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Abstract
In this paper, we propose a multi-agent framework to deal with situations involving uncertain
or inconsistent information located in a distributed environment which cannot be combined
into a single knowledge base. To this end, we introduce an inquiry dialogue approach based
on a combination of possibilistic logic and a formal argumentation-based theory, where
possibilistic logic is used to capture uncertain information, and the argumentation-based
approach is used to deal with inconsistent knowledge in a distributed environment. We also
modify the framework of earlier work, so that the system is not only easier to implement but
also more suitable for educational purposes. The suggested approach is implemented in a
clinical decision-support system in the domain of dementia diagnosis. The approach allows
the physician to suggest a hypothetical diagnosis in a patient case, which is verified through
the dialogue if sufficient patient information is present. If not, the user is informed about
the missing information and potential inconsistencies in the information as a way to provide
support for continuing medical education. The approach is presented, discussed, and applied
to one scenario. The results contribute to the theory and application of inquiry dialogues in
situations where the data are uncertain and inconsistent.
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1 Introduction

Clinical decision-support systems (CDSSs) use Artificial Intelligence (AI) to help doctors
reach diagnostic decisions and are playing an increasingly important role in clinical practice
[29]. Knowledge bases are key elements in CDSSs. As the decisive factor for the precision in
the decision-making process, they constitute the basis for the system. In practice, however,
there are situations where two or more knowledge bases cannot be merged or efficiently
combined due to security, privacy, or other concerns, but the knowledge stored therein is
needed in the decision-making process. In such cases, a multi-agent system (MAS) [8] is a
natural choice for a CDSS solution with practical usefulness. Moreover, a MAS can illustrate
different viewpoints in a clinical teamwork situation, e.g., when a primary care practitioner
treats a patient with progressing dementia without having much experience in this particular
disease domain andmay need to consult an expert physician during the diagnostic process. In
sparsely populated areas, it is also common that experts may be located at specialist hospitals
a long distance from the primary care center. In our work, we take this perspective a step
further by building a decision-support system based on international consensus on diagnostic
criteria [22], which may act as an expert agent in a MAS that can be consulted through the
CDSS.We also choose dialogue-based systems to simulate the dialogue that a clinician could
have with an expert physician in a patient case for educational purposes.

Walton and Krabbe defined several types of agent dialogues [34,42]. Among them, the
inquiry dialogue allows agents to collaborate in order to find the best solution and new knowl-
edge. However, the value of inquiry dialogue-based MASs in dealing with situations where
knowledge bases could not be easily put together has only been explored to a limited extent.
For instance, Black and Hunter describe an inquiry dialogue approach in [2]. However, to the
best of our knowledge, their theories have not been implemented in practical applications.
Actually, some of their theories are not straightforward to realize in applications for clinical
situations.

Against this background, we have extended Black and Hunter’s theoretical dialogue
approach [2], which allows for a significantly simplified implementation. This modifica-
tion is mainly in the structure. In Black and Hunter’s structure, a top level warrant inquiry
(wi) dialogue consists of several argument inquiry (ai) dialogues at different hierarchical
levels, whereas in our structure, we have wi dialogue not only in the top level but also in all
sublevels. The modified structure allows agents to reach partial conclusions within the nested
dialogues, a method in which the strongest arguments are aggregated to serve the argument
evaluation for deciding upon themajor topic. Therefore, the structure of our system is clearer,
and the system becomes time efficient, which is also in line with how humans reason. Details
for generating wi and ai dialogues are provided, and a strategy for dealing with endless loops
is given.

Moreover, since the agents have different roles and knowledge bases that include rules and
behaviors, the data to be fused are often inconsistent and uncertain. In our earlier research
[21,44], inquiry dialogueswere explored,whichwere based on defeasible logic and integrated
preference levels. The purpose was to integrate different preferences regarding knowledge
sources (e.g., different potentially conflicting clinical practice guidelines). However, the abil-
ity of defeasible logic programming to deal with explicit uncertainty and fuzzy knowledge
which often exist in the medical domain is fundamentally limited [4]. Thus, the approach
presented in this article is built on the formal argumentation for dealing with inconsistent
information introduced in [44]. We extend our earlier research by integrating possibilistic
logic to capture uncertain information and degrees of confidence in sources of knowledge
[6]. The reason for applying possibilistic logic in the clinical dialogue between agents is
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to extend defeasible logic programming capabilities for qualitative reasoning by incorporat-
ing the treatment of possibilistic uncertainty and vague knowledge [4]. It has applicability in
specific individual patient cases. Reasoningwith probabilities that require statistical informa-
tion presents problems since the statistical distributions provided by evidence-basedmedicine
(EBM) are not coherent; there are overlapping conditions [13], and the individual case may
not be a standard case. In contrast, reasoning with possibilities gives a different starting
point, where if knowing nothing at all, all potential diagnoses are possible, which may help
the novice clinician to not jump to conclusions too soon [35]. This approach also follows
the terminology applied in some diagnostic criteria where the medical community has tried
to translate the uncertainty in EBM-based statistical information into formulations useful in
clinical practice using terms like possible, probable, and unlikely (e.g., [28]). This approach
allows to evaluate arguments based on the reliability of the source of generic knowledge
(e.g., clinical diagnostic criteria) or the source of patient information (e.g., the patient vs. a
relative).

Hence, using the methods we develop based on possibilistic logic and argumentation the-
ory, traditionally difficult situations where the data are uncertain and inconsistent can now
be properly dealt with transparently. This approach provides transparency so the clinician
can follow the reasoning and decision-making process and make more well-founded med-
ical decisions, and using the system will also provide continued medical education during
everyday clinical practice. Consequently, our results contribute significantly to the research
field of knowledge-based systems and practical application in the medical domain.

We implemented ourmethodologies in theCDSS thatwedeveloped for dementia diagnosis
and management. The results are illustrated with representative diagnostic situations from
the dementia domain. The domain knowledge related to dementia is a good example of a
medical domain where uncertain and conflicting information is present [19,22] and where
interactive decision support could increase the physician’s knowledge [20].

The paper is organised as follows. The next section presents a short background of possi-
bilistic logic. In Sect. 3, the developedmethods for dialogue generation are described. Section
4 describes the details of the realisation of theMAS embedded in the clinical decision-support
system. Next, one scenario is used to show how MAS is integrated into the clinical system
and how it works. We compare our work with other related research in Sect. 6. The paper
ends with conclusions and an outline of future work.

2 Background: possibilistic knowledge bases

Our approach is based on Possibilistic logic [6]. We begin by presenting the syntax of our
rule-based knowledge bases. In the logic we used, formulas are expressed by classical propo-
sitional logic with attached numbers between 0 and 1. In the settings of possibilistic logic, we
consider the framework of necessity formulas; hence, the numbers attached to logic formulas
denote the degree of necessity of a formula. A literal denotes either an atom α or its negation
¬α. The contradiction of a literal l is defined as c, such that c(l) ≡ ¬l and c(¬l) ≡ l. The
symbols, such as binary connectives ∧, implication →, and negation ¬ are the same as in
propositional logic.

A rule is denoted by α1 ∧ · · · ∧ αn → β, such that αi (1 ≤ i ≤ n), and β are literals.
αi (1 ≤ i ≤ n) is called the premise of the rule and β is called the conclusion of the rule.
Given a rule r = α1 ∧ · · · ∧ αn → β, concl(r) = β. When n = 0, a rule is denoted by → α

and called a f act .
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A rule together with an attached number p form a possibilistic belief. p is not a probability
(like it is in probability theory), but it induces a certainty (or confidence) scale. This value is
determined by the expert providing the knowledge base.

