Skip to main content

Advertisement

Log in

Capillary rarefaction: a missing link in renal and cardiovascular disease?

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Patients with chronic kidney disease (CKD) have an increased risk for cardiovascular morbidity and mortality. Capillary rarefaction may be both one of the causes as well as a consequence of CKD and cardiovascular disease. We reviewed the published literature on human biopsy studies and conclude that renal capillary rarefaction occurs independently of the cause of renal function decline. Moreover, glomerular hypertrophy may be an early sign of generalized endothelial dysfunction, while peritubular capillary loss occurs in advanced renal disease. Recent studies with non-invasive measurements show that capillary rarefaction is detected systemically (e.g., in the skin) in individuals with albuminuria, as sign of early CKD and/or generalized endothelial dysfunction. Decreased capillary density is found in omental fat, muscle and heart biopsies of patients with advanced CKD as well as in skin, fat, muscle, brain and heart biopsies of individuals with cardiovascular risk factors. No biopsy studies have yet been performed on capillary rarefaction in individuals with early CKD. At present it is unknown whether individuals with CKD and cardiovascular disease merely share the same risk factors for capillary rarefaction, or whether there is a causal relationship between rarefaction in renal and systemic capillaries. Further studies on renal and systemic capillary rarefaction, including their temporal relationship and underlying mechanisms are needed. This review stresses the importance of preserving and maintaining capillary integrity and homeostasis in the prevention and management of renal and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed for this review article.

References

  1. Levin A, Tonelli M, Bonventre J et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research and policy. Lancet 290:1888–1916. https://doi.org/10.1016/S0140-6736(17)30788-2

    Article  Google Scholar 

  2. Webster AC, Nagler EV, Morton RJ et al (2017) Chronic kidney disease. Lancet 389:1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  PubMed  Google Scholar 

  3. Stevens PE, Levin A (2013) Evlauation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007

    Article  PubMed  Google Scholar 

  4. Chade AR (2013) Renal vascular structure and rarefaction. Compr Physiol 3:817–831. https://doi.org/10.1002/cphy.c120012

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ehling J, Babickova J, Gremse F et al (2016) Quantitative micro-computed tomogrphay imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol 27:520–532. https://doi.org/10.1681/ASN.2015020204

    Article  CAS  PubMed  Google Scholar 

  6. Levy BI, Schiffrin EL, Mourad JJ et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118:968–976. https://doi.org/10.1161/CIRCULATIONAHA.107.763730

    Article  PubMed  Google Scholar 

  7. Houben AJHM, Martens RJH, Stehouwer CDA (2017) Assessing microvascular function in humans from a chronic disease perspective. J Am Soc Nephrol 28:3461–3472. https://doi.org/10.1681/ASN.2017020157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660. https://doi.org/10.1038/nm06030653

    Article  CAS  PubMed  Google Scholar 

  9. Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. https://doi.org/10.1056/NEJMra0910283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang DH, Kanellis J, Hugo C et al (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13:806–816

    Article  PubMed  Google Scholar 

  11. Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int 67:404–419. https://doi.org/10.1111/j.1523-1755.2005.67097.x

    Article  PubMed  Google Scholar 

  12. Keller G, Zimmer G, Mall G et al (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108. https://doi.org/10.1056/NEJMoa020549

    Article  PubMed  Google Scholar 

  13. Hughson MD, Douglas-Denton R, Bertram JF et al (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678. https://doi.org/10.1038/sj.ki.4000041

    Article  CAS  PubMed  Google Scholar 

  14. Hoy WE, Hughson MD, Singh GR et al (2006) Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int 70:104–110. https://doi.org/10.1038/sj.ki.50000397

