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Abstract We study the problem of locating a single facility on a real line based on the reports
of self-interested agents, when agents have double-peaked preferences, with the peaks being
on opposite sides of their locations. We observe that double-peaked preferences capture real-
life scenarios and thus complement the well-studied notion of single-peaked preferences. As
a motivating example, assume that the government plans to build a primary school along a
street; an agent with single-peaked preferences would prefer having the school built exactly
next to her house.However,while thatwouldmake it very easy for her children to go to school,
it would also introduce several problems, such as noise or parking congestion in the morning.
A 5-min walking distance would be sufficiently far for such problems to no longer be much
of a factor and at the same time sufficiently close for the school to be easily accessible by the
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children on foot. There are two positions (symmetrically) in each direction and those would
be the agent’s two peaks of her double-peaked preference.Motivated by natural scenarios like
the one described above, we mainly focus on the case where peaks are equidistant from the
agents’ locations and discuss how our results extend to more general settings. We show that
most of the results for single-peaked preferences do not directly apply to this setting, which
makes the problemmore challenging. As our main contribution, we present a simple truthful-
in-expectation mechanism that achieves an approximation ratio of 1+b/c for both the social
and themaximumcost,where b is the distance of the agent from the peak and c is theminimum
cost of an agent. For the latter case, we provide a 3/2 lower bound on the approximation ratio
of any truthful-in-expectation mechanism. We also study deterministic mechanisms under
some natural conditions, proving lower bounds and approximation guarantees. We prove
that among a large class of reasonable strategyproof mechanisms, there is no deterministic
mechanism that outperforms our truthful-in-expectation mechanism. In order to obtain this
result, we first characterize mechanisms for two agents that satisfy two simple properties;
we use the same characterization to prove that no mechanism in this class can be group-
strategyproof.

Keywords Facility location · Strategyproofness ·Double-peaked preferences ·Approximate
mechanism design without money · Social cost · Maximum cost

1 Introduction

We study the problem of locating a single facility on a real line, based on the input provided
by selfish agents who wish to minimize their costs. Each agent has a location xi ∈ R which
is her private information and is asked to report it to some central authority, which then
decides where to locate the facility, aiming to optimize some function of the agents’ reported
locations. This model corresponds to problems such as finding the ideal location for building
a primary school or a bus stop along a street, so that the total distance of all agents’ houses
from the location is minimized, or so that no agent’s house will lie too far away from that
location.

In our setting, we assume that agents have double-peaked preferences, i.e. we assume
that each agent i has two unique most preferred points or peaks, located at some distances
from xi on opposite sides, where her cost is minimum. Traditionally, preferences in facility
location problems are assumed to be single-peaked, i.e. each agent’s location is her most
preferred point on the line and furthermore the cost is assumed to be linear, i.e. it increases
linearly (at the same rate) to the left and the right of that peak. Sometimes however, single-
peaked preferences do not model real-life scenarios accurately. Take for instance the example
mentioned above, where the government plans to build a primary school on a street. An agent
with single-peaked preferences would definitely want the school built next to her house, so
that she wouldn’t have to drive her children there everyday. However, it is quite possible
that she is also not very keen on the inevitable drawbacks of having a primary school next
to her house either, like unpleasant noise or trouble with parking. On the other hand, a 5-
min walking distance is sufficiently far for those problems to no longer be a factor but also
sufficiently close for her children to be able to walk to school. There are two such positions,
(symmetrically) in each direction, and those would be her two peaks.

Our primary objective is to explore double-peaked preferences in facility location settings
similar to the ones studied extensively for single-peaked preferences throughout the years
[1,11,14,18,20,23,26,27,30,32]. For that reason, following the literature we assume that
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the cost functions are the same for all agents and that the cost increases linearly, at the same
rate, as the output moves away from the peaks. The straightforward extension to the double-
peaked case is piecewise-linear cost functions, with the same slope in all intervals, which
gives rise to the natural model of symmetric agents, i.e. the peaks are equidistant from the
agent’s location. Note that this symmetry is completely analogous to the single-peaked case
(for facility location problems, e.g. see [30]), where agents have exactly the same cost on
two points equidistant from their peaks. Our lower bounds and impossibility results naturally
extend to non-symmetric settings, but some of our mechanisms do not. We discuss those
extensions in Sect. 6.

Our model also applies to more general spaces, beyond the real line. One can imagine for
instance that the goal is to build a facility on the plane where for the same reasons, agents
would like the facility to be built at some distance from their location, in every direction. This
translates to an agent having infinitely many peaks, located on a circle centered around her
location. In that case of course, we would no longer refer to agents’ preferences as double-
peaked but the underyling idea is similar to the one presented in this paper. We do not explore
such extensions here; we leave that for future work.

Agents are self-interested entities that wish to minimize their costs. We are interested in
mechanisms that ensure that agents are not incentivized to report anything but their actual
locations, namely strategyproof mechanisms. We are also interested in group strategyproof
mechanisms, i.e. mechanisms that are resistant tomanipulation by coalitions of agents.More-
over, we want those mechanisms to achieve some good performance guarantees, with respect
to our goals. If our objective is to minimize the sum of the agent’s costs, known as the social
cost, then we are looking for strategyproof mechanisms that achieve a social cost as close as
possible to that of the optimal mechanism, which need not be strategyproof. The prominent
measure of performance for mechanisms in computer science literature is the approximation
ratio [2,6,12,24], i.e. the worst possible ratio of the social cost achieved by the mechanism
over the minimum social cost over all instances of the problem. The same holds if our objec-
tive is to minimize the maximum cost of any agent. In the case of randomized mechanisms,
i.e. mechanisms that output a probability distribution over points in R, instead of a single
point, as a weaker strategyproofness constraint, we require truthfulness-in-expectation, i.e.
a guarantee that no agent can reduce her expected cost from misreporting.

1.1 Our results

Our main contribution is a truthful-in-expectation mechanism (M1) that achieves an approx-
imation ratio of 1+b/c for the social cost and max{1+b/c, 2} for the maximum cost, where
b is the distance between an agent’s location and her peak and c is her minimum cost. We
also prove that no truthful-in-expectation mechanism can do better than a 3/2 approximation
for the maximum cost proving that at least for the natural special case where b = c, Mecha-
nism M1 is not far from the best possible. For deterministic mechanisms, we prove that no
mechanism in a wide natural class of strategyproof mechanisms can achieve an approxima-
tion ratio better than 1 + b/c for the social cost and 1 + 2b/c for the maximum cost and
hence cannot outperform mechanism M1. To prove this, we first characterize the class of
strategyproof, anonymous and position invariant mechanisms for two agents, showing that it
consists only of a single Mechanism (M2). Intuitively, anonymity requires that all agents are
handled equally (irrespectively of their names) by the mechanism while position invariance
essentially requires that if we shift an instance by some amount, the location of the facility
should be shifted by the same amount as well. This is a quite natural condition and can be
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Table 1 Summary of our results

Double-peaked Single-peaked

Upper Lower Upper Lower

Social cost

Deterministic n − 1 1 + b
c 1 1

Randomized 1 + b
c – 1 1

Maximum cost

Deterministic∗ 1 + 2b
c 1 + 2b

c 2 2

Randomized 1 + b
c 3/2 3/2 3/2

The lower bounds for deterministic mechanisms hold for anonymous and position invariant strategyproof
mechanisms
For (∗), an additional lower bound of 2 holds under no conditions
Fields indicated by (−) are not proven yet. For the social cost, the deterministic upper bound is actually
max{n − 1, 1 + 2b/c}
For themaximumcost, the approximation ratios are actuallymax{1+2b/c, 3} andmax{1+b/c, 2} respectively
The results for single-peaked preferences are also noted for comparison

interpreted as a guarantee that the facility will be located relatively to the reports of the agents
and independently of the underlying network (e.g. the street).

We prove that the approximation ratio of Mechanism M2 for the social cost is max{n −
1, 1 + 2b/c}, where n is the number of agents and conjecture that no deterministic strate-
gyproof mechanism can achieve an o(n) approximation ratio in this case. For the maximum
cost, the ratio of Mechanism M2 is max{1 + 2b/c, 3} which means that the mechanism is
actually the best in the natural class of anonymous and position invariantmechanisms. For any
deterministic strategyproof mechanism, we prove a lower bound of 2 on the approximation
ratio, proving that at least for the natural case of b = c, Mechanism M2 is also not far from
optimal. Finally, we prove an impossibility result; there is no (strongly) group strategyproof,
anonymous and position invariant mechanism for the problem. This is in constrast with the
single-peaked preference setting, where there is a large class of (strongly) group strategyproof
mechanisms that satisfy those properties. Our results are summarized in Table 1.

1.2 Related work on facility location

The strategic version of the facility location problem in computer science was first studied
by Proccacia and Tennenholtz [30] in a seminal paper, where the authors coined the term
approximate mechanism design without money to study problems where, in the absence of
monetary terms, strategyproof mechanisms can only achieve the desired objectives within
some approximation factor. The main goal of [30] is the location of a single facility on
the real line when agents have single-peaked preferences, and the corresponding bounds
shown in Table 1 are from that paper. A series of papers have studied generalizations of
the problem to more general metric spaces [1,11,32], multiple facilities [14,23,26,27] or
even enhancing strategyproof mechanisms with additional capabilities [21,22]. Most of the
related work actually considers the same objectives that we do here, namely the social cost
or the maximum cost, with the notable exceptions of the least-squares objective [18], the L p

norm of costs [17] or the minimax envy [5]. In a recent paper, Procaccia et al. [29] use the
facility location problem to explore the trade-offs between the approximation guarantees and
the variance of truthful-in-expectation mechanisms.
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In the literature of artificial intelligence and multi-agent systems, in recent years, several
variations of the basic model have emerged, capturing different situations that may arise in
practice. A series of papers [7,8,16] study the obnoxious facility location problem over an
interval, where agents declare their least preferred point and their utility increases linearly in
both directions away from that point. Preference relations that give rise to such utility struc-
tures are referred to as single-dipped or single-caved preferences [25]. Serafino and Ventre
[33,34] introduced and studied the setting with heterogeneous facilities, in which agents’
locations are known and they declare their interests in different facilities. Building on the
idea of heterogeneous facilities, a recent literature [16,39] considers a single facility location
setting where the agents report their most preferred positions, along with a binary variable,
indicating whether the facility is desirable or obnoxious. Preference profiles in such a setting
can be seen as being a combination of single-peaked and single-dipped preference orderings.
In a different direction, Todo et al. [37] and Sonoda et al. [35] study the capabilities of false-
name proof mechanisms, which are strategyproof mechanisms that are also impervious to
agents assuming false identities.

