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Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process 
for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent 
angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new 
vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and 
SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal 
feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological 
angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide 
an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or 
inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore 
several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, 
and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes 
may also be targeted with anti-angiogenic or vascular-directed therapies.
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Introduction

The cardiovascular system is the first functional organ sys-
tem that develops in the mammalian embryo. The blood 
vessels that comprise this organ initially originate by vas-
culogenesis, which involves the aggregation of endothelial 
precursor cells (angioblasts) into simple endothelial tubes 
[1]. During later stages, vascular development occurs 
through angiogenesis [2] resulting in a massive network 
of arteries, arterioles, veins, venules and capillaries in all 
tissues and organs to provide oxygen and nutrients and 
remove metabolic waste products. Endothelial cells (ECs) 

are the pivotal cells in vascular development, lining the 
surface of all blood vessels. Importantly, within each 
organ or tissue microenvironment, ECs are highly special-
ized and are spatially and transcriptionally distinct, even 
within a single vessel. Part of this specialization is pro-
grammed during development and part is acquired during 
post-developmental stages via EC cross-talk with stromal 
cells in different organ microenvironments. Programmed 
differences can also occur at the level of the architecture. 
For example, differences in EC lining in capillaries may 
depend on function and ranges from being continuously 
lined (as in dermis), fenestrated (as in small intestine and 
the kidney), to sinusoidal (as in liver, spleen and bone 
marrow). Acquired differences can be structural and dic-
tated by smooth muscle cell coating or driven by the local 
expression of growth factors. Dedicated functions of ECs 
in various organs and differences in phenotype enforced by 
pathologies make targeted therapeutic approaches possi-
ble. The heterogeneity of ECs [3, 4], however, also makes 
targeted treatments challenging. Adding to this challenge, 
during the onset of blood flow in the early stages of devel-
opment, and during normal physiology and in disease, 
angiogenesis/vascular remodeling is guided by complex 
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hemodynamic parameters, such as pressure, vorticity and 
sheer stress. For example, it was shown that a molecu-
lar complex, consisting of PECAM-1, VE-cadherin and 
VEGFR2, regulates the response to flow and shear stress. 
This regulation involves the transcription factor NF-kB 
and is one of the earliest responses involved in athero-
genesis [5]. The flow-induced molecular complex-induced 

signaling, which probably occurs through PECAM-
1-mediated activation of NF-kB and Akt, is an important 
regulator of vascular remodeling in arteriosclerosis. This 
signaling axis may therefore be an interesting target for 
pharmacological intervention in restenosis after [6] bal-
loon angioplasty or stent placement [7]. Another example 
is the rapid and stable overexpression of Krüppel-like fac-
tor 2 (Klf2) in ECs by fluid sheer forces. Klf2 is key in the 
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regulation of flow-regulated EC genes and hemodynamic 
parameters and it was shown that endothelial loss of Klf2 
results in lethal embryonic heart failure due to a high-
cardiac-output state [6].

Founding concepts and basic principles

The angiogenic switch

There is a limit to how much a tissue can expand without 
the generation of new vasculature to supply oxygen and 
nutrients. It has been estimated that tissue growth beyond 
the volume of one mm3 is already in need of new vascu-
lature [8]. To achieve this, the surrounding tissues have to 
produce pro-angiogenic growth factors, such as vascular 
endothelial growth factor (VEGF) and fibroblast growth 
factor (FGF) (which are ligands for receptors found on 
ECs), via a process often referred to as the angiogenic 
switch [9]. Because angiogenesis is dependent on both the 
expression of pro-angiogenic- and anti-angiogenic factors, 
the angiogenic switch depends on the resultant molecular 
balance between stimulators and inhibitors. Pro-angio-
genic signaling increases by pathophysiological stimuli, 
such as hypoxia, which is the result of increased tissue 
mass, vessel dysfunction, and vessel occlusion [10]. In 
tumors, the angiogenic switch can also result from onco-
gene activation, leading directly or indirectly to the pro-
duction of angiogenic growth factors. It is suggested that 

tumors at early stages can be dormant as they have not yet 
undergone the angiogenic switch [11]. Growth beyond a 
few mm3 sparks the formation of new blood vessels that 
support the proliferation of additional cancer cell clones 
while providing conduits for dissemination to distant sites 
[9].

Hypoxia

In the eighteenth century, Joseph Priestly and Karl Wilhelm 
Scheele were among the first to discover the element oxygen, 
which they found to be important for combustion and burn-
ing of materials. Oxygen is of vital importance in cellular 
metabolism and energy production; oxygen also regulates 
vascularization thereby providing a feedback mechanism to 
prevent too low or too high oxygen pressure which can be 
detrimental. Discoveries in the early 1990s provided insight 
into the regulatory mechanisms of oxygen sensing which 
involves hypoxia-inducible factors (HIFs) and erythropoietin 
among others [12, 13]. HIF-1α complexes with other mol-
ecules such as ARNT and HIF-1β [14] to enhance transcrip-
tion of erythropoietin. But many other genes are regulated 
by oxygen as well, among which is VEGF [15, 16]. Thus, 
lowered oxygen is a central driving force in the formation 
of new vasculature. Three researchers, Gregg L. Semenza, 
William G. Kaelin, and Peter J. Ratcliffe received the Nobel 
prize for medicine for this concept in 2019 [17].

The key role of oxygen in the process of angiogenesis, 
together with the dependency of disease processes for 
angiogenesis has resulted in strategies to target hypoxia for 
the treatment of diseases, such as cancer, atherosclerosis, 
ischemia/reperfusion injury, eye diseases, arthritis, and 
endometriosis. For example, this can be directly done by 
applying oxygen to improve the effect of radio- or photody-
namic therapy through the enhancement of reactive oxygen 
species [18, 19]. In addition, hypoxia and hypoxia-inducible 
factors can be directly targeted for the treatment of various 
diseases [20, 21]. Furthermore, it is presumably the hypoxia-
reversing effects of angiogenesis inhibitors that underlie the 
synergistic anti-tumor efficacy of combinatorial radio and 
photodynamic therapies. The process of vascular normali-
zation (discussed below) [22], which stabilizes new vessels 
[23], is also assumed to result in increased oxygenation 
leading to enhanced sensitivity to radiotherapy and chemo-
therapy [24].

Mechanisms of building a vasculature

To overcome the time-distance constraints of diffusion, mul-
ticellular organisms have evolved mechanisms to generate 
blood vessels; thus, in most vertebrates, the vasculature is 
lined with ECs [25]. There are several different mechanisms 

Fig. 1   Different modes of angiogenesis. A The first formation of 
blood vessels occurs through vasculogenesis and starts early during 
embryonic development at around E7. The splanchnic layer of the lat-
eral plate mesoderm develops angioblasts, regulated by VEGF pro-
duction in the endoderm. These angioblasts, the precursors of ECs, 
become committed to form angioblastic cords that develop into a 
primitive vascular plexus and subsequently into tubular blood ves-
sels by E9. These early steps of blood vessel development are called 
vasculogenesis and is followed by different modes of angiogenesis. 
B Sprouting angiogenesis is the formation of a vascular tree through 
sprouting ECs from a capillary to form a new capillary bed. In this 
mode of angiogenesis endothelial tip cells play an important role. C 
Intussusceptive or splitting angiogenesis is mediated by the formation 
of an intraluminal pillar by ECs at opposite walls of a capillary. The 
vessel is longitudinally split into two capillaries, generating two ves-
sels in this way expanding the vascular bed. D Coalescent angiogen-
esis can be considered the opposite of splitting angiogenesis. Blood 
vessels coalesce into larger vessels, thereby increasing the efficiency 
of circulation. E In angiogenic tissues, such as tumors, blood ves-
sels can elongate and become tortuous resulting in an increased ves-
sel density. Blood vessel co-option is the process where cancer cells 
orchestrate their oxygenation by growing along the well-oxygenized 
perivascular space. F When cancer cells themselves contribute to 
vascularization by acquiring EC features, this is called vasculogenic 
mimicry. This is a rather rare phenomenon, only present in a minor 
percentage of tumors, but associated with drug resistance and shorter 
patient survival. Figure is created with BioRender.com and is avail-
able on request

◂
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by which new vasculature is acquired in different tissues and 
organs. Many of these mechanisms (Fig. 1) are dependent 
on unique cellular processes within the ECs themselves, e.g. 
protein trafficking, expression of proteases, cellular migra-
tion, proliferation and differentiation [26–28]. In tumors, 
several non-angiogenic mechanisms of vascularization have 
also been recognized and may operate in parallel to canoni-
cal angiogenesis mechanisms. Understanding how these 
mechanisms work together, or in some cases oppose one 
another, is crucial to the design and development of new 
vascular-directed therapeutic strategies.

Vasculogenesis and endothelial progenitor cells

The process of vasculogenesis refers to the formation of 
blood vessels starting during early developmental stages, 
where endothelial precursor cells (angioblasts) derive from 
haemangioblasts and aggregate into simple endothelial 
tubes. Early during this process of vasculogenesis blood 
islands within the embryonic and extraembryonic meso-
derm are formed. These islands contain haemangioblasts 
that differentiate into vascular precursor cells that express 
VEGFR2 (angioblasts) and eventually give rise to bona fide 
ECs that line the blood vessel wall [29, 30]. A primordial 
vascular network is formed through connecting the initial 
blood islands by migrating angioblasts [1] (Fig. 1A). In later 
stages of embryonic and fetal development, the vasculature 
is further remodeled through sprouting angiogenesis, stimu-
lated by the rapid growth of tissues and organs. This process 
involves temporal and spatial release of angiogenic growth 
factors and degradation of extracellular matrices. Many of 
these growth factors are induced by hypoxia [31] and oxygen 
sensing transcriptional pathways.