    Article  CAS  PubMed  Google Scholar 

  15. Denic A, Mathew J, Nagineni VV et al (2018) Clinical and pathology findings associate consistently with larger glomerular volume. J Am Soc Nephrol 29:1960–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lenihan CR, Busque S, Derby G et al (2015) The association of predonation hypertension with glomerular function and number in older living kidney donors. J Am Soc Neprhol 26:1261–1267. https://doi.org/10.11681/ASN.2014030304

    Article  Google Scholar 

  17. Kanzaki G, Puelles VG, Cullen-McEwen LA et al (2017) New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight 5:e94334. https://doi.org/10.1172/jci.insight.94334

    Article  Google Scholar 

  18. Manalich R, Reyes L, Herrera M et al (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorhometric study. Kidney Int 58:770–773. https://doi.org/10.1046/j.1523-1755.2000.00225.x

    Article  CAS  PubMed  Google Scholar 

  19. Abdi R, Slakey D, Kittur D et al (1998) Baseline glomerular size as a predictor of funcction in human renal transplantation. Transplantation 15:329–333. https://doi.org/10.1097/00007890-1998081150-00009

    Article  Google Scholar 

  20. McNamara BJ, Diouf B, Douglas-Denton RN et al (2010) A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans. Nephrol Dial Transplant 25:1514–1520. https://doi.org/10.1093/ndt/gfq030

    Article  PubMed  PubMed Central  Google Scholar 

  21. Merzhani MA, Denic A, Narasimhan R et al (2021) Kidney microstructural features at time of donation predict long-term risk of chronic kidney disease in living kidney donors. Mayo Clin Proc 96:40–51. https://doi.org/10.1016/j.mayocp.2020.08.041

    Article  Google Scholar 

  22. Denic A, Elsherbiny H, Mulaan AF et al (2020) Larger nephron size and nephrosclerosis predict progressive CKD and mortality after radical nephrectomy for tumor and independent of kidney function. J Am Soc Nephrol 31:2642–2652. https://doi.org/10.1681/ASN.2020040449

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hill GS, Heudes D, Jaquot C et al (2006) Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension. Kidney Int 69:823–831

    Article  CAS  PubMed  Google Scholar 

  24. Hill GS, Heudes D, Barietty J (2003) Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int 63:1027–1036. https://doi.org/10.1046/j.1523-1755.2003.99831.x

    Article  PubMed  Google Scholar 

  25. Hodgin JB, Bizer M, Wickman L et al (2015) Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J Am Soc Nephrol 26:3162–3178. https://doi.org/10.1681/ASN.2014080752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269. https://doi.org/10.1152/ajprenal.00478.2012

    Article  CAS  PubMed  Google Scholar 

  27. Koike K, Ikezumi Y, Tsuboi N et al (2017) Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. Clin J Am Soc Nephrol 12:585–590. https://doi.org/10.2215/CJN.05650516

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baelde HJ, Eikmans M, Lappin DW et al (2007) Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int 71:637–645. https://doi.org/10.1038/sj.ki.5002101

    Article  CAS  PubMed  Google Scholar 

  29. Asada N, Tsukahara T, Furuhata M et al (2017) Polycythemia, capillary rarefaction, and focal glomerulosclerosis in two adolescents born extremely low birth weight and premature. Pediatr Nephrol 32:1275–1278. https://doi.org/10.1007/s00467-017-3654-z

    Article  PubMed  Google Scholar 

  30. Kaplan C, Pasternack B, Shah H et al (1975) Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 80:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Puelles VG, Douglas-Denton RN, Cullen-McEwen LA et al (2015) Podocyte number in children and adults: association with glomerular size and numbers of other glomerular resident cells. J Am Soc Nephrol 26:2277–2288. https://doi.org/10.1681/ASN.2014070641

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu X, Wu S, Dahut WL et al (2007) Risk of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systemic review and meta-analysis. Am J Kidney Dis 49:186–193. https://doi.org/10.1053/j.ajkd.2006.11.039