Definition 1 A possibilistic belief, denoted by B, is a tuple of the form (φ, p) where φ is a
rule and p ∈ (0, 1] is the lower bound of the belief in terms of necessity measures, which
means the formula φ is certain at least to the level p. Given a belief (φ, p), if φ is a fact, we
name this belief state belief ; otherwise, we name it domain belief.

In this paper, unless otherwise stated, a possibilistic belief is called a belief since all
beliefs in this paper are possibilistic. We name the rule’s premise as the belief’s premise
and the rule’s conclusion as the belief’s conclusion. Given a belief B = (φ, p), N (φ) ≥ p
where N is a necessity measure modeling the possibly incomplete state knowledge [6,31],
and B∗ = φ. (l, p) is called a possibilistic literal where l is a literal, and p is its possibilistic
value.

A belief base of an agent x , denoted by �x, is a finite set of beliefs. The set of all rules
in �x is denoted by �∗

x = {φ|(φ, p) ∈ �x}.
To project a set of rules from a belief base of a given agent x regarding a particular

conclusion, we define the concept of related belief base as follows:

Definition 2 The related belief base about literal α regarding agent x , denoted by �α
x is

defined as
�α

x = {(φ, p)|(φ, p) ∈ �x and (concl(φ) = α or concl(φ) = ¬α)}
We use the function relatedBeliefBasex (α) to return �α

x from �x.

Following Ref. [6], the possibilistic inference rule, under the framework of necessity
formulas, is (φ1, p1), (φ1 → φ2, p2) 	 (φ2,min(p1, p2)). The rule’s necessity number is
given by the minimal necessity numbers of all the participant formulas. We use 	pl to denote
the inference in possibilistic logic. From this rule, if we know (φ, p1) is true, we can infer
that all beliefs (φ, p2)(p2 ≤ p1) are true.

Anargument is usually defined as a set of propositions such that a set of premises supports a
conclusion. Depending on the goal of a given dialogue, an argument can be used, for instance,
to persuade someone of something or present reasons for accepting a conclusion.

From the knowledge representation perspective, we only consider a sublanguage of pos-
sibilistic logic, which is based on possibilistic beliefs. This sublanguage of possibilistic
logic has been tailored to express the modelled knowledge by the knowledge elicitation tool
implemented and presented in the application Dementia Diagnosis andManagement Support
System—Web version (DMSS-W) (see Sect. 4). Since the knowledge base is based on pos-
sibilistic beliefs that only have a literal in each of their heads, the conclusion of an argument
will be a possibilistic literal.

Definition 3 An argument is a tuple of the form 〈Φ, (l, p)〉 constructed from a belief base
�, where Φ is a set of beliefs, and (l, p) is a possibilistic literal and called the claim of the
argument, so that the following conditions hold:

1. Φ ⊆ � and Φ 	pl (l, p),
2. Φ∗ is consistent.
3. There is no Φ∗

1 ⊂ Φ∗, such that item 1 and item 2 are satisfied.

In this definition, item 2 describes an argument as being derived from a consistent set of
beliefs. Consistency is understood in the standard way as it does by classical logic which
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means that one cannot infer a and ¬a from the same logic theory. Therefore, no conflicting
arguments can be derived from the same set. Item 3 states that the consistent set is aminimally
set (i.e. no subset of this consistent set can derive the argument with the same fact or its
contradiction).

When we say the argument A1 = 〈Φ1, B1〉 is a subargument of the argument A2 =
〈Φ2, B2〉, we mean Φ1 ⊂ Φ2.

Definition 4 Let A1 = 〈Φ1, (l1, p1)〉 and A2 = 〈Φ2, (l2, p2)〉. A1 rebuts A2 iff c(l1) ≡ l2.
A1 undercuts A2 iff there exists an argument A3 = 〈Φ3, (l3, p3)〉 and A3 is a subargument
of A2, such that c(l1) ≡ l3.

Rebut and undercut are also known as counterargument in literature [1].
Beliefs in a belief base are sometimes inconsistent, leading to conflicts between arguments

constructed from this belief. In the following section, we introduce an argumentation-based
approach to resolve conflicts and calculate the acceptability of a literal.

3 Modeling dialogues

In this section,wepresent our approach to generate dialogues and evaluate arguments between
agents.

3.1 Dialogue representation

The inquiry dialogue, among other types of dialogues, was defined by Walton and Krabbe
[42], with the purpose to collaboratively build new knowledge. The goal of an inquiry dia-
logue is to prove or contradict and possibly falsify the hypothesis in the proof process of
collaborative reasoning. In our approach, there are always exactly two agents taking part
in an inquiry dialogue. In the following sections, we use x to represent one agent and x̂ to
represent the other. That is, if x = 1 then x̂ = 2 and vice versa. Each agent has its own belief
base �x. However, they cannot prove the truth of the hypothesis by themselves; hence, they
need to collaborate to find and verify the evidence regarding the given hypothesis (topic).

To formalize our dialogue system, we follow the dialogue style introduced by Black
and Hunter [2]. Two participating agents use moves to communicate with each other in our
argumentation system. Three types of moves are allowed: open, assert, and close. An open
move means an agent opens a new dialogue. An assert move means an agent believes a given
belief is true. A close move indicates an agent wants to close the current dialogue; however,
if another agent does not agree, this dialogue will not be closed.

In the same way as in [2], we use two kinds of inquiry dialogues in our framework: wi and
ai dialogues. Ai dialogue generates the argument that can be used in a wi dialogue (i.e. if all
the premises of a rule can be proven true, an argument is generated). Wi dialogue contains
0 to n ai dialogues. Wi dialogue generates new knowledge by comparing these arguments.
The two types of dialogues above are nested within each other.

A move m is a tuple of the form 〈agent, move type, dialogue type, topic〉, where
agent is the agent that makes this move; move type denotes the kind of move (open, assert
or close); dialogue type means the type of the dialogue (wi or ai); and topic is the content of
the move. If the move is an open/close wi move, the topic is a literal; if it is an open/close
ai move, the topic is a domain belief; otherwise, the topic is a state belief. The topic of the
dialogue is determined by the topic of the first move made in this dialogue, so the topic of a
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Table 1 Move format Move Dialogue Format

Open wi 〈x, open, wi, α〉
Close wi 〈x, close, wi, α〉
Open ai 〈x, open, ai, (α1 ∧ · · · ∧ αn → β, p)〉
Close ai 〈x, close, ai, (α1 ∧ · · · ∧ αn → β, p)〉
Assert wi 〈x, assert, wi, (→ α, p)〉
Assert ai 〈x, assert, ai, (→ α, p)〉

wi dialogue is a literal and the topic of an ai dialogue is a domain belief. Since we have two
types of inquiry dialogues and three types of moves, there are a total of six types of move
formats (Table 1). More details are listed below.

– 〈x, open/close, wi, α〉 means that agent x opens/closes a wi dialogue, and the topic
of the dialogue is α.

– 〈x, open/close, ai, (α1 ∧ · · · ∧ αn → β, p)〉 means that agent x opens/closes an ai
dialogue and the topic of the dialogue is (α1 ∧ · · · ∧ αn → β, p).

– 〈x, assert, wi, (→ α, p)〉 means that this move is within a wi dialogue whose topic
is α or ¬α, and agent x asserts that (→ α, p) is true.

– 〈x, assert, ai, (→ α, p)〉means this move is within an ai dialogue, and agent x asserts
that (→ α, p) is true and α or ¬α is one of the ai topic’s premises. Let us observe that
(→ α, p) is not from the agent’s belief base but from the result store (which will be
described in next section in Definition 11) that has already been proved to be true, false,
or unknown by the two agents.

To formalize our dialogue system, we use the definitions of dialogue, sub-dialogue and
well-formed dialogue in [2]. Here, we only give a brief description. For detailed descriptions
of these concepts, we refer to [2].