A process termed “post-natal vasculogenesis” can also 
occur in adults. Circulating endothelial colony-forming cells 
(ECFCs), which have a stable phenotype and robust ves-
sel-forming abilities, may be recruited to sites of ischemia. 
However, the numbers of circulating ECFCs are typically 
quite low in peripheral blood (constituting ~0.05–0.2 cells/
mL of blood). This low frequency, coupled with variabilities 
in absolute numbers of ECFCs in patients with various path-
ological conditions (e.g. coronary artery disease or cancer) 
has made it challenging to understand the biology and ana-
tomical origin(s) of these elusive cells in health and disease. 
Indeed, early studies identifying putative ECFCs in solid 
tumors and in sites of ischemia may have been confounded 
by large number of perivascular hematopoietic cells which 
closely resemble ECFCs in terms of marker expression and 
proximity to the vessel wall. However, circulating ECFC 
are definitively present in cord blood and, in the search for 
molecular markers to identify these ECFC, PROCR (protein 
C receptor) has emerged as a good candidate [32]. In mice, 

experimental bone marrow chimeras continue to produce 
conflicting outcomes with regards to the total numbers of 
ECFCs present within the vasculature and the overall impor-
tance of these cells during post-natal vasculogenesis remains 
controversial [33–36]. Recently, lineage tracing and scRNA 
analysis concluded that in mice, ECFC with colony-forming 
abilities and vessel-forming abilities do not emerge from 
the bone marrow but are instead a component of the vessel 
walls [32].

Despite the low numbers of ECFCs incorporating into 
blood vessels at active sites of angiogenesis, ECFCs play 
important auxiliary or paracrine roles through the release 
of growth factors that support, for example, mural cell 
or immune cell recruitment/survival. A good example is 
the unique high expression of neuregulin-1 (NRG-1) by 
ECFCs which provides anti-apoptotic and proliferative sig-
nals via activation of the PI3K/Akt pathway in stem cell-
derived cardiomyocytes [37]. Similarly, ECFCs dramatically 
improve the co-engraftment and maintain the stemness-
related properties of mesenchymal stem cells (MSCs) via 
release of PDGF-BB which activates PDGFBR on the MSCs 
themselves [37]. This topic will be revisited below in the 
section on angiogenesis and tissue engineering.

Sprouting angiogenesis

In contrast to vasculogenesis where blood vessels are de 
novo assembled by precursor cells, sprouting angiogenesis 
refers to the formation of blood vessels from a preexisting 
capillary bed [38]. Endothelial sprouting may occur after 
exposure to hypoxia, injury, or oncogenic signaling-induced 
angiogenic growth factors. VEGF is a widely expressed angi-
ogenic factor that induces sprouting angiogenesis through 
activation of EC-expressed VEGF receptors. VEGF supports 
most of the steps needed to form new vasculature and it has 
concentration-dependent activity to induce EC prolifera-
tion and gradient-dependent activity to promote migration 
[39, 40]. After the mitogenic signal has initiated endothelial 
motility/proliferation, the new vessels that are formed are 
initially immature and leaky, but later deposit a new extra-
cellular matrix (ECM) that attracts vessel-stabilizing peri-
cytes [2]. During sprouting, specialized ECs with metabolic 
transcriptome plasticity, metabolic angiogenic factors (e.g. 
SQLE and ALDH18A1), and proteolytic features dissolve 
the ECM [41]. These pathfinding tip cells (Figs. 1B and 2A, 
B) also use dactylopodia and filopodia as they emerge [42]. 
Dactylopodia and filopodia are specialized polarized mem-
brane protrusions, enriched on tip cells, that are driven by 
actin dynamics. For example, VEGF and NRP1 are master 
regulators of filopodia tip cell formation via regulation of 
the actin-regulating G-proteins Cdc42 and Rac1 [43, 44]. 
Dactylopodia/filopodia dynamics are balanced by myosin 
IIA and Arp2/3; for example, ablation of Arp2/3 inhibits 
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dactylopodia but leads to filopodia formation [42]. In some 
vascular ECs, as the sprout initially forms, breaching of 
the basement membrane is achieved as VEGF induces the 

formation of matrix degrading, podosome rosettes which are 
micro domains composed of F-actin/cortactin/metallopro-
teinases [45]. Podosomes typically show sparse expression 

Fig. 2   Modes of angiogenesis 
imaged. A, B Sprouting angio-
genesis. Endothelial tip cells 
in a mouse lung metastasis (A) 
and in culture sprouting from a 
bead in a 3D matrix (B). C, D. 
Intussusceptive angiogenesis or 
splitting angiogenesis. ECs form 
intravascular pillars splitting a 
vessel into new separate blood 
vessels. Courtesy of Dr. Djonov, 
Bern, Switzerland [386]. E, 
F, G Coalescent angiogen-
esis. Multiple smaller vessels 
coalescing into a larger vessel 
with more efficient blood flow. 
Courtesy of Drs. Nitzsche and 
Pries, Berlin, Germany [73]. H 
Vessel co-option and perivascu-
lar migration. The image shows 
melanoma cells (red) invading 
along the abluminal surface of 
the endothelium (green) without 
evidence of vessel sprouting 
[79]. I Vasculogenic mimicry. 
Vascular-like structures formed 
by cancer cells that upon trans-
differentiation can masquerade 
as ECs. This H&E section 
shows Ewing sarcoma tissue 
where vasculogenic mimicry is 
common and appears as typical 
“blood lakes”. Blood vessels 
are stained brown with CD31 
antibody [96]
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of type IV collagen and they are induced by factors such 
as TGFβ, VEGF, and TNFα. In the retina, it was shown 
that the localized proteolytic activity of these podosomes 
facilitates sprouting and anastomosis via a VEGF/Notch-
dependent mechanism [46]. Podosome rosettes also control 
vessel branching during tumor angiogenesis where VEGF 
stimulation induces the formation of tumor vessel-associated 
rosettes by increasing α6β1-integrin [45]. Since podosome 
rosettes may be the precursors of new vessel branch points, 
targeting them by blocking α6β1-integrin could impair 
tumor vessel angiogenesis.

Tip cell selection appears to be stochastic (perhaps 
related to heterogenous expression of VEGF receptors) and 
is dynamic in that tip/stalk cells can switch places during 
sprouting via a process that requires functional Notch and 
Dll4 ligand [47, 48]. Spatial gradients of sFlt further refine 
emerging vessel sprouts in cooperation with VEGF [49]. 
Behind the tip cells, stalk cells proliferate and lumenize 
through a process requiring the GTPase-interacting pro-
tein Rasip1 which is needed for cell polarity, EC junction 
maintenance, and adhesions to ECM [50]. Tip cell anas-
tomosis, in a process reminiscent of tracheal tube fusion, 
eventually completes the circuit through which blood can 
flow [51]. Tip cells are enriched in several ECM/basement 
membrane factors (e.g. Nid1 and Nid2), TGFβ pathway 
genes, and secreted factors (e.g. Apln and Angpt2) [52]. In 
the neuroretina, tip cells have been categorized into “D-tip” 
which have high TGFβ signaling and “S-tip” which guide 
the superficial retinal vascular plexus [53]. In tumors, TGFβ 
signaling was shown to promote vessel sprouting by regu-
lating the Serpine1 gene (which encodes PAI-1) to balance 
the formation/degradation of perivascular fibrin scaffolds 
during angiogenesis [54]. Interestingly, cancer-associated 
blood vessels have a unique tip cell signature and gene 
expression patterns (conserved across species and models) 
consisting of, for example, collagen encoding genes and 
collagen modifying enzymes [55, 56]. Sprouting angiogen-
esis is considered a rapid mechanism for generating new 
vasculature and is therefore likely responsible for de novo 
capillaries in physiological and pathological angiogenesis. 
In terms of therapeutic intervention, sprouting angiogenesis 
may be a prime target for treatment. Inhibitors of matrix 
metalloproteinases, cell migratory pathways, proliferation, 
and metabolism, as well as strategies to prevent the matu-
ration of the neovasculature have all been developed [57, 
58]. VEGF signaling pathway blockers have been the most 
well-studied but for application against tumor angiogenesis 
carry the potential for promoting drug-induced resistance 
(discussed below) [59].