    Article  CAS  PubMed  Google Scholar 

  33. Eremina V, Jefferson JA, Kowalewska J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136. https://doi.org/10.1056/NEJMoa0707330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellis EN, Steffes MW, Goetz FC et al (1986) Glomerular filtration surface in type 1 diabetes mellitus. Kidney Int 29:889–894. https://doi.org/10.1038/ki.1986.82

    Article  CAS  PubMed  Google Scholar 

  35. Navar LG, Maddox DA, Munger KA (2020) The renal circulations and glomerular filtration. In Yu ASL, Chertow GM, Luyckx VA et al. (Eds.) Brenner and rector’s the kidney, 11th Ed, pp 80–114

  36. Evans RG, Ince C, Joles JA et al (2013) Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40:106–122. https://doi.org/10.1111/1440-1681.12031

    Article  CAS  PubMed  Google Scholar 

  37. Farris AB, Ellis CL, Rogers TE et al (2016) Renal medullary and cortical correlates in fibrosis, epithelial mass, microvascularity, and microanatomy using whole slide image analysis morphometry. PLoS ONE 11:e0161019. https://doi.org/10.1371/journal.pone.0161019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konda R, Sato H, Sakai K et al (1999) Expression of platelet-derived endothelial cell growth factor and its potential role in up-regulation of angiogenesis in scarred kidneys secondary to urinary tract diseases. Am J Pathol 155:1587–1597. https://doi.org/10.1016/S0002-9440(10)65475-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi YJ, Chakraborty S, Nguyen V et al (2000) Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hum Pathol 31:1491–1497. https://doi.org/10.1053/hupa.2000.20373

    Article  CAS  PubMed  Google Scholar 

  40. Namikoshi T, Satoh M, Horike H et al (2006) Implication of peritubular capillary loss and altered expression of vascular endothelial growth factor in IgA nephropathy. Nephron Physiol 102:9–16. https://doi.org/10.1159/000088405

    Article  CAS  Google Scholar 

  41. Ozdemir BH, Demirhan B, Ozdemir FN et al (2004) The role of microvascular injury on steroid and OKT3 response in renal allograft rejection. Transplantation 78:734–740. https://doi.org/10.1097/01.tp.0000130453.79906.62

    Article  PubMed  Google Scholar 

  42. Anutrakulchai S, Titipungul T, Pattay T et al (2016) Relation of peritubular capillary features to class of lupus nephritis. BMC Nephrol 17:169. https://doi.org/10.1186/s12882-016-0388-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seron D, Alexopoulos E, Raftery MJ et al (1990) Number of interstitial capillary cross-sections assessed by monoclonal antibodies: relation to interstitial damage. Nephrol Dial Transplant 5:889–893. https://doi.org/10.1093/ndt/5.10.889

    Article  CAS  PubMed  Google Scholar 

  44. Bohle A, Mackensen-Haen S, Wehrmann M (1996) Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res 19:191–195. https://doi.org/10.1159/00017072

    Article  CAS  PubMed  Google Scholar 

  45. Ishii Y, Sawada T, Kubota K et al (2005) Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy. Kidney Int 67:321–332. https://doi.org/10.1111/j.1523-1755.2005.00085.x

    Article  PubMed  Google Scholar 

  46. Lindenmeyer MT, Kretzler M, Boucherot A et al (2007) Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol 18:1765–1776. https://doi.org/10.1681/ASN.2006121304

    Article  CAS  PubMed  Google Scholar 

  47. Klomjit N, Zhu XY, Eirin A et al (2022) Mirovascular remodeling and altered angiogenic singaling in human kidneys distal to occlusive atherosclerotic renal artery stenosis. Nephrol Dial Transplant 37:1844–1856. https://doi.org/10.1093/ndt/gfac156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steegh FM, Gelens MA, Nieman FH et al (2011) Early loss of peritubular capillaries after kidney transplantation. J Am Soc Nephrol 22:1024–1029. https://doi.org/10.1681/ASN.2010050531

