max(x1,… , xi−1) + 1}}

�E
|k = {X | X ∈ �� and X|k = �|k}



Autonomous Agents and Multi-Agent Systems (2022) 36:27	

1 3

Page 7 of 45  27

representation (1, 1, 2) (see Row 2, Column 2) is the structure ({1, 2}, {3}) in which the 
two top priority players are together in the coalition C1 and the player ℙ3 is in the singleton 
coalition C2 . However, the same representation (1, 1, 2) for the ordering ℙ = (1, 3, 2) (see 
Row 2, Column 3) is the structure ({1, 3}, {2}) . The remaining entries in the table may be 
interpreted similarly. 	�  ◻

Let �
�

 denote the set of all optimal structures over N. For any � ∈ �N , � i
�
 will denote 

the index of the coalition to which player i belongs in the structure � . We assume that the 
optima are unique up to the positions of the top 3 < 𝛿 ≤ n − 3 priority players, i.e., for any 
two distinct optimal structures �1 ∈ �

�
 and �2 ∈ �

�
 , �ℙi

�1
= �

ℙi

�2
 for each 1 ≤ i ≤ �.

3.2 � Distance measure

To measure the distance between any two structures �1 and �2 over N, we define a metric d 
in terms of the positions of the priority players, i.e., in terms of the restriction of �1 and �2 
to � . A restriction1 can be represented as described in Sect. 3.1.

Theorem 1  The distance function d obeys all metric axioms.

Proof  The axioms are identity, symmetry, and triangle inequality. 

Identity	� For any coalition structure �1 over N, d(�1
|� ,�

1
|�) = 0 . For any coali-

tion structure �2 over N, if �1
|� ≠ �2

|� , then d(�1
|� ,�

2
|�) ≠ 0.

(3)d(�1

|� ,�
2

|�) = � − max
1≤i≤�

{�1

|i = �2

|i}

Table 2   An illustration of the coalition structure representation and semantics for each one of the six pos-
sible player orderings for n = 3 player games

(1) (2) (3) (4) (5) (6) (7)
Repre-
senta-
tion

ℙ = (1, 2, 3) ℙ = (1, 3, 2) ℙ = (2, 1, 3) ℙ = (2, 3, 1) ℙ = (3, 1, 2) ℙ = (3, 2, 1)

(1) (1, 1, 1) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3}) ({1, 2, 3})

(2) (1, 1, 2) ({1, 2}, {3}) ({1, 3}, {2}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 3}, {2}) ({2, 3}, {1})

(3) (1, 2, 1) ({1, 3}, {2}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 2}, {3}) ({2, 3}, {1}) ({1, 3}, {2})

(4) (1, 2, 2) ({1}, {2, 3}) ({1}, {2, 3}) ({2}, {1, 3}) ({2}, {1, 3}) ({3}, {1, 2}) ({3}, {1, 2})

(5) (1, 2, 3) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3}) ({1}, {2}, {3})

1  The restriction of a structure � = (C1,C2,…) over N to some s ⊆ N is �|s = (C1 ∩ s,C2 ∩ s,…) . Note 
that, in Sect. 3.1, ’|’ is used in a slightly different way; in �|k , k ∈ {1,… , �} . The meaning of ’|’ should be 
clear from context.



	 Autonomous Agents and Multi-Agent Systems (2022) 36:27

1 3

27  Page 8 of 45

Symmetry	� For any two coalition structures �1 and �2 over N, 
d(�1

|� ,�
2
|�) = d(�2

|� ,�
1
|�).

Triangle inequality	� For any three coalition structures �1 , �2 , and �3 over N, 
d(�1

|� ,�
2
|�) ≤ d(�1

|� ,�
3
|�) + d(�2

|� ,�
3
|�).

	� Let max
1≤i≤�

{�1
|i = �2

|i} = k , max
1≤i≤�

{�1
|i = �3

|i} = x , and max
1≤i≤�

{�2
|i = �3

|i} = y where 
1 ≤ k ≤ � , 1 ≤ x ≤ � , and 1 ≤ y ≤ � . Consider each one of the following 
possibilities: 

�x > k ∶	� For this case, y = k . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − x + � − k ≥ � − k , and 
d(�1

|� ,�
2
|�) = � − k.

x < k ∶	� For this case, y = x . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − x + � − x ≥ � − k , and 
d(�1

|� ,�
2
|�) = � − k.

x = k ∶	� For this case, y ≥ k . Thus, d(�1

|� ,�
3

|�) + d(�2

|� ,�
3

|�) = � − k + � − y ≥ � − k , and 
d(�1

|� ,�
2
|�) = � − k . 	�  ◻

	�  ◻

3.3 � Probabilistic monotonicity

Let � be the set of all ordered pairs of coalition structures over N. Formally,

For a game of n players, |�| = Bell(n) × (Bell(n) − 1) . Then, for a player ordering, proba-
bilistic monotonicity of an objective function v is defined as follows.

Definition 6  (Probabilistic monotonicity) For a random pair (�1,�2) ∈ � such that 
�1 ∉ �

�
 and �2 ∉ �

�
 , and any optimal structure � ∈ �

�

with a certain probability. Specifically, for a random pair (�1,�2) ∈ � such that nei-
ther �1 nor �2 is an optimum, the probability that v(𝜋1) > v(𝜋2) conditional on 
d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2
|𝛿) is

For a random pair (�1,�2) ∈ � such that any one element of the pair, say �1 , is an opti-
mum, v(𝜋1) > v(𝜋2) with probability 1. 	�  ◻

Definition 7  A PFG2 (N, v2, v) is probabilstically monotonic if v is probabilistically mono-
tone for some player ordering. 	�  ◻

� = {(�1,�2) | �1 ∈ �N and �2 ∈ �N and �1 ≠ �2}

(4)d(�|𝛿 ,𝜋1
|𝛿) < d(�|𝛿 ,𝜋2

|𝛿) ⇒v(𝜋1) > v(𝜋2)

p

(
v(𝜋1) > v(𝜋2) | d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2
|𝛿)
)

≤1

2  In the literature on coalition game theory, a PFG is defined as a pair (N, v2) . We include the objective 
function v in the definition of a PFG.
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Probabilistic monotonicity is modelled as follows. Let the set � be defined as follows:

Let the functions f ∶ � → � , rd ∶ � → {<,=,>} , and rv ∶ � → {<,=,>} be defined as 
follows. For any (x, y) ∈ � , f (x, y) = (rd(x, y), rv(x, y)) where

and

The set � can be partitioned into nine pairwise disjoint subsets as follows: 

1.	 �ee = {(x, y) | (x, y) ∈ � and f (x, y) is (=,=)}

2.	 �eg = {(x, y) | (x, y) ∈ � and f (x, y) is (=,>)}.
3.	 �el = {(x, y) | (x, y) ∈ � and f (x, y) is (=,<)}

4.	 �ge = {(x, y) | (x, y) ∈ � and f (x, y) is (>,=)}

5.	 �gg = {(x, y) | (x, y) ∈ � and f (x, y) is (>,>)}

6.	 �gl = {(x, y) | (x, y) ∈ � and f (x, y) is (>,<)}

7.	 �le = {(x, y) | (x, y) ∈ � and f (x, y) is (<,=)}

8.	 �lg = {(x, y) | (x, y) ∈ � and f (x, y) is (<,>)}

9.	 �ll = {(x, y) | (x, y) ∈ � and f (x, y) is (<,<)}

Then � is the union of these nine subsets:

Between all these nine subsets, only �ee , �eg , �el , �gl , and �lg satisfy monotonicity. The 
union of these is denoted �MON:

Definition 8  Each pair in �MON is called a monotonicity-satisfying pair.

Probabilistic monotonicity is modelled by a probability distribution (see Table  3) 
induced by the function v over the set � . As per Table 3,

� = {(u, v) | u ∈ {<,=,>} and v ∈ {<,=,>}}.

rd(x, y) =

⎧
⎪⎨⎪⎩

< if d(��𝛿 , x�𝛿) < d(��𝛿 , y�𝛿)
= if d(��𝛿 , x�𝛿) = d(��𝛿 , y�𝛿)
> if d(��𝛿 , x�𝛿) > d(��𝛿 , y�𝛿)

rv(x, y) =

⎧
⎪⎨⎪⎩

< if v(x) < v(y)

= if v(x) = v(y)

> if v(x) > v(y)

(5)� = �ee ∪ �eg ∪ �el ∪ �ge ∪ �gg ∪ �gl ∪ �le ∪ �lg ∪ �ll.

(6)�MON = �ee ∪ �eg ∪ �el ∪ �gl ∪ �lg.
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Since the elements of � are ordered pairs, we have the following : 

1.	 peg = pel because (�1,�2) ∈ Seg iff (�2,�1) ∈ Sel.
2.	 pge = ple because (�1,�2) ∈ Sge iff (�2,�1) ∈ Sle.
3.	 pgg = pll because (�1,�2) ∈ Sgg iff (�2,�1) ∈ Sll.
4.	 pgl = plg because if (�1,�2) ∈ Sgl iff (�2,�1) ∈ Slg.

For probabilistic monotonicity, pge ≥ 0 , pgg ≥ 0 , ple ≥ 0 , and pll ≥ 0 . In contrast, for deter-
ministic monotonicity, each one of the probabilities pge , pgg , ple , and pll is zero. Example 2 
is an illustration of probabilistic monotonicity.

Example 2  Consider a game with n = 3 players who are members of an airline crew. Let 
N = {1, 2, 3} , ℙ = (1, 2, 3) and � = 3 . There are 5 structures possible and 20 possible 
ordered pairs of structures as listed in Table 4 (the corresponding probability distrubution 
is shown in Table 5). Suppose the optimum is � = ({1, 3}, {2}) , which is represented as 
the sequence (1, 2, 1) enclosed in oval. Consider Row 4. �1 is further away from the opti-
mum than is �2 and yet v(𝜋1) > v(𝜋2) . This is a violation of monotonicity. Likewise, mono-
tonicity is violated in the rows 11, 15, and 17. There is no violation in any of the remaining 
rows.

Clearly, the number of rows in which monotonicity is violated cannot be arbitrary. If 
we want to manage computational complexity, the degree of non-monotonicity must be 
bounded.

Definition 9  (Degree of non-monotonicity) The degree of non-monotonicity D is the sum 
of the cardinalities of �ge , �gg , �le , and �ll.

p

(
v(𝜋1) > v(𝜋2) | d(�|𝛿 ,𝜋1

|𝛿) < d(�|𝛿 ,𝜋2

|𝛿)
)

=
plg

ple + plg + pll
.

Table 3   Probability distribution 
induced by v on �

Element of � Probability

(=,=) pee =
|�ee|
|�|

(=,>) peg =
|�eg|
|�|

(=,<) pel =
|�el|
|�|

(>,=) pge =
|�ge|
|�|

(>,>) pgg =
|�gg|
|�|

(>,<) pgl =
|�gl|
|�|

(<,=) ple =
|�le|
|�|

(<,>) plg =
|�lg|
|�|

(<,<) pll =
|�ll|
|�|
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Let � denote Bell
2(n−�−2)

3
 and suppose that D satisfies the relation

for some 3 < 𝛿 ≤ n − 3 and n > 7 . Our aim then is to solve the following CSG problem:

D = |�ge| + |�gg| + |�le| + |�ll| ◻

D < �

Table 4   An illustration of probabilistic monotonicity for a 3 player game with ℙ = (1, 2, 3) . The optimal 
structure � = ({1, 3}, {2}) is represented as (1, 2, 1). Each row corresponds to an element of the set � . Four 
(viz. those in rows 4, 11, 15, and 17 highlighted in grey) out of the twenty elements of � violate monotonic-
ity
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CSG problem definition: For a probabilistically monotone PFG (N, v2, v) with 
the degree of non-monotonicity known to be bounded above by � , find the identities of 
ℙ1,… ,ℙ� and an optimal structure � where

given as input N and the function rv induced by v.
Note that the actual values of coalition structures as given by v are not part of the input. 