In light of these recent developments, the current paper (the conference version of which
preceded many of the aforementioned papers) can be seen as a different generalization of
the basic facility location model, capturing different real-life scenarios and building on the
vastly growing literature on such extensions.

1.3 Related work on double-peaked preferences

Single-peaked preferences were introduced in [4] as a way to avoid Condorcet cycles in
majority elections. Moulin [28] characterized the class of strategyproof mechanisms in this
setting, proving thatmedian voter schemes are essentially the only strategyproof mechanisms
for agents with single-peaked preferences. Double-peaked preferences have been mentioned
in social choice literature, to describe settingswhere preferences are not single-peaked, voting
cycles do exist and majority elections are not possible. For example, Cooter ([10], pages 39–
42) argues that when the decisions involve multi-dimensional choices, preferences are more
likely to be double-peaked rather than single-peaked and the intransitivity of the preferences
disallows for majority winners. As a motivating example, he uses the choice of the level of
expenditure in public schools in the U.S. and the example of “yuppies”, i.e. young urban
professionals that would prefer either a high expenditure level or a low expenditure level
rather than a moderate level, as in the first case they could send their children to public
school whereas in the second case they would send them to a private school without being
burdened by large taxes for the support of public education. A simpler example of the same
principle can be the choice of temperature in a room; both 15◦ with a lightweight jacket and
25◦ with just a regular shirt might be preferable to a moderate choice of 20◦.

More broadly, in social choice settings similar to the example of [10], double-peaked
preferences can be used to model situations where e.g. a left-wing party might prefer a more
conservative but quite effective policy to a more liberal but ineffective one on a left-to-right
political axis. In fact, Egan [13] provides a detailed discussion on double-peaked preferences
in political decisions. He uses a 1964–1970 survey about which course of action the United
States should take with regard to the Vietnam war as an example where the status quo (keep
U.S. troops in Vietnam but try to terminate the war) was ranked last by a considerable
fraction of the population when compared to a left-wing policy (pull out entirely) or a right-
wing policy (take a stronger stand). This demonstrates that in a scenario where the standard
approach would be to assume that preferences are single-peaked, preferences can instead
be double-peaked. Egan provides additional evidence for the occurrence of double-peaked
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preferences supported by experimental results based on surveys on the U.S. population, for
many different problems (education, health care, illegal immigration treatment, foreign oil
treatment etc).

More examples of double-peaked preferences in real-life scenarios are presented in [31].
The related work demonstrates that although they might not be as popular as their single-
peaked counterpart, double-peaked preferences do have applications in settings more general
than the street example described earlier. On the other hand, the primary focus of this paper is
to study double-peaked preferences on facility location settings and therefore the modeling
assumptions follow the ones of the facility location literature.

In the literature of multi-agent systems, Yang and Guo [38] consider κ-peaked prefer-
ences (a straightforward generalization of double-peaked preferences) and the problem of
controlling elections for such preference profiles for several well-known voting rules, proving
several hardness and parametrized complexity results.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of agents. We consider the case where agents are located on a
line, i.e. each agent i ∈ N has a location xi ∈ R. We will occasionally use xi to refer to both
the position of agent i and the agent herself. We will call the collection x = 〈x1, . . . , xn〉 a
location profile or an instance.

A deterministic mechanism is a function f : Rn �→ R that maps a given location profile
to a point in R, the location of the facility. We assume that agents have double-peaked
preferences, symmetric with respect to the origin. We discuss how our results extend to non-
symmetric agents in Sect. 6. Given any instance x and a location y ∈ R, the cost of agent i
is

cost(y, xi ) =
{
c + |xi − b − y| if y ≤ xi
c + |xi + b − y| if y > xi

where c and b are positive constants. We will say that y admits a cost of cost(y, xi ) for
agent i on instance x. For a mechanism that outputs f (x) on instance x, the cost of agent i is
cost( f (x), xi ). Intuitively, each agent has two most favorable locations, i.e. xi −b and xi +b,
which we refer to as the peaks of agent i . Note that these peaks are actually the troughs of
the curve of the cost function, but much like most related work, we refer to them as peaks.
The parameter c > 0 is the minimum cost incurred to an agent when the facility is built on
one of her peaks.1 Note that the special case, where b = c corresponds to the natural setting
where the incurred minimum cost of an agent is interpreted as the distance she needs to cover
to actually reach the facility. This case is particularly appealing, since the bounds we obtain
are clean numbers, independent of b and c. The bounds for the natural case can be obtained
directly by letting b = c in all of our results.

A randomized mechanism is a function f : R
n �→ Δ(R), where Δ(R) is the set of

probability distributions over R. It maps a given location profile to probabilistically selected
locations of the facility. The expected cost of agent i is Ey∼D [cost(y, xi )], where D is the
probability distribution of the mechanism outputs.

We will call a deterministic mechanism f strategyproof if no agent would benefit by
misreporting her location, regardless of the locations of the other agents. This means that for

1 It is not hard to see by our results that if we let an agent’s cost be zero on her peaks, then in very general
settings, no determnistic strategyproof mechanism can guarantee a finite approximation ratio.
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every x ∈ R
n , every i ∈ N and every x ′

i ∈ R, cost( f (x), xi ) ≤ cost( f (x ′
i , x−i ), xi ), where

x−i = 〈x1, . . . , xi−1, xi+1, . . . , xn〉. A mechanism is truthful-in-expectation if it guarantees
that every agent always minimizes her expected cost by reporting her location truthfully.
Throughout the paper we will use the term strategyproofness when refering to deterministic
mechanisms and the term truthfulness when refering to randomized mechanisms.

A mechanism is (strongly) group strategyproof if there is no coalition of agents, who by
jointly misreporting their locations, affect the outcome in a way such that the cost of none of
them increases and the cost of at least one of them strictly decreases. In other words, there
is no S ⊆ N such that for some misreports xS of agents in S and some reports x−S of agents
in N\S, cost( f (x ′

S, x−S), xi ) ≤ cost( f (x), xi ) for all i ∈ S, and cost( f (x ′
S, x−S), x j ) <

cost( f (x), x j ) for at least one j ∈ S.
We note here that the definition above is often referred in the literature as strong group

strategyproofness, to distinguish it from weak group strategyproofness, where for a group
deviation to be possible, it should be the case that the cost of all agents of the deviating
coalition strictly decreases. Throughout the paper, when referring to group strategyproofness,
we will assume that the notion follows the strong definition.

Given an instance x and a location y ∈ R, the social cost and the maximum cost of y are
defined respectively as:

SCy(x) =
n∑

i=1

cost(y, xi ), MCy(x) = max
i∈N cost(y, xi ).

We will say that y admits a social cost of SCy(x) or a maximum cost of MCy(x). We will
call y ∈ R an optimal location (for the social cost), if y ∈ argminy SCy(x). The definition
for the maximum cost is analogous. Let SCopt(x) and MCopt(x) denote the social cost and
the maximum cost of an optimal location respectively, on instance x. For a mechanism f that
outputs f (x) on instance x, we will call SCf (x)(x) the social cost of the mechanism and we
will denote it by SCf (x); and analogously for the maximum cost.

We are interested in strategyproof mechanisms that perform well with respect to the
goal of minimizing either the social cost or the maximum cost. We measure the perfor-
mance of the mechanism by comparing the social/maximum cost it achieves with the optimal
social/maximum cost, on any instance x.

The approximation ratio of mechanism f , with respect to the social cost, is given by

r = sup
x

SCf (x)
SCopt(x)

.

The approximation ratio of mechanism f , with respect to maximum cost, is defined similarly.
For randomized mechanisms, the definitions are similar and the approximation ratio is

calculated with respect to the expected social or maximum cost, i.e. the expected sum of
costs of all agents and expected maximum cost of any agent, respectively.

Finally we consider some properties which are quite natural and are satisfied by
many mechanisms (including the optimal mechanism). A mechanism f is anonymous,
if for every location profile x and every permutation π of the agents, f (x1, . . . , xn) =
f (xπ(1), . . . , xπ(n)). We say that a mechanism f is onto, if for every point y ∈ R on the line,
there exists a location profile x such that f (x) = y.Without loss of generality, for anonymous
mechanisms, we can assume x1 ≤ · · · ≤ xn .

A property that requires special mention is that of position invariance, which is a very
natural property as discussed in the introduction. This property was independently defined
by [17] where it was referred to as shift invariance. One can view position invariance as an
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analogue to neutrality in problems like the one studied here, where there is a continuum of
outcomes instead of a finite set.

Definition 1 A mechanism f satisfies position invariance, if for all location profiles x =
〈x1, . . . , xn〉 and t ∈ R, it holds f (x1 + t, x2 + t, . . . , xn + t) = f (x) + t . In this case, we
will call such a mechanism position invariant. We will refer to instances x and 〈x1 + t, x2 +
t, . . . , xn + t〉 as position equivalent.

Note that position invariance implies the onto condition. Indeed, for any location profile
x, with f (x) = y, we have f (x1 + t, x2 + t, . . . , xn + t) = y′ = y + t for any t ∈ R, so
every point y′ ∈ R is a potential output of the mechanism.