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549. https://doi.org/10.1046/j.1523-1755.2002.00631.x

    Article  CAS  PubMed  Google Scholar 

  50. Babickova J, Klinkhammer BM, Buhl EM et al (2017) Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int 91:70–85. https://doi.org/10.1016/j.kint.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  51. Kida Y, Duffield JS (2011) Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Phyisol 38:467–473. https://doi.org/10.1111/j.1440-1681.2011.0531.x

    Article  Google Scholar 

  52. Grgic I, Campanholle G, Bijol V et al (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–183. https://doi.org/10.1038/ki.2012.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kramann R, Wongboonsin J, Chang-Panesso M et al (2017) Gli1+ pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol 28:776–784. https://doi.org/10.1681/ASN.2016030297

    Article  CAS  PubMed  Google Scholar 

  54. Humphreys BD, Lin SL, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblats in kidney fibrosis. Am J Pathol 176:85–97. https://doi.org/10.2353/ajpath.2010.090517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dimke H, Sparks MA, Thomson BR et al (2015) Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in the kidney. J Am Soc Nephrol 26:1027–1038. https://doi.org/10.1681/ASN.201410060

    Article  CAS  PubMed  Google Scholar 

  56. Querfeld U, Mark RH, Pries AR (2020) Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clin Sci (Lond) 134:1333–1356. https://doi.org/10.1042/CS20200279

    Article  CAS  PubMed  Google Scholar 

  57. Charytan DM, Padera R, Helfand AM et al (2014) Increased concentration of circulating angiogenesis and nitric oxide inhibitors induces endothelial to mesenchymal transition and myocardial fibrosis in patients with chronic kidney disease. Int J Cardiol 176:99–109. https://doi.org/10.1016/j.ijcard.2014.06.062

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bongard O, Weimer D, Lemoine R et al (2000) Cyclosporine toxicity in renal transplant recipients detected by nailfold capillaroscopy with Na-fluorescein. Kidney Int 58:2559–2563. https://doi.org/10.1046/j.1523-1755.2000.00441.x

    Article  CAS  PubMed  Google Scholar 

  59. Bijkerk R, Florijn BW, Khairoun M et al (2017) Acute rejection after kidney transplantation associates with circulating microRNAs and vascular injury. Transplant Direct 19:e174. https://doi.org/10.1097/TXD.0000000000000699

    Article  CAS  Google Scholar 

  60. Martens RJ, Henry RM, Houben AJ et al (2016) Capillary rarefaction associates with albuminuria: the Maastricht study. J Am Soc Nephrol 27:3748–3757. https://doi.org/10.1681/ASN.2015111219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Triantafyllou A, Anyfanti P, Zabulis X et al (2014) Accumulation of microvascular target organ damage in newly diagnosed hypertensive patients. J Am Soc Hypertens 8:542–549. https://doi.org/10.1016/j.jash.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  62. Martens RJH, Houben AJHM, Kooman JP et al (2018) Microvascular endothelial dysfunction is associated with albuminuria: the Maastricht Study. J Hypertens 36:1178–1187. https://doi.org/10.1097/HJH.00000000000001674

    Article  CAS  PubMed  Google Scholar 

  63. Matsushita K, van der Velde M, Astor BC et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081. https://doi.org/10.1016/S0140-6736(10)60674-5

    Article  PubMed  PubMed Central  Google Scholar 

  64. van Hecke MV, Dekker JM, Nijpels G et al (2005) Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn study. Diabetologia 48:1300–1306. https://doi.org/10.1007/s00125-005-1799-y

    Article  CAS  PubMed  Google Scholar 

  65. Gerstein HC, Mann JF, Yi Q et al (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426. https://doi.org/10.1001/jama.286.4.421

    Article  CAS  PubMed  Google Scholar 

  66. Martens RJ, Kooman JP, Stehouwer CD et al (2017) Estimated GFR, albuminuria, and cognitive performance: the Maastricht study. Am J Kidney Dis 69:179–191. https://doi.org/10.1053/j.ajkd/2016.04.017