Rather, only the relation between the values of any two structures is part of the problem 
input.

4 � The proposed method

In Sect. 4.1 is a brief overview of the three key steps of the proposed method for finding ℙ 
and an optimal structure � . Details of Step 1 are in Sect. 4.2, Step 2 in Sect. 4.3, and Step 
3 in Sect. 4.4. A complete formulation of the method is given as an algorithm in Sect. 5.

4.1 � CSG method: overview

Step 1	� Determine who the two top priority players are, and their optimal coalitions. At 
the end of this step, ℙ|2 and �|2 will become known.

Step 2	� For each 3 ≤ i ≤ � , determine the identity of the player ℙi and its optimal coali-
tion. At the end of this step, ℙ|� and �|� will become known.

Step 3	� Determine ℙ and �.

Consider Step 1. To begin, we know that ℙ1 ∈ N , so there are n possibilities for the 
identity of ℙ1 . We also know that ℙ1 must belong to the first coalition (denoted C�

1
 ) in � . 

Then, for any one possibility for the identity of ℙ1 , say ℙ1 = x , we know that there must be 
n − 1 possibilities for the identity of ℙ2 , i.e, ℙ2 ∈ N − {x} , and that there must be two pos-
sibilities for its optimal coalition, i.e., ℙ2 must be a member of either C�

1
 or C�

2
 . Let Z be 

the set of all these possibilities and let each element of Z be a quadruple defined as follows:

� ∈

{
� | arg max

�∈�N

v(�)

}

Table 5   Probability distribution 
table for the game given in 
Table 4

Element of � Probability

(=,=) pee = 0.1

(=,>) peg = 0.05

(=,<) pel = 0.05

(>,=) pge = 0

(>,>) pgg = 0.1

(>,<) pgl = 0.3

(<,=) ple = 0

(<,>) plg = 0.3

(<,<) pll = 0.1
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The semantics of quadruple (x, y, 1, z) is that, it is possible that ℙ1 = x , ℙ2 = y , x belongs 
to the coalition C�

1
 , and y belongs to the coalition C�

z
 in � . For example, the quadruple 

(2, 3, 1, 2) means that ℙ1 = 2 , ℙ2 = 3 , 2 ∈ C�

1
 , and 3 ∈ C�

2
 is a possibility. We find it con-

venient to introduce terminology for referring to certain pairs of elements of Z.

Definition 10  For any x ∈ N and any y ∈ N − {x} , (x, y, 1, 1) and (y, x, 1, 1) are each oth-
ers’ partners, and (x, y, 1, 2) and (y, x, 1, 2) are each others’ partners. A partner pair is in 
one of the following forms:

•	 ((x, y, 1, 1), (y, x, 1, 1))
•	 ((x, y, 1, 2), (y, x, 1, 2))

Lemmas 1 and  2 readily follow from the definition of Z and that of a partner pair.

Lemma 1  All the following assertions are true.

•	 |Z| = 2 × n × (n − 1).
•	 Every element in Z has a unique partner in Z.
•	 Every element in Z is the partner of a unique element in Z. 	�  ◻

Lemma 2  Any two partner pairs of Z must be in one of the following forms: 

1.	
(
(i, t, 1, 1), (t, i, 1, 1)

)
 , 
(
(j, s, 1, 1), (s, j, 1, 1)

)
2.	

(
(i, t, 1, 2), (t, i, 1, 2)

)
 , 
(
(j, s, 1, 2), (s, j, 1, 2)

)
3.	

(
(i, t, 1, 2), (t, i, 1, 2)

)
 , 
(
(j, s, 1, 1), (s, j, 1, 1)

)
4.	

(
(i, t, 1, 1), (t, i, 1, 1)

)
 , 
(
(i, t, 1, 2), (t, i, 1, 2)

)

where i ∈ N , j ∈ N − {i} , s ∈ N − {i, j} , and t ∈ N − {i, j} . 	�  ◻

We use (i, j, x, y) ⊧ � as short for (ℙ1 = i ∧ ℙ2 = j ∧ ℙ1 ∈ C𝕆

x
∧ ℙ2 ∈ C𝕆

y
) and 

(i, j, x, y) ̸⊧ � as short for ¬(ℙ1 = i ∧ ℙ2 = j ∧ ℙ1 ∈ C𝕆

x
∧ ℙ2 ∈ C𝕆

y
) . Now, we know that 

there is a unique z ∈ Z such that z ⊧ � and for each z̄ ∈ Z , z̄ ̸⊧ � iff z ≠ z̄ . This observation 
leads to the definition of set Z̄:

Since only one element of Z corresponds to � , we get |Z̄| = |Z| − 1.
Step 1 ( details in Sect.  4.2) involves doing three different tests T1, T2, and T3 with 

appropriate arguments in such a way that at least |Z| − 2 elements of Z̄ can be determined. 
Once this is done, one of the elements in Z − Z̄ must correspond to � and this concludes 
Step 1. For Step 2, we define a further test T4 details of which are in Sect. 4.3.

(7)Z = {(x, y, 1, z) | x ∈ N, y ∈ N − {x}, z ∈ {1, 2}}

Z̄ = {z̄ ∈ Z | z̄ ̸⊧ �}
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4.2 � CSG method: Step 1

Sect. 4.2.1 gives a definition of the tests T1, T2, and T3. Section 4.2.2 is a specification of 
the parameters of these tests. Section 4.2.3 describes how these tests can be used to find an 
element of �MON . Section 4.2.4 describes how these tests can be used to determine who the 
two top priority players are and their positions in an optimal structure.

4.2.1 � The tests T1, T2, T3

The tests T1, T2, and T3 are defined as follows: 

T1	� For any i ∈ N and j ∈ N − {i} , the test T1(i, j) compares the values of any two struc-
tures �1 ∈ �N and �2 ∈ �N such that 

�∗	� in �1 , the players i and t belong to different coalitions but j and s belong to 
the same coalition, and

∗	� in �2 , the players i and t belong to the same coalition but j and s belong to 
different coalitions

	� where t is an arbitrary element of N − {i, j} and s is an arbitrary element of 
N − {i, j} . The values of i, j, s, and t are determined on the basis of the elements 
in Z (see Theorem 5 for details). Let S1

T1
(i, j) denote the set of all those structures 

in which the players i and t belong to different coalitions but j and s belong to 
the same coalition. Let S2

T1
(i, j) denote the set of all those structures in which the 

players i and t belong to the same coalition but j and s belong to different coali-
tions. The test T1(i, j) uses rv to compare the value of any structure from S1

T1
(i, j) 

to the value of any structure from S2
T1
(i, j).

T2	� For any i ∈ N and any j ∈ N − {i} , the test T2(i, j) compares the values of any two 
structures �1 ∈ �N and �2 ∈ �N such that 

�∗	� in �1 , i and t are apart, and j and s are apart, and
∗	� in �2 , i and t are together, and j and s are together

	� where t is an arbitrary element of N − {i, j} and s is an arbitrary element of 
N − {i, j} . The values of i, j, s, and t are determined on the basis of the elements 
in Z (see Theorem 5 for details) Let S1

T2
(i, j) denote the set of all those structures 

in which the players i and t belong to different coalitions, and j and s belong to 
different coalitions. Let S2

T2
(i, j) denote the set of all those structures in which 

the players i and t belong to the same coalition, and j and s belong to the same 
coalition. The test T2(i,  j) uses rv to compare the value of any structure from 
S1
T2
(i, j) to the value of any structure from S2

T2
(i, j).

T3	� For any i ∈ N and j ∈ N − {i} , the test T3(i, j) compares the values of any two struc-
tures �1 ∈ �N and �2 ∈ �N such that 
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�∗	� in �1 , i and j are apart, and
∗	� in �2 , i and j are together.

	� Let S1
T3
(i, j) denote the set of all those structures in which the players i and j 

belong to different coalitions. Let S2
T3
(i, j) denote the set of all those structures 

in which the players i and j belong to the same coalition. The test T3(i, j) uses rv 
to compare the value of any structure from S1

T3
(i, j) to the value of any structure 

from S2
T3
(i, j).

4.2.2 � The universes of T1, T2, T3

By definition, there are several different ways of doing tests T1(i,  j), T2(i,  j), and T3(i,  j) 
for any i and j. The set of all these possibilities is defined in terms of the universe of a test.

Definition 11  For each 1 ≤ a ≤ 3 , the set UTa(i, j) = S1
Ta
(i, j) × S2

Ta
(i, j) is called the uni-

verse of Ta(i, j). 	�  ◻

Lemma 3  For each 1 ≤ a ≤ 3 , the sets  S1
Ta
(i, j) and S2

Ta
(i, j) are disjoint.

Proof  By definition of S1
Ta
(i, j) and S2

Ta
(i, j) given in Sect. 4.2.1. 	�  ◻

Let �1 denote (Bell(n−1)−Bell(n−2))
2

3
 . Then as per the definition of � given in Sect.  3.3, 

�1 > �.

Theorem 2  For any two distinct players i and j, there are

1.	
(
Bell(n − 1) − Bell(n − 2)

)2
= 3�1 distinct ways of doing T1(i, j).

2.	
(
(Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2)

)
> 3�1 distinct ways of doing 

T2(i, j).
3.	

(
(Bell(n) − Bell(n − 1)) × Bell(n − 1)

)
> 3�1 distinct ways of doing T3(i, j).

Proof 

1.	 By Lemma 3 and Theorem 19 (see Appendix A).
2.	 By Lemma 3 and Theorem 20 (see Appendix A).
3.	 From Lemma 3 and Theorem 21 (see Appendix A).

	�  ◻

For any n ≥ 5 and any two distinct players i and j, the cardinalities of the universes 
of T1, T2, and T3 are lower bounded as per the following assertions (see Theorem 23 in 
Appendix A for proof): 
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1.	 |UT1(i, j)| > 3�

2.	 |UT2(i, j)| > 3�

3.	 |UT3(i, j)| > 3�

Theorem  22 (see Appendix  A) gives the relation between the cardinalities of UT1(i, j) , 
UT2(i, j) , and UT3(i, j).

4.2.3 � Monotonicity‑satisfying relations for T1, T2, T3

For any 1 ≤ a ≤ 3 , the universe of Ta(i,  j) can be partitioned into three disjoint subsets 
U<

Ta
(i, j) , U=

Ta
(i, j) , and U>

Ta
(i, j) as follows: 

∗	� U<

Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) < v(y)}

∗	� U=
Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) = v(y)}

∗	� U>

Ta
(i, j) = {(x, y) ∈ S1

Ta
(i, j) × S2

Ta
(i, j) | v(x) > v(y)}

 Then, the set of monotonicity-satisfying relations for a test is defined as follows:

Definition 12  For any 1 ≤ a ≤ 3 , and any two distinct players i and j, the set of monotonic-
ity-satisfying relations for Ta(i, j) is

Lemma 4  Consider any 1 ≤ a ≤ 3 . For any x ∈ {<,=,>} , x ∈ MSRTa(i, j) if |Ux
Ta
(i, j)| > � , 

i.e.,

Proof  By problem definition D < � . So if |Ux
Ta
(i, j)| > � for any x, then at least one ele-

ment of Ux
Ta
(i, j) must belong to SMON . 	� ◻

Theorem 3  Consider any 1 ≤ a ≤ 3 . For any two distinct players i and j, each one of the 
following assertions must true. 

1.	 More than 2� elements of the universe of Ta(i, j) must obey monotonicity.
2.	 The set of monotonicity-satisfying relations for Ta(i, j) must be non-empty.

