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                    Abstract
The majority of multi-agent system implementations aim to optimise agents’ policies with respect to a single objective, despite the fact that many real-world problem domains are inherently multi-objective in nature. Multi-objective multi-agent systems (MOMAS) explicitly consider the possible trade-offs between conflicting objective functions. We argue that, in MOMAS, such compromises should be analysed on the basis of the utility that these compromises have for the users of a system. As is standard in multi-objective optimisation, we model the user utility using utility functions that map value or return vectors to scalar values. This approach naturally leads to two different optimisation criteria: expected scalarised returns (ESR) and scalarised expected returns (SER). We develop a new taxonomy which classifies multi-objective multi-agent decision making settings, on the basis of the reward structures, and which and how utility functions are applied. This allows us to offer a structured view of the field, to clearly delineate the current state-of-the-art in multi-objective multi-agent decision making approaches and to identify promising directions for future research. Starting from the execution phase, in which the selected policies are applied and the utility for the users is attained, we analyse which solution concepts apply to the different settings in our taxonomy. Furthermore, we define and discuss these solution concepts under both ESR and SER optimisation criteria. We conclude with a summary of our main findings and a discussion of many promising future research directions in multi-objective multi-agent systems.
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                    Notes
	Note that we are assuming here that there is a small discrete set of alternatives, and that this maximisation can explicitly be computed in reasonable time. If this is not the case, for example if their set of alternatives is continuous, the user can be assisted in selecting a good policy using specific algorithms designed for the selection phase [194]. However, in such cases optimality can typically not be guaranteed.


	A vector whose coordinates are all non-negative and sum up to 1.


	By definition, multi-objective models are a super-class of the corresponding single-objective models. In this survey however, we focus on models with \(d\ge 2\), as our aim is to specifically look into multi-objective settings, where the utility functions is a meaningful construct that specifies the importance of different objectives for a given agent. The same remark holds true for multi-agent models.


	Or multiple users whose utility functions can be aggregated in an overall aggregated utility function.


	Spite can evolve in a population through strategies such as bullying. A spiteful behaviour describes a strategy through which a player will choose to harm others, even at the expense of incurring a cost, given that in the long term this will prove beneficial. This is due to the fact that fitness metrics have a comparative nature [171].


	One might argue that it may be theoretically possible to create much larger MO(PO)SGs from a simpler multi-objective multi-agent problems by including the meta-interactions necessary for negotiation to the problem, and try to solve the problem using a general-purpose MO(PO)SG solver. However, this is likely not to be a fruitful approach, as such a large MO(PO)SG may well be intractable for general-purpose solvers for MO(PO)SGs.


	Note that this is not a sufficient condition in multi-agent settings though, as there may be equilibria that are Pareto-dominated.


	For details on why this is so, please refer to [137].


	When considering a CE-based approach, an agent is able to calculate her expected return given one correlation signal, but also an expected return given all the possible signals. This allows one to define two variants for CE under SER: the single-signal CE (when agents have multiple interactions under the same given signal) and multi-signal CE (when agents receive a new signal after every interaction) [145]. For this work we define the more general case of multi-signal CE.


	Interactive approaches intertwine preference elicitation and learning about the decision problem [138, 139].


	Because the MOCoG model is a flexible multi-objective graphical model that can be used for many types of problems, and has been used by many research communities, the MOCoG is known under many different names. These include: multi-objective weighted constraint satisfaction problems (MO-WCSPs) [141] and Multi-objective Constraint Optimisation Problems (MOCOPs) [97, 99].


	Or, in their original paper, the equivalent concept of domination.


	Although individualised reward shaping implies that each agent receives a different reward, we have classified these works under the TRTU setting as all agents use the same utility function and the individual shaped rewards are still aligned with the global (system) rewards. Reward shaping might also be useful in combination some of the other settings in our taxonomy and solution concepts discussed in Sect. 5, although only the TRTU setting with coverage sets has been explored to date.
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