    Article  CAS  PubMed  Google Scholar 

  67. Martens RJ, Kooman JP, Stehouwer CDA et al (2018) Albuminuria is associated with a higher prevalence of depression in a population-based cohort study: the Maastricht Study. Nephrol Dial Transplant 33:128–138. https://doi.org/10.1093/ndt/gfw377

    Article  CAS  PubMed  Google Scholar 

  68. Li W, Schram MT, Soerensen BM et al (2020) Microvascular phenotyping in the Maastricht study: design and main findings 2010–2018. Am J Epidemiol 189:873–884. https://doi.org/10.1093/aje/kwaa023

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fioretto P, Stehouwer CD, Mauer M et al (1998) Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia 41:233–236. https://doi.org/10.1007/s001250050895

    Article  CAS  PubMed  Google Scholar 

  70. Paiardi S, Rodella LF, De Ciuceis C et al (2009) Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc 42:259–268. https://doi.org/10.3233/CH-2009-1195

    Article  CAS  PubMed  Google Scholar 

  71. Marin P, Andersson B, Krotkiewski M et al (1994) Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 17:382–386. https://doi.org/10.2337/diacare.17.5.382

    Article  CAS  PubMed  Google Scholar 

  72. Hernandez N, Torres SH, Finol HJ et al (1999) Capillary changes in skeletal muscle of patients with essential hypertension. Anat Rec 256:425–432. https://doi.org/10.1002/(SICI)1097-0185(19991201)256:4

    Article  CAS  PubMed  Google Scholar 

  73. Gueugneau M, Coudy-Gandilhon C, Meunier B et al (2016) Lower skeletal muscle capillarization in hypertensive elderly men. Exp Gerontol 76:80–88. https://doi.org/10.1016/j.exger.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  74. Pasarica M, Sereda OR, Redman LM et al (2009) Reduced adipose tissue oxygenation in human obesity; evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725. https://doi.org/10.2337/db08-1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasarica M, Rood J, Ravussin E et al (2010) Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 95:4052–4055. https://doi.org/10.1210/jc.2009-2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spencer M, Unal R, Zhu B et al (2011) Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 96:e1990-1998. https://doi.org/10.1210/jc2011-1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goossens GH, Bizzarri A, Venteclef N et al (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124:67–76. https://doi.org/10.1161/CIRCULATIONAHA.111.027813

    Article  CAS  PubMed  Google Scholar 

  78. Belligoli A, Compagnin C, Sanna M et al (2019) Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci Rep 9:11333. https://doi.org/10.1038/s41598-019-47719-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chilibeck PD, Paterson DH, Cunningham DA et al (1985) Muscle capillarization O2 diffustion distance, and VO2 kinetics in old and young individuals. J Appl Physiol 1997(82):63–69. https://doi.org/10.1152/jappl.1997.82.1.63

    Article  Google Scholar 

  80. De Ciuceis C, Cornali C, Porteri E et al (2014) Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients. Neuroradiology 56:1103–1111. https://doi.org/10.1007/s00234-014-1423-2

    Article  PubMed  Google Scholar 

  81. Amann K, Breitbach M, Ritz E et al (1998) Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 9:1018–1022. https://doi.org/10.1681/ASN.V961018

    Article  CAS  PubMed  Google Scholar 

  82. Yarom R, Sack S, Sapoznikov D et al (1994) Myocardial capillaries and autonomic nerves in diabetes: morphometric study of auricles from bypass surgery biopsies. Cardiovasc Pathol 3:43–50. https://doi.org/10.1016/1054-8807(94)90006-X

    Article  CAS  PubMed  Google Scholar 

  83. Campbell DJ, Somaratne JB, Jenkins AJ et al (2011) Differences in myocardial structure and coronary microvasculature between men and women with coronary artery disease. Cardiovasc Diabetol 57:186–192. https://doi.org/10.1161/HYPERTENSIONAHA.110.165043