Proof  The universe of T1(i, j) contains more than 3� elements (see Theorem 23 in Appen-
dix A for proof). By the CSG problem definition given in Sect. 3, D < � . So more than 2� 
elements of the universe of T1(i, j) must obey monotonicity.

Since |UT1(i, j)| > 3� (see Theorem  23 in Appendix  A), at least one of the three 
sets U<

T1
(i, j) , U=

T1
(i, j) , or U>

T1
(i, j) must contain � or more elements. Otherwise, 

|U<

T1
(i, j)| + |U=

T1
(i, j)| + |U>

T1
(i, j)| < 3� which is impossible. If |Ux

T1
(i, j)| ≥ � for any x, 

then at least one element of Ux
T1
(i, j) must belong to SMON because D < � . So the set of 

monotonicity-satisfying relations for T1(i, j) must be non-empty.
By Theorem 23 (see Appendix A), |UT2(i, j)| > 3� and |UT3(i, j)| > 3� . Thus for each 

one of the two tests T2(i, j) and T3(i, j), more than 2� elements of their universe must obey 

MSRTa(i, j) = {x | x ∈ {<,=,>}, rv(𝜋1,𝜋2) = x, (𝜋1,𝜋2) ∈ UTa(i, j) ∩ SMON} ◻

∀x ∈ {<,=,>} |Ux
Ta
(i, j)| > � ⇒ x ∈ MSRTa(i, j)
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monotonicity, and the set of their monotonicity-satisfying relations must be non-empty. 	
� ◻

Probabilistic monotonicity induces the implications X1 to X8 listed in Table 6. In order 
make deductions on the basis of any implication, it is necessary to ensure that its anteced-
ant is satisfied. Observe that each one of the implications X1 to X8 has �1 ∈ S1

Ta
(i, j) (for 

each 1 ≤ a ≤ 3 ) and �2 ∈ S2
Ta
(i, j) as part of the antecedant of 

R

⇒ . Given the definitions of 
S1
Ta
(i, j) and S2

Ta
(i, j) , it is straightforward to find a pair (�1,�2) such that �1 ∈ S1

Ta
(i, j) and 

�2 ∈ S2
Ta
(i, j) . Observe also that each one of the implications X1 to X8 has (�1,�2) ∈ SMON as 

part of the antecedant of 
R

⇒ . But the key question is how can a pair (�1,�2) be found such 
that (�1,�2) ∈ SMON when SMON is not part of the problem input (as per the problem defini-
tion given in Sect. 3)? The answer lies in Theorem 4.

Theorem 4  Consider any 1 ≤ w ≤ 3 . If D < � , then for any two distinct players i and j, at 
least � and at most 3� − 2 invocations to rv are needed to compute an element of the set of 
monotonicity-satisfying relations for Tw(i, j).

Proof  By Lemma  4, ∀x ∈ {<,=,>} , |Ux
Tw
(i, j)| > � implies that x ∈ MSRTw(i, j) (i.e., at 

least one element of Ux
Tw
(i, j) must belong to SMON ). Further, if |Ux

Tw
(i, j)| < � , there is no 

guarantee that x ∈ MSRTw(i, j) . Now, suppose the elements of UTw(i, j) are arranged in some 
arbitrary sequence denoted u1, u2,… . Suppose the function rv is applied to the elements of 
UTw(i, j) in the order u1, u2,… . Based on what is returned by rv , one of the following sce-
narios must occur:

•	 Let a ∈ {<,=,>} . The function rv returns rv(ui) = a for each 1 ≤ i ≤ � , so 
a ∈ MSRTw(i, j) and a monotonicity-satisfying relation is found with � invocations to rv . 
Note that this means that an element of Ua

Tw
(i, j) must belong to SMON.

•	 Let a, b and c be any three pairwise distinct elements of {<,=,>} . Suppose rv is applied 
to the first 3(� − 1) elements of the sequence u1, u2,… and it is found that 

 At this stage, |Ua
Tw
(i, j)| = |Ub

Tw
(i, j)| = |Uc

Tw
(i, j)| = � − 1 . Next, rv is applied to u3�−2 . 

Then regardless of the outcome of rv(u3�−2) , one of the three cardinalities |Ua
Tw
(i, j)| , 

|Ub
Tw
(i, j)| or |Uc

Tw
(i, j)| must be � and therefore a monotonicity-satisfying relation will be 

found with 3� − 2 invocations to rv . Say a is monotonicity-satisfying, then an element 
of Ua

Tw
(i, j) must belong to SMON.

•	 If it is neither of the above two scenarios, then a monotonicity-satisfying relation, say a, 
will be found with more than � but fewer than 3� − 2 applications of rv . Consequently, 
an element of Ua

Tw
(i, j) must belong to SMON.

	�  ◻

(8)rv(ui) =

⎧
⎪⎨⎪⎩

a for each i such that mod(i, 3) = 0

b for each i such that mod(i, 3) = 1

c for each i such that mod(i, 3) = 2
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4.2.4 � Application of tests T1, T2, and T3

Those elements of Z that do not correspond to an optimal solution can be eliminated using 
the tests T1, T2, and T3 with suitable arguments, as characterized in Theorem 5.

Theorem 5  If Z contains at least two partner pairs, then  ∃ a 1 ≤ a ≤ 3 such that at least 
one partner pair can be eliminated by doing Ta (with suitable arguments) at most 3� − 2 
times.

Proof  As per Lemma 2, any two partner pairs of Z must be in one of the following forms: 

Case 1 ∶	�
(
(i, t, 1, 1), (t, i, 1, 1)

)
 , 
(
(j, s, 1, 1), (s, j, 1, 1)

)
Case 2 ∶	�

(
(i, t, 1, 2), (t, i, 1, 2)

)
 , 
(
(j, s, 1, 2), (s, j, 1, 2)

)
Case 3 ∶	�

(
(i, t, 1, 2), (t, i, 1, 2)

)
 , 
(
(j, s, 1, 1), (s, j, 1, 1)

)
Case 4 ∶	�

(
(i, t, 1, 1), (t, i, 1, 1)

)
 , 
(
(i, t, 1, 2), (t, i, 1, 2)

)

 where i ∈ N , j ∈ N − {i} , s ∈ N − {i, j} , and t ∈ N − {i, j}.
Consider Case 1 which gives rise to two possibilities: either t = s or else t ≠ s . No mat-

ter which one of these two possibilities holds, Theorem 3 guarantees that the set of mono-
tonicity-satisfying relation for T1(i, j) must be non-empty. By Theorem 4, at most 3� − 2 
comparisons are needed to compute a monotonicity-satisfying relation for T1(i, j). 

∗	� If either > or = is a monotonicity-satisfying relation for T1(i,  j), then the pair 
((i, t, 1, 1), (t, i, 1, 1)) must be eliminated from Z. Because, by the implication X1 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(i, t, 1, 1) ⊧̸ � and (t, i, 1, 1) ⊧̸ � . Consequently, ((i, t, 1, 1), (t, i, 1, 1)) ∉ Z . Equivalently, 
((i, t, 1, 1), (t, i, 1, 1)) ∈ Z̄.

∗	� If either < or = is a monotonicity-satisfying relation for T1(i,  j), then the pair 
((j, s, 1, 1), (s, j, 1, 1)) must be eliminated from Z. Because, by the implication X3 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(j, s, 1, 1) ̸⊧ � and (s, j, 1, 1) ̸⊧ � . Consequently, ((j, s, 1, 1), (s, j, 1, 1)) ∉ Z . Equivalently, 
((j, s, 1, 1), (s, j, 1, 1)) ∈ Z̄.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination 
of at least one pair of elements is guaranteed for Case 1.

Consider Case 2 which also gives rise to two possibilities: either t = s or else t ≠ s . No 
matter which one of these two possibilities holds, Theorem  3 guarantees that the set of 
monotonicity-satisfying relation for T1(i,  j) must be non-empty. By Theorem  4, at most 
3� − 2 comparisons are needed to compute a monotonicity relation for T1(i, j). 
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∗	� If either > or = is a monotonicity-satisfying relation for T1(i,  j), then the pair 
((j, s, 1, 2), (s, j, 1, 2)) must be eliminated from Z. Because, by the implication X4 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(i, t, 1, 2) ⊧̸ � and (j, s, 1, 2) ̸⊧ � . Consequently, ((j, s, 1, 2), (s, j, 1, 2)) ∉ Z . Equivalently, 
((j, s, 1, 2), (s, j, 1, 2)) ∈ Z̄.

∗	� If either < or = is a monotonicity-satisfying relation for T1(i,  j), then the pair 
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X2 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ � . Consequently, ((i, t, 1, 2), (t, i, 1, 2)) ∉ Z . Equivalently, 
((i, t, 1, 2), (t, i, 1, 2)) ∈ Z̄.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination 
of at least one pair of elements is guaranteed for Case 2.

Consider Case 3 which also gives rise to two possibilities: either t = s or else t ≠ s . No 
matter which one of these two possibilities holds, Theorem  3 guarantees that the set of 
monotonicity-satisfying relation for T2(i,  j) must be non-empty. By Theorem  4, at most 
3� − 2 comparisons are needed to compute a monotonicity relation for T2(i, j). 

∗	� If the monotonicity-satisfying relation for T2(i,  j) is either “<" or “ = ", then the pair 
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X5 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ �.

∗	� If the monotonicity-satisfying relation for T2(i,  j) is either “ = " or “>", then the pair 
((j, s,  1, 1),  (s,  j,  1, 1)) must be eliminated. Because, by the implication X6 given in 
Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(j, s, 1, 1) ̸⊧ � and (j, s, 1, 1) ̸⊧ �.

 Thus, regardless of what the monotonicity-satisfying relation for T1(i, j) is, the elimination 
of at least one pair of elements is guaranteed for Case 3.

Consider Case 4. By Theorem 3 guarantees that the set of monotonicity-satisfying rela-
tion for T3(i, t) must be non-empty. By Theorem 4, at most 3� − 2 comparisons are needed 
to compute a monotonicity relation for T3(i, t). 

∗	� If the monotonicity-satisfying relation for T3(i,  t) is either “<" or “ = ", then the pair 
((i, t, 1, 2), (t, i, 1, 2)) must be eliminated from Z. Because, by the implication X7 given 
in Table 6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the conse-
quent of 

L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other words, 
(i, t, 1, 2) ⊧̸ � and (t, i, 1, 2) ⊧̸ �.

∗	� If the monotonicity-satisfying relation for T3(i,  t) is either “ = " or “>", then the pair 
((i,  t,  1,  1),  (t,  i,  1,  1)) must be eliminated. Because, by the implication X8 given in 
Table  6, the antecedant of 

R

⇒ is true but its consequent is false. This makes the 
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consequent of 
L

⇒ false. By contrapositive, the antecedant of 
L

⇒ must be false. In other 
words, (i, t, 1, 1) ⊧̸ � and (t, i, 1, 1) ⊧̸ �.

 Thus, regardless of what the monotonicity-satisfying relation for T3(i, t) is, the elimination 
of at least one pair of elements is guaranteed for Case 4. 	� ◻

Theorem 5 forms the basis for Step 1, i.e., for computing the set {ℙ1,ℙ2} of the two 
top priority players and the coalitions to which they belong in � . Specifically, Step 1 is 
achieved as follows:

•	 Initialize Z as per Equation 7.
•	 While Z contains more than one partner pair, choose a relevant test (i.e., T1, T2, or T3 

as per Theorem 5) and do it in order to eliminate from Z those elements that do not cor-
respond to �.