Definition 5 A dialogue Dt
r (r, t∈ N and r≤ t ) is a sequence of moves [mr , . . . ,mt ]with two

agents participating, in which: (1) the first move of the dialogue is an openmove, and (2) each
agent takes its turn to make moves. A sub-dialogue is a sub-sequence of another dialogue.
A well-formed dialogue is a dialogue with the following conditions: (1) the last two moves
must be close moves made by two agents successively, which means both agents agree to
close the dialogue; (2) the dialogue only terminates once; and (3) all the sub-dialogues are
also well-formed and terminate before their parent dialogue. We use the function Topic(Dt

r )

to return the topic of the dialogue Dt
r .

3.2 Generating dialogues

We first define some notations which are needed to generate the dialogues and then provide
specific protocols for generating the two different types of dialogues: wi and ai.

In a wi dialogue, we use a Possible Beliefs Queue (PBQ) to store the relatedBeliefBase
i.e., Definition 2, of a belief according to the dialogue’s topic; consequently, it can pick up
the first belief from this queue when it needs to make a move.

Definition 6 A PBQ is a queue of beliefs that the agent can legally use for selecting the
next move from the current wi dialogue. Let Dt

r be the current dialogue and I be the set of
participants. For all x ∈ I ,
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Table 2 Meaning of each atom Atom Symptom/disease

a Extrapyramidal symptoms are present

b Sensitivity to neuroleptica is present

c Dementia is present

d Vascular symptoms are present

f Lewy body dementia

PBQt
x (α)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

relatedBeliefBasex (α), if mt = 〈x, open, wi, α〉 or
mt−1 = 〈x̂, open, wi, α〉,

relatedBeliefBasex (α)\{(φ, p)}, if mt = 〈x, open, ai, (φ, p)〉,
relatedBeliefBasex (α)\{(→ α, p)}, if mt = 〈x, assert, wi, (→ α, p)〉,
PBQt−1

x (α), otherwise.

PBQ is used by an agent to select the next explicit move in a given wi dialogue. Each
agent has its own PBQ where state beliefs and domain beliefs are both stored. When agent x
opens a wi dialogue with topic α, it updates its PBQ, and at the next move, agent x̂ updates
its PBQ. Within the wi dialogue, the agent retrieves and deletes the first belief in its PBQ
(since PBQ is a First-In-First-Out queue data structure) and uses this belief for its next move.
If the belief is a state belief, the agent makes an assert wi move (see step 3.3.1 in Table 3);
else, if it is a domain belief, the agent makes an open aimove (see step 3.3.2 in Table 3); else
it makes a close wi move (see step 3.2 in Table 3) since the queue is empty.

Example 1 The example comes from a medical practice scenario. There are two agents:
professional agent (PA) simulates a novice physician, and domain agent (DA) simulates a
medical domain expert. PA investigates a patient regarding possible Lewy body dementia.
However it does not have enough knowledge to reach a decision. Therefore, it consults DA
who has more experience diagnosing Lewy body dementia. The belief bases associated with
DA and PA are:

�DA = {(a ∧ b ∧ c → f , p1), (d → ¬ f , p1), (c, 1)} and
�PA = {(a ∧ c → f , p2), (a, 1), (d, 1)}.

p1 and p2 mean probable and possible, respectively, and probable is more credible than
possible. The meaning of the atoms represent the symptoms or the disease that are listed in
Table 2.

If PA makes the move 〈PA, open, wi, f 〉 at t=1, the PBQ for each agent is (also shown
in Fig. 1):

PBQ1
PA( f ) = {(a ∧ c → f , p2)}

PBQ2
DA( f ) = {(a ∧ b ∧ c → f , p1), (d → ¬ f , p1)}

When an agent opens an ai dialogue with the topic (Φ, p), a Query Store (QS) associated
with this topic is created and shared between the agents. Within an ai dialogue, if an agent
needs to make a move, it can consult the QS w.r.t. a specific topic, retrieve the first fact, and
then make an open wi move.
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Table 3 The wi dialogue protocol

1, Agent x starts a wi dialogue Dt
r with the move mr = 〈x, open, wi, α〉 and let t = r .

2, Both agents x and x̂ update their PBQs according to Definition 6.

3, Loop

3.1, Set x ′ = the opposite agent and t= t+1.

3.2, If PBQt
x ′ (α) is empty, mt = 〈x ′, close, wi, α〉. If mt−1 = 〈x, close, wi, α〉, the wi dialogue

closes and goes to 5.

3.3, Else get the first belief (φ, p) in PBQt
x ′ (α) and delete it.

3.3.1, If (φ, p) is a state belief, mt = 〈x ′, assert, wi, (φ, p)〉. The CS of the agent x is updated
according to Definition 8.

3.3.2, Else mt = 〈x ′, open, ai, (φ, p)〉
4, End loop.

5, When the dialogue closes, the outcome of the wi dialogue is calculated according to Algorithm 1 or 2;
and the RS is updated according to Definition 11.

Definition 7 For the current ai dialogue with topic (Φ, p), aQS, denoted by QStΦ , is a queue
with a finite number of literals, such that

QStΦ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{α1, . . . , αn}, if mt = 〈x, open, ai, (α1 ∧ · · · ∧ αn → β, p)〉 ,

QSt−1
Φ − {α} , if (mt = 〈x, open, wi, α〉 or mt = 〈x, assert, ai, (→ α, p)〉)

and α ∈ QSt−1
Φ ,

∅, if (mt = 〈x, assert, ai, (→ ¬α, p)〉 and α ∈ QSt−1
Φ ),

QSt−1
Φ , otherwise.

Both agents share the same QS, which only stores premises. The QS is used by the agents
to select the next explicit move in a given ai dialogue. When an agent makes an open ai
move, the premises of its topic rule are stored in the QS. Within this ai dialogue, if the QS
is empty, the agent makes a close ai move (see step 3.2 in Table 4); otherwise, it makes
an open wi or assert ai move. If the move 〈x, open, wi, αk〉 (see step 3.3.3 in Table 4) or
〈x, assert, ai, (→ αk, p)〉 is made (see step 3.3.1 in Table 4), the QS removes αk . If the
move 〈x, assert, ai, (→ ¬αk, p)〉 is made (see step 3.3.2 in Table 4), the QS resets ∅ directly
since this premise is already proved to be false, and the ai dialogue can then be closed without
consulting the QS anymore. Hence, the QS of a well-formed dialogue is empty in the last
move of the dialogue.

Example 2 Continuing the running example started in Example 1, if DA makes the move
〈DA, open, ai, (Φ1, p1)〉 where Φ1 = (a ∧ b ∧ c → f ), then QS2Φ1 = {a, b, c} (also
shown in Fig. 1 at t=2).

To manage committed data that becomes public to other agents, a Commitment Store (CS)
is used, which is a set of possibilistic literals and initiated as an empty set. To identify the
state of the CS of each agent which participates in a given dialogue Dt

r , CStx denotes the CS
of Agent x , and t denotes the timepoint in the dialogue Dt

r .
The updates of a CS, outcome of an ai dialogue (Outcomeai ), and outcome of a wi

dialogue (Outcomewi ) are obtained recursively. To update CS, we need to get Outcomeai .
To get Outcomeai , we need to calculate Outcomewi . To calculate Outcomewi , we need to
knowCS. The update of theCS of each agent is done as follows (Outcomeai and Outcomewi

will be defined in Definition 9 and Definition 10, respectively).
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Fig. 1 The nested dialogues generated by PA and DA in the running example. The values of PBQ, QS, and RS
in each timepoint are given on the right side where only the updated or newly added information are shown.
Here, Φ1 = (a ∧ b ∧ c → f ), Φ2 = (a ∧ c → f ) and Φ3 = (d → ¬ f )

Definition 8 Let Dt
r be the current dialogue andI be the set of participants. For all x ∈ I ,

CStx =

⎧
⎪⎪⎨

⎪⎪⎩

∅, if t ≤ 1,
CSt−1

x ∪ {(α, p)}, if mt = 〈x, assert, wi, (→ α, p)〉 or
Outcomeai (Dt

r ) = (α, p),
CSt−1

x , otherwise.