    Article  CAS  Google Scholar 

  84. Campbell DJ, Somaratne JB, Prior DL et al (2013) Obesity is associated with lower coronary microvascular density. PLoS ONE 8:e81798. https://doi.org/10.1371/journal.pone.0081798

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hinkel R, Howe A, Renner S et al (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 17(69):131–143. https://doi.org/10.1016/j.jacc.2016.10.058

    Article  CAS  Google Scholar 

  86. Kawaguchi M, Techigawara M, Ishihata T et al (1997) A comparison of ultrastructural changes on endoymocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels 12:267–274. https://doi.org/10.1007/BF02766802

    Article  CAS  PubMed  Google Scholar 

  87. Yarom R, Zirkin H, Staemmler G et al (1992) Human coronary microvessles in diabetes and ischaemia: Morphometric study of autopsy material. J Pathol 166:265–270. https://doi.org/10.1002/path.1711660308

    Article  CAS  PubMed  Google Scholar 

  88. Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37:56–74. https://doi.org/10.1111/j.1365-2990.2010.01139.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hunter JM, Kwan J, Malek-Ahmadi M et al (2012) Morphological and pathological evaluation of the brain microcirculation in aging and Alzheimer’s disease. PLoS ONE 7:e36893. https://doi.org/10.1371/journal.pone.0036893

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kalari RN, Hedera P (1995) Differentital degeneration of the cerebral microvasculature in Alzheimer’s disease. NeuroReport 15:477–480. https://doi.org/10.1097/00001756-199502000-00018

    Article  Google Scholar 

  91. Szpak GM, Lewandowska E, Wierzba-Bobrowicz T et al (2007) Small cerebral vessel disease in familial amyolid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL Immunohistochemical and ultrastructural studies. Folia Neuropathol 45:192–204

    CAS  PubMed  Google Scholar 

  92. Livingston G, Huntley J, Sommerlad A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet commission. Lancet 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  93. Scheffer S, Hermkens DMA, van der Weerd L et al (2021) Vascular hypothesis of Alzheimer disease: topical review of mouse models. Aterioscler Thromb Vasc Biol 41:1265–1283. https://doi.org/10.1161/ATVBAHA.120.311911

    Article  CAS  Google Scholar 

  94. Groen BB, Hamer HM, Snijders T et al (1985) Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol 2014(116):998–1005. https://doi.org/10.1152/japplphysiol.009.2013

    Article  Google Scholar 

  95. Ellis EN, Mauer SM, Goetz FC et al (1986) Relationship of muscle capillary basement membrane to renal structure and function in diabetes mellitus. Diabetes 35:421–425. https://doi.org/10.2337/diab.35.4.421

    Article  CAS  PubMed  Google Scholar 

  96. Rossitto G, Mary S, McAllister C et al (2020) Reduced lymphatic reserve in heart failure with preserved ejection fraction. J Am Coll Cardiol 76:2817–2829. https://doi.org/10.1016/j.jacc.2020.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson M, Forrest Parrott C, Haykowsky MJ et al (2022) Skeletal muscle abnormalities in heart failure with preserved ejection fraction. Heart Fail Rev. https://doi.org/10.1007/s10741-10219

    Article  PubMed  Google Scholar 

  98. Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559. https://doi.org/10.1161/CIRCULATIONAHA.114.009625

    Article  PubMed  Google Scholar 

  99. Broyd CJ, Hernandez-Perez F, Segovia J et al (2018) Identification of capillary rarefaction using intracoronary wave intensity analysis with resultant prognostic implications for cardiac allograft patients. Eur Heart J 39:1807–1814. https://doi.org/10.1093/eurheartj/ehx732