Vessel wall (endovascular) progenitors

Notably, recent studies have identified so called “endovascu-
lar progenitors (EVPs)” with enhanced proliferative ability 
and superior capacity to form new blood vessels compared 
to otherwise “adult” ECs. EVPs may be poised to undergo 
multiple rounds of mitosis required during angiogenesis 
upon wound healing or other pathophysiological processes 
and could possess additional properties of tissue resi-
dent stem cells, including multipotency, self-renewal, and 
endothelial-to-mesenchymal transition (EndMT) [60]. EVPs 
may also express unique surface (and other) markers and 
exhibit different growth or migratory behaviors in response 
to growth factor stimulation when compared to their “adult” 
EC counterparts. It is suggested that a complete hierarchy of 
ECs with differential proliferative potential resides directly 
within the vasculature [61, 62]. Recent and elegant in vivo 
studies have used lineage tracing to identify transit amplify-
ing ECs, differentiated ECs, and EVPs within blood vessel 
walls that express a suite of genes important for progenitor 
cell function (e.g. Sox18, IL33, EGFR and PDGFRα). Nota-
bly, bone marrow chimeras have ruled out the participation 
of bone marrow as a source for EVPs in this setting. Several 
additional markers have been used to identify EVPs includ-
ing CD157, ProcR and Sox9 [63]. Vessel wall-resident ECs 
also populate/repopulate the lymph node vasculature dur-
ing inflammation-mediated growth and remodeling [64]. 
Here, dynamic expansion of the lymph node vasculature 
was accomplished by highly proliferative EVPs that arose 
from high endothelial venules (HEVs). Recent studies from 
the Khosrotehrani group reported that EVPs can be identi-
fied by lower expression of VEGFR2 and PECAM and are 
enriched for the transcription factors Sox9 and Rbpj [65, 66]. 
Interestingly, these EVPs display a marked plasticity and 
ability to undergo EndMT during wound healing. In another 
study, EVPs were shown to infiltrate melanoma, reactivate 
the Sox18 transcription factor, and promote metastasis 
through paracrine-mediated mechanisms and by remodeling 
the ECM [67]. Similarly, the robust proliferative capacity of 
aortic wall-derived endothelium following injury appears to 
be restricted to a limited number of resident-precursors that 
flank the injury site and express a cohort of proliferative 
genes (Atf3, Myc, Foxm1 and E2f8) that are important for 
cell-cycle re-entry [68]. In sum, these data are consistent 
with the concept that putative EVPs have an innate ability 
to re-enter the cell cycle, proliferate, and repopulate incipi-
ent vascular structures; however, even though EVPs appear 
poised for angiogenesis during wound repair, inflammation 
and cancer, it is unclear whether they obey the same para-
digms that regulate stalk/tip cell selection during canonical 
sprouting angiogenesis or if they have unique paracrine-
mediated mechanisms that support blood vessel develop-
ment and/or homeostasis.
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Intussusceptive angiogenesis

A variant of angiogenesis, different from sprouting, is intus-
susceptive angiogenesis. This process was first observed in 
post-natal remodeling of lung capillaries [69, 70], where 
pre-existing vessels split into two new vessels after the for-
mation of a trans-vascular pillar between two oppositely 
situated ECs in the lumen of a vessel (Fig. 1C and 2C, D). 
Intussusception is a fast process of vascular remodeling that 
can take place within hours or even minutes because it is, 
initially, not dependent on proliferation. It has been dem-
onstrated that pillar formation is not restricted to capillary 
plexuses but also occurs in smaller arteries and veins [71]. 
The lack of involvement of EC proliferation in this form of 
vessel propagation is of potential importance as the use of 
anti-angiogenic agents that inhibit EC proliferation may not 
have an effect. However, VEGF appears to be a major regu-
lator of intussusceptive angiogenesis [72], suggesting that 
inhibitors of the VEGF signaling pathway could be effective 
at blocking this mode of angiogenesis.

Coalescent angiogenesis

It has also been recognized that blood vessels can remodel 
by the formation of functional vascular trees from the initial 
homogeneous capillary mesh; this takes place in preferential 
flow pathways of a capillary mesh, where these pathways 
enlarge and fuse while trans-vascular pillars are removed 
and less perfused capillaries regress. This form of angio-
genesis, whereby the number of vessels decreases whereas 
the diameter of the resultant vessel is increased, is called 
coalescent angiogenesis (Fig. 1D and 2E, F and G). A recent 
paper in Angiogenesis reports on this form of angiogenesis 
describing it as”inverse intussusception” [73]. The authors 
put forward the hypothesis that this mode of angiogen-
esis plays a role in embryonic development where organs 
with pre-existing capillary meshes, such as in developing 
liver and lung, need to undergo fast growth. The process 
is comparable to the earlier-described process of vascular 
fusion [74, 75] and both mechanisms have been identified 
in embryonic tissues. It remains to be seen whether there 
is a role for coalescent angiogenesis beyond embryologi-
cal development and it will require further detailed stud-
ies including continuous temporal observation, as well as 
mechanistic and molecular analyses [76].

Vessel co‑option

It has recently become clear that tumor growth does not 
always depend on the formation of new blood vessels and 
that some tumors can grow/invade via non-angiogenic pro-
cesses to provide a new source of nutrients/oxygenation as 
they invade their nearby microenvironment. The concept that 

some cancer types may not require new vessels for their 
growth is significant because it in some ways contradicts 
Folkman’s pioneering hypothesis that all tumors are depend-
ent on angiogenesis and that inhibition of angiogenesis will 
compromise tumor growth [77]. This process is referred to 
as vessel co-option, angiotropism, or perivascular invasion 
[78, 79]. In contrast to sprouting angiogenesis, the molecular 
mechanisms of vessel co-option are less well understood; 
reviewed in [79]. As may be expected, adhesion molecules 
expressed by cancer cells that are linked intracellularly to 
the cytoskeleton are important for cancer cell attachment 
and spreading along the vasculature. For example, it was 
shown that UV light and neutrophils promote co-option via a 
mechanism dependent on HMGB1, inflammation, and TNF-
mediated upregulation of cell adhesion molecules such as 
VCAM1; this shifted angiotropic melanoma cells towards a 
migratory phenotype characterized by F-actin distribution 
and lamellipodia-like protrusions [80]. Similarly, the Reyn-
olds lab has shown important roles for the Arp 2/3 complex, 
which is enriched along the leading edge of lamellipodia in 
motile cells, during cancer cell perivascular migration in 
metastases to liver (Fig. 1E and 2H).

Adhesion to the abluminal surface of the vasculature is 
a critical step during co-option; therefore, it is not surpris-
ing that several adhesion molecules including integrins and 
L1CAM were shown to be important for adherence and 
perivascular motility. For example, β1-integrin is important 
for cell adhesion to the basal lamina components (fibronec-
tin, laminin, vitronectin, collagen I and IV) of brain capil-
laries [81]. Deletion of β1-integrin in intracranially injected 
breast and melanoma lines resulted in reduced adhesion to 
the vascular basal lamina and reduced proliferation [81]. 
Interestingly, even “liquid tumors” show evidence of ves-
sel co-option as acute lymphoblastic leukemia cells use 
α6-integrin to migrate into the CNS on arachnoid vessels as 
they bypass the blood brain barrier [82]. Engagement of the 
adhesion molecule L1CAM was also shown to be an impor-
tant mechanism for metastatic colonization and spreading 
along the vasculature. L1CAM-dependent activation of the 
mechanosensitive YAP pathway is involved in metastatic 
colonization and pericyte-like spreading at multiple organ 
sites (brain, lung, and bone). In this study, aggressive can-
cer cells used vessel co-option immediately after extravasa-
tion or after cells were released from dormancy [83]. In the 
brain, a defense against metastatic cells is the activation of 
plasmin because plasmin promotes FasL-dependent death of 
cancer cells and inactivates the axon pathfinding molecule 
L1CAM that metastatic cells use to spread along the brain 
endothelium. To circumvent this defense mechanism and 
enable vessel co-option, brain-metastatic cells from breast 
and lung cancers upregulate serpins that inhibit plasmin 
activation. Neuroserpin (SERPINI1) is normally expressed 
in the brain and was one of the most frequently upregulated 
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anti-PA serpins alongside serpin B2 in brain- metastatic 
lesions [84]. Thus, targeting the molecular mechanisms 
that impair the adhesion of cancer cells to the vasculature 
may be a potential therapeutic strategy that exploits unique 
vulnerabilities (i.e. perivascular attachment and spreading) 
of metastatic cells.

Griveau et  al. demonstrated that Olig2+ glioma that 
signaled through Wnt7 were more likely to undergo sin-
gle cell migration similar to the spread of oligodendrocyte 
precursor cells during development. These Olig2+ cells 
were also enriched after anti-VEGF therapy suggesting that 
anti-angiogenic therapies may select for cancer cells with 
the ability to co-opt the vasculature. Single-cell vessel co-
option also has important implications for BBB integrity and 
immune evasion. For example, preservation of the BBB has 
important consequences for therapeutic targeting of cancer 
cells; namely, inhibiting Wnt7-driven perivascular inva-
sion enhanced the efficacy of temozolomide (TMZ) [85]. 
In the context of gliomas, both Olig2+ and Olig2− cancers 
increased the number of microglia present compared to nor-
mal brain tissue; however, microglia in Olig2− (more angio-
genic) tumors had a more activated (ameboid) morphology 
and an increased number of cells expressing genes related 
to macrophage infiltration.

Selection pressure driven by anti-angiogenic therapy 
may also drive vessel co-opting programs in cancer cells, or 
selectively alter the TME to promote vessel co-option [86]. 
This non-angiogenic mechanism of tumor vascularization 
seems to be common at early stages of brain cancer and in 
metastases to brain or liver [87] [88]. In glioma, switching 
of an angiogenesis-dependent mode of growth to vessel co-
option suggests that selection pressures exerted by certain 
types of therapies could enrich for cancer cells with an abil-
ity to co-opt pre-existing vessels rather than generating new 
ones via angiogenesis [77, 87]. Thus, during non-angiogenic 
cancer growth, inhibitors of angiogenesis might be expected 
to have no effect on tumor progression. In addition, it is has 
been demonstrated experimentally that vessel co-option is a 
mechanism of resistance to angiogenesis inhibitors [89]. It 
is important to note that vessel co-opting cancer cells may 
express the same angiogenic growth factors (i.e. VEGF) as 
angiogenic cancer cells [90]. Thus, while vessel cooption 
may not utilize VEGF to induce angiogenic sprouting, the 
hyperpermeability effect that VEGF has on the surrounding 
vasculature could still be operative and important as a driver 
of tumor progression.