The CS of each agent is initiated as an empty set. It is updated whenever the agent
performs an assert wi move to assert a state belief or when the ai dialogue closes and a state
belief is calculated according to Outcomeai, which is defined in Definition 9. An important
consequence of this update is that the information added to the CS is public to the other
agents taking part in the given dialogue.

When an ai dialogue terminates, its outcome is calculated. If all the premises of its topic are
considered to be true (i.e. Outcomewi = 〈T , p〉, Outcomewi is given in Definition 10), the
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Table 4 The ai dialogue protocol

1, Agent x starts an ai dialogue Dt
r with the move mr = 〈x, open, ai, (α1 ∧ · · · ∧ αn → α, p)〉 and let

t = r .

2, The QS is updated according to Definition 7.

3, Loop

3.1, Set x ′ = the opposite agent and t= t+1.

3.2, If QSt (Dt
r ) is empty, mt = 〈x ′, close, ai, (α1 ∧ · · · ∧ αn → α), p)〉. If

mt−1 = 〈x, close, ai, (α1 ∧ · · · ∧ αn → α), p)〉, the ai dialogue closes and goes to 5.
3.3, Else

3.3.1, If Result(αk )
t = T and PL(αk )

t = p′, mt = 〈x ′, assert, ai, (→ αk , p
′)〉(1 ≤ k ≤ n).

3.3.2, Else if (Result(αk )
t = F or Result(αk )

t = U ) and PL(αk )
t = p′,

mt = 〈x ′, assert, ai, (→ ¬αk , p
′)〉(1 ≤ k ≤ n).

3.3.3, Else mt = 〈x ′, open, wi, αk 〉(1 ≤ k ≤ n).

3.3.4, Update QS according to Definition 7.

4, End loop.

5, When the ai dialogue terminates, the outcome of the dialogue is calculated according to Definition 9;
and the CS is updated according to Definition 8.

outcome is a belief constructed with the rule’s conclusion and a necessity value p; otherwise,
the outcome is null.

Definition 9 Let Dt
r be a well-formed ai dialogue and (α1 ∧ · · · ∧ αn → β, p) be its topic.

Outcome of an ai dialogue is defined as follows:

Outcomeai (D
t
r ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(β, p′), if ∀αi (i ∈ {1, . . . , n}), (( Outcomewi (D
ti
ri ) = 〈T , pi 〉

and Topic(Dti
ri ) = αi ) or

m j = 〈x, assert, ai, (→ αi , pi )〉(r < j < t))
and p′ = min(pi , p),

null, Otherwise.

Within a wi dialogue, several arguments defending or attacking the topic α may be gen-
erated. When this wi dialogue terminates, its outcome is calculated. The outcome is a tuple
〈r , p) where r ∈ {T , F,U }. If the defending arguments win, r = T , meaning α is True.
If the attacking arguments win, r = F , meaning α is False. In both cases, p is a necessity
value which can be calculated from the Algorithms 1 or 2. However if the two sides are well
matched, r = U , which means the result is unknown and p is null.

Definition 10 Let Dt
r be a well-formed ai dialogue and α be its topic. Outcome of a wi

dialogue is the outcome of the function Outcomewi (Dt
r ).

Tomeet different users’ requirements,weprovide twoalternative algorithms (Algorithms1
and Algorithms 2) to obtain Outcomewi . The following notations are used in the two algo-
rithms:

Let Λ be a set of possibilistic literals, α be a propositional atom and p ∈ (0, 1],
– Fd(Λ, α) = {(l, p)| (l, p) ∈ Λ and c(l) ≡ α}; Fd denotes all the possibilistic literals

that are the topic α from the set Λ.
– Fa(Λ, α) = {(l, p)| (l, p) ∈ Λ and c(l) ≡ ¬α}; Fa denotes all the possibilistic literals

that are ¬α from Λ.
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– GLB(Λ) = max{ p| (l, p) ∈ Λ}; GLB denotes the greatest lower bound from a
nonempty set Λ.

– Fp(Λ, p) = { (l, p)| (l, p) ∈ Λ}; Fp denotes all the possibilistic literals with a particular
p from Λ.

– Cardinali t y(Λ) = { i | i is the quantity of the possibilistic literals in Λ}; Cardinali t y
retrieves the number of the possibilistic literals in Λ.

The main idea of Algorithm 1 is as follows: (1) classify beliefs from the union of two
CSs into two sets, which are Λd and Λa ; (2) make a copy of the two sets to show all the
arguments in the set to the user when this set wins in the end; (3) retrieve the GLB from each
set and compare these two numbers; (4) the set with larger GLB wins; (5) if they have the
same GLB, the algorithm will count the quantity of beliefs whose possibilistic value equals
the GLB in each set; (6) if they are equal, these beliefs will be removed from each set (this
operation is usually called cut in possibilistic logic), and two new sets are retrieved; (7) the
new sets are compared until one set wins or both become empty.

Algorithm 1 Get Outcomewi (Dt
r )

Require: a well-formed wi dialogue Dt
r with α as its topic

Ensure: 〈r , p〉
1: Set Λd1 = Λd = Fd (CStx ∪ CStx̂ , α) and Λa1 = Λa = Fa(CStx ∪ CStx̂ , α),
2: loop
3: If Λd = ∅ and Λa = ∅, return 〈U , null〉.
4: If Λd �= ∅ and Λa = ∅, return 〈T ,GLB(Λd )〉
5: If Λd = ∅ and Λa �= ∅, return 〈F,GLB(Λa)〉
6: If GLB(Λd ) > GLB(Λa), return 〈T ,GLB(Λd )〉.
7: If GLB(Λd ) < GLB(Λa), return 〈F,GLB(Λa)〉.
8: Set Λdt = Fp(Λd ,GLB(Λd )) and Λat = Fp(Λa ,GLB(Λa)),
9: If Cardinali t y(Λdt ) > Cardinali t y(Λat ), return 〈T ,GLB(Λd )〉.
10: If Cardinali t y(Λdt ) < Cardinali t y(Λat ), return 〈F,GLB(Λa)〉.
11: Set Λd = Λd − Λdt and Λa = Λa − Λat .
12: end loop

The main idea of Algorithm 2 is similar to Algorithm 1. However, it omits the cut and
loop parts (i.e. step 2, 11, and 12 in Algorithm 1 are omitted) so that only the arguments
with the highest weight in both sets are compared. If it cannot make a comparison from these
arguments, 〈U , null〉 will be returned. The motivation of Algorithm 2 is grounded in the
medical domain where clinicians typically evaluate the strongest evidence that supports a
conclusion.