3 A truthful-in-expectation mechanism

We start the exposition of our results with our main contribution, a truthful-in-expectation
mechanism that achieves an approximation ratio of 1+ b/c for the social cost and max{1+
b/c, 2} for the maximum cost.

Mechanism M1 Given any instance x = 〈x1, . . . , xn〉, find the median agent xm =
median(x1, . . . , xn), breaking ties in favor of the agent with the smallest index. Output
f (x) = xm − b with probability 1

2 and f (x) = xm + b with probability 1
2 .

Theorem 1 Mechanism M1 is truthful-in-expectation.

Proof First, note that the median agent does not have an incentive to deviate, since her
expected cost is already minimum, neither does any agent i for which xi = xm . Hence, for
the deviating agent i it must be either xi < xm or xi > xm . We consider three cases when
xi < xm . The proof for the case xi > xm is symmetric. Observe that for agent i to be able
to move the position of the facility, she has to report x ′

i ≥ xm and change the identity of
the median agent. Let x ′

m be the median agent in the new instance 〈x ′
i , x−i 〉, after agent i’s

deviation. If x ′
m = xm , then obviously agent xi does not gain from deviating, so we will

assume that x ′
m > xm .

Case 1 xi + b ≤ xm − b (symmetrically xi − b ≥ xm + b).
In this case, the cost of agent i is calculated with respect to xi + b for both possible

outcomes of the mechanism. Since x ′
m − b > xm − b and x ′

m + b > xm + b, it holds that
|(xi +b)−(x ′

m −b)| > |(xi +b)−(xm −b)| and |(xi +b)−(x ′
m +b|) > |(xi +b)−(xm +b)|

and agent i can not gain from misreporting.

Case 2 xm − b < xi + b ≤ xm (symmetrically xm ≤ xi − b < xm + b).
Again, the cost of agent i is calculated with respect to xi + b for both outcomes of the

mechanism. This time, it might be that |(xi +b)−(x ′
m −b)| < |(xi +b)−(xm −b)| but since

(x ′
m − b) − (xm − b) = (x ′

m + b) − (xm + b), it will also hold that |(xi + b) − (x ′
m + b)| >

|(xi + b) − (xm + b)| and also |(xi + b) − (xm − b)| − |(xi + b) − (x ′
m − b)| = |(xi + b) −

(x ′
m + b)| − |(xi + b) − (xm + b)|. Hence, the expected cost of agent i after misreporting is

at least as much as it was before.

Case 3 xm < xi + b ≤ xm + b (symmetrically xm − b ≤ xi − b < xm).
The cost of agent i before misreporting is calculated with respect to xi − b when the

outcome is xm − b and with respect to xi + b when the outcome is xm + b. For any misreport
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x ′
i < xi + b, this is still the case (for x ′

m − b and x ′
m + b respectively) and since (x ′

m −
b) − (xm − b) = (x ′

m + b) − (xm + b), her expected cost is not smaller than before. For any
misreport x ′

i > xi +b, her cost is calculated with respect to xi +b for both possible outcomes
of the mechanism and for the same reason as in Case 2, her expected cost is at least as much
as it was before misreporting. ��
3.1 Social cost

Next, we will calculate the approximation ratio of the mechanism for the social cost. In order
to do that, we will need the following lemma.

Lemma 1 Let x = 〈x1, . . . , xm, . . . , xn〉, where xm = median (x1, . . . , xn), breaking ties
in favor of the smallest index. There exists an optimal location for the social cost in [xm −
b, xm + b].
Proof Assume by contradiction that there exists a point y < xm − b or y > xm + b with a
strictly smaller social cost than all the points in [xm − b, xm + b].

Assume first that y < xm − b. Since xm is the median agent, it holds that for at least
�n/2� agents, xi − b ≥ xm − b, that is xm − b admits a smaller cost for at least �n/2�
agents when compared to y. Let X1 be the set of those agents. On the other hand, for
each agent xi < xm , xm − b may admit a smaller or larger cost than y, depending on
her position with respect to y. In the worst case, the cost is larger for every one of those
agents, which happens when xi + b ≤ y for every agent with xi < xm . Let X2 be the set
of those agents. Now observe that for any two agents xα ∈ X1 and xβ ∈ X2, it holds that
cost(xα, y) − cost(xa, xm − b) = cost(xβ, xm − b) − cost(xβ, y). Since |X1| ≥ |X2|, it
holds that that SCxm−b(x) ≤ SCy(x). Since it holds that SCxm−b(x) > SCy(x), xm − b is
an optimal location and we get a contradiction.

Now assume y > xm + b. If the number of agents is odd, then we can use an exactly
symmetric argument to prove that SCxm+b ≤ SCy . If the number of agents is even, the
argument can still be used, since our tie-breaking rule selects agent xn/2 as the median.
Specifically, xm +b admits a smaller cost for exactly n/2 of the agents (including agent xn/2)
and in the worst case, y admits a smaller cost for n/2 agents as well. If X1 and X2 are the
sets of those agents respectively, then again it holds that cost(xα, y) − cost(xα, xm + b) =
cost(xβ, xm + b) − cost(xβ, y) for xα ∈ X1 and xβ ∈ X2 and we get a contradiction as
before. ��

We now proceed to proving the approximation ratio of Mechanism M1.

Theorem 2 Mechanism M1 has an approximation ratio of 1 + b
c for the social cost.

Proof Consider an arbitrary instance x = 〈x1, . . . , xn〉 and let xm be the median agent. By
Lemma 1, there exists an optimal location y ∈ [xm − b, xm + b]. Let δ = y − (xm − b). For
every agent i , it holds that cost(xi , xm − b) ≤ cost(xi , y) + δ. To see this, first observe that
|(xi −b)−(xm −b)| ≤ |(xi −b)− y|+δ and that |(xi +b)−(xm −b)| ≤ |(xi +b)− y|+δ. If
the cost of an agent admitted by y and xm −b is calculated with respect to the same peak, then
min(|(xi−b)−(xm−b)|, |(xi+b)−(xm−b)|) ≤ min(|(xi−b)−y|, |(xi+b)−y|)+δ and the
inequality holds. If the cost is calculatedwith respect to different peaks for y and xm−b, itmust
be that cost(xi , xm −b) = c+|(xi −b)−(xm −b)| and cost(xi , y) = c+|xi +b− y|, because
xm−b < y. Since |(xi−b)−(xm−b)| ≤ |(xi+b)−(xm−b)| ≤ |(xi+b)−y|+δ, the inequality
holds. Similarily, we can prove that cost(xi , xm +b) ≤ cost(xi , y)+ (2b− δ) for every agent

123



1218 Auton Agent Multi-Agent Syst (2017) 31:1209–1235

i . Hence, we can upper bound the cost of Mechanism M1 by 1
2

∑n
i=1 cost(xi , xm − b)+

1
2

∑n
i=1 cost(xi , xm + b) ≤ 1

2

∑n
i=1 (cost(xi , y) + δ) + 1

2

∑n
i=1 (cost(xi , y) + 2b − δ) =

SCy(x) + nb = SCopt(x) + nb. The approximation ratio then becomes 1 + nb
SCopt(x)

, which

is at most 1 + b
c , since SCopt(x) is at least nc.

For the lower bound, consider the location profile x = 〈x1, . . . , xn〉 with x1 = · · · =
xk−1 = xk − b = xk+1 − 2b = · · · = xn − 2b. Note that the argument works both when
n = 2k and when n = 2k + 1 because Mechanism M1 selects agent xk as the median agent
in each case. The optimal location is x1 + b whereas Mechanism M1 equiprobably outputs
fM1(x) = xk − b or fM1(x) = xk + b. The cost of the optimal location is SCopt(x) = nc+ b
whereas the cost of Mechanism M1 is SCM1(x) = nc + (1/2)(n − 1)b + (1/2)(n − 1)b =
nc + (n − 1)b. The approximation ratio then becomes nc+(n−1)b

nc+b = 1 b
c · n−2

n+(b/c) . As the
number of agents grows to infinity, the approximation ratio of the mechanism on this instance
approaches 1 + b/c. This completes the proof. ��
3.2 Maximum cost

We also consider the maximum cost and prove the approximation ratio of MechanismM1 as
well as a lower bound on the approximation ratio of any truthful-in-expectation mechanism.
The results are summarized in Table 1.

Theorem 3 MechanismM1 has an approximation ratio ofmax{1+b/c, 2} for the maximum
cost.

Proof Let x = 〈x1, . . . , xn〉 be an arbitrary instance and let xm be the median agent. We will
consider two cases, based on the location of fopt(x)with respect to xm −b (or symmetrically
xm + b).

Case 1 fopt(x) < xm − b (or fopt(x) > xm + b).
Let δ = (xm − b) − fopt(x). For the same reason as in the proof of Theorem 2, for every

agent i , it holds that cost(xi , xm −b) ≤ cost(xi , fopt(x))+δ and also that cost(xi , xm +b) ≤
cost(xi , fopt(x)) + (2b + δ).

The maximum cost of Mechanism M1 is

MCM1(x) = 1

2
max
i∈N cost (xi , xm − b) + 1

2
max
i∈N cost (xi , xm + b)

≤ 1

2

(
max
i∈N cost

(
xi , fopt(x)

) + δ

)
+ 1

2

(
max
i∈N cost

(
xi , fopt(x)

) + (2b + δ)

)
= MCopt(x) + b + δ ≤ 2MCopt(x) + b − c

since MCopt(x) ≥ c + δ. The approximation is at most 2+ b−c
MCopt(x)

, which is at most 1+ b
c

if b ≥ c (since MCopt(x) ≥ c) and at most 2 if b < c (since MCopt(x) > 0).