Vasculogenic mimicry

Like vessel co-option, vasculogenic mimicry (VM) is a form 
of non-angiogenic tumor growth [91–93]. In the process of 
VM, some cancer cells trans-differentiate and masquerade 
as ECs (Figs. 1F and 2I). These VM-competent cancer cells 

acquire EC features such as expression of the pan endothelial 
markers VE-cadherin, Tie-1, and PECAM [94, 95]. Since 
these VM-competent cancer cells are positioned within the 
vasculature and may be in contact with the circulation, they 
may also carry out EC functions, for example, by expressing 
anti-coagulant factors such as tissue factor pathway inhibi-
tors (TFPI-1/2) [96]. An elegant, high throughput screen 
in a polyclonal mouse model of breast cancer heterogene-
ity identified specialized clones of breast cancer cells in 
metastatic sites that were both angiotropic and expressed 
Serpine2 and Slpi; gain/loss of function studies focused on 
these factors demonstrated they were required for VM [97]. 
Similarly, a recent study using lineage tracing of TYR​+ cells 
in a melanoma metastasis model described rare melanoma 
cells with functional markers of ECs including VE-cadherin 
and PECAM; these data are consistent with the identification 
of VE-cadherin+ melanoma cells in some human cells lines 
many years ago [98, 99]. Interestingly, in human small cell 
lung cancer, circulating VE-cadherin+/cytokeratin+ cancer 
cells were found to incorporate into tumor vessels using 
patient explants, associate with worse overall survival, and 
contribute to drug resistance [100]. It has also been sug-
gested that invasive glioma cells express markers of ECs due 
to putative trans-differentiation of glioma stem cells [101]. 
However, these results have been challenged by more recent 
work showing instead a distinct perivascular and pericyte-
like positioning of glioma cells in the brain which can be 
targeted to improve chemotherapeutic efficacy [102, 103]. In 
almost every cancer type, cancer cells with certain proper-
ties of ECs and/or an ability to integrate within (or in close 
proximity to) blood vessel walls have been identified; nota-
bly, the mechanism that seems to drive VM-competency are 
varied and diverse suggesting strong selective pressure for 
cancer cells that can interact with or masquerade as vascular-
like cells [104]. Moreover, VM-competency may represent 
cancer cell’s return to a more primitive state similar to gesta-
tional choriocarcinoma which develop blood filled channels 
lined, not by ECs, but instead by neoplastic trophoblastic 
cells that form pseudovascular channels [105]. Because 
some tumor blood vessels may be formed by a “mosaic” 
consisting of both bona fide ECs that are closely juxtaposed 
to cancer cells, VM presents a challenge for anti-angiogenic 
approaches (mainly because many VM-competent cancer 
cells do not express receptors for typical pro-angiogenic fac-
tors such as VEGF) [106]. As proof-of-principle, in a mouse 
model of melanoma, Dunleavey et al. found that anti-VEGF 
therapy led to enrichment of VM-competent melanoma cells, 
lacking VEGFR2, that could repopulate growing tumors 
[95]. Taken together, it is of potential importance to fur-
ther investigate the molecular mechanisms that initiate and 
control VM and to identify molecular pathways that could 
selectively disrupt this process [107–109]
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Lymphangiogenesis

The lymphatic vasculature is a circulatory system that con-
tains lymph, a fluid similar to blood plasma, that is generated 
through capillary filtration and contains white blood cells, 
mainly lymphocytes. The lymph is circulated through lymph 
nodes and lymphoid organs and tissues, providing immuno-
logical defense against microorganisms. The lymph drains 
back into the blood circulation near the heart. The assembly 
of the lymphatic system occurs during embryonic develop-
ment through coordinated mechanisms involving precursor 
cells [110] and epigenetic pathways [111], some of which are 
recapitulated during lymphatic neogenesis (such as in can-
cer) [112–117]. The identification of a number of lymphatic-
selective molecular markers such as podoplanin, VEGFR3, 
LYVE-1, and PROX-1, has enabled detailed studies of the 
lymphatic vasculature and lymphangiogenesis [118–120]. 
The most studied agonists of lymphangiogenesis are VEGFC 
and VEGFD [121, 122], that can bind to and signal through 
VEGFR3 [123]. Expansion of lymphatic vessels via signal-
ing by these growth factors can occur during pathogenic pro-
cesses such as cancer. However, lymphatic vasculature and 
ongoing lymphangiogenesis have conflicting roles in cancer 
because lymphatics in the tumor periphery can contribute to 
anti-tumor immunity but can also be involved in lymphatic 
metastasis [124–126]. Over the last few years, it has become 
apparent that lymphangiogenesis can positively contribute 
to anti-tumor immunity and immunotherapy. For example, 
VEGFC signaling was found to enhance the response to 
an anti-tumor peptide vaccine, as well as the response to 
anti-PD-1 immunotherapy in mouse melanoma and glioma 
models [127, 128].

Angiogenesis and anti‑angiogenesis 
in diseases

The key importance of blood vessel formation in develop-
ment, normal physiology, and disease has made angiogenesis 
a broad field of study; thus, understanding the mechanisms 
of angiogenesis, for which a large array of available bioas-
says has been instrumental [129, 130], is currently guiding 
the development of new treatments for multiple diseases. 
Some of these diseases or pathological states where dys-
functional angiogenesis is a contributing factor are discussed 
below.

Ischemia (stroke, vessel occlusion)

Ischemia is defined as the restriction of blood supply in a 
tissue leading to shortage of oxygen and tissue starvation 
due to lack of nutrients and incapacity to remove waste prod-
ucts. Ischemia is often caused by microvascular dysfunction, 

e.g. as associated with diabetes, hypotension, and sickle cell 
disease, or shortage of blood supply caused by vasoconstric-
tion, vascular malformations, thrombosis, or embolism, (e.g. 
related to atherosclerosis); it can also be caused by trauma, 
pharmacological intervention, or by iatrogenic causes, such 
as radiotherapy or reductive surgery. Damage by ischemia 
is mediated by accumulation of waste products, inability 
to maintain mitochondrion function and cell membrane 
integrity, as well as the release of proteolytic enzymes. 
Reductions in blood flow and tissue oxygenation may trig-
ger the formation of new capillaries in the periphery of a 
blockage or damaged vessel. These new capillaries provide 
an auxiliary source of blood, nutrients, and oxygen to the 
oxygen-starved tissue. In ischemic tissues where blood sup-
ply is restored by another mechanism, known as reperfusion 
injury, additional and different types of tissue damage may 
occur. Thus, restored oxygen levels in an ischemic tissue 
can cause toxicity due to inflammation and oxygen stress 
through the release of reactive oxygen species [131].

In tissues where oxygen supply is diminished, the 
hypoxia-induced transcription factor HIF1-α is one of the 
major drivers of neovascularization due to transcriptional 
regulation of pro-angiogenic factors such as VEGFA [132]. 
This response triggers angiogenesis and collateral vessel 
development [133, 134]. Therapeutic promotion of angio-
genesis by delivery of VEGFA is therefore one approach in 
cases of acute ischemia [135, 136]. Multiple strategies using 
growth factor- or cell-based therapies to promote blood ves-
sel development have been described with different levels of 
success [137, 138].

Tissue engineering

Engrafted tissues (e.g. bone, skin, adipose tissue) frequently 
fail to thrive due to poor (neo)vascularization. The lack or 
impairment of anastomosis with host vasculature starves the 
engrafted tissue of oxygen and nutrients. Without adequate 
blood flow following anastomosis, tissue deterioration and 
necrosis will eventually lead to graft failure. Anastomoses 
of large vessels is typically followed by a burst of angiogen-
esis as new capillaries, stimulated by trophic signals from 
perivascular and immune cells, begin to form around the 
engrafted tissue. This period may be followed by vascular 
remodeling and vascular specialization at which time the 
engrafted ECs may acquire features of the host tissue micro-
environment. It has been long-noted that there is a “window 
of opportunity” where a tissue graft must obtain a blood 
supply or will be doomed to nonperfusion/failure. Indeed, 
this observation was the precedent for some of the earliest 
attempts at tissue engraftment where skilled surgeons would 
suture skin flaps from, for example, a patient’s arm to sup-
port vascularization of a nose [139]. However, full thickness 
grafts remained difficult to establish in part because a thick 
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layer of fat and connective tissue prevented rapid revascu-
larization. Indeed, a major technical advance arose with the 
use of smaller and thinner grafts that were more amenable 
to vascularization.

Within the last few decades, it has become appreciated 
that providing engrafted tissues and organs with the building 
blocks that comprise blood vessels (e.g. ECs and pericytes) 
in addition to the growth factors (e.g. FGF2) that support 
their growth and survival, can improve the success of these 
grafts overall [140]. Other studies have also found that per-
fusion of ECFC and mesenchymal progenitor cells (MPCs) 
improved cardiac function post myocardial ischemia/re-
perfusion injury suggesting a potential therapeutic strategy 
[141]. A similar strategy showed that combining ECFC 
and MPCs resulted in an increase in perfused vessels and 
improved blood flow that was dependent on the recruitment 
of Gr-1+ myeloid cells [142]. One surprising recent finding 
was that pre-assembled vascular grafts are less efficient at 
rapidly perfusing engrafted tissue compared to unassem-
bled ones. Lin and colleagues have shown that unassem-
bled grafts have high levels of three cytokines including 
IL-6, CXCL1, and CXCL8 which are important for neutro-
phil recruitment [143]. Recruited neutrophils align along 
the newly formed vessels and secrete proteases that help to 
degrade the ECM and they produce survival signals for the 
vascular cells directly. Unassembled grafts also have lower 
Notch signaling, which is known to increase as blood ves-
sels mature as vessel growth is suppressed. Pericytes also 
provide building blocks and trophic signals to support the 
development of engrafted tissues or organs. Interestingly, 
tissue engraftment is substantially improved when organo-
typic ECs are used (bone, adipose, etc.) alongside a sup-
portive matrix or scaffold. This would suggest that ECs that 
are maladapted to a foreign microenvironment could become 
dysfunctional, eventually leading to failure of the engrafted 
tissue or organ.