Algorithm 2 Get Outcomewi (Dt
r )

Require: a well-formed wi dialogue Dt
r with α as its topic

Ensure: 〈r , p〉
1: Set Λd = Fd (CStx ∪ CStx̂ , α) and Λa = Fa(CStx ∪ CStx̂ , α),
2: If Λd = ∅ and Λa = ∅, return 〈U , null〉.
3: If Λd �= ∅ and Λa = ∅, return 〈T ,GLB(Λd )〉
4: If Λd = ∅ and Λa �= ∅, return 〈F,GLB(Λa)〉
5: If GLB(Λd ) > GLB(Λa), return 〈T ,GLB(Λd )〉.
6: If GLB(Λd ) < GLB(Λa), return 〈F,GLB(Λa)〉.
7: Set Λdt = Fp(Λd ,GLB(Λd )) and Λat = Fp(Λa ,GLB(Λa)),
8: If Cardinali t y(Λdt ) > Cardinali t y(Λat ), return 〈T ,GLB(Λd )〉.
9: If Cardinali t y(Λdt ) < Cardinali t y(Λat ), return 〈F,GLB(Λa)〉,
10: Else return 〈U , null〉.
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It is common that the same atom or its negation can be used in different rules as a premise.
If the premise has already been proved before (i.e. a wi dialogue with this premise as topic
has already been terminated), the system should not prove it twice. We use Result Store (RS)
to store the intermediate result in order to avoid repetitive work.

Definition 11 A RS is a set of tuples of the form
〈
α, Outcomewi (Dt

r )
〉
where Dt

r is a well-
formed wi dialogue, and α is its topic.

When a wi dialogue opens, the RS is added with a new pair 〈α, 〈U , null〉〉 where α is the
topic of the dialogue. When it closes, 〈U , null〉 part is updated with Outcomewi (Dt

r ).

RSt =
⎧
⎨

⎩

RSt−1 ∪ {〈α, 〈U , null〉〉}, iff mt = 〈x, open, wi, α〉,
RSt−1 ∪ {〈α, 〈r , p〉〉}, iff Topic(Dt

r ) = α and Outcomewi (Dt
r ) = 〈r , p〉,

RSt−1, Otherwise.

The outcome of the wi dialogue with topic α is a tuple 〈r , p〉. r and p are returned by the
functions Result(α) and PL(α), respectively, which are defined as follows:

Result(α)t =
{
r , iff 〈α, 〈r , p〉〉 ∈ RSt ,
null, Otherwise.

PL(α)t =
{
p, iff 〈α, 〈r , p〉〉 ∈ RSt ,
null, Otherwise.

When we get Result (α)t , Result(¬α)t can also be inferred as follows:

Result(¬α)t =

⎧
⎪⎪⎨

⎪⎪⎩

T , if Result(α)t = F,

F, if Result(α)t = T ,

U , if Result(α)t = U ,

null, Otherwise.

If the wi dialogue with topic α has been opened, Result(α)t and PL(α)t should be U
and null, respectively. This, however, is different from the case when the dialogue has not
been opened at all. In the latter case, Result(α)t and PL(α)t should both return null. In
fact, when the wi dialogue opens, 〈α, 〈U , null〉〉 is added to the RS as an indicator so we can
distinguish if the dialogue has opened or not.

When Result(α)t isU , it can be further divided into two cases. The first is more common,
where the dialogue has already been terminated before time t and the result is U (see step 3
in Algorithm 1). The second is special, where the dialogue remains open until t . Here, in case
an ai dialogue with topic (α → β) exists inside the wi dialogue with topic α, then an endless
loop may occur if the agent now opens a wi dialogue with topic α inside this ai dialogue.
To address this problem, we develop a fast end strategy so that the agent makes an assert ai
move for both cases.

Definition 12 The fast end strategy for an agent x participating in an ai dialogue is that
the ai dialogue terminates directly if one of the premises of the ai dialogue’s topic is a wi
dialogue’s topic which has not been closed yet. Specifically, Result(α) returns U when the
wi dialogue with topic α is not terminated. Then, the agents will do a close ai move in turn
in the following two steps and, the QS regarding this ai dialogue is reset to ∅.

In agent dialogue frameworks, protocols are usually presented to determine the agents’
next moves [2,15,26,36]. In this paper, we regard a protocol as a function that, given a
particular type of dialogue, a specific move is returned according to its belief base and the
previous moves they have already made. This is somewhat different with respect to the
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approaches described in [2,26], where their protocols only return a set of legal moves. To
select exactly one move, they need additional computation. However, using our protocols,
exactly one move can be selected at each time point.

If the current dialogue is a wi dialogue, the wi dialogue protocol (presented in Table 3)
should be followed by each agent to determine its next move. When Agent x opens a wi
dialogue at time r (i.e. mr = 〈x, open, wi, α〉), Agent x updates its PBQ according to
Definition 6. At the next time (i.e. r + 1), x̂ updates its PBQ. Then, within this wi dialogue,
an agent makes its next move according to its PBQ. If PBQ is empty, the agent makes a close
wi move (see step 3.2 in Table 3); else if the first element in PBQ is a state belief, the agent
asserts this belief (see step 3.3.1 in Table 3); else the agent opens an ai dialogue since it is a
domain belief (see step 3.3.2 in Table 3).

Similar to the wi dialogue, if the current dialogue is an ai dialogue, the ai dialogue protocol
(presented in Table 4) should be followed by each agent. When Agent x opens an ai dialogue
at time r (i.e. mr = 〈x, open, ai, (α1 ∧ · · · ∧ αn → α, p)), the QS is updated according to
Definition 7. Within this ai dialogue, the agents make the next move according to the QS and
the RS. If QS is empty, the agent makes a close ai move (see step 3.2 in Table 4); else the
next move is determined by the RS. If the premise αk is not in the QS (i.e. the wi dialogue
with topic αk has never been opened yet), the agent makes an open wi dialogue (see step
3.3.3 in Table 4); else, it makes an assert ai move. However, there are two cases about the
assert ai move. If Result(αk) = T , 〈x, assert, (→ αk, p′) is performed (see step 3.3.1 in
Table 4) and the ai dialogue can continue; else 〈x, assert, (→ ¬αk, p′) is performed (see
step 3.3.2 in Table 4) and the ai dialogue will be closed in the following two steps since the
agents cannot prove the current premise.

Example 3 Continuing the running example, the whole dialogue generated by PA and DA
are shown in Fig. 1.

In this example, eight dialogues are generated. Inside the top wi dialogue D31
1 , there are

three ai dialogues: D12
2 , D20

13 , and D29
22. Inside each ai dialogue, some wi dialogues are also

generated. To determine the outcome of the outer layer dialogue, the inner layer should be
determined first.

To diagnose whether the patient has f or not, PA opens the wi dialogue with topic f .
Meanwhile, 〈 f , 〈U , null〉〉 is added to the RS. Then, PA and DA both update their PBQs. DA
has two domain beliefs in its PBQ and opens an ai dialogue with the first one as its topic. The
premises of the topic is added to the QS. Next, PA opens another wi dialogue with the first
literal a in the QS as its topic. Meanwhile, 〈a, 〈U , null〉〉 is added to RS. DA has no beliefs
regarding a. Therefore, it tries to close the dialogue. However, since PA has a state belief,
it asserts (→ a, 1), and the dialogue is still open. (a, 1) is added to CSPA. When the wi
dialogue successfully terminates at t = 7, its outcome is calculated according to Algorithm 1
or 2. Since there is only one argument 〈((→ a, 1)), (a, 1)〉 supporting the topic a, we have
Outcomewi (D7

3) = 〈T , 1〉. Meanwhile, 〈a, 〈T , 1〉〉 is updated to RS.
Outcomewi (D10

8 ) = 〈U , null〉 is obtained since no beliefs related to b are found in both
belief bases. Therefore, Outcomeai (D12

2 ) = null since one of the topic’s premises cannot
be proven to be true.