At the end of Step 1, Z contains one partner pair. At this stage, the set {ℙ1,ℙ2} is known 
although we do not know which one of these two players is ℙ1 and which one is ℙ2 . How-
ever, knowledge about the identities of ℙ1 and ℙ2 is unnecessary for computing � as long as 
the set {ℙ1,ℙ2} is known.

4.3 � CSG method: Step 2

At this stage, the set {ℙ1,ℙ2} comprised of the two top priority players is known, and it is 
also known if the two top priority players are together in � or if they are apart. The identity 
of each ℙi , for 3 ≤ i ≤ n , and its optimal coalition remains to be found. Step 2 is for find-
ing this in a series of stages. In Stage i, 3 ≤ i ≤ n , the identity of ℙi and the coalition C�

j
 to 

which ℙi belongs will be found using the test T4. We will first describe T4 and then explain 
how it is used.

In general, consider any stage k > 2 where the identities and optimal positions of the 
top k priority players have already been found. Let �(k) be the number of coalitions in �|k . 
Let Q(k) = N − {ℙ1,… ,ℙk} . There are |Q(k)| = n − k possibilities for the identity of ℙk+1 , 
and �(k) + 1 possibilities for its optimal coalition. Let V(k) be a set of all these possibilities:

The semantics of (x, y) is that, it is possible that ℙk+1 = x and x belongs to the coalition C�

y
 

in � . Thus |V(k)| = (n − k) × (�(k) + 1) . The problem now is to find an (x, y) ∈ V(k) such 
that (x, y) ⊧ � . The test T4 is for finding such an element by eliminating from V(k) those 
elements that do not correspond to �.

The remainder of this section is organised as follows. Section 4.3.1 gives a definition of 
the test T4. Section 4.3.2 is a specification of the parameters of T4. Section  describes how 
T4 can be used to find an element of �MON . Section 4.3.4 describes how T4 can be used to 
determine the identities of players ℙ3 …ℙ� and their positions in an optimal structure.

4.3.1 � The test T4

The test T4 is defined as follows. For any two distinct elements (a, b) and (c, d) of V(k), 
the test T4(k, a, b, c, d) uses rv to compare the values of any two structures �1 ∈ �N and 
�2 ∈ �N such that 

(9)V(k) = {(x, y) | x ∈ Q(k), y ∈ {1,… , �(k) + 1}}
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∗	� in �1 , each one of the k top priority players belongs to its respective optimal coalition, 
player a belongs to Cb , player c belongs to any coalition except Cd , and

∗	� in �2 , each one of the k top priority players belongs to its respective optimal coalition, 
player c belongs to Cd , player a belongs to any coalition except Cb.

 Let S1
T4
(k, a, b, c, d) denote3 the set of all those structures in which each one of the k top pri-

ority players belongs to its respective optimal coalition, the player a belongs to Cb , and the 
player c belongs to any coalition except Cd . Let S2

T4
(k, a, b, c, d) denote the set of all those 

structures in which each one of the k top priority players belongs to its respective optimal 
coalition, the player c belongs to Cd , and the player a belongs to any coalition except Cb . 
Lemma 5 follows readily from the definitions of S1

T4
(k, a, b, c, d) and S2

T4
(k, a, b, c, d).

Lemma 5  The sets S1
T4
(k, a, b, c, d) and  S2

T4
(k, a, b, c, d) are disjoint.

The test T4(k,  a,  b,  c,  d) uses rv to compare the value of any structure from 
S1
T4
(k, a, b, c, d) to the value of any structure from S2

T4
(k, a, b, c, d).

4.3.2 � The universe of T4

For any k, a, b, c, and d, there are several ways of doing T4(k, a, b, c, d). The set of all these 
possibilities is given by the universe of T4(k, a, b, c, d).

Definition 13  The set UT4(k, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) is called the 

universe of T4(k, a, b, c, d).

Lemma 6 characterises the number of different ways of doing T4.

Lemma 6  For any 2 ≤ k ≤ n − 1 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k),

and there are |UT4(x, a, b, c, d)| distinct ways of doing  T4(k, a, b, c, d).

Proof  By Lemma  5, S1
T4
(x, a, b, c, d) and S2

T4
(x, a, b, c, d) are disjoint. Thus there are 

|UT4(x, a, b, c, d)| = |S1
T4
(k, a, b, c, d)| × |S2

T4
(k, a, b, c, d)| distinct ways of doing the test 

T4(x, a, b, c, d). 	�  ◻

Theorem 6 characterises a bound on the cardinality of UT4(x, a, b, c, d).

Theorem 6  For any 2 < k < n − 2 , any  (a, b) ∈ V(k) , and any  (c, d) ∈ V(k) , the cardinal-
ity of  UT4(k, a, b, c, d) satisfies the following relation:

Proof  We are given that UT4(x, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) . 

Now, in some of the structures in S1
T4
(k, a, b, c, d) , the k + 1 top priority players are 

|UT4(x, a, b, c, d)| = |S1
T4
(k, a, b, c, d)| × |S2

T4
(k, a, b, c, d)|,

|UT4(k, a, b, c, d)| > Bell2(n − k − 2)

3  Note that k, a, b, c, and d are the parameters of T4 and hence their respective domains are as defined in 
Equation 9.
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split into �(k) coalitions, while in others they are split into �(k) + 1 coalitions. Let 
S11
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) denote the set of structures of the former type and 

S12
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) that of the latter type, where S11

T4
(k, a, b, c, d) and 

S12
T4
(k, a, b, c, d) are disjoint. Consider each one of these two cases: 

Case 1	� The k + 1 top priority players are split into �(k) coalitions. The set of all such 
structures is S11

T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) . The structures in S11

T4
(k, a, b, c, d) 

are similar with regard to the positions of the k top priority players, but differ in 
terms of the positions of the remaining Q(k) players. There are various ways of 
organising the players in Q(k) whilst keeping the positions of ℙ1,… ,ℙk fixed, 
to get coalition structures over N. The players in Q(k) − {a, c} can be partitioned 
into 1 ≤ t ≤ |Q(k)| − 2 unordered coalitions in Stirling((|Q(k) − 2|, t) different 
ways4. Some of these t unordered coalitions may be merged with the coalitions 
C1,… ,C�(k) such that no two unordered coalitions are merged with the same coa-
lition in {C1,… ,C�(k)} . Let 0 ≤ w ≤ Min(�(k), t) be the number of merged coali-
tions. Let S111

T4
(k, a, b, c, d) ⊂ S11

T4
(k, a, b, c, d) denote the set of all those structures 

in which each one of the k top priority players is in its optimal coalition, a ∈ Cb , 
and for some specific x ≠ d , c ∈ Cx . Then 

Case 2	� The k + 1 top priority players are split into �(k) + 1 coalitions. The set of all such 
structures is S12

T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) . The structures in S12

T4
(k, a, b, c, d) 

are similar with regard to the positions of the k top priority players, but differ in 
terms of the positions of the remaining Q(k) players. There are various ways of 
organising the players in Q(k) whilst keeping the positions of ℙ1,… ,ℙk fixed, 
to get coalition structures over N. The players in Q(k) − {a, c} can be partitioned 
into 1 ≤ t ≤ |Q(k)| − 2 unordered coalitions in Stirling((|Q(k) − 2|, t) different 
ways. Some of these t unordered coalitions may be merged with the coalitions 
C1,… ,C�(k) such that no two unordered coalitions are merged with the same coa-
lition in {C1,… ,C�(k)} . Let 0 ≤ w ≤ Min(�(k) + 1, t) be the number of merged 
coalitions. Let S121

T4
(k, a, b, c, d) ⊂ S12

T4
(k, a, b, c, d) denote the set of all those struc-

tures in which each one of the k top priority players is in its optimal coalition, 
a ∈ Cb , and for some specific x ≠ d , c ∈ Cx . Then 

(10)

|S111
T4

(k, a, b, c, d)| = |Q(k)| − 2t =1
∑(

Stirling(|Q(k)| − 2, t) ×Min(�(k), t)w = 0

∑{(
�(k)

w

) (
t

w

)
w!

})

(11)

|S121
T4

(k, a, b, c, d)| = |Q(k)| − 2t = 1

∑(
Stirling(|Q(k)| − 2, t) ×Min(�(k) + 1, t)w = 0

∑{(
�(k) + 1

w

) (
t

w

)
w!

})

4  Stirling(n, i) is the Stirling number of the second kind [21]. It gives the number of ways of partitioning 
a set {1, 2,… , n} of n labeled objects into i non-empty disjoint parts. On the other hand, the Bell number 
Bell(n) is the number of all possible partitions of {1, 2… , n}.
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 From Equations 10 and 11, it is evident that |S111
T4

(k, a, b, c, d)| < |S121
T4

(k, a, b, c, d)| . Now, 
since �(k) ≥ 1 , we get

This implies that

where |Q(k)| = n − k . Then, by the definitions of Bell and Stirling numbers, 
Bell(n) =

∑n

i=1
Stirling(n, i) . Thus,

Since S111
T4

(k, a, b, c, d) ⊂ S11
T4
(k, a, b, c, d) ⊂ S1

T4
(k, a, b, c, d) , we get 

|S1
T4
(k, a, b, c, d)| > |S111

T4
(k, a, b, c, d)| and therefore

Analogously,

Since S1
T4
(k, a, b, c, d) and S2

T4
(k, a, b, c, d) are disjoint (see Lemma 5), S111

T4
(k, a, b, c, d) and 

S121
T4

(k, a, b, c, d) are disjoint, and since UT4(k, a, b, c, d) = S1
T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) , 

we have:

	�  ◻

4.3.3 � Monotonicity‑satisfying relations for T4

For any 2 < k ≤ n − 1 , the universe of T4(k, a, b, c, d) can be partitioned into three disjoint 
subsets U<

T4
(k, a, b, c, d) , U=

T4
(k, a, b, c, d) , and U>

T4
(k, a, b, c, d) as follows: 

∗	� U<

T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) < v(y)}

∗	� U=
T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) = v(y)}

∗	� U>

T4
(k, a, b, c, d) = {(x, y) ∈ S1

T4
(k, a, b, c, d) × S2

T4
(k, a, b, c, d) | v(x) > v(y)}

 Then the set of monotonicity-satisfying relations for T4(k, a, b, c, d) is defined as follows:

Definition 14  For any 2 < k < n , any (a, b) ∈ V(k) , and (c, d) ∈ V(k) , the set of monoto-
nicity-satisfying relations for T4(k, a, b, c, d) is

For 2 < k < 𝛿 , let �2(k) be defined as follows:

Min(�(k), t)w = 0
∑{(

�(k)

w

)
×

(
t

w

)
× w!

}
≥ 1.

|S111
T4

(k, a, b, c, d)| > |Q(k)| − 2t = 1
∑

Stirling(|Q(k)| − 2, t)

|S111
T4

(k, a, b, c, d)| > Bell(n − k − 2).

|S1
T4
(k, a, b, c, d)| > Bell(n − k − 2).

|S2
T4
(k, a, b, c, d)| > Bell(n − k − 2).

|UT4(k, a, b, c, d)| > Bell2(n − k − 2).

MSRT4(k, a, b, c, d) = {x | rv(�1,�2) = x, (�1,�2) ∈ UT4(k, a, b, c, d) ∩ SMON} ◻
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Lemma 7  For each 2 < k < 𝛿,

Proof  Follows readily from the definitions of � , �1 , and �2(k) . 	�  ◻

Theorem 7  If D < � , then for each 2 < k ≤ 𝛿 , each one of the following assertions must be 
true: 

1.	 More than 2�2(k) elements of the universe of T4(k, a, b, c, d) must obey monotonicity.
2.	 The set of monotonicity-satisfying relations for T4(k, a, b, c, d) must be non-empty.