Case 2 xm − b ≤ fopt(x) ≤ xm + b.
Now, let δ = fopt(x)−(xm−b). Again, it holds that cost(xi , xm−b) ≤ cost(xi , fopt(x))+δ

and also that cost(xi , xm + b) ≤ cost(xi , fopt(x)) + (2b − δ).
The maximum cost of Mechanism M1 is

MCM1(x) = 1

2
max
i∈N cost (xi , xm − b) + 1

2
max
i∈N cost (xi , xm + b)

≤ 1

2

(
max
i∈N cost

(
xi , fopt(x)

) + δ

)
+ 1

2

(
max
i∈N cost

(
xi , fopt(x)

) + (2b − δ)

)
= MCopt(x) + b
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and the approximation ratio is at most 1 + b
c (since MCopt(x) ≥ c).

For the matching lower bound, consider an instance x = 〈x1, . . . , xn〉 on which x1 + b <

x2 − b and xi = x2 for all i /∈ {1, 2}. It is fopt(x) = x1+x2
2 , i.e. the middle of the interval

between x1 and x2, whereasMechanismM1 selects equiprobably among x2−b and x2+b. Let
d = fopt(x)−(x1+b). ThenMCopt(x) = c+d ,whereasMCM1(x) = c+ 1

22d+ 1
2 (2d+2b) =

b + c + 2d . The approximation ratio is 1 + b+d
c+d which is 1 + b

c as d goes to 0 and 2 as d
goes to infinity. ��

Next, we provide a lower bound on the approximation ratio of any truthful-in-expectation
mechanism.

Theorem 4 For any values of c and b, no truthful-in-expectation mechanism can achieve an
approximation lower than 3

2 for the maximum cost.

First, we state a couple of lemmas which are in essence very similar to those used in the
proof of the single-peaked preferences case in [30]. Let x = 〈x1, x2〉 be an instance such
that x1 + b < x2 − b and let λ = (x2 − b) − (x1 + b). Let f be a truthful-in-expectation
mechanism and let D be the distribution that y = f (x) follows on instance x.

Lemma 2 On instance x, at least one ofEy∼D [cost(x1, y)] ≥ c+ λ
2 andEy∼D [cost(x2, y)]

≥ c + λ
2 holds.

Proof Obviously, cost(x1, y) + cost(x2, y) ≥ 2c + λ for any choice of y, hence

Ey∼D
[∑2

i=1 cost(xi , y)
]

= ∑2
i=1 Ey∼D[cost(xi , y)] ≥ 2c + λ. Therefore, it must be that

Ey∼D[cost(xi , y)] ≥ c + λ
2 for at least one of i = 1 or i = 2. ��

Lemma 3 Let fopt(x) be the outcome of the optimal mechanism on instance x. IfEy∼D[|y−
fopt(x)|] = Δ, then the maximum cost of the mechanism on this instance is E[MC f (x)] =
c + λ

2 + Δ.

Proof Since ∀y, MC f (x) = c + |y − fopt(x)| + λ/2, it holds

Ey∼D
[
MC f (x)

] = Ey∼D
[
c + λ

2
+ ∣∣y − fopt(x)

∣∣] = c + λ

2
+ Ey∼D

[∣∣y − fopt(x)
∣∣]

= c + λ

2
+ Δ.

��
We can now prove the theorem.

Proof Consider an instancewith two agents onwhich x1+b < x2−b and (x2−b)−(x1+b) =
λ. It holds that fopt(x) = x1+x2

2 . Assume there is a truthful-in-expectation mechanism M
on which y = f (x1, x2) follows a distribution D on this instance. According to Lemma 2,
at least one of Ey∼D[cost(y, x1)] ≥ c + λ/2 and Ey∼D[cost(y, x2)] ≥ c + λ/2 holds.
W.l.o.g., assume the second inequality is true (if the first inequality is true then we can make
a symmetric argument with agent x1 deviating).

Next, consider the instance x′ = 〈x ′
1, x

′
2〉 with x ′

1 = x1 and x ′
2 = x2 + λ. Let

fopt(x′) = (x ′
1 + x ′

2)/2 = x2 − b. Let D′ be the distribution that y′ follows on instance
x′. By strategyproofness, Ey′∼D′

[
cost(y′, x2)

] ≥ Ey∼D[cost(y, x2)] ≥ c + λ/2, since x ′
2
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could be a deviation of agent 2 on instance x. This implies Ey′∼D′
[|y′ − (x2 − b)|] ≥ λ

2 . To
see this, assume otherwise for contradiction, we would have

Ey′∼D′
[
cost(y′, x2)

] = Ey′∼D′
[
c + min

{∣∣y′ − (x2 − b)
∣∣ , ∣∣y′ − (x2 + b)

∣∣}]
≤ c + min

{
Ey′∼D′

[∣∣y′ − (x2 − b)
∣∣] ,Ey′∼D′

[∣∣y′ − (x2 + b)
∣∣]}

< c + λ

2
.

Equivalently, we have Ey′∼D′
[|y′ − fopt(x′)|] ≥ λ

2 . Hence, by applying Lemma 3, we know
that the maximum cost of the mechanism on the second instance is Ey′∼D′

[
MCM (x′)

] ≥
c+λ+ λ

2 = c+ 3λ
2 . Since the optimalmechanism locates the facility on fopt(x′), its maximum

cost is c+λ. Therefore, the approximation ratio is at least c+3λ/2
c+λ

. As λ grows to infinity, the

approximation ratio approaches 3
2 . To generalize the proof to more than two agents, place

every other agent on fopt(x) + b on instance x. Since λ is large enough, the maximum cost
is still calculated with respect to x2 and all the arguments still hold. ��

4 Deterministic mechanisms

We now turn our attention to deterministic mechanisms. We will start by stating and proving
the following lemma, which will be very useful throughout the paper. Variations of the
instances used here will appear in several of our proofs.When n = 2, we define the following
family of instances, called primary instances.
Primary instance We will say that an instance is a primary instance, if it holds that x =
〈x1, x2〉with x1+2b+ε = x2−b, where ε is a positive real number. In the following we will
fix such an ε > 0 (e.g. ε = b/2) and refer to the resulting instance as the primary instance.

Lemma 4 On the primary instance, there is no anonymous, position invariant and strate-
gyproof mechanism such that f (x) ∈ [x1 + b, x2 − b].

Proof For contradiction, suppose there exists an anonymous, position invariant strategyproof
mechanism M that ouputs f (x) ∈ [x1 + b, x2 − b]. Let’s denote δ1 = f (x) − (x1 + b),
δ2 = (x2 −b)− f (x). Throughout the proof we start with the primary instance and construct
some other instances to prove the lemma. There are 2 cases to be considered.

Case 1 0 < δ1 ≤ 1
2 (b + ε), i.e. x1 + b < f (x) ≤ x1+x2

2 (symmetrically, for the case
0 < δ2 ≤ 1

2 (b + ε)). See Fig. 1.

– Instance I : xI = 〈x I1, x I2〉, where x I1 = x1 + δ1, x I2 = x2.
– Instance II : xII = 〈x II1 , x II2 〉, where x II1 = x1 + δ1, x II2 = x2 + δ1.

First, we know that on instance I, strategyproofness requires that f (xI) = x I1−b or x I1+b,
otherwise agent x I1 could misreport x1 and move the facility to position x I1 + b, minimizing
her cost. Second, since instance II and the primary instance are position equivalent (II is a
shifted version of the primary instance to the right by δ1), by position invariance we know
f (xII) = x II1 + b + δ1 = x I1 + b + δ1. Now let’s consider agent x I2 in instance I. If agent x I2
misreports x II2 , she can move the facility from x I1 − b or x I1 + b to x I1 + b + δ1 ≤ x I2 − b; in
either case the facility is closer to her left peak. Therefore x I2 can manipulate the mechanism,
which violates strategyproofness. Hence f (x) /∈ (x1 + b, x1+x2

2 ].
Case 2 δ1 = 0, i.e. f (x) = x1 + b (symmetrically, for the case δ2 = 0). See Fig. 2.
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Fig. 1 Case 1 of Lemma 4. On instance I, agent x I2 can report x II2 and decrease her cost. Instances II and the
Primary instance are position equivalent

Fig. 2 Case 2(a) and 2(b) of Lemma 4. If f (x III1 , x III2 ) = x III1 −b on instance III, agent x III2 canmisreport x IVa2
and decrease her cost, since instances IVa and the Primary instance are position equivalent. If f (x III1 , x III2 ) =
x III1 + b on instance III, then on the Primary instance, agent x2 can misreport x IVb2 and decrease her cost. By
anonymity, instances III and IVb are position equivalent

– Instance III : xIII = 〈x III1 , x III2 〉, where x III1 = x1 + 2b, x III2 = x2.

First, we know that on instance III, strategyproofness requires either that f (xIII) = x III1 −b
or f (xIII) = x III1 +b, otherwise agent x III1 could misreport x1 andmove the facility to position
x III1 − b, minimizing her cost. Now, there are two subcases.
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(a) f (xIII) = x III1 − b. See left hand side of Fig. 2, where we have instance IVa: x IVa1 =
x1 + 2b, x IVa2 = x2 + 2b.
Obviously, instance IVa is position equivalent to the primary instance, so f (x IVa1 , x IVa2 ) =
x IVa1 + b. Note that the cost of agent x III2 is b + c + ε. If agent x III2 misreports x IVa2 ,
then her cost becomes b + c − ε, which is smaller than when reporting truthfully. So
f (xIII) �= x III1 − b if Mechanism M is strategyproof.

(b) f (xIII) = x III1 + b. See right hand side of Fig. 2, where we have instance IVb:
x IVb1 = x III1 , x IVb2 = x III1 − (b + ε).
Obviously, instance IVb is position equivalent to instance III, so it holds that
f (x IVb1 , x IVb2 ) = x IVb2 +b as implied by anonymity and position invariance. Note that on
instance III, the cost of agent x III2 is b+ c− ε. If agent x III2 misreports x IVb2 , then her cost
becomes c + 2ε, which is smaller than when reporting truthfully (since ε is arbitrarily
small). So f (xIII) �= x III1 + b if Mechanism M is strategyproof.