At t = 13, PA opens the ai dialogue with topic (a ∧ c → f , p2). In the next step,
DA makes the assert ai move 〈DA, assert, ai, (→ a, 1)〉 instead of opening a wi dia-
logue with a because the wi dialogue with a as the topic has already opened before and
Result13(a) = T . Similarly, (c, 1) is added to CSDA at t = 16. Outcomewi (D18

15) = 〈T , 1〉
and Outcomeai (D20

13) = ( f , p2) are reached, and ( f , p2) is added to CSDA. The argument
〈((→ a, 1), (→ c, 1), (a ∧ c → f , p2)), ( f , p2)〉 is built.
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Fig. 2 Architecture of the whole system. The modules within the red frame are physically located on the client
side

Outcomewi (D27
23) = 〈T , 1〉 and Outcomeai (D29

22) = (¬ f , p1) are achieved and ( f , p1)
is added to CSPA. The argument 〈((→ d, 1), (d → ¬ f , p1)), (¬ f , p1)〉 is built. This
argument conflicts with the previous argument and p1 > p2, thus Outcomewi (D31

1 ) =
〈F, p1〉 is reached and 〈 f , 〈F, p1〉〉 is updated to the RS.

4 Implementation

The argumentation-based approach presented in Sects. 2 and 3 has been implemented and
integrated into the application DMSS-W (Dementia Diagnosis and Management Support
System—Web version) [22], which is a clinical decision-support system for diagnosing
dementia diseases. DMSS-W utilizes data from the ACKTUS platform (Activity-Centered
Modeling of Knowledge and Interaction Tailored to Users) [23,24], which is a web-based
tool for modelingmedical knowledge into rules and claims in natural language.We used Java
Agent Development Framework (JADE) to develop the MAS and Java language platform
to integrate it into DMSS-W as one of its inference engines. In the MAS, DA and PA are
defined as two agents.

In this section, we will explain how the whole system works, where the knowledge comes
from, and how it is mapped as facts and rules and used by DA and PA. First, the architecture
of the whole system will be given.

4.1 Architecture

The whole system can be divided into four layers: interface layer, web service layer, storage
layer, and inference layer as depicted in Fig. 2. It includes two systems: ACKTUS and
DMSS-W; one web service provider; two ontology repositories: domain repository and actor
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Fig. 3 Example of IOs and the scales in the interface

repository; one kind of relational database patientCase; and two kinds of agents:DA and PA.
There are two kinds of users: domain experts and the regular professionals in this architecture.
We will detail each of them in the following paragraphs.

Domain experts in a medical domain model the evidence-based domain knowledge into
formal machine-interpretable representations using ACKTUS. The knowledge is stored in
the domain repository, which is used by the DA. The domain repository is located on the
same server as ACKTUS and DMSS-W. Consequently, DA has access to a large set of rules
based upon clinical guidelines,which are consensus documents involving a large international
community of domain experts [12,43].

A regular professional can also formulate his or her knowledge using the same structures;
however, since the knowledge is not official and evidence-based, it is stored in the actor
repository, which is used by PA. PA can also retrieve factual data (state beliefs, symptoms
observed in the patient) from the PatientCaseDB. These factual data are inputted by the
user through DMSS-W user interface, transferred via the web service, and stored in the
PatientCaseDB.

PA initiates a dialogue, and DA responds. Subsequently, they generate a dialogue with
nested sub-dialogues using the approach presented in Sect. 3. When the top dialogue termi-
nates, a result about a hypothesis is reached. The dialogue with all the moves and the result
are then presented in the DMSS-W user interface to the end user (see Fig. 5). The diagnostic
result is achieved.

4.2 Construction and design of knowledge bases

Below we show how to interpret the knowledge as beliefs and use them in the reasoning
process.

4.2.1 State beliefs

The domain experts model interaction objects (IOs) through ACKTUS and store them in
the domain repository. The domain repository is used for elaborated knowledge such as
symptom manifestations, syndromes and diseases, and the evaluated observations obtained
from laboratory examinations. Each IO contains one or more scales with different scale
values. Figure 3 is a screenshot of DMSS-W showing two IOs (Judgement and Orientation
to time) with their scale values. The end user answers the questions posted in the user interface
by clicking the scale values. IOs with inputted scale values are used as state beliefs in the
reasoning on a topic.
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The scale can be simple with two or three possible values. For this type, if the scale
value is a certain knowledge (e.g., normal, affected), we use an atom, such as α, to represent
affected and its opposite ¬α to represent normal; also, we assign the possibilistic value as
1. If the knowledge is uncertain, we map this data to two opposite possibilistic beliefs with
a necessity value less than 0.5 (the assignment of it is the user’s task). We give a concrete
example to demonstrate our method. The IO Orientation to time in Fig. 3 has a simple scale
type with three values (normal/unknown/affected). We use OOT to represent “Orientation
to time-affected” and ¬OOT to represent “Orientation to time-normal”. Therefore from the
interface,

1. If “Orientation to time-normal” is clicked, the state belief (→ ¬OOT , 1) is generated;
2. If “Orientation to time-unknown” is clicked, both (→ OOT , p) and (→ ¬OOT , p)

are generated, such that (0 < p < 0.5);
3. If “Orientation to time-affected” is clicked, (→ OOT , 1) is generated.

The presence of a symptom can, in some cases, lead to the possibility to choose an
additional scale value, such as the severity level. Such successor values are treated as follows.
We also use a concrete example to show our method. The IO Judgement in Fig. 3 contains
a reliability scale [normal, unknown, affected], and the scale value “affected” triggers the
severity scale [not specified, mild, Significant]. In this example, the atom Judge is used for
representing “Judgement-affected” and ¬Judge as “Judgements-normal”. Therefore:

1. If “Judgement-normal” is clicked, (→ ¬Judge, 1) is generated;
2. If “Judgement-unknown” is clicked, both (→ Judge, p) and (→ ¬Judge, p) are gen-

erated, such that (0 < p < 0.5);
3. If “Judgement-affected” is clicked,

(a) If “not specified” is chosen, both (→ Judge, 1) and (→ Judge_n, p) are generated,
such that (0 < p < 0.5);

(b) If “mild” is chosen, both (→ Judge, 1) and (→ Judge_m, 1) are generated;
(c) If “significant” is chosen, both (→ Judge, 1) and (→ Judge_s, 1) are generated.

Except these, there are additional domain beliefs that are applied during the inference pro-
cedure.

1. If we know “affected-not specified” is true, we can infer the following: (Judge_n →
Judge, 1), (Judge_n → ¬Judge_m, p) and (Judge_n → ¬Judge_s, p), such that
(0 < p < 0.5);

2. If we know “affected-mild” is true, we can infer the following rules: (Judge_m →
Judge, 1), (Judge_m → ¬Judge_s, 1) and (Judge_m → ¬Judge_n, 1);

3. If we know “affected-significant” is true, we can infer (Judge_s → Judge, 1),
(Judge_s → ¬Judge_n, 1) and (Judge_s → ¬Judge_m, 1);

4. If we know “normal” is true, we can infer: (¬Judge → ¬Judge_n, 1), (¬Judge →
¬Judge_m, 1) and (¬Judge → ¬Judge_s, 1).

4.2.2 Domain beliefs

An IO associated with one of its scale values composes a premise or a conclusion. Based
on the premises and conclusion, a rule can be created. The domain expert who models the
knowledge in ACKTUS selects a scale for a certain conclusion that mirrors the underlying
medical guideline, and this scale is used for extracting the rule’s possibilistic value. Typically,
this scale contains the values present, absent or unknown, where present represents pathology,
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and absent represents a normal condition. The values of a scale can also represent a broader
range of possibilities, such as [excluded, unlikely, possible−, possible, possible+, probable−,
probable, probable+]. The rules are assignedwith their possibilistic values based on the scale
and values the domain expert applies to symptoms and diseases. In this way, we can map
the knowledge base into the logic framework and use the logic-based method to conduct a
reasoning process.