Proof  Consider any 2 < k ≤ 𝛿 . By Lemma  6, there are |UT4(k, a, b, c, d)| distinct ways 
of doing T4(k,  a,  b,  c,  d) for any (a, b) ∈ V(k) and any (c, d) ∈ V(k) . By Theorem  6, 
|UT4(k, a, b, c, d)| > Bell2(n − k − 2) . That is, |UT4(k, a, b, c, d)| > 3�2 . By Lemma  7, 
�2(k) > � . By the CSG problem definition of Sect.  3, D < � . So D < �2(k) . There-
fore, more than 2�2 elements of the universe of T4(k,  a,  b,  c,  d) must therefore obey 
monotonicity.

Since |UT4(k, a, b, c, d)| > 3�2(k) , it follows that at least one of the three sets 
U<

T4
(k, a, b, c, d) , U=

T4
(k, a, b, c, d) , or U>

T1
(i, j) must contain �2(k) or more elements. Other-

wise, |U<

T4
(k, a, b, c, d)| + |U=

T4
(k, a, b, c, d)| + |U>

T4
(k, a, b, c, d)| < 3�2(k) which is impos-

sible. If |Ux
T4
(k, a, b, c, d)| > �2(k) for any x, then at least one element of Ux

T4
(k, a, b, c, d) 

must belong to SMON because D < �2(k) . So the set of monotonicity-satisfying relations for 
T4(k, a, b, c, d) must be non-empty. 	�  ◻

Probabilistic monotonicity induces the implications Xab and Xcd listed in Table 7. For 
2 < k ≤ 𝛿 , these implications will be used to determine the identity of ℙk and its optimal 
coalition, by eliminating those elements from V(k) that do not correspond to an optimum. 

�2(k) =
Bell2(n − k − 2)

3
.

�1 > �2(k) > �.

Table 7   Probabilistic 
monotonicity induced 
implication for stage 2 < k ≤ 𝛿 . 
These are used to make 
deductions based on the outcome 
of T4(k, a, b, c, d)

Label Implication

Xab

(
(a, b) ⊧ �

)
L

⇒

(
∀𝜋1,𝜋2 (𝜋1,𝜋2) ∈ S

MON

∧ 𝜋1 ∈ S
1

T4
(k, a, b, c, d) ∧ 𝜋2 ∈ S

2

T4
(k, a, b, c, d)

R

⇒ v(𝜋1) > v(𝜋2)

)

Xcd

(
(c, d) ⊧ �

)
L

⇒

(
∀𝜋1,𝜋2 (𝜋1,𝜋2) ∈ S

MON

∧ 𝜋1 ∈ S
1

T4
(k, a, b, c, d) ∧ 𝜋2 ∈ S

2

T4
(k, a, b, c, d)

R

⇒ v(𝜋1) < v(𝜋2)

)
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In order to use these implications, a pair (�1,�2) must be found in the universe of T4 such 
that (�1,�2) ∈ SMON . Since SMON is unknown, the question ‘how to find such a pair?’ is 
answered in Theorem 8.

Theorem 8  Consider any 2 < k ≤ 𝛿 , any   (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . If D < � , 
then at least � and at most 3� − 2 invocations to rv are needed to compute an element of 
the set of monotonicity-satisfying relations for T4(k, a, b, c, d).

Proof  Consider any 2 < k ≤ 𝛿 , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . We are given 
that D < � . By Lemma  7, D < �2(k) . So for any x ∈ {<,=,>} , x ∈ MSRT4(k, a, b, c, d) 
if |Ux

T4
(k, a, b, c, d)| > � . Further, if |Ux

T4
(k, a, b, c, d)| < � , there is no guarantee that 

x ∈ MSRT4(k, a, b, c, d) . Suppose the elements of UT4(k, a, b, c, d) are arranged in some 
arbitrary sequence denoted u1, u2,… . Suppose the function rv is applied to the elements of 
UT4(k, a, b, c, d) in the order u1, u2,… . Based on the outcomes of these tests, one of the fol-
lowing scenarios will occur:

•	 Let x denote an element of {<,=,>} . The outcomes of the tests are rv(ui) = x for each 
1 ≤ i ≤ � , so x ∈ MSRT4(k, a, b, c, d) and a monotonicity-satisfying relation is found 
with � invocations to rv . Note that this means that an element of Ux

T4
(k, a, b, c, d) must 

belong to SMON.
•	 Let x, y and z be any three pairwise distinct elements of {<,=,>} . When rv is applied to 

the first 3(� − 1) elements of the sequence u1, u2,… it is found that 

 At this stage, |Ux
T4
(k, a, b, c, d)| = |Uy

T4
(k, a, b, c, d)| = |Uz

T4
(k, a, b, c, d)| = � − 1 . 

Next, rv is applied to u3�−2 . Then regardless of the outcome of rv(u3�2(k)−2
) , one of the 

three cardinalities |Ux
T4
(k, a, b, c, d)| , |Uy

T4
(k, a, b, c, d)| or |Uz

T4
(k, a, b, c, d)| must be � 

and therefore a monotonicity-satisfying relation will be found with 3� − 2 invocations 
to rv . Say x is monotonicity-satisfying, then an element of Ux

T4
(k, a, b, c, d) must belong 

to SMON.
•	 If it is neither of the above two scenarios, then a monotonicity-satisfying relation, say x, 

will be found with more than � but fewer than 3� − 2 applications of rv . Consequently, 
an element of Ux

T4
(k, a, b, c, d) must belong to SMON.

	�  ◻

4.3.4 � Application of test T4

Theorem 9  Consider any 2 < k ≤ 𝛿 and suppose that D < � . Then if |V(k)| ≥ 2 and (a, b) 
and (c, d) are any two distinct elements of V(k), then at least one element of V(k) can be 
deleted by doing T4(k, a, b, c, d) at most 3� − 2 times.

Proof  Consider any 2 < k ≤ 𝛿 . Consider any two distinct elements (a, b) and (c, d) of V(k). 
By Theorem 7, the set of monotonicity-satisfying relations for T4(k, a, b, c, d) must be 

(12)rv(ui) =

⎧
⎪⎨⎪⎩

x for eachi such thatmod(i, 3) = 0

y for eachi such thatmod(i, 3) = 1

z for eachi such thatmod(i, 3) = 2
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non-empty. By Theorem 8, at most 3� − 2 invocations to rv are needed to compute a mono-
tonicity-satisfying relation for T4(k, a, b, c, d). 

∗	� If either < or = is a monotonicity-satisfying relation for T4(k, a, b, c, d), then element 
(a, b) must be eliminated from V(k). Because, by the implication Xab given in Table 7, 
the antecedant of 

R

⇒ is true but its consequent is false. This makes the consequent of 
L

⇒ 
false. By contrapositive, the antecedant of 

L

⇒ must be false. In other words, (ca, b) ̸⊧ � 
and (a, b) must therefore be eliminated from V(k).

∗	� If either > or = is a monotonicity-satisfying relation for T4(k, a, b, c, d), then element 
(c, d) must be eliminated from V(k). Because, by the implication Xcd given in Table 7, 
the antecedant of 

R

⇒ is true but its consequent is false. This makes the consequent of 
L

⇒ 
false. By contrapositive, the antecedant of 

L

⇒ must be false. In other words, (c, d) ̸⊧ � 
and (c, d) must therefore be eliminated from V(k).

 Thus, regardless of what the monotonicity-satisfying relation for T4(k, a, b, c, d) is, at least 
one element of V(k) can be deleted by doing T4(k, a, b, c, d) at most 3� − 2 times. 	�  ◻

4.4 � The CSG method: Step 3

At this stage, ℙ1,… ,ℙ� and �|� have been determined. An element of �E
|� with the highest 

value remains to be found. As per Definition 6, for non-optimal structures, probabilistic 
monotonicity does not hold beyond � . An exhaustive search is therefore needed over the 
space of all those structures in �E

|�

5 � CSG algorithm

The complete CSG method (described in Sect. 4) is summarised as Algorithm 1, the input 
to which is a set of players N, a mapping rv , and a bound � such that

Lines 1 to 8 constitute Step 1 (described in Sect. 4.2) of the method during which ℙ1 , ℙ2 , 
and �|2 are determined. In Line 1, Z is initialized. In the while loop of Line 2, elements 
from Z are eliminated by doing relevant tests. In Line 3, any two elements of Z are con-
sidered to choose a test Ta (where a ∈ 1, 2, 3 as given in Theorem 5) to do. Then in Line 
4, 3� arbitrary elements of the universe of Ta are generated using the method described in 
Appendix B. In Line 5, a monotonicity-satisfying relation is computed for Ta, and, on the 
basis of this relation, elements of Z are eliminated as per as per Theorem 4. Once the while 
loop is exited, ℙ1 , ℙ2 , and �|2 become known in Line 8.

Lines 9 to 18 constitute Step 2 (described in Sect. 4.3) of the method. Within the for 
loop of Line 9, V(k) is initialized. The while loop in Line 11 is for eliminating elements of 
V(k) by doing T4. In Line 12, any two elements of V(k) are considered to do T4 (as given 
in Theorem 5). Then in Line 13, 3� arbitrary elements of the universe of T4 are generated 
using the method described in Appendix B. In Line 14, a monotonicity-satisfying relation 
is computed for T4 as per Theorem 8. Then, on the basis of this relation, elements of V(k) 

� =
Bell2(n − � − 2)

3
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are eliminated as per as per Theorem 9. When the for loop of Line 9 is exited, ℙ|� and �|� 
become known in Line 17.

Line 19 is Step 3 (described in Sect. 4.4), i.e., an exhaustive search over the space of all 
those structures in �E

|�.

Theorem 10  If the degree of non-monotonicity D satisfies D < � where

for some 3 < 𝛿 ≤ n − 3 and any n > 7 , then the time complexity of searching the part of the 
search space that satisfies probabilistic monotonicity is O(n3 × ((n − �)!)2).

Proof  The time complexity of Step 1: Lines 1 to 8 of Algorithm 1 constitute Step 1. By 
Lemma  1, the set Z initially contains 2n(n − 1) elements. The time taken for Line 1 is 
O(n2) . Since any two elements of Z may be considered, Line 3 takes constant time. Line 4, 

� =
Bell2(n − � − 2)

3
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as per Appendix B, takes �(�) time. Line 5 (by Theorem 4 involves at most 3� invocations 
to rv ), will take take O(�) time. Line 6 takes constant time. So the time to run the entire 
while loop of Line 2 will be O(n2�) (since initially |Z| = 2n(n − 1) , and each computed 
MSRTa will result in the elimination of at least one partner pair from Z).

The time complexity of Step 2: Lines 9 to 18 of Algorithm 1 constitute Step 2. Consider 
any 3 ≤ k ≤ � , any (a, b) ∈ V(k) , and any (c, d) ∈ V(k) . By the definition of V(k) given in 
Equation 9, |V(k)| = (n − k) × (�(k) + 1) . Since |V(k) = (n − k) × (�(k) + 1) , the time taken 
by Line 10 will be O(n2) . Since any to elements of V(k) may be considered, Line 12 will 
take constant time. As per Appendix B, the time taken by Line 13 will be �(�) . By Theo-
rem 8, at most 3� invocations to rv are needed to compute MSRT4 . So the time to run Line 
14 will be O(�) . Once MSRT4 is computed, eliminations in Line 15 (as per Theorem 9) 
can be performed in constant time. Since k < n , �(k) ≤ n , and 𝛿 < n , at most n3 × (3� − 2) 
invocations to rv will be needed to complete all iterations of the for loop. The time com-
plexity of Step 2 is therefore O(n3 × �) which is O(n3 × ((n − �)!)2).