    Article  CAS  PubMed  Google Scholar 

  100. Wadowski PP, Huelsmann M, Schoergenhofer C et al (2018) Sublingual functional capillary rarefaction in chronic heart failure. Eur J Clin Invest. https://doi.org/10.1111/eci.12869

    Article  PubMed  Google Scholar 

  101. Houben AJ, Beljaars JH, Hofstra L et al (2003) Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation 10:471–478. https://doi.org/10.1038/sj.mn.7800211

    Article  PubMed  Google Scholar 

  102. Garg AX, Nevis IF, McArthur E et al (2015) Gestational hypertension and preeclampsia in living kidney donors. N Engl J Med 372:124–133. https://doi.org/10.1056/NEJMoa1408932

    Article  CAS  PubMed  Google Scholar 

  103. Lane BR, Demirjian S, Derweesh IH et al (2015) Survival and functional stability in chronic kidney disease due to surgical removal of nephrons: importance of the new baseline glomerular filtration rate. Eur Urol 68:996–1003. https://doi.org/10.1016/j.eururo.2015.04.043

    Article  PubMed  Google Scholar 

  104. Schoina M, Loutradis C, Memmos E et al (2021) Microcirculatory function deteriorates with advancing stages of chronic kidney disease independently of arterial stiffness and atherosclerosis. Hypertens Res 44:179–187

    Article  CAS  PubMed  Google Scholar 

  105. Baumann M, Burkhardt K, Heemann U (2014) Microcirculatory marker for the prediction of renal end points: a prospective cohort study in patients with chronic kidney disease stage 2–4. Hypertension 64:338–346. https://doi.org/10.1161/HYPERTENSIONAHA.114.03354

    Article  CAS  PubMed  Google Scholar 

  106. Yau JW, Xie J, Kawasaki R et al (2011) Retinal arteriolar narrowing and subsequent development of CKD stage3: the multi-ethnic study of atherosclerosis (MESA). Am J Kidney Dis 58:39–46. https://doi.org/10.1053/j.ajkd.2011.02.382

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sabanayagam C, Shankar A, Klein BE et al (2011) Biderectional association of retinal vessel diameters and estimated GFR decline: the Beaver DAM CKD study. Am J Kidney Dis 57:682–691. https://doi.org/10.1053/j.ajkd.2010.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yip W, Ong PG, Teo BW et al (2017) Retinal vascular imaging markers and incident chronic kidney disease: a prospective cohort study. Sci Rep 7:9374. https://doi.org/10.1038/s41598-017-09204-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson RJ, Herrera-Acosta J, Schreiner GF et al (2002) Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Eng J Med 346:913–923. https://doi.org/10.1056/NEJMra011078

    Article  CAS  Google Scholar 

  110. Johnson RJ, Schreiner GF (1997) Hypothesis: the role of acquired tubulo–interstitial disease in the pathogenesis of salt-dependent hypertension. Kidney Int 52:1169–1179. https://doi.org/10.1038/ki/1997.442

    Article  CAS  PubMed  Google Scholar 

  111. Libby P, Luescher T (2020) Covid-19 is, in the end, an endothelial disease. Eur Heart J 41:3038–3044. https://doi.org/10.1093/eurheartj/ehaa623

    Article  CAS  PubMed  Google Scholar 

  112. Osiaevi I, Schulze A, Evers G, Harmening K, Vink H, Kuempers P, Mohr M, Rovas A (2023) Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26:53–61. https://doi.org/10.1007/s10456-022-09850-9

    Article  CAS  PubMed  Google Scholar 

  113. Katz A, Caramori ML, Sisson-Ross S et al (2002) An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 61:2058–2066. https://doi.org/10.1046/j.1523-1755.2002.00370.x

    Article  PubMed  Google Scholar 

  114. Yang L, Li X, Wang H (2007) Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis. Nephrol Dial Transplant 22:445–456. https://doi.org/10.1093/ndt/gfl556