Hard‑to‑heal wounds

Healing wounds initiate angiogenesis through tissue 
response and repair mechanisms that generally depend on 
the type and extent of injury. In a simple wound or abra-
sion through the dermis, for example, the typical order of 
events includes rapid hemostasis, acute inflammation, pro-
liferation, and finally maturation and scaring. Angiogene-
sis is initiated during the proliferation phase where ECs are 
activated by proinflammatory cytokines such as TNFα and 
IFNγ released by pro-inflammatory cells. These cytokines 
up-regulate cell adhesion molecules and chemokines that 
help to recruit and retain additional immune cells that aid 
in tissue repair or destruction of introduced pathogens. At 
first, neutrophils that express abundant matrix metallopro-
teinases (MMPs) are recruited to the wound site. MMPs 

such as MMP3 and MMP9 degrade the ECM including 
dense collagen fibers to create pathways for new vessels 
to sprout. Typically, these new vessels are leaky, disor-
ganized, and highly abundant. Subsequent pruning of the 
neovasculature by PEDF and Sprouty2 is followed by ves-
sel maturation and stabilization driven ultimately by the 
recruitment of pericytes and smooth muscle cells by fac-
tors such as TGFβ and PDGFBB [144, 145]. Following 
neutrophils, macrophages are recruited that help to further 
coordinate angiogenesis, eliminate pathogens, and aid in 
tissue repair. Interestingly, macrophages have been shown 
to chaperone the unification of EC tip cells and therefore 
aid during anastomosis [146]. Ultimately, fibroblasts pro-
liferate around the wounded area and differentiate into 
contractile myofibroblasts that begin to secrete abundant 
ECM and aid in the scaring process.

While wound healing in this simple example is a highly 
orchestrated process that resolves with scar formation, 
impaired angiogenesis underlies the failure for wounds 
to heal in chronic wounds such as diabetic ulcers. Even 
solid tumors are often described as “wounds that never 
heal” due to a smoldering, non-resolving inflammatory 
response [147]. In diabetic skin, it was shown that reduced 
levels of factors such as syndecan-4 and glypican-1 impede 
FGF and other angiogenic factors from signaling to ECs 
[148]. Furthermore, multiple anti-angiogenic factors and 
proteolytic degradation products of VEGF have been iden-
tified in exudates from venous leg ulcers [149]. Moreover, 
soluble VEGFR1 was also found in these exudates which 
could serve as a ligand trap for VEGF and therefore impair 
angiogenic sprouting [150]. Addition of venous ulcer exu-
dates, especially from those that slowly heal, to EC cul-
tures inhibits in vitro angiogenesis [151]. Thus, the use of 
pro-angiogenic mediators, especially delivery of factors 
such as PDGF, EGF, VEGFA, and FGF may be suitable for 
promoting angiogenesis and healing in diabetic ulcers or 
in other chronic wounds that fail to heal (for an excellent 
review on this topic see Veith et al. [152].

Lymphedema

The lymphatic system functions by allowing leukocytes 
to recirculate through the body and by supporting inter-
stitial fluid back into the blood circulation. In conditions 
of a compromised lymphatic system, lymphedema can 
occur, which results in localized swelling of the tissue. 
Primary lymphedema is a rare congenital condition as 
seen in Turner syndrome, or it arises sporadically, often 
associated with other vascular abnormalities [153]. Sec-
ondary lymphedema can be caused by infectious agents 
but is most common as a result of surgery or cancer radio-
therapy. For example, lymphedema it can develop in the 
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upper limbs after breast cancer surgery, particularly after 
lymph node removal. It should be kept in mind that inhibi-
tion of (lymph)angiogenesis is a strategy that can worsen 
or even induce lymphedema [154]. Although therapy of 
lymphedema is challenging and involves compression 
and physical exercise, local delivery of lymphangiogenic 
growth factors or lymph node transfer has been investi-
gated [155].

Cancer

The concept that tumors cannot grow beyond a few millim-
eters without acquiring a new blood supply led to paradigm-
shifting approaches to treat patients with different types of 
cancer. In essence, targeting the ECs lining tumor blood 
vessels, rather than cancer cells directly, was one of the first 
tumor microenvironment-centered strategies designed to 
thwart solid tumors. As is well-documented, anti-angiogenic 
therapy, while it produces robust inhibitory effects in pre-
clinical models, has been less effective in human patients in 
clinical trials. However, anti-angiogenesis or perhaps vessel-
targeted therapies remains a promising approach in combina-
torial treatment regimens that include various chemothera-
pies and especially immunotherapies (see below) [156–158].

Solid tumors acquire new blood vessels through diverse 
mechanisms; this includes intussusception, co-option and 
stimulation of vessel sprouting (highlighted above). In 
tumors, sprouting angiogenesis operates through the same 

mechanisms that control physiological angiogenesis, but 
these mechanisms may by hyper-activated without proper 
negative feedback (Fig. 3). This results in dysfunctional vas-
culature that is typically hyper-permeable with poor peri-
cyte attachment. Although inhibiting angiogenesis in tumors 
remains an actionable therapeutic modality, recent evidence 
suggests that approaches to “normalize” rather than inhibit 
the formation of new blood vessel may have merits. This 
paradoxical hypothesis is built on the premise that dysfunc-
tional vasculature creates regions of necrosis/hypoxia that 
drives selection pressure for hypoxia-tolerant cancer cell 
clones [159]. Furthermore, hypoxia may elicit immunosup-
pressive signals that skew the anti-tumor immune response 
which allows tumors to actively evade immune-surveillance.

Tumor angiogenesis is also an important mechanism 
through which metastasis formation is mediated [160, 161]. 
While metastasized cancer cells are among the most aggres-
sive cells of a tumor, they may also require activated angio-
genesis to escape dormancy in the post-colonization phase 
[159]. It should be noted that responses to anti-angiogenic 
therapy may not be similar in metastases compared to the 
primary tumor [162].

Atherosclerosis

Atherosclerotic lesions in large blood vessels develop due 
to genetic predisposition and a cholesterol-rich diet, high 
blood pressure and/or smoking, and are characterized by 

Fig. 3   Angiogenesis is a hallmark of cancer.1. When a dormant 
tumor undergoes the angiogenic switch, hypoxia signals induce the 
production of angiogenic growth factors, such as VEGF, resulting in 
activation of ECs in nearby blood vessels. 2. Proteases are produced 
to degrade the ECM around the blood vessels. 3. Migration of ECs 
is induced and endothelial tip cells guide the EC sprouts into the 
direction of the growth factor stimulus. 4. Subsequently, prolifera-
tion is induced to increase the number of ECs needed for growth of 

the sprouting neovessels. 5. When vascular sprouts anastomose blood 
circulation is initiated. The neovasculature is initially immature and 
leaky, allowing cancer cells to intravasate and metastasize to distant 
sites. Eventually, EC differentiation, deposition of a functional ECM 
and attraction of pericytes results in the formation of a mature vas-
culature. Figure is created with BioRender.com and is available on 
request
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subendothelial accumulations of foamy macrophages (fatty 
streaks); these can later develop into fibroproliferative 
lesions by infiltration of myofibroblasts and deposition of 
layers of ECM. While in normal larger blood vessels the 
microvasculature is confined to the more peripheral lay-
ers of the adventitia and outer media, in vessels with ath-
erosclerotic lesions, these microvessels are more abundant 
and infiltrate into the tunica intima [163] (Fig. 4). Thus, 
angiogenesis appears to contribute to atherosclerotic plaque 
formation and a higher prevalence of neovascularization 
has been correlated to unstable plaques and plaque rupture 
[164]. This dependence on angiogenesis for the pathogenesis 
of atherosclerosis suggests that inhibition of angiogenesis 
may be an attractive therapeutic strategy. Early studies in 
apolipoprotein E-deficient mice that were given a high-cho-
lesterol diet demonstrated that inhibitors of angiogenesis 
efficiently inhibited plaque growth [165, 166]. Later studies 
also demonstrated that inhibition of angiogenesis resulted in 
smaller atherosclerotic lesions with a more stable phenotype 
[167–169]. As hypoxia is also a contributor to atheroscle-
rosis, it was demonstrated that oxygenation stabilizes the 
atherosclerotic microvessels thereby reducing hemorrhages 
in the plaques providing a means for therapy and prevention 
of atherosclerosis [23]. Recent insights into the molecular 

regulation of atherosclerosis-induced angiogenesis also 
suggest novel intervention strategies to slow down plaque 
progression, including inhibition of endothelial glycolysis 
[170], use of lipid-lowering statins [171] or even RNA inter-
vention [172]. Mechanistically, it is becoming evident that 
plaque inflammation is key in the promotion of angiogenesis 
by infiltration of M2-like CD163+ macrophages [173] and 
that these cells may develop from local vascular wall resi-
dent stem- and progenitor cells [174] or through phenotype 
switching from vascular smooth muscle cells [175].