Hence, in order for mechanism M to be strategyproof, it must be f (x) �= x1 + b.
In all, there is no anonymous, position invariant and strategyproof mechanism such that

f (x) ∈ [x1 + b, x2 − b]. ��

It is well known [28] that when agents have single-peaked preferences, outputting the
location of the kth agent (kth order statistic), results in a strategyproof mechanism. This is
not the case however, for double-peaked preferences and any choice of k.

Lemma 5 Given any instance x = 〈x1, . . . , xn〉, any mechanism that outputs f (x) = xi −b,
for i = 2, . . . , n or any mechanism that outputs f (x) = xi + b, for i = 1, . . . , n − 1, is not
strategyproof.

Proof We prove the case when f (x) = x1 +b. The arguments for the other cases are similar.
Consider any instance where x2 = x1 + b and xi − b > x2 + b for i = 3, . . . , n. Since
f (x) = f (x1, x2, x3, . . . , xn) = x1+b, the cost of agent 2 is cost( f (x), x2) = b+c. If agent
2 misreports x ′

2 = x1−b, the outcome will be f (x′) = f (x1, x ′
2, x3, . . . , xn) = x ′

2+c = x1,
and cost( f (x′), x2) = c < b + c = cost( f (x), x2). Agent 2 has an incentive to misreport,
therefore the mechanism is not strategyproof. ��

This only leaves two potential choices among kth order statistics, either f (x) = x1 − b
or f (x) = xn + b. Consider the following mechanism.

Mechanism M2 Given any instance x = 〈x1, . . . , xn〉, locate the facility always on the left
peak of agent 1, i.e. f (x) = x1−b or always on the right peak of agent n, i.e. f (x) = xn +b.

From now on, we will assume that M2 locates the facility on x1 − b on any instance x.
The analysis for the other case is similar.

Theorem 5 Mechanism M2 is strategyproof.

Proof Obviously, agent 1 has no incentive to misreport, since her cost is already minimum.
For any other agent i, i = 2, . . . , n, the cost is cost( f (x), xi ) = c+xi −x1. For anymisreport
x ′
i ≥ x1, the facility is still located on x1 − b and every agent’s cost is the same as before.
For some misreport x ′

i < x1, the facility moves to f (x1, . . . , x ′
i , . . . , xn) = x ′

i − b < x1 − b,
i.e. further away from any of agent i’s peaks and hence this choice admits a larger cost for
her. ��
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In the following, we prove that for the case of two agents, Mechanism M2 is actually the
only strategyproof mechanism that satisfies anonymity and position invariance. We start with
the following lemma.

Lemma 6 For any instance x = 〈x1, x2〉, where x1 + b < x2 − b, if an anonymous, position
invariant and strategyproof mechanism outputs f (x1, x2) = x1 − b, then it must output
f (x ′

1, x
′
2) = x ′

1 − b for any instance x′ = 〈x ′
1, x

′
2〉 with x ′

1 ≤ x ′
2.

Proof Let (x2 − b) − (x1 + b) = γ . For any other instance x′ = 〈x ′
1, x

′
2〉 with x ′

1 ≤ x ′
2, we

assume x ′
1 = x1 without loss of generality due to position invariance. In particular, we will

first prove that on any instance x′ with x ′
1 = x1 and x ′

2 > x1, the position of the facility has
to be x ′

1 − b and we will establish that by only considering potential deviations of agent 2
on instance x such that x ′

2 ≥ x1. If it holds for this set of deviations, then it certainly holds
even if agent 2 can deviate anywhere on the real line. Let S be the set of those instances. But
then, any instance x̃ /∈ S is position equivalent to some instance x ∈ S and therefore it has to
be that f (x̃) = x̃1 − b and the lemma will follow.

On instance x, the cost of agent 2 is 2b + c + γ , so for any deviation of x2, her cost
must be at least 2b + c + γ , as required by strategyproofness. This implies that if agent 2
misreports x ′

2, then on the resulting instance it must be either f (x1, x ′
2) ∈ (−∞, x1 − b] or

f (x1, x ′
2) ∈ [x2 + 3b + γ,+∞).

First, assume f (x1, x ′
2) ∈ [x2 + 3b + γ,∞). Let instance I be xI = 〈x I1, x I2〉, where

x I1 = x1, x I2 = f (x1, x ′
2) + b. On instance I it must be either f (x I1, x

I
2) = f (x1, x ′

2) or
f (x I1, x

I
2) = f (x1, x ′

2)+2b, otherwise agent 2 can deviate from x I2 to x
′
2 andmove the facility

to x I2 − b, minimizing her cost and violating strategyproofness. However then, on instance I,
agent 1 can misreport x̄ I1 = x I2 − 2b − γ and move the facility to x I2 − 3b − γ , reducing her
cost and violating strategyproofness. This follows from the fact that the resulting instance
〈x̄ I1, x I2〉 and instance x are position equivalent and that f (x1, x2) = x1 − b on instance x.
Hence, it can not be that f (x1, x ′

2) ∈ [x2 + 3b + γ,∞) on instance x′.
Second, assume f (x1, x ′

2) ∈ (−∞, x1 − b). Then, since x ′
2 > x1, agent 2 can deviate

from x ′
2 to x2 and move the facility to x1 −b, i.e. closer to her actual position. Hence, it can’t

be that f (x1, x ′
2) ∈ (−∞, x1 − b) on instance x′ either.

In conclusion, it must be f (x1, x ′
2) = f (x ′

1, x
′
2) = x ′

1 − b for any instance x′ = (x ′
1, x

′
2)

with x ′
1 ≤ x ′

2. ��
Theorem 6 When n = 2, the only strategyproof mechanism that satisfies position invariance
and anonymity is MechanismM2.

Proof For contradiction, suppose there exists an anonymous, position invariant strategyproof
mechanismM which is different fromMechanismM2 and consider the primary instance used
in Lemma 4.

We first argue that it must be that f (x1, x2) ∈ [x1 + b, x2 − b]. Assume on the contrary
that f (x1, x2) < x1 + b (the argument for f (x1, x2) > x2 − b is symmetric). Then, consider
the instance 〈x ′

1, x
′
2〉, where x ′

2 = x2 and x ′
1 = f (x1, x2) − b. On this instance, it must

be that f (x ′
1, x

′
2) = x ′

1 − b or f (x ′
1, x

′
2) = x ′

1 + b, otherwise agent 1 can deviate from
x ′
1 to x1 and move the facility to x ′

1 + b, minimizing her cost. In addition, if f (x ′
1, x

′
2) =

x ′
1−b, then according to Lemma 6, the unique strategyproofmechanism that satisfies position

invariance and anonymity is Mechanism M2, and thus our assumption is violated. So let’s
assume f (x ′

1, x
′
2) = x ′

1 + b. Then, on the primary instance, agent 2 could report x̂2 =
x2 + (x1 + b − f (x1, x2)) and by position invariance (since instances 〈x ′

1, x
′
2〉 and 〈x1, x̂2〉

are position equivalent), it should be f (x1, x̂2) = x1 + b. This would give agent 2 an
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incentive to misreport, violating strategyproofness. Hence, on the primary instance it must
be that f (x1, x2) ∈ [x1 + b, x2 − b].

However, according to Lemma 4, it is impossible for a strategyproof mechanism to output
f (x1, x2) ∈ [x1 + b, x2 − b] on the primary instance. In conclusion, no mechanism other
than Mechanism M2 is strategyproof, anonymous and position invariant. ��
4.1 Social cost

We have seen that MechanismM2 is strategyproof, but howwell does it performwith respect
to our goals, namely minimizing the social cost or the maximum cost? In other words, what
is the approximation ratio that MechanismM2 achieves against the optimal choice? First, we
observe that the optimal mechanism, which minimizes the social cost, is not strategyproof.

Theorem 7 The optimal mechanism with respect to the social cost, fopt(x) = argmin
y

n∑
i=1

cost(y, xi ), is not strategyproof.

Proof Consider an instance x = 〈x1, x2, x3〉, such that x2+b < x3−b, x2−b < x1+b < x2
and (x1+b)−(x2−b) = ε, where ε is an arbitrarily small positive quantity. On this instance,
the optimal facility location is x2 + b and the cost of agent x1 is c + 2b − ε. Suppose now
that agent x1 reports x ′

1 < x2 − 2b. Moreover, suppose that when there are two locations
y1 and y2, with y1 < y2 that admit the same social cost, the optimal mechanism outputs
y1. If the mechanism outputs y2 instead, we can use a symmetric argument on the instance
x′ = 〈x ′

1, x
′
2, x

′
3〉 = 〈x ′

1, x2, x2 + 2b− ε〉 with agent 3 misreporting x3.2 By this tie-breaking
rule, on instance x = 〈x ′

1, x2, x3〉, the location of the facility is x2 − b and the cost of agent
x1 is c + ε, i.e. smaller than before. Hence, the optimal mechanism is not strategyproof. To
extend this to an arbitrary number of agents, let x j = x2 for every other agent x j . ��

Unfortunately, when considering the social cost, in the extremal case, the approximation
ratio of Mechanism M2 is dependent on the number of agents. The approximation ratio is
given by the following theorem.

Theorem 8 For n > 3 agents, the approximation ratio of MechanismM2 for the social cost
is

max

{
n − 1, 1 + 2b

c

}
.