The following is an example of the construction of a domain belief. The knowledge
base contains a structure with the premise “Episodic memory is normal” and the conclusion
“Alzheimer’s disease is excluded”. This information can be formalised as a domain belief
(¬α → ¬β, excluded), where ¬α is the premise, ¬β is the conclusion and excluded is the
possibilistic value of the belief.

4.2.3 Arguments

An argument is constructed based on a set of beliefs to deduct a conclusion. Its p is cal-
culated based on the beliefs forming the argument. We continue the previous example.
If Episodic memory is normal is proved to be true, an argument can be formalized as
〈((→ ¬α, 1), (¬α → ¬β, excluded)), (¬β, excluded)〉.

Since the data in the knowledge bases can be uncertain and inconsistent, conflicting
arguments could be deducted. Our strategy to solve the conflict is based on Algorithm 1 or
2, depending on the user’s preference.

5 Dealing with uncertain and inconsistent data via an inquiry dialogue

In this section, we show one scenario of how the MAS is integrated into the DMSS-W
application and demonstrate how it works.

A physician diagnoses a potential dementia patient. The physician uses different methods
(e.g., observation, asking the patient or the relatives, laboratory examination) to collect infor-
mation about the patient’s condition and inputs the information into DMSS-W. A part of the
system interface is shown in Fig. 4. The symptoms used in this scenario are the following:

– Status shows mild executive dysfunction (the red button in the upper right corner in
Fig. 4). Based on this, information (→ a, 1) and (→ a_m, 1) are retrieved.

– Status shows mild episodic memory dysfunction (the red button in the lower right corner
in Fig. 4). Based on this, (→ b, 1) and (→ b_m, 1) are retrieved.

– Heteroanamnesis shows mild memory dysfunction. Based on this, (→ c, 1) and (→
c_m, 1) are retrieved.

– Heteroanamnesis shows mild executive dysfunction. Based on this, (→ d, 1) and (→
d_m, 1) are retrieved.

– Proven no disability to perform self care. Based on this, (→ ¬e, 1) is retrieved.

The symptoms are stored in the PatientCaseDB and used as state beliefs by the PA in the
reasoning process. The hypothesis mild cognitive impairment (MCI) is present is the topic
that the physician selects for the dialogue between PA and DA.

The DA, representing an expert, has a large set of domain beliefs in its belief base, which
are related to the topic of the dialogue and retrieved from the domain repository. It should be
noted that these domain beliefs are retrieved from different, sometimes conflicting sources
(in this case two different guidelines for diagnosis). A subset of domain beliefs are applied
in our examples for readability purposes. We apply five domain beliefs that are associated to
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Fig. 4 Interface of DMSS-W

two different conflicting diagnostic criteria for MCI. These domain beliefs have a conclusion
that leads to a hypothesis about MCI, as listed below. The DA has no state beliefs about the
patient in its belief base since it does not have the management responsibility for patients like
the PA has. Although, in our practice, DA only has domain beliefs; we note that the theory
presented in Sect. 3 does not have such a restriction on the agents.

All of the first three domain beliefs’ conclusions are MCI is present which support the
hypothesis. Both of the last two domain beliefs’ conclusions areMCI is absent which attack
the hypothesis. Some domain beliefs in this scenario are listed here.

– DBelief1: (¬ f ∧ g ∧ ¬e ∧ ¬a → MCI , 1), where the premises are:

– No state of dementia. (¬ f )
– Cognitive symptoms are present. (g)
– Proven no disability to perform self care. (¬e)
– Status shows no executive dysfunction. (¬a)

– DBelief2: (b_m ∧ ¬a → MCI , 1), where the premises are:

– Status shows mild episodic memory dysfunction. (b_m)
– Status shows no executive dysfunction. (¬a)

– DBelief3: (¬ f ∧ g ∧ a_m ∧ ¬e → MCI , 1), where the premises are:
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– No state of dementia. (¬ f )
– Cognitive symptoms are present. (g)
– Status shows mild executive dysfunction. (a_m)
– Proven no disability to perform self care. (¬e)

– DBelief4: (a_m → ¬MCI , 1), where the premise is:

– Status shows mild executive dysfunction. (a_m)

– DBelief5: (a_s → ¬MCI , 1), where the premise is:

– Status shows significant executive dysfunction. (a_s)

The procedure of the dialogue is as follows. PA initiates the dialogue. It makes the move
〈PA, open, wi, MCI 〉. Meanwhile, it checks its belief base and finds that there is no belief
related to the topic. Then, DA checks its belief base and finds five domain beliefs relevant to
MCI. It stores them to PBQ2

DA. Next, it retrieves and deletes (polls)DBelief1 from PBQ2
DA

and makes the move 〈DA, open, ai, (¬ f ∧ g ∧ ¬e ∧ ¬a → MCI , 1)〉. At the same time,
DA adds all the premises of DBelief1 to the QS. Next, it is PA’s turn again. It polls the first
premise no state of dementia (¬ f ) from QS and then checks the RS. Since RS is now empty,
PA makes the move 〈PA, open, wi,¬ f 〉. Meanwhile, it updates its PBQ according to its
belief base. In this example, (¬ f , 1) is proved.

When the wi dialogue with the topic ¬ f closes, the result 〈¬ f , 〈T , 1〉〉 is reached and
stored in RS. Later, when needed, two agents do not need to check this literal again; instead,
they just retrieve it from RS and reuse it. For example,DBelief3 also has premise ¬ f . When
DA makes the move 〈DA, open, ai, (¬ f ∧ g ∧ a_m ∧ ¬e → MCI , 1)〉 (move 132 in Fig.
5), the next move for PA to make is 〈PA, assert, ai, (→ ¬ f , 1)〉, claiming that f is false
instead of making an open wi move.

Then, two agents open another wi dialogue with the topic cognitive symptoms are present
(g). In this example, it can also be proved to be true. The third premise of DBelie f 1 proven
no disability to perform self care (¬e) can be proved also since PA has a symptom (the last
state belief of PA) to show this, and there is no other beliefs to attack it in this example.

Two agents then open the fourth wi dialogue with the last premise Status shown no
executive dysfunction (¬a) as the topic. This premise is proved to be false since its opposite
Status shown mild executive dysfunction is proved to be true (a and a_m are true); therefore,
the wi dialogue’s outcome is 〈F, null〉. Until now, the ai dialogue with topic DBelie f 1 is
closed and its outcome is null since ¬a is f alse.

From previous explanation, we can see four wi dialogues have been generated and nested
within the ai dialogue based on DBelief1 since it has four premises. However if the order of
its premises is changed, the amount of wi dialogues can be different. For example, if the last
premise¬a is the first one to be proven, there will be only one wi dialogue (with this premise
as its topic). The reason is its result is null, so the agents need not check other premises.

Since DA has four more domain beliefs related toMCI, it will open the other ai dialogues
in a sequence. When all five domain beliefs are checked, the wi dialogue with MCI as its
topic is closed. A total of 237 moves are made by the two agents, which can be seen in the
screenshot in Fig. 5. The timepoints in Fig. 5 are not consecutive because the sub-dialogue
are hidden, which can be expanded by clicking the small triangles.

In this scenario, there are two conflicting arguments generated due to the two conflicting
guidelines, which can be seen in Fig. 6. In this case, the outcome of the dialogue is 〈U , null〉
since the two arguments are equal in weight.
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Fig. 5 Example of moves in the dialogue about the presence of MCI

Fig. 6 Conflicting arguments generated by the two agents

6 Related work

MASs are widely studied in a variety of fields such as task allocation [16], online trading [37],
disaster response [9], and modeling social structures [39]. There are some works related to
MASs in the healthcare domain, such as inmedical datamanagement [41], patient scheduling
[25], and remote care (e.g., for senior citizens) [5,10,17,40]. There are also some works on
decision-support applications in MASs to help physicians diagnose patients [11,38]. How-
ever, there are few works on how agents communicate and make decisions in collaboration
in a transparent manner for the purpose of educating medical professionals.