Arthritis

Arthritis is a chronic autoimmune inflammatory disease that 
affects synovial joints. There are many types of arthritis, 
such as rheumatoid arthritis and osteoarthritis, but they have 
in common that autoimmunity is directed towards antigens 
in the cartilage and synovium, such as collagens, fibrinogen, 
and vimentin. The pathology of arthritis involves synovial 
hyperplasia, infiltration of immune cells, pannus formation 
and destruction of cartilage- and bone tissue [176]. Angio-
genesis is an early and key feature of arthritis and is switched 
on by inflammatory cytokines and induced by hypoxia in the 
joint. Since the formation of new vasculature can contribute 

Fig. 4   Microvasculature in atherosclerosis. A  Top images show the 
progressive development of atherosclerotic plaques in large arteries. 
Lower images show a progressed but intermediate plaque (B), where 
blood flow is not blocked and the fibrous cap is strong and stable. At 
later stages (C) the fibrous cap can become unstable and rupture. This 
results in the accumulation of thrombocytes, thrombosis, and obstruc-
tion of blood flow or even distant embolisms. In healthy conditions, 
large arteries are vascularized in the outer layers (tunica adventitia) 
called the vasa vasorum. Plaque formation is initiated by EC dysfunc-
tion and accumulation of low density lipoproteins (LDL) in the tunica 

intima. Expression of EC adhesion molecules recruits monocytes 
from the blood to form a macrophage infiltrate in the intima of the 
vessel wall. These become foam cells by accumulating oxidized LDL. 
Smooth muscle cells migrate into the plaque attracted by immune 
cell signals as the deposition  of a thick fibrous cap develops and 
microvessels are now attracted by hypoxia signals. With progress-
ing atherosclerosis, the fibrous cap gets thinner and a necrotic core 
develops. When a plaque ruptures, procoagulant material is exposed, 
which stimulates thrombus formation. Figure is created with BioRen-
der.com and is available on request
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to recruitment of a more inflammatory infiltrate, as well as 
provide oxygen and nutrients to the proliferative synovial 
cells, it can aggravate disease progression. Although cur-
rent therapies are focused on inhibiting the inflammatory 
response of autoimmunity, the dependence of the disease 
on angiogenesis has generated a large interest for treatment 
options based on the use of angiogenesis inhibitors [177, 
178]. Early research established the role of angiogenesis and 
VEGF in arthritis [179], which led to the idea that angiogen-
esis inhibition is an attractive treatment option [180, 181]. 
Current treatments for arthritis include non-steroidal anti-
inflammatory drugs. Interestingly, the use of these drugs 
may indirectly inhibit angiogenesis by suppression of pros-
taglandin E2 production or by inhibition of MMPs [182, 
183]. More specific treatment involves immunomodulating 
monoclonal antibodies against TNFα and IL-6 [184, 185], 
an approach that also indirectly lowers the VEGF content 
in serum and synovium, leading to a reduction of angiogen-
esis in the synovial tissue. Inhibition of HIF1-α has been 
investigated and found to have suppressive effects on VEGF 
expression and angiogenesis [186]. Direct inhibition of the 
VEGF signaling axis with neutralizing antibodies against 
VEGF and its receptors has also been shown to reduce 
rheumatoid arthritis in a collagen-induced model using rats 
[187, 188]. Inhibition of the non-canonical nuclear factor-kB 

(NF-kB) pathway via NF-kB-inducing kinase (NIK) is also 
suggested to be promising. Both NIK inhibitors and the 
angiogenesis inhibitor Anginex [189] blocked vessel forma-
tion in a 3D model of synovial angiogenesis [190]. It should 
be noted that ongoing angiogenesis, at least in tumors, has 
strong immunosuppressive features and that inhibition of 
angiogenesis (e.g. anti-VEGF strategies), is pro-inflam-
matory—this characteristic makes it an effective adjuvant 
to immunotherapy (discussed below) [158]. It remains to 
be investigated whether similar pathways are operative in 
arthritis and whether this presents difficulties for developing 
anti-angiogenic drugs for arthritis in the future.

Gynecological disorders and fertility

Apart from the role of angiogenesis in gynecological cancers 
[191], blood vessel formation is also closely associated with 
a number of non-oncological gynecological disorders that 
have a major societal impact and directly impacts fertility.

Endometriosis—The presence of endometrial tissue out-
side the uterine cavity is called endometriosis (Fig. 5). Endo-
metriosis is a chronic estrogen-dependent disease affecting 
about 10% of women at reproductive age and it causes pain 
and subfertility [192]. The mechanisms responsible for 
causing endometriosis are not fully clear but the hypothesis 

Fig. 5   Angiogenesis is a feature of endometriosis and adenomyo-
sis. Endometriosis is the presence of endometrium tissue outside 
the uterus, often resulting from retrograde menstruation. Homing of 
live endometrial cells and outgrowth into an endometriosis lesion is 
dependent on angiogenesis. The lesion shown here is present on the 
ovary, but they can be present anywhere in the peritoneal cavity or 
even in distant organs. Adenomyosis, or endometriosis interna, is 

the progressive growth of endometrial glands into the myometrium, 
supposedly due to microtraumata resulting from the menstrual cycle. 
Adenomyosis is associated with pain, abnormal bleeding and subfer-
tility [202]. Ectopic endometrium tissue is heavily vascularized, sug-
gesting anti-angiogenic strategies for disease intervention. Figure is 
created with BioRender.com and is available on request
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of retrograde menstrual reflux through the fallopian tubes 
is the most widely accepted. This is why endometriosis 
lesions are mainly found in the ovaries and peritoneal cav-
ity. Nevertheless, ectopic lesions can also be found at more 
peripheral sites elsewhere in the body, although these are 
less frequently observed. Lesion formation is dependent on 
mechanisms of hormone (estrogen)-induced cell survival, 
apoptosis resistance, cell adhesion, degradation of ECM, cell 
migration, inflammation, tissue invasion and progression, 
which are similar to the mechanisms used by cancer cells. 
Therapy for endometriosis is currently restricted to phar-
macological intervention by pain killers, non-steroidal anti-
inflammatory drugs, hormonal therapy, and surgery [193]. 
While pain killers do not resolve the disease, hormonal 
therapy is based on induction of amenorrhea; however, this 
strategy is considered non-preferable by patients because 
of associated side effects and this strategy does not solve 
the issue of subfertility. Angiogenesis has been suggested 
as a driving force behind the formation of endometriosis 
lesions and indeed overexpression of angiogenic growth fac-
tors such as VEGFA and increased microvessel density has 
been observed [194]—this has led to the idea that angio-
genesis inhibitors can be used to treat endometriosis pro-
gression [195]. In preclinical models and the first clinical 
case reports, this approach is presented as promising [196, 
197]. An open-label study of thalidomide (which inhibits 
angiogenesis) in women with pelvic pain associated with 
endometriosis was performed (NCT01028781) but results 
have not yet been reported.

Adenomyosis—Another cause of abnormal uterine bleed-
ing associated with pain and subfertility is adenomyosis, 
or endometriosis interna [198]. The main histologic feature 
of adenomyosis is the infiltration of endometrial glands 
and stroma into the myometrium (Fig. 5). This disorder is 
a rather widespread condition, occurring in approximately 
10% of women. Treatment options are limited and com-
prise hormonal suppression, hysterectomy, embolization, 
or MRI-guided high intensity focused ultrasound (HIFU) 
in experimental settings [199, 200]. Active angiogenesis is 
a common condition in the endometrium, occurring dur-
ing the proliferative phase of the menstrual cycle when the 
endometrium is regenerated which is an essential condition 
for successful embryonic implantation. It is also becoming 
well-established that angiogenesis plays a key role in adeno-
myosis [201], although an understanding of the underlying 
mechanism(s) is incomplete [202]. Because most angio-
genesis inhibitors have been developed in the cancer arena, 
translation to testing for benign diseases is often difficult. 
Nevertheless, the application of anti-angiogenic strategies 
for adenomyosis is currently under investigation [203].

Psoriasis

Psoriasis is a dermal autoimmune disease characterized by 
areas of elevated abnormal skin that affects 2–4% of indi-
viduals. There is no known cure and treatment is performed 
with creams containing steroids or vitamin D3, ultraviolet 
light, or immunosuppressive drugs [204]. The pathologi-
cal events involve abnormal production of skin cells, espe-
cially when induced by wound healing, characterized by 
premature maturation of keratinocytes and activation of the 
immune system, after which the disease chronically pro-
gresses. Immune cells produce cytokines such as IL-1, -6 
and -22 [205], that keep keratinocytes in a proliferative state 
[206]. Since these processes induce the expression of VEGF, 
which leads to the expansion of the dermal microvasculature 
[207, 208], it has been postulated that inhibition of angio-
genesis might be a promising treatment approach. Indeed, 
some patients have reported that anti-VEGF treatment (with 
bevacizumab for oncological reasons), resulted in psoriasis 
remission [209]. Preclinical studies showed that thalidomide 
inhibits psoriasis lesions and cutaneous VEGF expression. A 
clinical study with thalidomide in 20 patients with chronic 
plaque psoriasis was completed (NCT01891019). Improve-
ment of psoriasis was impressive, but the open-label study 
design and concomitant therapy makes interpretation of the 
data a challenge [210].