Proof Consider any instance x′ = 〈x ′
1, . . . , x

′
n〉 and let y = fopt(x′). It also holds that

fM2(x′) = x ′
1 − b. Denote the social costs of the optimal mechanism and MechanismM2 on

instancex′ by SCopt(x′) and SCM2(x′), respectively. Letx be the instance obtained by instance
x′ as follows. For every agent i, i �= 1, if x ′

i + b ≤ y, let xi = 2y − x ′
i ; if x

′
i < y < x ′

i + b,
let xi = x ′

i + 2b; if x ′
i − b < y < x ′

i , let xi = 2y − x ′
i + 2b; otherwise let xi = x ′

i . Observe
that |xi − b − y| = min

(|x ′
i − b − y|, |x ′

i + b − y|) and hence cost(xi , y) = cost(x ′
i , y) for

every agent i . Similarily, it holds that (xi − b) − (x1 − b) ≥ (x ′
i − b) − (x ′

1 − b) and hence
(since x1 = x ′

1), cost(xi − b, x1 − b) ≥ cost(x ′
i − b, x ′

1 − b) for all agents i .
We will calculate an upper bound on the approximation ratio on instance x ′. To do that,

we will calculate an upper bound on the value of the ratio SCM2(x)/SCy(x) on instance x,

2 In fact, even if the optimal mechanism outputs a distribution over points that all admit the minimum social
cost, the argument still works.
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Fig. 3 Cases of Theorem 8. The dotted lines indicate the position of agent xi before moving her from the left
side to the right side of y. The cost of every agent with respect to y is the same before and after moving her
to the right. The figure depicts only three agents (including x1 and xn )

where SCM2(x) is the social cost of Mechanism M2 on instance x and SCy(x) is the social
cost admitted by y on instance x. By the way the instance was constructed, it holds that
SCM2(x) ≥ SCM2(x′) and SCy(x) = SCy(x′) = SCopt(x′) and hence SCM2(x)/SCy(x) is
an upper bound on SCM2(x′)/SCopt(x′).

Let di = (xi −b)− y, for i = 2, . . . , n and let k = ∑
i �=1 di . Finally let d = |y−(x1+b)|.

We consider three cases. (See Fig. 3).
Case 1 x1 + b < y.

In this case, the social cost admitted by y is SCy(x) = nc + k + d , and the cost of
Mechanism M2 is SCM2(x) = nc + k + (n − 1)(d + 2b). The ratio is

SCM2(x)
SCy(x)

= g(k, d, n) = k + (n − 1)(d + 2b) + nc

k + d + nc
.

By calculating the partial derivative of the ratio with respect to k, we have

∂g(k, d, n)

∂k
= k + d + nc − k − (n − 1)(d + 2b) − nc

(k + d + nc)2
= d − (n − 1)(d + 2b)

(k + d + nc)2
< 0.

When k = 0, i.e. xi = y + b for all agents i = 2, . . . , n, the ratio achieves the maximum
value with respect to k. We plug in k = 0 to the above formula and get

SCM2(x)
SCy(x)

= g(d, n) = (n − 1)(d + 2b) + nc

d + nc
= (n − 1)d + 2(n − 1)b + nc

d + nc
.
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Again, we calculate the partial derivative of g(d, n) with respect to d ,

∂g(d, n)

∂d
= (n − 1)(d + nc) − (n − 1)d − 2(n − 1)b − nc

(d + nc)2
= c(n2 − 4n + 2)

(d + nc)2
.

For sufficiently large n (n ≥ 4), the above value is positive, so the ratio is maximized when
d approaches to infinity, which means that agent x1 is positioned very far away from the rest
of the agents coinciding on position xi . Therefore the ratio goes to n − 1.

Case 2 x1 < y ≤ x1 + b, which means 0 ≤ d < b.
In this case, the social cost admitted by y is SCy(x) = k + d + nc, and the cost of

Mechanism M2 is SCM2(x) = k + (n − 1)(2b − d) + nc. So the ratio is

SCM2(x)
SCy(x)

= g(k, d, n) = k + (n − 1)(2b − d) + nc

k + d + nc
.

Again, we calculate the partial derivative of g(k, d, n) with respect to k,

∂g(k, d, n)

∂k
= k + d + nc − k − (n − 1)(2b − d) − nc

(k + d + nc)2
= d − (n − 1)(2b − d)

(k + d + nc)2
.

Since 0 ≤ d < b, d < 2b− d and the above value is negative. To get the maximum value of
the ratio, we plug in k = 0 and the approximation ratio becomes

SCM2(x)
SCy(x)

= g(d, n) = (n − 1)(2b − d) + nc

d + nc
.

By calculating the partial derivative with respect to d , we get

∂g(d, n)

∂d
= −(n − 1)(d + nc) − (n − 1)(2b − d) − nc

(d + nc)2

= −(n − 2)nc − (n − 1)2b

(d + nc)2
< 0.

So the ratio is maximized when d = 0, and the ratio is 2b(n−1)+nc
nc < 1 + 2b

c .
Case 3 x1 − b < y ≤ x1, which means b ≤ d < 2b.

In this case, the social cost admitted by y is SCy(x) = k + 2b − d + nc, and cost of
Mechanism M2 is SCM2(x) = k + (n − 1)(2b − d) + nc. So the ratio is

SCM2(x)
SCy(x)

= g(k, d, n) = k + (n − 1)(2b − d) + nc

k + 2b − d + nc
.

We first calculate partial derivative of the function g with respect to k,

∂g(k, d, n)

∂k
= k + 2b − d + nc − k − (n − 1)(2b − d) − nc

(k + 2b − d + nc)2

= (2 − n)(2b − d)

(k + 2b − d + nc)2
< 0.

The function is decreasing in k so let’s set k = 0. The function f becomes

SCM2(x)
SCy(x)

= g(d, n) = (n − 1)(2b − d) + nc

2b − d + nc
.

Now, we calculate partial derivative of g with respect to d and get

∂g(d, n)

∂d
= −(n − 1)(2b − d) − n(n − 1)c + (n − 1)(2b − d) + nc

(2b − d + nc)2
≤ 0.
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So function g(d, n) is decreasing in d . Let’s set d = b, and the ratio goes to (n−1)b+nc
b+nc , which

is always smaller than n − 1.
In all, since SCM2(x)/SCy(x) ≤ n − 1 the approximation ratio of Mechanism M2 is

at most max{n − 1, 1 + 2b
c }. The approximation ratio is exactly n − 1 on any instance

x = 〈x1, x2, . . . , xn〉 with x2 = · · · = xn and x1 � x2, i.e. when agent 1 lies on the left,
really far away from the other n − 1 agents. We note that by our analysis, it follows that
the other upper bound of the ratio of the mechanism is actually 1 + (n−1)2b

nc but we instead

wrote a larger bound of 1+ 2b
c for ease of exposition. The ratio is exactly 1+ (n−1)2b

nc on any
instance x = 〈x1, x2, . . . , xn〉 with x1 + b = x2 − b = · · · = xn − b and goes to 1+ 2b

c as n
goes to infinity. ��

Next, wewill prove a lower bound of 1+b/c on the approximation ratio of any anonymous,
position invariant, and strategyproof mechanism, when the number of agents is even.We will
start with the following lemma. The main intuition behind the proof of the lemma is that we
will simulate profiles with two agents with profiles with n agents, where two groups of n/2
agents coincide on two different positions. The two-agent mechanism will then output the
same location that the n-agent mechanism outputs on the respective location profile. Similar
ideas have been used before in the literature, e.g. see [19,36].

Lemma 7 Let Mn be a strategyproof, anonymous and position invariant mechanism for n
agents, where n is even. Then, for any location profile x = 〈x1 = · · · = xn/2, xn/2+1 =
· · · = xn〉, it holds that Mn(x) = x1 − b.

Proof Let M2 be the following mechanism for two agents: On input location profile 〈x1, x2〉,
output Mn(x′), where x′ = 〈x ′

1 = · · · = x ′
n/2, x

′
n/2+1 = · · · = x ′

n〉, and x ′
1 = x1 and

x ′
n/2+1 = x2. First, we claim that M2 is strategyproof, anonymous and position invariant. If

that is true, then by Theorem 6, M2 is Mechanism M2 and the lemma follows.
First let x = 〈x1, x2〉, x̂ = 〈x̂1, x̂2〉 be any two position equivalent location profiles.

Observe that the corresponding n-agent profiles x′ and x̂′ obtained by placing n/2 agents on
x1 and x̂1 and n/2 agents on x2 and x̂2 respectively are also position equivalent. Since Mn

is position invariant, it must hold that Mn(x′) = Mn(x̂′) and hence by construction of M2,
M2(x) = M2(x̂). Since x and x̂ where arbitrary, Mechanism M2 is position invariant.

Similarly, let x = 〈x1, x2〉, x̂ = 〈x̂1, x̂2〉 be any two location profiles, such that x̂ is
obtained by x by a permutation of the agents. The outcome of Mn on the corresponding
n-agent location profiles (since the number of agents placed on x1 and x2 is the same) is the
same and by construction of M2, M2(x) = M2(x̂) and since the profiles where arbitrary, the
mechanism is anonymous.

Finally, for strategyproofness, start with a location profile x̂′ = 〈x̂ ′
1, x̂

′
2〉 and let x′ = 〈x ′

1 =
· · · = x ′

n/2, x
′
n/2+1 = · · · = x ′

n〉 be the corresponding n-agent location profile. Let y =
Mn(x′) and let cost(x ′, y) be the cost of agents x ′

1, . . . , x
′
n/2 on x

′. For any x1, let 〈x1, x ′
2 =

· · · = x ′
n/2, x

′
n/2+1 = · · · = x ′

n〉 be the resulting location profile. By strategyproofness of
Mn , agent x ′

1 can not decrease her cost by misreporting x1 on profile x′ and hence her cost
on the new profile is at least cost(x ′, y). Next, consider the location profile 〈x1 = x2, x ′

3 =
· · · = x ′

n/2, x
′
n/2+1 = · · · = x ′

n〉 and observe that by the same argument, the cost of agent
x ′
2 is not smaller on the new profile when compared to 〈x1, x ′

2 = · · · = x ′
n/2, x

′
n/2+1 =

· · · = x ′
n〉 and hence her cost is at least cost(x ′, y). Continuing like this, we obtain the profile

〈x1 = · · · = xn/2, x ′
n/2+1 = · · · = x ′

n〉 and by the same argument, the cost of agent x ′
n/2

on this profile is at least cost(x ′, y). The location profile 〈x1 = · · · = xn/2, x ′
n/2+1 = · · · =
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x ′
n〉 corresponds to the 2-agent location profile x̂ = 〈x̂1, x̂ ′

2〉 and by construction of M2,
cost(x̂ ′

1, M
2(x̂′)) ≤ cost(x̂ ′

1, M
2(x̂)) and since the choice of x1 (and hence the choice of x̂1)

was arbitrary, Mechanism M2 is strategyproof. ��

Theorem 9 When the number of agents is even, no strategyproof mechanism that satisfies
position invariance and anonymity can achieve an approximation ratio lower than 1+ (b/c)
for the social cost.