The time to search the search space that satisfies probabilistic monotonicity, i.e., the 
time to run Step 1 and Step 2 is O(n3 × ((n − �)!)2)) . 	�  ◻

As shown in Theorem 10, the time to run the CSG algorithm over the probabilistically 
monotonic part of the search space is decreasing in � , or equivalently, increasing in the 
degree of non-monotonicity. Depending on � , the time complexity may or may not be poly-
nomial in n (see Table 8 �).

6 � Literature review

The problem of optimally partitioning a set of players has been studied from various per-
spectives. From a system-wide perspective, the aim is to maximize a social welfare func-
tion. From the perspective of individual players, the aim is to find solutions that are sta-
ble [10, 11], or those that are Pareto optimal [1]. We have taken the societal perspective. 
Regardless of whether optimization is for individuals or for the society, the literature on 
optimal partitioning can broadly be divided into two categories: partitioning for determin-
istic environments and partitioning for stochastic environments.

Deterministic environments: Finding a socially optimal structure for CFGs where the 
value of a structure is the sum of the values of its coalitions is NP-complete [35]. Numer-
ous approaches such as dynamic programming [30, 42], branch-and-bound [33], and hybrid 
methods [25] have been used to solve the CSG problem for CFGs. Ueda et al. [41] showed 
how concise representation schemes for characteristic functions can be used to efficiently 

Table 8   Illustration of � for 
various values of �

� n − � �

n − 3 3 1/3
n − 4 4 4/3
⋮ ⋮ ⋮

5 n − 5 Bell2(n−7)

3

4 n − 4 Bell2(n−6)

3
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solve the CSG problem. Within the context of CFGs, Dang et al. [13], Chalkiadakis et al. 
[8], and Habib et al. [23] addressed the CSG problem for overlapping coalitions.

Compared to CFGs, there are relatively fewer solutions for the CSG problem for PFGs. 
Rahwan et  al. [31] showed how to find optimal partitions for PFGs by restricting exter-
nalities to positive only or negative only but not mixed. Their method prunes the search 
space on the basis of bounds on the values of groups of coalitions. Epstein et al. [15] used 
a distributed approach to solve the CSG problem for PFGs with positive only or negative 
only externalities. Banerjee and Kraemer [4] used a branch-and-bound approach to solve 
the CSG problem for PFGs by restricting externalities on the basis of agent types. In [15, 
31], and [4], the value of a partition is the sum of the values of its coalitions. In contrast, 
we consider probabilistically monotone PFGs for which the value of a structure does not 
necessarily have to be the sum but can be any function of the values of its coalitions.

For CFGs where the value of a coalition depends both on its members and the tasks the 
members execute, and the value of a structure is the sum of the values of its constituent 
coalitions, Prantare and Heintz [29] used a branch-and-bound approach to find an anytime 
solution to the CSG problem.

Stochastic environments: Compared to deterministic cooperative games, the literature 
on stochastic games is rather small. Charnes and Granot [10, 11] addressed the problem 
of finding stable solutions to stochastic CFGs for which the values of coalitions are not 
deterministic but rather random variables with given distribution functions. Suijs et al. [38] 
showed how certain insurance scenarios can be modelled as CFGs with stochastic pay-
offs and stable solutions determined. This framework was later applied for modelling water 
resources [14]. A key distinction between all this work on stochastic models and ours is 
that they take an economic perspective and pay attention to finding stable solutions. In 
contrast, we take an algorithmic perspective and address the problem of finding coalition 
structures that are socially optimal.

For CFGs with the value of a coalition structure given by the sum of the values of its 
coalitions, Matsumara et al. [24] proposed a framework for probabilistic coalition structure 
generation. In this model, each agent can belong to no more than one coalition and there is 
uncertainty about the membership of an agent in a coalition. For this framework, approxi-
mation algorithms are given for finding an optimal structure. The key differences between 
their work and ours is that they consider CFGs, while we consider PFGs. Another differ-
ence is that they assume that the value of a coalition structure is the sum of the values of its 
coalitions, while we allow the value of a coalition structure to be any function of the values 
of its coalitions. Yet another difference is that their method requires the values of coalitions 
as an input. In contrast, our method does not require the values of coalitions as input nor 
does it require the values of coalition structures. Rather, our method only requires the rela-
tion (given by rv ) between the values of structures.

For stochastic environments, a different strand of work on coalition formation has dealt 
with situations requiring coalitions to form repeatedly. This opens up the possibility of 
introducing learning. For CFGs, Chalkiadakis and Boutilier [7] considered scenarios where 
agents are typed and there is uncertainty about agent types, and proposed a Bayesian learn-
ing framework for coalition formation.

In summary, the key distinguishing features of our work are as follows. Unlike existing 
work, we solve the CSG problem for PFGs in a stochastic setting. Further, in the existing 
work on stable solutions for stochastic CFGs, the values of coalitions are random vari-
ables with known probability distribution functions. However, our CSG algorithm does not 
require a known probability distribution function; it is sufficient to know that the degree of 
non-monotonicity is within a certain bound. Yet another difference is that, unlike existing 
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CSG methods for PFGs, we do not restrict the value of a partition to be the sum of the val-
ues of its coalitions, but allow it to be any function of the values of its coalitions. Finally, 
unlike the existing CSG methods for both CFGs and PFGs, our CSG algorithm does not 
require the values of structures to be known; rather it is sufficient to know the relation 
(given by rv ) between the values of structures.

7 � Conclusions

In this paper, we considered the problem of optimally partitioning a set of players into dis-
joint exhaustive coalitions. We focussed on solving this problem in the context of probabil-
istically monotone partition function games with priority-ordered players. For such games, 
we showed how an optimum can be found knowing just that a priority ordering exists but 
without knowing the actual ordering. We presented a greedy algorithm for solving the 
problem. The time complexity of the algorithm depends on the degree of non-monotonic-
ity. We showed how the time complexity varies with the degree of non-monotonicity.

There are various avenues for further research. We considered PFGs where the prop-
erty of monotonicity is violated with a certain non-zero probability. In the future, it will 
be interesting to consider situations where the probability that any two random structures 
violate monotonicity depends on the distance between them and their closest optima; those 
structures that are further away from an optimum are more likely to violate monotonicity 
than those that are closer. Another possibility is to consider situations where a player can 
be a member of multiple coalitions as opposed being a member of a single coalition.

Appendix A: Theorems and proofs

Theorem 11  Let a and b be any two distinct players. Let �0 be the set of all those struc-
tures of n players such that a and b belong to different coalitions, i.e.,

Then |�0| = Bell(n) − Bell(n − 1).

Proof  The set �0 can be written as

where �0a is the set of all structures in which a and b belong to the same coalition.

Since a and b are in the same coalition, these two players may be regarded as a sin-
gle player. So there will n − 1 players to be arranged in coalitions. We therefore have 
|�0a| = Bell(n − 1) . Since |�N| = Bell(n) , |�0| = Bell(n) − Bell(n − 1) . 	�  ◻

Theorem 12  Let K ⊆ N be a set of k players. Let �1 be the set of all those structures of n 
players such that all the players in K belong to the same coalition, i.e.,

�0 = {� ∈ �N | �a
�
≠ �b

�
}

�0 = �N −�0a

�0a = {� ∈ �N | �a
�
= �b

�
}
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Then |�1| = Bell(n − k + 1).

Proof  Since all the players in K belong to the same coalition, this set may be treated as a 
single player. This means we have n − k + 1 players and therefore |�1| = Bell(n − k + 1) . 	
� ◻

Theorem 13  Let a, b, c, and d be any four distinct players. Let �2 be the set of all those 
structures of n players such that a and c are in the same coalition, b and d are in the same 
coalition, and a and b in different coalitions, i.e.,

Then |�2| = Bell(n − 2) − Bell(n − 3).

Proof  The set �2 has the following composition:

where

and

Treating a and c as a single player, and b and d as another single player, we get 
|�2a| = Bell(n − 4 + 2) = Bell(n − 2) . Then, treating a, b, c, and d as a single player, we 
get |�2b| = Bell(n − 4 + 1) = Bell(n − 3) . Thus, |�2| = Bell(n − 2) − Bell(n − 3) . 	�  ◻

Theorem 14  Let K ⊆ N be a set of k players, and let i ∉ K . Let �3 be the set of all those 
structures of n players such that all the players in K belong to the same coalition, and i 
does not belong to that coalition, i.e.,

Then |�3| = Bell(n − k + 1) − Bell(n − k).

Proof  Let �3a be the set of all structures in which all the players in K belong to the same 
coalition. Let �3b be the set of all structures in which all the players in K ∪ {i} belong to 
the same coalition.

Then

�1 = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
}

�2 = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
, �a

�
≠ �b

�
}

�2 = �2a −�2b

�2a = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
}

�2b = {� ∈ �N | �a
�
= �b

�
= �c

�
= �d

�
}.

�3 = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
, �a

�
≠ � i

�
}

�3a = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
}

�3b = {� ∈ �N | a ∈ K, b ∈ K, a ≠ b, �a
�
= �b

�
= � i

�
}

�3 = �3a −�3b.
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By Theorem  12, |�3a| = Bell(n − k + 1) and |�3b| = Bell(n − k) . Thus 
|�3| = Bell(n − k + 1) − Bell(n − k) . 	� ◻

Theorem 15  Let a, b, and c be any three distinct players. Let �4 be the set of all those 
structures of n players such that a, b, and c belong to three different coalitions, i.e.,

Then, |�4| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2).

Proof  The set �4 has the following composition:

where

By Theorem  11, |�4a| = Bell(n) − Bell(n − 1) . By substituting K = {a, c} and 
i = b in Theorem  14, we get |�4b| = Bell(n − 1) − Bell(n − 2) . By substituting 
K = {b, c} and i = a in Theorem  14, we get |�4c| = Bell(n − 1) − Bell(n − 2) . Thus, 
|�4| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) . 	�  ◻

Theorem 16  Let a, b, c, and d be any four distinct players. Let �5 be the set of all those 
structures of n players such that a and b belong to the same coalition, c and d belong to 
different coalitions, and neither c nor d belongs to a’s coalition, i.e.,

Then, |�5| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3).

Proof  Treat a and b as a single player. Then we have n − 1 players, three 
of whom should be in three different coalitions. By Theorem  15, we get 
|�5| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . 	�  ◻

Theorem 17  Let a, b, c, and d be any four distinct players. Let �6 be the set of all those 
structures of n players such that a, b, c, and d belong to four different coalitions, i.e.,

Then |�6| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3).

Proof  The set �6 has the following composition:

where

�4 = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
}

�4 = �4a −�4b −�4c

�4a = {� ∈ �N | �a
�
≠ �b

�
},

�4b = {� ∈ �N | �a
�
≠ �b

�
, �a

�
= �c

�
}

�4c = {� ∈ �N | �a
�
≠ �b

�
, �b

�
= �c

�
}

�5 = {� ∈ �N | �a
�
= �b

�
, �c

�
≠ �d

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
}

�6 = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
, �b

�
≠ �c

�
, �b

�
≠ �d

�
, �c

�
≠ �d

�
}

�6 = �6a −�6b −�6c −�6d
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and

By Theorem  15, |�6a| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) . Since in 
�6b , a and d are in the same coalition, view them as a single player called 
ad . Then the players ad , b and c must be in three different coalitions. Apply-
ing Theorem  15, |�6b| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . In the 
same way, |�7c| = |�7d| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . Thus, 
|�6| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3) . 	�  ◻

Theorem 18  Let a, b, c, and d be any four distinct players. Let �7 be the set of all those 
structures of n players such that a and b belong to different coalitions, and c and d belong 
to different coalitions, i.e.,

Then |�7| = Bell(n) − 2Bell(n − 1) + Bell(n − 2).

