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Introduction

In recent years, the endothelial glycocalyx (GCX) has 
emerged as a structure of increasing interest in diseases with 
predominant vascular dysfunction [1, 2]. Consisting mainly 
of glycosaminoglycans (GAG), proteoglycans (PG) and sol-
uble components, it covers the entire endothelium and repre-
sents the first part of the vascular barrier (Fig. 1). The regu-
lation of vascular homeostasis, the uptake of plasma proteins 
and the transduction of signals in response to shear stress are 
just some of the many physiological functions now attrib-
uted to this delicate layer [3]. The consequences of disrupted 
GCX are striking in diseases of systemic inflammation. In 
studies of sepsis and trauma patients, elevated plasma lev-
els of GCX components such as syndecan-1, hyaluronan or 
heparan-sulfate (HS) indicate GCX damage early in the dis-
ease process. The normally well-balanced quiescent vascular 
state is transformed into a pro-inflammatory phenotype with 
a predominance of signaling molecules promoting endothe-
lial dysfunction – as exemplified by the shift from vascular 
protective Tie2-activating ligand Angpt-1 to its deactivating 
antagonist Angpt-2 [4]. The resultant reduced GCX cover-
age facilitates adhesion of leucocytes [5] and weakens the 
vascular barrier function, leading to progressive plasma 
extravasation, which is exacerbated by a subsequent cellular 
response of junctions loosening [4, 6]. The full development 

of vascular leakage marks the onset of edema formation, 
hypotension and ultimately organ failure. Sufficient thera-
peutic approaches to break this vicious cycle are lacking, but 
are urgently needed as the lethality of these entities remained 
high in recent years [7]. Notably, the emerging Sars-CoV-2 
pandemic in 2019 joins the group of high impact diseases 
with predominant vascular dysfunction [8]. Therefore, a 
strong involvement of GCX in COVID-19 is plausible, as 
especially in severe forms, the course of disease is strikingly 
parallel to bacterial sepsis with end-stage development of 
acute respiratory distress syndrome [9]. Numerous studies 
show increased markers of GCX damage in COVID-19 and 
innovative new in vivo methods for estimating GCX con-
stitution via sublingual video microscopy provide evidence 
that GCX alterations in COVID-19 are comparable to those 
observed in bacterial sepsis [10–12]. Recent studies also 
suggest that the prominent coagulopathy-associated com-
plications of COVID-19, such as thrombosis, may well be 
a result of GCX-related impaired fibrinolysis [13]. In terms 
of experimental approaches, protection or rescue of GCX 
might be a valuable strategy to sufficiently counteract the 
progression of systemic inflammation [14–16]. Therefore, 
it is essential to understand and unravel the interplay of this 
highly variable and heterogenous layer. In particular, reliable 
visualization of GCX remains a challenge and is subject of 
the current study.

Past and present approaches to GCX 
visualization

Although studies from the early 1940s already suggested 
the existence of such a structural layer between endothe-
lial cells and the vascular lumen [17], it was not until the 
late 1960s and the development of electron microscopy 
(EM) that its existence was visualized and confirmed [18]. 
The development of innovative methods such as intravital 
microscopy now offers the possibility of studying this highly 
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dynamic structure even in intact and vital organisms. Years 
of research have painted a picture of the GCX as it is com-
monly described today: a gel-like layer of fragile compo-
nents, yet robust as a whole despite the constant influence 
of blood flow. Reliable experiments form the basis of this 
concept. However, it should be noted that the majority of 
in vivo data are based on sophisticated methods in which the 
thickness of the GCX is estimated rather than measured [19].

Although individual GCX components have been deci-
phered down to their molecular sugar sequences, it is 
unlikely that the constantly changing shape of the GCX has 
been faithfully visualized.

Immunofluorescence (IF) staining allows selective infer-
ence of the composition of specific GCX components under 
varying conditions and can be used to estimate GCX cover-
age on endothelial cell surfaces. However, it lacks the resolu-
tion to provide insight into the ultrastructural arrangement 
of the GCX and therefore provides a very precise but rather 
qualitative view of GCX composition [20, 21].

Atomic force microscopy provides the resolution to quan-
titatively measure the thickness of the GCX on living cells or 

tissues [22, 23], but visualization remains difficult, although 
new approaches appear promising [24].

To get an idea of the “true” GCX dimensions, in vivo 
applicable methods such as the FITC-dextran exclusion 
zone technique [5] or the non-invasive sublingual side-
stream dark field microscopy [25] are state of the art as they 
exclude artefacts of sample processing. Even if only based 
on indirect GCX estimation, real-time assessment of GCX 
dimensions under physiologic conditions with blood-pres-
sure dependent blood flow and varying plasma compositions 
in living organisms is of immense value as such conditions 
are difficult to reproduce in ex vivo settings. The high sus-
ceptibility of in vitro GCX to external conditions needs to be 
considered and openly discussed when such data are inter-
preted [26]. However, to date there is no method available 
to directly visualize GCX in living organisms.

