Skip to main content

Advertisement

Log in

Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine how tree diversity, richness, and structural characteristics as well as above-ground biomass varies along a small-scale elevation gradient from 601 to 1000 m above sea level (m.a.s.l.) in an Evergreen Andean Amazon forest and their implications in terms of carbon storage. Trees with diameter at breast height greater than 10 cm were surveyed in 20 permanent 0.1 ha plots, five at each elevation site. We determined species richness, density, basal area, aerial biomass and calculated a biomass importance value (BIV). The 1378 trees surveyed were mainly contained in the families Moraceae (17 species) Fabaceae (16) and Meliaceae (10). Species richness significantly increased (P < 0.007) along the small-scale elevation gradient and was greatest in the range of 901–1000 m.a.s.l. Aerial biomass varied between 246.8 and 320.9 Mega grams per hectare (Mg ha−1) and did not differ along the gradient (P > 0.579). At the highest tree density, the highest BIV of Iriartea deltoidea was found at 601–900 m.a.s.l. The disproportionate contribution of a few species, some being the least abundant but with high AGB in our surveys (e.g., Sterculia sp., Nectandra sp., Ficus sp., and Inga sp.) to carbon stocks is important to consider in furture research on carbon sequestration. As the production of above-ground biomass was concentrated in a few species, some uncommon, decision making in reforestation programs and how species should be selected may have implications when measuring and promoting carbon storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiba SI, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562

    Google Scholar 

  • Bilsborrow RE, Barbieri AF, Pan W (2004) Changes in population and land use over time in the Ecuadorian Amazon. Acta Amaz 34:635–647

    Google Scholar 

  • Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Cid Ferreira CA, Victoria RA (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manag 75:175–189. https://doi.org/10.1016/0378-1127(94)03512-U

    Article  Google Scholar 

  • Bunker DE, DeClerk F, Bradford JC, Colwell RK, Perfecto Y, Phillips OL, Sankaran M, Naeem S (2005) Species loss and above-ground carbon storage in a tropical forest. Science 310:1029–1031

    CAS  PubMed  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’onner MI, Gonzalez A (2011) The funtional role of producer diversity in ecosystems. Am J Bot 98:572–592

    PubMed  Google Scholar 

  • Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    PubMed  Google Scholar 

  • Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097

    Google Scholar 

  • Culmsee H, Leuschner C, Moser G, Pitopang R (2010) Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J Biogeogr 37:960–974

    Google Scholar 

  • Eisfelder C, Klein I, Bekkuliyeva A, Kuenzer C, Buchroithner MF, Dech S (2017) Above-ground biomass estimation based on NPP time-series—a novel approach for biomass estimation in semi-arid Kazakhstan. Ecol Indic 72:13–22

    Google Scholar 

  • Fahey TJ, Knapp AK (2007) Principles and standards for measuring primary production. Oxford University Press, Oxford

    Google Scholar 

  • Fauset S, Johnson MO, Gloor M et al (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun 6:6857

    CAS  PubMed  Google Scholar 

  • Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3:e2932. https://doi.org/10.1371/journal.pone.0002932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Google Scholar 

  • Gentry AH (1992a) Diversity and floristic composition of Andean cloud forests of Peru and adjacent countries: implications for their conservation. Memorias del Museo de Historia Natural U.N.M.S.M 21:11–29

    Google Scholar 

  • Gentry AH (1992b) Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63:19–28

    Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res Biogeosci 114:G2

    Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16:618–631

    Google Scholar 

  • Killeen TJ (2007) Advances in Applied Biodiversity Science No. 7. Center for Applied Biodiversity Science, Conservation International, Washington, DC

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221

    Google Scholar 

  • Kitayama K, Aiba SI (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    PubMed  Google Scholar 

  • Lamprecht H (1990) Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido, TZ-Verlag-Ges

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230

    Google Scholar 

  • Lewis SL, Sonké B, Sunderland T et al (2013) Above-ground biomass and structure of 260 African tropical forests. Philos Trans R Soc B 368:20120295

    Google Scholar 

  • Magurran AE (2013) Measuring biological diversity. Wiley, New York

    Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    CAS  PubMed  Google Scholar 

  • Mejía E, Pacheco P, Muzo A, Torres B (2015) Smallholders and timber extraction in the Ecuadorian Amazon: amidst market opportunities and regulatory constraints. Int For Rev 16:1–13. https://doi.org/10.1505/146554815814668954