Proof LetMn be a strategyproof, anonymous and position invariant mechanism and consider
any location profile x = 〈x1 = · · · = xn/2, xn/2 + 1 = · · · = xn with xn/2+1 = x1 + 2b. By
Lemma 7, Mn(x) = x1 − b and the social cost of Mn is nc+ (n/2) · 2b while the social cost
of the optimal allocation is only nc. The lower bound follows. ��
4.2 Maximum cost

First, it is easy to see that themechanism that outputs the location thatminimizes themaximum
cost is not strategyproof. On any instance 〈x1, x2〉 with x1 + b < x2 − b the optimal location
of the facility is (x1 + x2)/2. If agent x2 misreports x ′

2 = 2x2 − 2b − x1 then the location
moves to x2 − b, minimizing her cost.

While the approximation ratio of Mechanism M2 for the social cost is not constant,
for the maximum cost that is indeed the case. In fact, as we will prove, when the number
of agents is even, Mechanism M2 actually achieves the best possible approximation ratio
amongst strategyproof mechanisms. We start with the theorem about the approximation ratio
of Mechanism M2.

Theorem 10 For n ≥ 3, Mechanism M2 achieves an approximation ratio of 1 + 2b
c for the

maximum cost.

Proof Let x = 〈x1, . . . , xn〉 be any instance. We consider three cases, depending on the
distance between agents x1 and xn .

Case 1 x1 + b ≤ xn − b ⇒ xn − x1 ≥ 2b.
In this case, the cost of the optimal mechanism is MCopt(x) = (xn − b) − x1+xn

2 + c =
xn−x1

2 − b + c, whereas the cost of Mechanism M2 is MCM2(x) = xn − x1 + c. The
approximation ratio is

MCM2(x)
MCopt(x)

= 2(xn − x1 + c)

xn − x1 − 2b + 2c
= 2 + 4b − 2c

xn − x1 − 2b + 2c
≤ 1 + 2b

c
.

Hence, in this case, the approximation ratio is at most 1 + 2b
c . For xn − b = x1 + b (the

instance on which the right peak of the first agent and the left peak of the last agent coincide),
the approximation ratio is exactly 1 + 2b

c .

Case 2 x1 < xn − b < x1 + b ⇒ c < xn − x1 < 2b.
The cost ofMechanismM2 in this case isMCM2(x) = xn−b−(x1−b)+c = xn−x1+c,

while the cost of the optimal mechanism is at least c. The approximation ratio is

MCM2(x)
MCopt(x)

≤ (xn − x1 + c)

c
< 1 + 2b

c

Case 3 x1 − b ≤ xn − b ≤ x1 ⇒ xn − x1 ≤ b.
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The cost of Mechanism M2 is MCM2(x) = xn − x1 + c while the cost of the optimal
mechanism is at least c. The approximation ratio is

MCM2(x)
MCopt(x)

≤ (xn − x1 + c)

c
≤ 1 + b

c
.

Over the three cases, the worst approximation ratio is at most 1+ 2b
c and there is actually an

instance of the problem with approximation ratio exactly 1 + 2b
c , ensuring that the bound is

tight. ��

The lower bound for the case when the number of agents is even follows.

Corollary 1 When the number of agents is even, no deterministic strategyproof mechanism
that satisfies position invariance and anonymity can achieve an approximation ratio lower
than 1 + 2b

c for the maximum cost.

Proof On instance x̂ of the proof of Theorem 9, there are agents whose cost for any strat-
egyproof, anonymous and position invariant mechanism is 2b + c, while under the optimal
mechanism it is only c. The lower bound on the approximation ratio follows. ��

Adifferent lower bound that holds for any number of agents (andwithout using the position
invariance property) is proved in the next theorem.

Theorem 11 No deterministic strategyproof mechanism can achieve an approximation ratio
lower than 2 for the maximum cost.

Proof Consider an instance x = 〈x1, x2〉 with x1 +b < x2 −b (the instance can be extended
to arbitrarily many agents by placing agents on positions x1 and x2 and all the arguments will
still hold). The optimal location of the facility is fopt(x) = x1+x2

2 . Assume for contradiction
that M is a deterministic strategyproof mechanism with approximation ratio smaller than 2.

First, we argue that it can not be that fM(x) ∈ [x2−b,∞). Let d = x2−b− fopt(x). It holds
thatMCopt(x) = c+d . If it was fM(x) ∈ [x2−b,∞), then it would be thatMCM(x) ≥ c+2d
and the approximation ratio would be at least 2− c

d+c which goes to 2 as d grows to infinity
(i.e. the agents are placed very far away from each other). Now, for Mechanism M to achieve
an approximation ratio smaller than 2, it must be fM(x) ∈ [ fopt(x), x2−b) (or symmetrically
fM(x) ∈ (x1 + b, fopt(x)]).
Now consider the instance x′ = 〈x ′

1, x
′
2〉 with x ′

1 = x1 and x ′
2 = fM(x) + b. On this

instance, it must be either fM(x′) = fM(x) or fM(x′) = fM(x) + 2b (the left or the right
peak of agent x ′

2), otherwise agent x ′
2 could report x2 and move the facility to x ′

2 − b,
minimizing her cost and violating strategyproofness. For calculating the lower bound, we
need the choice that admits the smaller of the two costs, i.e. fM(x′) = fM(x). We calculate
the approximation ratio on instance x′.

The optimal choice for the facility is again fopt(x′) = (x1 + x ′
2)/2. Let λ = (x ′

2 − b) −
fopt(x′). The approximation ratio then is 2− c

λ+c . We know that λ ≥ d/2, so when d grows
to infinity as before, λ also grows to infinity and the approximation ratio goes to 2. This
means that there exists an instance for which the approximation ratio of the mechanism is 2,
which gives us the lower bound. ��
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5 Group strategyproofness

As we mentioned in the introduction, under the reasonable conditions of position invariance
and anonymity, there is no group strategyproof mechanism for the problem. We will prove
this claim by using Lemma 4 and the following lemma.

Recall the definition of the primary instance from Sect. 4. When n = 2k + 1, k ∈ Z
+, let

P be the instance obtained by locating k + 1 agents on x1 and k agents on x2 on the primary
instance. Similarly, let S be the instance obtained by locating k agents on x1 and k+1 agents
on x2 on the primary instance. Formally, let xP = 〈x P

1 , . . . , x P
n 〉, where x P

1 = · · · = x P
k+1,

x P
k+2 = · · · = x P

n , and (x P
n − b) − (x P

1 + b) = b + ε and xS = 〈x S1 , . . . , x Sn 〉, where
x S1 = · · · = x Sk , x

S
k+1 = · · · = x Sn , and (x Sn − b) − (x S1 + b) = b + ε, where ε is the same

quantity as in the primary instance.

Lemma 8 When n = 2k + 1, any position invariant and group strategyproof mechanism
that outputs f (xP) = xP1 + b on instance P, must output f (x) = x1 + b on any instance
x = 〈x1, . . . , xn〉, where x1 = · · · = xk+1, xk+2 = · · · = xn and (xn − b) − (x1 + b) = 2b.
Similarly, any position invariant and group strategyproof mechanism that outputs f (xS) =
xSn − b on instance S, must output f (x) = xn − b on any instance x = 〈x1, . . . , xn〉, where
x1 = · · · = xk , xk+1 = · · · = xn and (xn − b) − (x1 + b) = 2b.

Proof We prove the first part of the lemma. The proof of the second part is symmetric. Note
that the difference between instances xP and x is that the distance between the two groups of
agents is 3b+ε in xP while it is 4b in x. First, we argue that f (x) ∈ [x1+b, xn−b]. Indeed, if
that was not the case, if f (x) < x1 +b, by the onto condition implied by position invariance,
all agents could jointly misreport some different positions and move the facility to x1 + b.
This point admits a smaller cost for all agents; specifically the cost of agents x1, . . . , xk+1 is
minimized while the cost of agents xk+2, . . . , xn is reduced and group strategyproofness is
violated. Using a symmetric argument, we conclude that it can’t be f (x) > xn − b either.

Secondly, we argue that f (x) /∈ (x1 + b, xn − b]. Indeed, assume that was not the case.
Then agents xPk+2, . . . , x

P
n on instance xP could jointly misreport xk+2, . . . , xn and move the

facility from f (xP) = xP1 +b to f (x). Since by assumption f (x) ∈ (x1 +b, xn −b], the cost
of each deviating agent is smaller than her cost before deviating. Group strategyproofness is
then violated and hence it must be that f (x) = x1 + b. By position invariance, it must be
that f (x̄) = x̄1 + b on any instance x̄ which is position equivalent to instance x. ��
Theorem 12 There is no group strategyproof mechanism that is anonymous and position
invariant.

Proof When n = 2, on the primary instance, according to Lemma 4, there is no anonymous,
position invariant and strategyproofmechanism such that f (x) ∈ [x1+b, x2−b]. In addition,
if the facility was placed on some point f (x) < x1 + b (the argument for f (x) > x2 − b is
symmetric), for any mechanism that satisfies position invariance which implies onto, agents
1 and 2 could jointly misreport some positions x̂1 and x̂2 such that f (x̂1, x̂2) = x1 + b.
Obviously, this deviation admits the minimum possible cost for agent 1 and a reduced cost
for agent 2, violating group strategyproofness.