Obesity

With the development of angiogenesis inhibitors for the 
treatment of patients with cancer and ophthalmological 
diseases, it may be expected that obesity, a major health 
problem that is also heavily dependent on angiogenesis, 
can be treated with angiostatic drugs. White adipose tissue 
(WAT) is one of the most vascularized tissues in the body 
with every adipocyte surrounded by one or more capillaries. 
Because of the metabolic nature of the tissue and the enor-
mous growth capacity of adipocytes, a continuous expansion 
and remodeling of the vascular network is required [211]. 
The molecular regulation of this process has been well-
studied [212] and it is generally known that the VEGF path-
way (and other growth factor signaling axes) are of primary 
importance in WAT [213–217]. Adipose tissue can expand 
by two different mechanisms: during embryo development 
and physiological processes, such as pregnancy and wound 
healing, hyperplastic expansion occurs. Adipocytes can also 
multiply through differentiation from mesenchymal-lineage 
progenitor cells. During over nutrition with high-calorie or 
high-fat diets, hypertrophic expansion takes place. This is 
associated with hypoxia and vascular dysfunction through 
capillary rarefaction which results in depletion of adipocyte 
progenitor cells and concomitant hypertrophy of adipocytes 
(Fig. 6). Apart from WAT that is involved in energy storage, 
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brown adipose tissue (BAT) has a function in thermoregu-
lation [218]. BAT is abundant in newborns and hibernating 
mammals and produces heat by an extremely active metabo-
lism. This feature is able to metabolize WAT and therefore 
dedicated research on increasing BAT or converting WAT 
into BAT, for example by exposure to cold environments 
that promote thermogenesis, is ongoing [219]. BAT is also 
present and metabolically active in adults, although it slowly 
disappears with aging [220]. Although there is more micro-
vasculature in brown adipose tissue, both types of fat tissue 
clearly depend on the presence of a vascular network. In 
genetically engineered obesity mouse models and wildtype 
mice on a high-fat diet, increased blood vessel volume was 
observed in the fat tissue compared to lean controls [221].

Early research suggested that adipose tissue can be 
diminished by angiogenesis inhibitors. Treatment with anti-
angiogenic agents, such as TNP-470, thalidomide, VEGF-
A165b and endostatin mimics, resulted in initial reduction 
of adipose tissue and maintenance of body weight during 
aging [222–224]. These effects were similar to replacement 
of leptin, an adipocyte-secreted protein that regulates the 

hypothalamic control of appetite and metabolism. However, 
such treatments can also affect other functions (other than 
direct effects on ECs) that reduce metabolism or affect lipid 
accumulation or glucose uptake. An interesting study on 
AARP (a CTT peptide-endostatin mimic) reported effects on 
weight gain after high-fat diet, without affecting food intake 
but with an increase in energy expenditure [225]. An expan-
sion of thermogenic adipocytes in subcutaneous and inter-
scapular depots was also observed. Adipose tissue browning 
is known to have higher energy consumption and protection 
against obesity [226]. Studies to investigate inhibiting angio-
genesis to reduce WAT or stimulating angiogenesis in BAT 
are ongoing [227].

Ocular disease

Angiogenesis is a hallmark of many ocular diseases with sig-
nificant epidemiological and societal impact. These diseases 
involve aberrant neovascularization in the retina, choroid, 
iris and the cornea. Among the most prevalent conditions are 
diabetic retinopathy and age-related macular degeneration 
(AMD). The former pathology is induced by diabetes mel-
litus and it eventually leads to blindness caused by macular 
edema and abnormal retinal neovascularization. High glu-
cose levels in the blood makes the microvasculature in the 
retina structurally and physiologically incompetent, result-
ing in hypoxia and subsequent VEGF production leading 
to neovascularization [228]. VEGF also has an important 
role in the AMD pathology, which is associated with aging 
[229, 230]. While AMD pathogenesis is multifactorial 
involving environmental, genetic, and metabolic factors, 
two subgroups of AMD exist, called dry (atrophic) and wet 
(exudative) AMD. The latter involves choroidal neovascu-
larization directed towards the subretinal macular region, 
where bleeding and fluid leakage leads to vision loss [231]. 
In a related disease, called polypoidal choroidal vasculop-
athy (PCV) [232, 233], which is more prevalent in Asian 
countries, VEGF is also a key regulator of the pathology. 
Although diabetic retinopathy, AMD and PCV differ in their 
dependence on VEGF, these diseases are still sensitive for 
intervention of this signaling axis [234]. Treatment is aimed 
at reducing the permeability of retinal and choroidal blood 
vessels by inhibiting angiogenesis. Currently, pegaptanib, 
bevacizumab (Lucentis), ranibizumab and aflibercept are 
VEGF axis-targeting drugs that are available for therapy 
through intravitreal injection. New mechanisms and treat-
ment strategies are evolving [235–238] and novel drugs are 
continuously being developed [239, 240]. In children, retin-
opathy of prematurity is a retinal vasoproliferative disorder 
that leads to visual impairment and is caused by high oxygen 
exposure after preterm birth. Inhibition of the VEGF signal-
ing axis is also a treatment strategy for ROP [241].

Fig. 6   Two mechanisms of adipose tissue expansion. During adipose 
tissue expansion, cells of the vasculature, adipose progenitor cells, 
and adipocytes encounter multiple signaling interactions, involving 
hypoxia, insulin/insulin-like growth factors and vascular guidance 
cues (apelin/apelin receptor, VEGF, angiopoietins) [212, 387]. A 
An increase in fat tissue under physiological conditions results from 
hyperplastic expansion where small adipocytes are generated from 
multipotent progenitor cells. B  Under non-physiological conditions, 
such as overnutrition and aging, hypertrophic expansion takes place. 
This is characterized by failing angiogenesis and capillary rarefaction, 
impairment of progenitor cell proliferation, and hypertrophy of adi-
pocytes. The latter mechanism is strongly associated with metabolic 
disease risk. Figure adapted from Corvera et al., 2021 [212]. Figure 
is created with BioRender.com and is available on request
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Vascular malformations

Vascular malformations denote a broad spectrum of disor-
ders characterized by dysfunctional endothelium and abnor-
malities in the basement membranes or perivascular peri-
cytes. This also includes cancers of endothelial origin such 
as angiosarcoma or hemangioendothelioma. Abnormalities 
can occur throughout the vascular tree including large arter-
ies and veins, venules, capillaries and lymphatics. While 
cancers or of vascular origin will not be covered here, these 
types of cancers can be benign (as in epitheloid hemangi-
oma) or can be aggressive and difficult to diagnose (as in 
epitheloid angiosarcoma). In the later, a gene translocation 
between WWTR1 (a transcriptional coactivator expressed 
in ECs) and CAMTA1 (a DNA binding protein expressed 
during development) drives the aberrant temporal expres-
sion of the chimeric WWTR1/CAMTA1 factor that results 
in EC transformation [242]. We will briefly cover additional 
vascular malformations in the sections below.

Infantile hemangioma (IH)—IH is a neoplasm that arises 
during infancy characterized by rapid initial growth and 
slow involution [243]. Two phases have been recognized: 
(i) a proliferating phase that is characterized by metaboli-
cally active and proliferating ECs that have a spindle-shaped 
morphology and display GLUT1; pericytes are also abun-
dant but have features of mesenchymal stem-like cells [244, 
245] and (ii) an involuting phase characterized by expres-
sion of proinflammatory factors such as SDF-1 and attenu-
ated angiogenesis [246]. Ultimately, the involuted phase is 
resolved by a large-scale reduction in the vasculature fol-
lowed by the appearance of adipocytes. Notably, stem cells 
with both EC and pericyte-like differentiation abilities have 
been identified that recapitulate hemangioma progression 
in mice including the formation of aberrant vasculature and 
eventual involution into adipose tissue. Corticosteroids such 
as dexamethasone inhibit the vasculogenic potential of these 
stem cells, in part, through blocking VEGF [247]. How-
ever, not all angiogenesis inhibitory strategies were found 
effective in IH [248]. New approaches including non-beta 
blocker enantiomers of propranolol and atenolol (which tar-
gets the transcription factor SOX18 in hemangioma stem 
cells) inhibit hemangioma vessel formation in vivo without 
apparent side effects in mice [249].

Sporadic arteriovenous malformations (AVMs)—These 
typically present at birth and can be found anywhere in the 
body. AVMs may result in localized pain, bleeding and 
ulceration. Many AVMs arise due to activating mutations 
in genes critical for growth/proliferation. For example, EC 
expression of a mutant activating p.K57N missense Map2ki 
mutation is sufficient to produce vascular malformations in 
the brain, ear, and intestines in mice [250]. A somatic-acti-
vating NRAS (Q61R) also leads to abnormal angiogenesis 
and spindle-shaped ECs that can be targeted with a MAP 

kinase inhibitor [251]. Similarly, telangiectasia is a condition 
(also known as spider veins) whereby tiny tangles of dilated 
blood vessels, resembling benign vascular neoplasms, are 
formed, often on the face or legs. These vessel anomalies 
are associated with congenital or acquired factors including 
several inherited syndromes (e.g. Sturge-Weber syndrome or 
Maffucci syndrome) or venous hypertension.