EM is the only method that allows adequate insight 
into the ultrastructure of the GCX, but given the variety of 
appearances in literature – from hairy bundles to unstruc-
tured conglomerates – a high susceptibility to artefacts dur-
ing perfusion, fixation and sample processing seems likely, 

Fig. 1  Simplified schematic of capillary GCX. The GCX is a mesh 
of carbohydrate-rich structures such as (sulfated) glycosaminoglycans 
(sGAG), proteoglycans and soluble components of variable composi-
tion that covers the entire vascular tree. Due to constant shear stress 
and the passage of blood cells, highly dynamic properties with vari-

able conformational changes, compression and (re-)expansion are 
characteristic features attributed to this layer. In addition to its mecha-
nistic and barrier properties, the GCX contributes functionally to the 
regulation of vascular homeostasis, the uptake of plasma proteins and 
the transduction of signals
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complicating interpretation [27, 28]. In particular, the high 
risk of GCX dehydration during processing for EM is a 
known confounding factor that limits the reliability of GCX 
thickness and coverage measurements [29]. Nevertheless, 
the unique feature of high-resolution GCX visualization 
combined with quantitative assessment of GCX composi-
tion highlights EM as an outstanding and essential method 
in GCX research.

Methods and results

In the current study, EM imaging was performed on slices of 
peripheral kidney tissue from healthy C57BL/6 J wild-type 
mice. All experiments were approved by the local authori-
ties (Landesamt für Natur, Umwelt und Verbraucherschutz 
NRW, Germany). Ketamine/xylazine anesthesia was applied 
before perfusion with 5 ml freshly prepared fixative solu-
tion (pH 7.3, sodium cacodylate 0.1 M, 2% glutaraldehyde, 
2% lanthanum, 2% sucrose) via the left ventricle for 2 min. 
The left kidney was explanted immediately after perfusion, 

stored in fixative overnight at 4 °C and transferred to a glut-
araldehyde-free solution the next day for further preparation. 
Samples were treated with osmium tetroxide, counterstained 
with uranyl acetate in 70% ethanol, dehydrated, and embed-
ded in Durcupan resin. Resin blocks were prepared, and 
ultrathin sections were cut with a Leica Ultracut S (Man-
nheim, Germany). Sections were adsorbed onto glow-dis-
charged Formvar carbon-coated copper grids. Images were 
taken using a Zeiss LEO 910 electron microscope (Zeiss, 
Oberkochen, Germany) equipped with a TRS sharpeye CCD 
camera and manufacturer’s software (Troendle, Moorenweis, 
Germany).

This approach to visualize the GCX in murine renal ves-
sels (Fig. 2) produced images that, to our knowledge, are the 
first to be convincingly consistent with the concept of GCX 
described above. In larger vessels, we first observed dense, 
but undoubtedly hairy and at the same time delicate glyco-
calyx bundles with an average thickness of about 250 nm 
(Fig. 2A, B). Such bundles have been described in numerous 
publications, but it is still not clear whether they represent 
the entire GCX or only the lower core of this layer bound 

Fig. 2  Electron microscopy 
images of GCX in murine 
kidney vessels. EM imaging 
shows GCX bundles in larger 
vessels of murine kidneys with 
an average thickness of about 
250 nm (A + B). In capillary 
vessels a dense GCX-compat-
ible layer continuously covers 
the endothelial surface and fills 
nearly the whole lumen, reach-
ing a thickness of up to 800 nm. 
Passing blood cells cause com-
pression of GCX which appears 
(re-)expanded in-between again 
(C + D). Scale bar in A and D is 
500 nm and 100 nm B and C
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to the plasma membrane. When we looked at peritubular 
capillaries, we found an even more compact glycocalyx-
compatible layer that continuously covered the endothelium 
and filled almost the entire lumen. The surprisingly high 
thickness of about 800 nm exceeded the height of the indi-
vidual tufts in the large vessels by a factor of 3 (Fig. 2C, D).

Some of the indirect methods for measuring GCX take 
advantage of the more or less pronounced compression of 
the glycocalyx by circulating blood cells and estimate the 
thickness of the GCX from the resulting variability in the 
lateral deflection of these cells [10]. However, the dynam-
ics in the ultrastructure of the GCX cannot yet be visual-
ized methodically. Fortunately, we were able to capture 
exactly this (compressive) passage of circulating blood 
cells through the dense capillary GCX in a rare EM snap-
shot (Fig. 2D). Coincidentally, a passing nucleus-carrying 
blood cell (e.g. leukocyte) and an erythrocyte can be seen 
in the capillary lumen. However, the GCX between the 
two passing blood cells is not compressed at all. Assuming 
that one of the two cells must have already passed through 
the capillary, this indicates a very rapid and complete re-
expansion of the GCX.

Conclusion

Within the last decades the GCX has emerged as a relevant 
structure of interest, particularly in the context of vascular 
pathophysiology. Increasing research interest has led to the 
adaptation of conventional methods as well as the develop-
ment of new innovative methodological approaches that 
have sharpened the image of the GCX as it is described 
today. To fully unravel the complex and highly dynamic 
properties of this elusive layer, a combination of the exist-
ing methods is inevitable. The constant effort to optimize 
and develop new approaches ideally leads to consolidation 
and confirmation of the concepts developed. Given the fra-
gility of the GCX and the methodological limitations dis-
cussed above, a little bit of luck may also be helpful. For 
now, we can conclude that this rare EM snapshot convinc-
ingly supports the current concept of blood cells squeezing 
through a gel-like capillary glycocalyx, which has emerged 
from dynamic but indirect studies of the GCX.
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