The proof can easily be extended to the case when n is even. On the primary instance,
simply place n

2 agents on x1 and n
2 agents on x2. By considering deviations of coalitions of

agents coinciding on x1 or x2 instead of deviations of agents x1 and x2 respectively, all the
arguments still hold. However, additional care must be taken when n is odd.
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When n = 2k + 1, k ∈ Z
+, we denote by PJ the instance after placing k + 1 agents on x J1

and k agents on x J2 on instance J, where J is either instance I, II, III, IVa or IVb of the proof
of Lemma 4. Similarly, let SJ be the instance after placing k agents on x J1 and k + 1 agents
on x J2 on instance J. Finally, let X

K
1 be the group of agents i for which xKi = xK1 on instance

K , where K is either P, PI, PII, PIII, PIVa, PIVb, S, SI, SII, SIII, SIVa or SIVb, and let XK
2 be

the group of agents i for which xKi = xKn on instance K.
For contradiction, assume that there exists an anonymous, position invariant, and group

strategyproof mechanism. On instance P , by group strategyproofness, it must be f (xP) ∈
[x P

1 + b, x P
n − b] and by the same arguments used in case 1 of Lemma 4 (with instances

PI, PII instead of I, II and with X P
1 and X P

2 instead of x1 and x2)3, it must be f (xP) /∈
(x P

1 +b, x P
n −b). Hence, it must be that either f (xP) = x P

1 +b or f (xP) = x P
n −b. Assume

w.l.o.g. that f (xP) = x P
1 + b; the other case can be handled symmetrically.

Following the arguments of case 2 of Lemma 4 (using instance PIII instead of III), group
strategyproofness and position invariance imply that f (xPIII ) = x PIII

1 − b or f (xPIII ) =
x PIII
1 + b on instance PIII. By the arguments of subcase (a) (using instance PIVa instead of

IVa), it can’t be that f (xPIII ) = x PIII1 − b, so it must be that f (xPIII ) = x PIII
1 + b. However,

we can not simply apply the argument used in subcase (b) to get a contradiction, because
since there is a different number of agents on x P

1 and x P
2 , instances P and PIVa are no longer

position equivalent.
Next, consider instance S and observe that f (xS) /∈ (x S1 +b, x Sn −b) by the same arguments

as above and f (xS) ∈ [x S1 + b, x Sn − b] by group strategyproofness and position invariance.
Hence it is either f (xS) = x S1 + b or f (xS) = x Sn − b. Assume first that f (xS) = x S1 + b.
By the same arguments as above (using instances SIII and SIVa), on instance SIII, it must be
that f (xSIII ) = x SIII1 + b. Now, observe that if X PIII

2 misreport x̄ PIII
i = x PIII

i − 2b − 2ε, then
we get instance PIVb which is position equivalent to instance SIII and hence it must be that
f (xPIVb) = x PIVb

n + b. The cost of X PIII
2 before misreporting was b+ c− ε while it becomes

c + 2ε after misreporting. This violates strategyproofness, which means that on instance S,
it must be f (xS) = x Sn − b.

Let’s denote instance T by xT = 〈xT1 , . . . , xTn 〉, where xT1 = · · · = xTk = xTk+1 − 2b =
xTk+2 − 4b = · · · = xTn − 4b. Let XT

1 be the set of agents i for which xTi = xT1 , and let
XT
2 be the set of agents j for which xTj = xTn , and let xt be agent xTk+1. On instance T, it

must be either f (xT ) = xT1 + b or f (xT ) = xTn − b, otherwise agent xt could misreport
x ′
t = xT1 and then by Lemma 8 and the fact that on instance P it is f (xP) = x P

1 + b, it
should be f (xT1 , . . . , x ′

t , . . . , x
T
n ) = xt − b, which admits a cost of c for agent xt . Similarily,

by Lemma 8 and the fact that on instance S, it is f (xS) = x Sn − b, if agent xt misreports
x ′′
t = xTn , then it should be f (xT1 , . . . , x ′′

t , . . . , xTn ) = xt + b. If f (xT) = xTn − b, agent xt
could form a coalition with agents XT

1 and by misreporting x ′
t , move the facility to xt − b,

a choice that would admit the same cost for her, but a strictly smaller cost for every other
member of the coalition. If f (xT) = xT1 + b then agent xt could form a coalition with agents
XT
2 and by misreporting x ′′

t , move the facility to xt + b, a choice that would admit the same
cost for her, but a strictly smaller cost for every other member of the coalition. In each case,
there is a coalition of agents that can benefit from misreporting and group strategyproofness
is violated. This completes the proof. ��

3 Here we assume for convenience that any mechanism outputs the same location in [x P1 + c, x Pn − c] on the
primary instance and instance P . This is without loss of generality because the argument for any output in
[x P1 + b, x Pn − b] is exactly the same.
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6 Conclusion and discussion

In this paper, we studied a natural variant of a well-known problem, that of truthful facility
location, when agents have double-peaked linear preferences over the set of possible loca-
tions. As we saw, the fact that double-peaked preferences are not as well-behaved as their
well-studied single-peaked counterpart makes the problem of designing good truthful mech-
anisms quite more challenging. Given the standard interpretation of the median agent as a
majority outcome in the single-peaked domain, our results seem to indicate that even slightly
more complicated preference structures (that do not admit such majorities) might necessarily
have very bad performance guarantees in the absence of such a consensus and that some sort
of randomization is in fact essential.

Our work can be placed directly in the middle of the extensive literature on truthful
facility location that comprises of many interesting settings, modelling different situations.
The original model [1,30] assumes single-peaked preferences, the obnoxious facility model
[7,8,16] assumes singled-dipped (also known as single-caved preferences) whereas the dual
preference model [33,34,39] assumes a combination of single-peaked and single-dipped
preferences. Each preference structure in these works is motivated by corresponding real-life
scenarios; in this light, our model can also be seen as another interesting preference structure,
motivated by a different realistic scenario, which immediately places it in tight connection to
the related work in artificial intelligence and theoretical computer science. Furthermore, as
we mentioned in the introduction, the interest in these types of problems is expanding with
works considering different objectives or more complicated cost structures.

Given that double-peaked preferences are a natural preference structure for some scenar-
ios, as also advocated by some of the related work in economics, one could consider their use
in other problems, beyond facility location. We have already mentioned their use in [38] for
the problem of controlling elections; one could think of other uses in computational aspects
of social choice, an important subfield of artificial intelligence. For example, one could ask
the questions of whether efficient algorithms for deciding whether a given incomplete pref-
erence structure can be extended to a double-peaked profile, similarly to the corresponding
questions for single-peaked preferences [3,15]. Another question is whether it is possible
to efficiently elicit double-peaked preference orderings using some kind of query operation,
e.g. comparison queries, like for instance in [9] for the single-peaked case.

7 Future work and extensions

Starting from randomized mechanisms, we would like to obtain lower bounds that are func-
tions of b and c, to see howwell MechanismM1 fares in the general setting. For deterministic
mechanisms, we would like to get a result that would clear up the picture. Characterizing
strategyproof, anonymous and position invariant mechanisms would be ideal, but proving a
lower bound that depends on n on the ratio of such mechanisms (for the social cost) would
also be quite helpful. The techniques used in our characterization for two agents and our
lower bounds seem to convey promising intuition for achieving such a task.

The problem could be extended to the case of multiple peaks, instead of two peaks, while
at the same time moving to more general metric spaces. Perhaps the most natural extension
would be a setting where each agent is associated with a position on ametric space, a “center”
and her most preferred locations lie on a sphere centered around this position. Equivalently,
one could think of each agent being associated with all the points on the sphere centered
around her location and her cost would be the distance between the location of the facility
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Table 2 The results for the case
when peaks are not required to be
symmetric

Non-symmetric

Ratio Lower

Social cost

Deterministic n − 1 1 + b1+b2
c

Randomized n − 1 −
Maximum cost

Deterministic 1 + b1+b2
c 1 + b1+b2

c

Randomized 1 + b1+b2
c 3/2

and the closest such point on the sphere. Crucially though, the agent can only manipulate the
position of these points throught misreporting the position of the center of the sphere. This
extension is interesting becauses it models precisely the samemotivating example we used in
the introduction, in an even more realistic setting. For example, case of the two-dimensional
space corresponds to a scenario where the government is planning to build a primary school
at some spot in a neighbourhood or a city block, instead of simply a street; a city block is
much better modelled as a plane, instead of a real line. This extension is also in accordance
with the usual questions posed in the literature of facility location, where the investigations
usually start from the case of one facility and the line metric and extend to multiple facilities
on general metric spaces. The extension to multiple facilities, even for the line metric is of
course also meaningful for our model of double-peaked preferences.

Adifferent extension couldbe in termsof the cost functions used in themodel.Although the
symmetric case is arguably the best analogue of the single-peaked preference setting, it could
certainly make sense to consider a more general model, where the cost functions do not have
the same slope in every interval and hence the peaks are not equidistant from the location of
an agent. Let b1 and b2 be the distances from the left and the right peaks respectively. Clearly,
all our lower bounds still hold, although one could potentially prove even stronger bounds by
taking advantage of the more general setting. The main observation is that MechanismM1 is
no longer truthful-in-expectation, because its truthfulness depends heavily on the peaks being
equidistant. On the other hand, mechanism M2 is still strategyproof and the approximation
ratio bounds extend naturally. A summary of the results for the non-symmetric setting is
depicted in Table 2.

Future work could also consider a different choice for the objective function. Here, we
studied the objective functions of the social cost and themaximumcost, following the original
literature on the problem with single-peaked preferences [30]. Since then, several other
objectives functions have been considered in the literature such as the least-squares objective,
[18], the L p norm of costs[17] or the minimax envy [5]; it would make sense to consider the
same or at least similar objectives for the case of double-peaked preferences as well. Finally,
it would be meaningful to consider the problem under the verification framework [21,22],
especially if it turns out that strong inapproximability bounds apply, at least for the case of
deterministic strategyproof mechanisms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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