The authors in [11] present a decision-support system for diagnosing brain tumors and
predicting the progress. In their system, there are several medical centres where each centre
has several agents (e.g., a classifier agent, database agent, preprocessing agent) contributing
to different roles. The classifier agent aims to provide tumor classifications based on its case
data to support the decision-making process when receiving a request to diagnose a new
patient from another centre. However, this classification process is only based on its local
database, which means a classifier agent does not interact with other classifier agents to make
the decision. As the authors mentioned in [11], the accuracy of the classifiers depends heavily
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on the volume of cases. Therefore, the result is less accurate when it is only based on the
case data in its local database than when it uses the data in all the classifier agents. In our
system, the agents make a decision based on the combination of their belief bases, and they
provide transparent reasons for the decision which are comprehensible to the clinician.

The authors in [38] present the architecture of a healthcare intelligent assistant using
various existing organizational knowledge to solve medical cases. They use grid technology
and do not need to consider the underlying details of each node, such as resourcemanagement,
security, and others. In [18], a generic computational model is proposed to implement the
development of interoperable intelligent software agents for medical applications. None of
these approaches provide details about how agents interact to collaborativelymake a decision.

Although the approaches presented in [11,38] are related to decision-support systems
using case-base reasoning in MASs, the inference procedure is still within one agent. The
reasoner agent receives a new case from the sender agent, infers with its database to match
the received case and then forwards the result to the sender or a third agent. This approach
is more like standard programs that receive the input and return the output. From a software
development perspective, communication between agents in these systems are simpler than
in our system. In our system, neither of the agents can execute the reasoning process alone
since a single agent does not have enough knowledge to do so. The data needed for reasoning
depends on all the agents. Before the dialogue, no agent has explicit requirement to get all
the necessary data from another agent. Only when executing does an agent asks/asserts new
knowledge related to the current topic, its local knowledge, and the retrieved knowledge from
the other agent. Therefore, we cannot model this system with the standard approach using
inputs and outputs.

MASs are still mostly studied in academia and rarely widely deployed in the practi-
cal medical domain [14]. Our framework solves the problem of the necessary knowledge
being located in a distributed environment, which opens the possibility to provide a generic,
consensus-based domain expert agent (DA) that can support physicians in reasoning about a
particular patient case, regardless of the physical location, while keeping the patient anony-
mous to theDA to protect sensitive information. The solution is implemented for experimental
purposes in an existing medical application. We anticipate it could be widely used in the near
future since the hypothesis-based dialogue complements the diagnostic reasoning support
that is currently implemented in the system. However, user studies need to be conducted in
clinical practice among users with different levels of knowledge and skills.

Our architecture allows users to store patient data in their local databases/repositories as
well as share data andmake decisions togetherwith the latestDAknowledge.DA’s knowledge
(mainly represented as rules in our application) is dynamically increased. Therefore, it is
not a good idea to store this knowledge in the client’s local repository to make decisions
locally.

We should note that although DA has rules and no facts in our application, our inquiry
dialogues presented in Sects. 2 and 3 can be used when both agents have both facts and rules,
for example, when the two agents represent different complementary disciplines in a team.

From a theoretical perspective, to the best of our knowledge, there are only a few works
on generating inquiry dialogues apart from [2]. Authors in [33] define locutions (similar as
moves in our system) and attitudes. Locutions describe which legal moves can be made at a
specific point and how to update the commitment store after the move. Attitudes control the
assertion and acceptance of propositions. It also gives a precise notion of the outcome of the
dialogue. Similar to the approach presented by Parsons et al. [33], McBurney and Parsons
[27] define utterance rules to generate legal moves. They also define a rule for preclude-
infinite regression by malevolent participants so that the same move may only be executed
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once by only one of the participants. However, neither of these two approaches provide a
strategy for generating inquiry dialogues.

Fan and Toni propose a generic dialogue model that is not tailored to any particular
dialogue type [7]. Both their approach and ours have some similarities, such as providing
legal-move and outcome functions and agents can jointly construct arguments and play both
roles (defend vs. attack). However their system is based on assumption-based argumentation
(ABA) framework. To use it in real applications, a specific kind of dialogue and a specific
knowledge representation language should be considered before turn it to ground. However,
to our knowledge, it has not been implemented in a real application.

Argumentation is very useful in dealing with conflicts, as evidenced by recent research
in healthcare. Chalaguine et al. [3] use argumentation to change patients’ behavior. They
propose fourmain dimensions to categorize the arguments in their domainmodel: ontological,
functional, context, and topic types.Noor et al. [32] extract arguments frompatient experience
expressed on the social web to assess a particular drug. They formalise ten classification rules
to sort the arguments, evaluate the arguments, and compare with user ratings of the drug.
Unlike these works which obtained arguments directly from practical domains, we let the
agents make dialogues to generate arguments since the beliefs are distributed in different
places.

7 Conclusions and future work

In domains such as the medical domain, knowledge bases sometimes cannot be combined
due to various constrictions, and the knowledge applied in reasoning and decision making
is often uncertain and inconsistent. To deal with these complex medical situations, inquiry
dialogues in MASs are pursued, which simulate reality well. However, this field is relatively
unexplored, and the very limited number of existing pioneer research studies, (e.g., [2]) are
theoretically oriented and not trivial to implement.

The presented research contributes to the topic at least from three aspects. First, the
theoretical framework of an earlier approach ismodified andmademore practical and feasible
for real applications. For example, a wi dialogue is introduced not only in the top level but also
in each sublevel of reasoning. Thus, the structure is more confined, allowing the reasoning
to be performed in well-defined steps. Each problem is isolated and solved one-by-one,
avoiding unnecessary complexity and uncertainty. This clearer and more efficient system is
also very suitable for educational purposes. Second, possibilistic logic is used for capturing
uncertain information, and an argumentation framework is used for dealing with inconsistent
knowledge in reasoning about a diagnosis. An approach for generating two kinds of inquiry
dialogues in a MAS is presented. Possibilistic logic is identified as a key factor for achieving
the goal of managing uncertain information. Other methods for dealing with fuzzy situations
(e.g., the probability-based approach) present challenges due to the lack of statistical data,
which is frequently the case in the medical domain, when treating individual cases. Last and
most importantly, the new methods and theories are facilitating the realization of inquiry
dialogue systems. By implementing the results into DMSS-W, the decision-support system
developed for the dementia domain, it is demonstrated how the uncertain and inconsistent
data is properly dealt with in the practice of dementia diagnosis. One scenario is presented
and discussed in detail. These kinds of real applications are particularly rare in earlier work
in the field; however, it is necessary to demonstrate the strong potential of applying CDSS
in real medical practice and show how uncertainty can be managed using possibilistic logic
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and argumentation. The study develops the solution a step further, when compared to earlier
work [44], in the application of possibilistic logic and argumentation, providing a systematic
and comprehensive solution that can be implemented.

In future work, a graphical displaywill be used instead of the current text display (e.g., Fig.
5), so that the system appears more intuitive and user friendly. This way, the user can more
easily get an overview of the dialogues about the related diagnostic reasoning and decision-
making. This is important formedical educational purposes. Also, the consideration of nested
formulas in the conclusion of an argument [30] is an interesting topic to explore in our future
work. For instance, by considering disjunctive operators in the head of a rule, one can express
comorbidity, which is the presence of one or more diseases.

Finally, the MAS will be evaluated in clinical practice. The log data will be analyzed to
detect reasoning patterns of the users. In this way, the educational function of the system
can be verified by observing how novice users develop their reasoning and decision-making
skills while using the system.
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