Proof  The set �7 has the following composition:

where

Then

By Theorem  13, |�7a| = |�7c| = Bell(n − 2) − Bell(n − 3) . By Theorem16, 
|�7b| = |�7d| = |�7e| = |�7f | = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . By 
Theorem  17, |�7g| = Bell(n) − 6Bell(n − 1) + 11Bell(n − 2) − 6Bell(n − 3) . Thus, 
|�7| = Bell(n) − 2Bell(n − 1) + Bell(n − 2) . 	�  ◻

Theorem 19  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T1
(i, j) , S2

T1
(i, j) , and 

UT1(i, j) are:

�6a = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
},

�6b = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �a

�
= �d

�
},

�6c = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �b

�
= �d

�
},

�6d = {� ∈ � | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
≠ �c

�
, �c

�
= �d

�
}.

�7 = {� ∈ �N | �a
�
≠ �b

�
, �c

�
≠ �d

�
}

�7 = �7a ∪�7b ∪�7c ∪�7d ∪�7e ∪�7f ∪�7g.

�7a = {� ∈ �N | �a
�
= �c

�
, �b

�
= �d

�
, �a

�
≠ �b

�
}.

�7b = {� ∈ �N | �a
�
= �c

�
, �b

�
≠ �d

�
, �a

�
≠ �b

�
�a
�
≠ �d

�
}.

�7c = {� ∈ �N | �a
�
= �d

�
, �b

�
= �c

�
, �a

�
≠ �b

�
}.

�7d = {� ∈ �N | �a
�
= �d

�
, �b

�
≠ �c

�
, �a

�
≠ �b

�
�a
�
≠ �c

�
}.

�7e = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �d

�
, �b

�
= �c

�
�b
�
≠ �d

�
}.

�7f = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �b

�
= �d

�
�b
�
≠ �c

�
}.

�7g = {� ∈ �N | �a
�
≠ �b

�
, �a

�
≠ �c

�
, �a

�
≠ �d

�
�b
�
≠ �c

�
�b
�
≠ �d

�
�c
�
≠ �d

�
}.

�7 = �7a +�7b +�7c +�7d�7e +�7f +�7g
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Proof  For any i ∈ N and j ∈ N − {i} , the test T1(i, j) (see Sect. 4.2.1) compares the values 
of any two structures �1 and �2 such that 

∗	� in �1 , the players i and t (where t is an arbitrary element of N − {i, j} and is determined 
on the basis of the elements in Z) belong to different coalitions but j and s (where s is 
an arbitrary element of N − {i, j} and is determined on the basis of the elements in Z) 
belong to the same coalition, and

∗	� in �2 , the players i and t belong to the same coalition but j and s belong to different 
coalitions.

S1
T1
(i, j) denotes the set of all those structures in which the players i and t belong to differ-

ent coalitions but j and s belong to the same coalition. S2
T1
(i, j) denotes the set of all those 

structures in which the players i and t belong to the same coalition but j and s belong to 
different coalitions.

Since there is no constraint on whether s = t or s ≠ t , must consider both cases.

•	 The case s ≠ t : The set S1
T1
(i, j) has the following composition: 

 where 

 By Theorem  16, |�T1a| = Bell(n − 1) − 3Bell(n − 2) + 2Bell(n − 3) . |�T1b| is the 
number of structures in which t, j, and s belong the same coalition, less the number of 
structures in which i, t, j, and s all belong to the same coalition. By Theorem 12 we get 
|�T1b| = Bell(n − 2) − Bell(n − 3) . Analogously, |�T1c| = Bell(n − 2) − Bell(n − 3) . 
Thus, S1

T1
(i, j) = Bell(n − 1) − Bell(n − 2).

	   Analogously, S2
T1
(i, j) = Bell(n − 1) − Bell(n − 2) , so 

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

•	 The case s = t : The set S1
T1
(i, j) has the following composition: 

 By Theorem 14, |S1
T1
(i, j)| = Bell(n − 1) − Bell(n − 2) . Next, the set S2

T1
(i, j) has the fol-

lowing composition: 

|S1
T1
(i, j)| = Bell(n − 1) − Bell(n − 2)

|S2
T1
(i, j)| = Bell(n − 1) − Bell(n − 2)

|UT1(i, j)| =
(
Bell(n − 1) − Bell(n − 2)

)2

S1
T1
(i, j) = �T1a ∪�T1b ∪�T1c

�T1a = {� ∈ �N | � i
�
≠ � t

�
, � i

�
≠ � j

�
, � t

�
≠ � j

�
, � j

�
= �s

�
}

�T1b = {� ∈ �N | � i
�
≠ � t

�
, � t

�
= � j

�
= �s

�
}

�T1c = {� ∈ �N | � i
�
≠ � t

�
, � i

�
= � j

�
= �s

�
}

S1
T1
(i, j) = {� ∈ �N | � i

�
≠ �s

�
, � j

�
= �s

�
}

S2
T1
(i, j) = {� ∈ �N | � i

�
= �s

�
, � j

�
≠ �s

�
}
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 By Theorem  14, |S2
T1
(i, j)| = Bell(n − 1) − Bell(n − 2) . Thus 

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.
	�  ◻

Theorem 20  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T2
(i, j) , S2

T2
(i, j) , and 

UT2(i, j) are:

Proof  For any i ∈ N and j ∈ N − {i} , the test T2(i, j) (see Sect. 4.2.1) compares the values 
of any two structures �1 and �2 such that 

∗	� in �1 , the players i and t are apart, and the players j and s are apart, and
∗	� in �2 , the players i and t are together, and the players j and s are together.

S1
T2
(i, j) denotes the set of all those structures in which the players i and t are apart, and j 

and s are apart. S2
T2
(i, j) denotes the set of all those structures in which the players i and t 

belong to the same coalition, and j and s belong to the same coalition. Since there is no 
constraint on whether s = t or s ≠ t , must consider both cases.

•	 The case s ≠ t:
	   By Theorem 18, |S1

T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2).

	   The set S2
T2
(i, j) has the following composition: 

 where 

 Consider |�T2a| . Substuting k = 4 in Theorem  12, we get |�T2a| = Bell(n − 3) . 
Consider |�T2b| . By Theorem  13, |�T2b| = Bell(n − 2) − Bell(n − 3) . 
Add |�T2a| and |�T2b| to get |S2

T2
(i, j)| = Bell(n − 2) . So 

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).

•	 The case s = t : The set S1
T2
(i, j) has the following composition: 

 where 

 By Theorem  15, we have |�T2a| = Bell(n) − 3Bell(n − 1) + 2Bell(n − 2) . 
By Theorem  14, we have |�T2b| = Bell(n − 1) − Bell(n − 2) . So 

|S1
T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2)

|S2
T2
(i, j)| = Bell(n − 2)

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2)

S2
T2
(i, j) = �T2a ∪�T2b

�T2a = {� ∈ �N | � i
�
= � t

�
= � j

�
= �s

�
}

�T2b = {� ∈ �N | � i
�
= � t

�
, � j

�
= �s

�
, � i

�
≠ � j

�
}.

S1
T2
(i, j) = �T2a ∪�T2b

�T2a = {� ∈ �N | � i
�
≠ �s

�
, � i

�
≠ � j

�
, �s

�
≠ � j

�
}

�T2b = {� ∈ �N | � i
�
= � j

�
, � i

�
≠ �s

�
}.
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|S1
T2
(i, j)| = Bell(n) − 2Bell(n − 1) + Bell(n − 2) . Next, the set S2

T2
(i, j) has the following 

composition: 

 By Theorem  12 k = 3 , we have |S2
T2
(i, j)| = Bell(n − 2) . So 

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).
	�  ◻

Theorem 21  For any i ∈ N , and any j ∈ N − {i} , the cardinalities of S1
T3
(i, j) , S2

T3
(i, j) , and 

UT3(i, j) are:

Proof  For any i ∈ N and j ∈ N − {i} , the test T2(i, j) (see Sect. 4.2.1) compares the values 
of any two structures �1 and �2 such that 

∗	� in �1 , the players i and j are apart, and
∗	� in �2 , the players i and j are together.

S1
T3
(i, j) denotes the set of all those structures in which the players i and j are apart. S2

T2
(i, j) 

denotes the set of all those structures in which the players i and j are together.
By Theorem  11, |S1

T3
(i, j)| = Bell(n) − Bell(n − 1) . Substituting k = 2 in Theorem  12, 

|S2
T3
(i, j)| = Bell(n − 1) . Thus, |UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1) . 	�  ◻

Theorem 22  The cardinalities of the universes of T1, T2, and T3 are related as follows: 

1.	 For any n and any two distinct players i and j, |UT2(i, j)| > |UT1(i, j)|.
2.	 For any n and any two distinct players i and j, |UT3(i, j)| > |UT1(i, j)|.
3.	 For any n, any two distinct players i and j, |UT3(i, j)| > |UT2(i, j)|.
4.	 For any n > 4 , any 2 < k < n − 2 , and any two distinct players i and j, 

|UT1(i, j)| > Bell2(n − k − 2).

	�  ◻

Proof  *	� For any n, here is proof that |UT2(i, j)| > |UT1(i, j)| : By Theorem 19: 

 By Theorem 20: 

 Thus, |UT2(i, j)| − |UT1(i, j)| = Bell(n) × Bell(n − 2) − Bell2(n − 1) . Since 
Bell(n) × Bell(n − 2) > Bell2(n − 1) , |UT2(i, j)| > |UT1(i, j)|.

*	� For any n, here is proof that |UT3(i, j)| > |UT1(i, j)| : By Theorem 19: 

S2
T2
(i, j) = {� ∈ �N | � i

�
= � j

�
= �s

�
}

|S1
T3
(i, j)| = Bell(n) − Bell(n − 1)

|S2
T3
(i, j)| = Bell(n − 1)

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1)

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).
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 By Theorem 21, 

 Clearly |UT3(i, j)| > |UT1(i, j)|.

*	� For any n, here is proof that |UT3(i, j)| > |UT2(i, j)| : By Theorem 20: 

 By Theorem 21, 

 Clearly, |UT3(i, j)| > |UT2(i, j)|.

*	� For any n and any 2 < k < n − 2 , here is proof that |UT1(i, j)| > Bell2(n − k − 2) . 
Since 2 < k < n − 2 and since Bell2(n − k − 2) is decreasing in k, it is 
sufficient to prove the above inequality for k = 2 , i.e., it is sufficient 
to prove that |UT1(i, j)| > Bell2(n − 4) . We know by Theorem  19 that 
|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2 . Since Bell(n) is exponentially increas-
ing in n, for n > 4 , we get 

 Thus, we get |UT1(i, j)| > Bell2(n − 4) . This proves that |UT1(i, j)| > Bell2(n − k − 2).

	�  ◻

Theorem 23  For any n ≥ 5 , any k ≤ � , and any two distinct players i and j: 

1.	 |UT1(i, j)| > 3�

2.	 |UT2(i, j)| > 3�

3.	 |UT3(i, j)| > 3�

4.	 |UT4(k, a, b, c, d)| > 3� for any (a, b) ∈ V(k) , any (c, d) ∈ V(k) , and any k ≤ �.

Proof  By Theorem  22, for any n ≥ 5 , any i and j, and any 2 < k < n − 2 , 
|UT1(i, j)| > Bell2(n − k − 2) . Further, by Theorem  22, |UT2(i, j)| > |UT1(i, j)| and 
|UT3(i, j)| > |UT1(i, j)| . Since

where 3 < 𝛿 ≤ n − 3 , we get |UT1(i, j)| > 3� , |UT2(i, j)| > 3� , and |UT3(i, j)| > 3�.
By Theorem  6, |UT4(k, a, b, c, d)| > Bell2(n − k − 2) for any 2 < k < n − 2 , any 

(a, b) ∈ V(k) , and any (c, d) ∈ V(k) . Thus, for any (a, b) ∈ V(k) and any (c, d) ∈ V(k) , 
|UT4(k, a, b, c, d)| > 3� for any k ≤ � . 	�  ◻

|UT1(i, j)| = (Bell(n − 1) − Bell(n − 2))2.