    Article  CAS  PubMed  Google Scholar 

  115. Kaukinen A, Lautenschlager I, Helin H et al (2009) Peritubular capillaries are rarefied in congenital nephrotic syndrome of the Finnish type. Kidney Int 75:1099–1108. https://doi.org/10.1038/ki/2009.41

    Article  PubMed  Google Scholar 

  116. Thacker SG, Berthier CC, Mattinzoli D et al (2010) The detrimental effects of IFN-alpha on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J Immunol 185:4457–4469. https://doi.org/10.4049/jimmunol.1001782

    Article  CAS  PubMed  Google Scholar 

  117. Kimura N, Kimura H, Takahashi N et al (2015) Renal resistance index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol 19:1114–1119. https://doi.org/10.1007/s10157-015-1116-0

    Article  CAS  PubMed  Google Scholar 

  118. von Stillfried S, Apitzsch JC, Ehling J et al (2016) Contrast-enhanced CT imaging in patients with chronic kidney disease. Angiogenesis 19:525–535. https://doi.org/10.1007/s10456-016-9524-7

    Article  CAS  Google Scholar 

  119. Sun IO, Santelli A, Abumoawad A et al (2018) Loss of peritubular capillaries in hypertensive patients is detectable by urinary endothelial microparticle levels. Hypertension 72:1180–1188. https://doi.org/10.1161/HYPERTENSIONAHA.118.11766

    Article  CAS  PubMed  Google Scholar 

  120. Henrich HA, Romen W, Heimgaertner W et al (1988) Capillary rarefaction characteristic of het skeletal muscle of hypertensive patients. Klin Wochenschr 66:54–60. https://doi.org/10.1007/BF01713011

    Article  CAS  PubMed  Google Scholar 

  121. Gavin TP, Stallings HW, Zwetsloot KA et al (1985) Lower capillary density but no difference in VEGF expression in obese vs lean young skeletal muscle in humans. J Appl Physiol 2005(98):315–321. https://doi.org/10.1152/japplphysiol.00353.2004

    Article  CAS  Google Scholar 

  122. Croley AN, Zwetsloot KA, Westerkamp LM et al (1985) Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs young women. J Appl Physiol 2005(99):1872–1879. https://doi.org/10.1152/japplphysiol.00498.2005

    Article  CAS  Google Scholar 

  123. Ryan NA, Zwetsloot KA, Westerkap LM et al (1985) Lower skeletal muscle capillarization and VEGF expression in aged vs young men. J Appl Phyisol 2006(100):178–185. https://doi.org/10.1152/japplphysiol.00827.2005

    Article  CAS  Google Scholar 

  124. Prior SJ, Goldberg AP, Ortmeyer HK et al (2015) Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes 64:3386–3395. https://doi.org/10.2337/db14-1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rizzoni D, De Ciuceis C, Porteri E et al (2009) Altered structure of small cerebral arteries in patients with essential hypertension. J Hypertens 27:838–845. https://doi.org/10.1097/HJH.0b013e32832401ea

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly financially supported by research grants from the Dutch Kidney Foundation (Grant DKF 13A1D303) and the “Profileringsfonds” of the Academic Hospital Maastricht (Grant PF292). Gert Jan Zonneveld (Audiovisual support of Maastricht UMC +) is thanked for design of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

FS, MD and CPK developed the concepts described in this review. AK, PH, TR, AH, KR, and CS further contributed to the concepts. FS and CPK performed literature research. All authors were involved in writing the paper and gave their final approval.

Corresponding author

Correspondence to Carine J. Peutz-Kootstra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steegh, F.M.E.G., Keijbeck, A.A., de Hoogt, P.A. et al. Capillary rarefaction: a missing link in renal and cardiovascular disease?. Angiogenesis 27, 23–35 (2024). https://doi.org/10.1007/s10456-023-09883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-023-09883-8

Keywords

Navigation