    Article  Google Scholar 

  • Mena CF, Lasso F, Martínez P, Sanpedro C (2017) Modeling road building, deforestation and carbon emissions due deforestation in the Ecuadorian Amazon: the potential impact of oil frontier growth. J Land Use Sci. https://doi.org/10.1080/1747423x.2017.1404648

    Article  Google Scholar 

  • Ministerio de Ambiente del Ecuador (MAE) (2012) Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Quito

    Google Scholar 

  • Ministerio del Ambiente del Ecuador (MAE) (2013) Estimación de la Tasa de Deforestación del Ecuador continental. Ministerio del Ambiente del Ecuador, Quito

    Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB, da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520

    Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17:2211–2226

    Google Scholar 

  • Myers N (1988) Threatened biotas:” hot spots” in tropical forests. Environmentalist 8:187–208. https://doi.org/10.1007/bf02240252

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nascimento HEM, Laurance WF (2002) Total aboveground biomass in central Amazonian rainforests: a landscape-scale study. For Ecol Manag 168:311–321

    Google Scholar 

  • Nebel G, Kvist LP, Vanclay JK, Christensen H, Freitas L, Ruíz J (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon: I. Overstorey. For Ecol Manage 150:27–57

    Google Scholar 

  • Pan W, Carr D, Barbieri A, Bilsborrow R, Suchindran C (2007) Forest clearing in the Ecuadorian Amazon: a study of patterns over space and time. Popul Res Policy Rev 26:635–659. https://doi.org/10.1007/s11113-007-9045-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    CAS  PubMed  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    CAS  PubMed  Google Scholar 

  • Poorter L, van der Sande MT, Thompson J et al (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328

    Google Scholar 

  • Ruiz-Jaen MC, Potvin C (2010) Tree diversity explains variation in ecosystem function in a neotropical forest in Panama. Biotropica 42:638–646

    Google Scholar 

  • Slik JW, Raes N, Aiba SI et al (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 15:523–532

    Google Scholar 

  • Slik J, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60

    Google Scholar 

  • Tanner EVJ, Rodriguez-Sanchez F, Healey JR, Holdawy RJ, Bellingham PJ (2014) Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology. https://doi.org/10.1890/13-1801.1

    Article  Google Scholar 

  • ter Steege H, Sabatier D, Castellanos H et al (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Trop Ecol 16:801–828

    Google Scholar 

  • ter Steege H, Pitman NCA, Sabtatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092

    PubMed  Google Scholar 

  • Torres B, Bilsborrow R, Barbieri A, Torres A (2014) Cambios en las estrategias de ingresos económicos a nivel de hogares rurales en el norte de la Amazonía Ecuatoriana. Revista Amazónica: Ciencia y Tecnología 3:221–257

    Google Scholar 

  • Torres B, Günter S, Acevedo-cabra R, Knoke T (2018a) Livelihood strategies, ethnicity and rural income: the case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For Policy Econ 86:22–34

    Google Scholar 

  • Torres B, Vasco C, Günter S, Knoke T (2018b) Determinants of agricultural diversification in a hotspots area: evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 10:1432

    Google Scholar 

  • Unger M, Homeier J, Leuschner C (2012) Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263–274

    PubMed  PubMed Central  Google Scholar 

  • Valencia R, Balslev H, Miño GPY (1994) High tree alpha-diversity in Amazonian Ecuador. Biodivers Conserv 3:21–28

    Google Scholar 

  • Vasco C, Torres B, Pacheco P, Griess V (2017) The socioeconomic determinants of legal and illegal smallholder logging: evidence from the Ecuadorian Amazon. For Policy Econ 78:133–140. https://doi.org/10.1016/j.forpol.2017.01.015

    Article  Google Scholar 

  • Verón SR, Paruelo JM, Oesterheld M (2011) Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem. Oecologia 165:501–510

    PubMed  Google Scholar 

  • Wang X, Piao S, Ciais P et al (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506(7487):212–215. https://doi.org/10.1038/nature12915

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolier Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, B., Vasseur, L., López, R. et al. Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador. Agroforest Syst 94, 1235–1245 (2020). https://doi.org/10.1007/s10457-018-00342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-00342-8

Keywords

Navigation