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1).

|UT2(i, j)| = (Bell(n) − 2Bell(n − 1) + Bell(n − 2)) × Bell(n − 2).

|UT3(i, j)| = (Bell(n) − Bell(n − 1)) × Bell(n − 1).

Bell(n − 1) − Bell(n − 2) > Bell(n − 4).

� =
Bell2(n − � − 2)

3
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Appendix B: Generating the universes of T1, T2, T3, and T4

By Definition11 and Definition 13, UTa = S1
Ta
× S2

Ta
 for each 1 ≤ a ≤ 4 . For each 1 ≤ a ≤ 3 , 

S1
Ta

 and S2
Ta

 are as defined in Sect. 4.2.1, and S1
T4

 and S2
T4

 are as defined in Sect. 4.3.2. By 
Theorem 4, a monotonicity-satisfying relation for Ta (for any 1 ≤ a ≤ 3 ) can be found with 
at most 3� − 2 invocations to rv . Then by Theorem  5, at least one element of Z can be 
deleted by doing Ta (with a and the arguments to Ta as defined in Theorem 5). Also, by 
Theorem 8, a monotonicity-satisfying relation for T4 can be found with 3� − 2 invocations 
to rv . Then by Theorem 9, at least one element of V(k) can be deleted by doing T4 (with 
arguments as defined in Theorem 9).

Since UTi = S1
Ti
× S2

Ti
 for each 1 ≤ i ≤ 4 , it is sufficient to generate 

�√
3�

�
 arbitrary ele-

ments of S1
Ti

 and 
�√

3�
�
 arbitrary elements of S2

Ti
 to achieve |UTi| = 3�.

In order to generate the elements of S1
Ti

 or S2
Ti

 for any i, it is convenient to first choose 
a suitable representation for coalition structures. To this end, we will represent the set of 
players as N = {1,… , n} . Any coalition structure over {1,… , n} will have at most n coali-
tions. Each coalition structure will be represented by a codeword ( codecs ). The codeword 
for a coalition structure is a vector of the form (C1,C2,… ,Cn) such that player 1 ≤ x ≤ n 
is in the coalition Cx in the structure. Without any loss of generality, assume that the coali-
tions in a structure � are ordered as follows:

coalition Ca will precede a coalition Cb in � if the smallest element of Ca is less than 
the smallest element of Cb.

Observe that, with coalitions ordered in this way, coalition structures have the following 
property. In any coalition structure, player 1 must belong to the first coalition, player 2 
must belong to one of the first two coalitions, and so on. In general, if the players 1,… , k 
( 1 ≤ k < n ) belong to the first 1 ≤ m ≤ k non-empty coalitions, then player k + 1 must 
belong to one of the first m + 1 coalitions. For example, for a game of five players, the coa-
lition structure {{1, 2}, {3}, {4, 5}} has the codeword:

The following notation will be used for subwords of the codeword of a coalition structure. 
For a codeword, the subword beginning at index a and ending at index b will be denoted 
codecs|a,b . For example, we have:

With a representation for coalition structures in place, we are now ready to describe a 
method (see Algorithm 2) for generating coalition structures in this representation. We will 
describe the procedure for generating elements of S1

T1
(i, j) as codewords, given i, j, s, and t 

as inputs (the elements of S2
T1
(i, j) can be generated analogously). As per Sect. 4.2.1, the set 

S1
T1
(i, j) has the following composition:

and the constraints that must be satisfied by elements of �T1a , �T1b and �T1c are as 
follows:

•	 �T1a = {� ∈ �N | � i
�
≠ � t

�
, � i

�
≠ �

j
� , � t

�
≠ �

j
� , �

j
� = �s

�
}

•	 �T1b = {� ∈ �N | � i
�
≠ � t

�
, � t

�
= �

j
� = �s

�
}

codecs({{1, 2}, {3}, {4, 5}}) = (1, 1, 2, 3, 3).

codecs|1,3({{1, 2}, {3}, {4, 5}}) = (1, 1, 2).

S1
T1
(i, j) = �T1a ∪�T1b ∪�T1c
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•	 �T1c = {� ∈ �N | � i
�
≠ � t

�
, � i

�
= �

j
� = �s

�
}

where i ∈ N , j ∈ N − {i} , s is an arbitrary element of N − {i, j} determined on the basis of 
the elements in Z, and t is an arbitrary element of N − {i, j} determined on the basis of the 
elements in Z.

The procedure we are going to describe is an adaptation of the method proposed in [16] 
for generating all possible partitions of a set {1,… , n} . Since [16] generates all possible 
partitions, it must be adapted to generate only those that satisfy the above listed constraints 
for �T1a , �T1b and �T1c . The required adaptation is done as follows.

Note that, in the above listed constraints, s may or may not equal t, so need to consider 
both cases. However, regardless of whether s = t or not, the players j and s are required 
to belong to the same coalition in any coalition structure that belongs to �T1a , �T1b , or 
�T1c . Thus, j and s may be treated as a single player. Consequently, the total number of 
players will now be reduced to n − 1 . So coalition structures over these n − 1 players must 
be generated such that every generated coalition structure satisfies each of the above listed 
constraints for �T1a , �T1b , and �T1c.

Without any loss of generality, suppose j < s . Since j and s are treated as a single player, 
the set of players will be {1,… , j,… , s − 1, s + 1,… , n} . For convenience, we will encode 
the players in this set such that the numbers are all consecutive. The encoding is done by 
the mapping codeag ∶ {1… , n} → {1,… , n − 1} defined as follows (distinguish between 
codes ( codeag ) for agents and codewords ( codecs ) for partitions): 

◦	� codeag(j) = codeag(s) = 1

◦	� codeag(i) = 2

◦	� codeag(t) = 3

◦	� codeag(Xy) = y + 3

 where X = N − {i, j, s, t} and the elements of X are in ascending order with Xy denoting the 
yth element of X. Figure 1 is an illustration of this encoding for the example N = {1,… , 9} , 
i = 5 , j = 3 , s = 7 , and t = 8.

With the description of encoding of agents and coalition structures in place, we 
are now ready to describe a procedure for generating codewords for the coalition struc-
tures in S1

T1
(i, j) . The method in [16] is used to generate codewords for the partitions of 

the n − 1 element set of coded players, i.e., the set {codeag(1),… , codeag(n)} where 
|{codeag(1),… , codeag(n)}| = n − 1 . Each generated codeword is then checked to ensure 
it satisfies each one of the constraints listed above for �T1a , �T1b , and �T1c . The complete 
method is presented as Algorithm 2.

Fig. 1   An illustration of encod-
ing for N = {1,… , 9} , i = 5 , 
j = 3 , s = 7 , and t = 8
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In Algorithm 2, the procedure GENERATE-UNIVERSE is the main routine. The inputs to 
it are i, j, s, t, n, and count (the number of elements of S1

T1
 to generate, i.e, count =

√
3� ). 

Within GENERATE-UNIVERSE is defined a recursive routine SP (Lines 7 to 40) for generat-
ing the required codewords.

To begin, in Line 41, the list X is set to {1,… , n} − {i, j, s, t} (note that elements of X are 
to be in ascending order. The variable index, used to track the number of elements of S1

T1
 

generated so far, is initialised to zero. Then the procedure SP is invoked in Line 43.
This procedure SP (defined in Lines 7 to 40) is for generating the elements of S1

T1
 recur-

sively: the codewords of all partitions of the set {1,… , n} are obtained from the codewords 
of all partitions of the set {1,… , n − 1} by appending Cn to the respective codewords. 
The range of values that Cn may assume is 1,… ,max(C1,C2,… ,Cn−1) + 1 . Note that, for 
SP(m, p), the parameter m = max(C1,… ,Cp−1) , and the parameter p indicates the current 
index of the codeword under consideration. Figure 2 (taken from [16]) is an illustration of 
the recursive generation codewords for the set {1, 2, 3, 4}.

The If statement from Line 9 to 39 is for tracking the number of codewords generated 
so far. In the If statement between Lines 10 and 29, the elements of a codeword are gener-
ated one-by-one, starting from the first element and going to the (n − 1) th element. Once a 
complete n − 1 element codeword is generated, it is transformed to a corresponding n ele-
ment codeword by now treating the players j and s as distinct. The transformed codeword is 
saved in Table[index] (see Lines 31 to 37).

In Lines 12 to 23, checks are done to ensure that a codeword satisfies the required con-
straints. This check is done in Lines 12 to 16 for the case s ≠ t , and in Lines 19 to 23 for 
the case s = t . For the case s ≠ t , a constraint is violated if any one of the following condi-
tions is true: 

◦	� codecs|1,3 = (1, 1, 1)

◦	� codecs|1,3 = (1, 2, 1)

◦	� codecs|1,3 = (1, 2, 2)

 For the case s = t , a constraint is violated if the following condition is true: 

◦	� codecs|2,2 ≠ 2

Fig. 2   An illustration of the 
genaration of partitions of 
N = {1,… , 4}
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Once an n − 1 element constraint-satisfying codeword is generated, it is transformed to 
a corresponding n element codeword that represents a coalition structure over n players as 
follows. Let tcodecs denote a transformed codeword. Transformation involves treating j and 
s as distinct players, and is done as follows: 

◦	� tcodecs(j) = tcodecs(s) = codecs|1,1
◦	� tcodecs(i) = codecs|2,2
◦	� tcodecs(t) = codecs|3,3
◦	� tcodecs(Xx−3) = codecs|x,x for each 4 ≤ x ≤ n − 1.

 Codeword transformation is illustrated in Figure   for the example N = {1,… , 9} , i = 5 , 
j = 3 , s = 7 , t = 8 , and codecs = (1, 2, 3, 3, 2, 4, 4, 5).

Each transformed codeword is saved in Table (see Lines 31 to 37). Each codeword in 
Table will be an n element codeword.

Elements of UTa(i, j) for each 2 ≤ a ≤ 4 can also be generated by using Algorithm 2 with 
constraint checking conditions suitably modified for each respective case.

We will now analyse the time complexity of generating 3� arbitrary elements of 
UT1(i, j) = S1

T1
(i, j) × S2

T1
(i, j) using Algorithm 2.

Theorem  24  For any given i, j, s, and t, 3� arbitrary elements of UTa(i, j) (for each 
1 ≤ a ≤ 4 ) can be generated in �(

√
�) time.

Proof  Consider a = 1 for which UT1(i, j) = S1
T1
(i, j) × S2

T1
(i, j) . Algorithm  2 generates �√

3�
�
 elements of S1

Ta
(i, j) ). Now, as per [16], the average time to generate a partition of 

{1,… , n} using Algorithm 2 is �(1.6) . Since Algorithm 2 generates 
�√

3�
�
 partitions, it 

will take �(
√
�) time.

The definition of S2
T1

 is analogous to that of S1
T1

 (see Sect. 4.2.1). Thus, 
�√

3�
�
 elements 

of S2
T1
(i, j) can be generated in �(

√
�) time. Since UT1(i, j) = S1

T1
(i, j) × S2

T1
(i, j) , the time 

taken to generate 3� arbitrary elements of UT1(i, j) will be �(�).
Elements of UTa(i, j) for each 2 ≤ a ≤ 4 can also be generated by using Algorithm 2 with 

constraint checking conditions suitably modified for each respective case. Thus, the time 
taken to generate 3� distinct elements of UTa(i, j) will be �(�) for each 2 ≤ a ≤ 4 . 	�  ◻
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