Cerebral cavernous malformations (CCMs) – CCMs can 
be sporadic or inherited and the most common form are 
brain arteriovenous malformations. They typically present 
as three groups: sporadic (about 80% of all cases) which 
are characterized venous abnormalities, familial, and radi-
ation-induced [252]. Familial CCMs arise due to mutations 
in CCM1, CCM2, or CCM3 and may be driven by hyper-
activation of MEKK3-KLF2/4 [253]. CCM3 mutations tend 
to appear earlier with a more severe pathobiology [254]. 
Interestingly, CCM mutations result in RhoA and RhoA 
kinase (ROCK) activation which impairs EC barrier function 
and promotes a senescence-associated secretory phenotype; 
statins and drugs that inhibit ROCK can reduce CCM lesions 
in mice [255, 256]. Many CCM lesions present as hyperper-
meable tangles of vessels that resemble transformed ECs in 
vascular-derived malignancies such as hemangiosarcoma. 
Notably, it was recently found in mouse models that CCM 
growth requires both PI3K gain of function and CCM loss 
of function in ECs, both of which increased expression of 
KLF4 to augment mTOR signaling [257]. The authors pro-
pose a three-hit mechanism in CCM that resembles cancer. 
In a counter-argument to an exclusive EC origin for CCM, 
Peyre et al. recently detected somatic activating mutations 
in PIK3CA and AKT1 in pericytes. Moreover, generation of 
these mutations in perivascular cells could recapitulate the 
features of CCM raising the possibility that several cell types 
within the neurovascular unit harbor somatic mutations that 
contribute to CCM sequelae [258]. New models for the study 
of CCM have been described recently [259]. VMs may also 
occur in the eye (called orbital cavernous venous malforma-
tions) where it was recently found that a somatic missense 
mutation [(c.121G > T (p.Gly41Cys)] in the GJA4 gene was 
sufficient to produce a loss of vessel integrity [260].

Sturge-Weber syndrome—In Sturge-Weber syndrome a 
somatic mutation in GNAQ (c. 548G > A, p.R183Q) is found 
in ECs and this contributes to vessel pathogenesis such as 
enlarged blood vessels. Interestingly, GNAQ mutations drive 
constitutively active PLCB3 which increases ANGPT2—as 
a corollary, blocking ANGPT2 normalized enlarged vessels 
suggesting a potential treatment approach for Sturge-Weber 
syndrome [261]. Recently, a new mutation (Q209R) was 
identified in a Sturge-Weber syndrome patient; ectopic gen-
eration of the Q209R mutation in cultured ECs was sufficient 
to cause blood vessel (dys)morphogenesis [262].

Lymphatic malformations – Similar to AVMs, lym-
phatic malformations (LMs) result in aberrant drainage and 
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collection of fluid within cysts or channels. LMs may occur 
at any age but are most common in children and they typi-
cally present as bulging masses under the skin or clusters of 
small, reddish blisters. Hotspot mutations in PIK3CA and 
NRAS are frequent in LMs [43, 263, 264]. In one study, 
isolated lymphatic ECs from a surgically removed LM lesion 
were found to have two hotspot PI3K mutations; treating 
these ECs with PI3K inhibitors reduced proliferation and 
in vitro sprouting. Indeed, PIK3CA inhibitors have shown 
promising results in the treatment of PIK3CA-related lym-
phatic anomalies in a mouse model and in human patients 
[265]. Mechanistically, somatic mutations in PIK3CA result 
in lymphatic vessel hyper-branching and overgrowth; par-
ticularly in response to VEGFC. In PIK3CA-induced lym-
phangiogenic sprouts, VEGFR3 (a receptor for VEGFC) 
is upregulated, similar to what is found in LM lesions in 
patients [266]. Notably, only a fraction of lymphatic ECs 
may carry PIK3CA mutations, suggesting that alternative 
or complimentary pathways are also important for LM 
pathogenesis [267]. Clonal cooperation in which a small 
number of mutant lymphatic EC clones signal to otherwise 
normal lymphatic ECs within the microenvironment, result-
ing in phenotypic/functional alternations, is also possible. 
Apart from PIK3Ca mutations, central collecting lymphatic 
anomalies may arise due to somatic activating mutations in 
ARAF (which drives ERK1/2 activity) and EphB4 result-
ing in the dilation of large lymphatic vessels [268, 269]. 
These are treatable using MEK inhibitors which were shown 
to promote remodeling of the patient’s lymphatic system 
and reduce lymphoedema [268]. Similar to VMs, pharma-
cological treatments that target the PI3K-AKT-mTOR and 
RAS-MAPK pathway are used for LM and, in the future, 
drugs targeting VEGFR or VEGFC itself might be suitable 
to shrink LM lesions [267]. Other examples of therapeutics 
used clinically for LMs and other vascular anomalies include 
sirolimus (rapamycin) and tramitinib (MEK inhibitor) and 
there is significant optimism for using these genotype-guided 
therapies to improve patient outcomes [270–274].

COVID‑19 is a vascular disease

The COVID-19 pandemic revealed that SARS-CoV-2 
is mainly a vascular pathology [275, 276]. One receptor 
for cellular infection is angiotensin-converting enzyme 2 
(ACE2). This receptor is expressed in many cells includ-
ing airway epithelium, but can also be expressed by ECs. 
However, this has been challenged as other studies sug-
gesting that ACE2 is expressed not in ECs but in pericytes 
[277, 278]. Expression of ACE2 and infection efficiency by 
SARS-CoV-2 can be induced by interferon-alpha or -beta 
[279]. The EC host response to infection is associated with 
microvascular injury and is similar to the one observed after 
bacterial infection [280]. Smadja et al. reported on Ang-2 

as a marker of EC activation predicting serious disease and 
admission to the intensive care unit [281]. Ang-2 was also 
associated with acute kidney injury in patients with SARS-
CoV-2 [282], and in chronic obstructive pulmonary disease 
[283]. Another report by this group identified circulating 
Von Willebrand factor as a predictor of admission to inten-
sive care and in-hospital mortality [284–286]. Also, from 
the multi-center MYSTIC study, SARS-CoV-2 emerged as a 
vascular disease. Microvascular alterations were observed in 
moderate to severe SARS-CoV-2 and in hospitalized patients 
under critical care (Fig. 7). Intravital microscopy, multiplex 
proximity extension assays and ELISA showed circulating 
markers of EC dysfunction and modification of the vascu-
lar glycocalyx [287]. Very recently it was discovered that 
patients with long COVID, which is the presence of per-
sistent symptoms for longer than 12 weeks after recovery 
from infection, show a significant capillary rarefaction. This 
defect could be identified with video-microscopy using side-
stream dark field imaging and was still detectable even after 
18 months post-infection [288]. Single cell transcriptomics 
has recently revealed congruently enriched genes in SARS-
CoV-2 lungs and idiopathic pulmonary fibrosis providing 
novel insights into the heterogeneous composition of ECs 
in these lethal diseases [289].

New concepts in the field of angiogenesis

Angiocrine signals

Beyond forming simple conduits for blood to flow, it is now 
well understood that ECs secrete paracrine factors (growth 
factors, ECM, lipids, etc.) that signal to other cell types 
nearby and can therefore act as a source of paracrine media-
tors. Such perfusion-independent functions of ECs were 
noted some time ago when it was found that ECs induce 
expression of insulin from pancreatic endoderm thus pro-
viding inductive signals for organ development [290]. Since 
that time, numerous so called angiocrine factors have been 
identified that are suggested to support organ/tissue devel-
opment, tissue engraftment, or cancer progression through 
diverse mechanisms. For example, thymic ECs secrete 
BMP4 after thymic damage which increases expression of 
Foxn1 in thymic epithelium thereby contributing to thymus 
repair and regeneration [291]. Similarly, following bone 
myelosuppression, bone marrow EC-derived Jag2 promotes 
recovery of hematopoietic stem cells by activating Notch2 
[292]. Liver repair/regeneration was also shown to depend 
on angiocrine signaling. For example, liver repair following 
a pro-fibrotic insult was dependent on divergent angiocrine 
signaling from the sinusoidal ECs; on one hand, activation 
of CXCR7 in ECs promoted expression of regenerative 
factors without excessive fibrogenesis, on the other hand, 
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FGFR1 signaling in ECs provoked a CXCR4-dependent 
pathway that enhanced fibrosis [116, 293]. Similarly, sinu-
soidal EC-derived Ang2, at first down-regulated following 
partial hepatectomy, later recovers to sustain EC VEGFR2 
expression which supports EC survival/angiogenesis during 
liver repair [294]. Strikingly, the expression of angiocrine 
factors (or simulation of angiocrine signaling) by liver ECs 
shows spatial transcriptomic organization, for example, Tie 
receptor signaling zonally regulates Wnt which functions 
to promote liver regeneration [295]. In the cancer setting, 
tumor-associated ECs were found to express IGFBP7 which 
stimulates IGF1 receptors on cancer cells thereby activating 
an FGF4 signaling loop that contributes to chemoresistance 
[296]. In bone marrow metastases, age-associated alterations 
in ECs and pericytes results in changes in the bone marrow-
microenvironment secretome that also creates a chemore-
sistant niche; remarkably, changes in flow were sufficient 
to regulate PDGFB expression that made metastatic cancer 
cells more sensitive to chemotherapy [297]. Similarly, EC-
derived PDGFB provides a trophic/survival signal to co-
engrafted bone marrow-derived MSCs which can further 

influence their fate-restricted differentiation potential into 
adipogenic or osteogenic lineages [37].

Apart from growth factors, ECs may secrete miRNAs 
and other factors packaged in extracellular vesicles (EVs). 
These EVs may signal to neighboring cells in the nearby 
microenvironment or systemically by traveling through the 
circulation [298, 299]. A number of pro- and anti-angio-
genic miRNAs, packaged in EVs, have been identified that 
can regulate angiogenesis directly by acting upon ECs. For 
example, miR-30c suppresses angiogenesis by accelerating 
the degradation of fibrin scaffolds during vessel sprouting 
in tumors [54]. miR-126 is anti-angiogenic by repressing 
negative regulators of the VEGF pathway and miR-200 
targets IL-8, CXCL1, and QKI to suppress angiogenesis 
in tumor-associated ECs [300, 301]. In contrast. miR-221 
promotes angiogenesis by repressing Cdkn1b and Pik3r1 
which are important for tip cell migration [272]. There is 
now a growing list of anti-angiogenic and pro-angiogenic 
miRNAs that operate through different mechanisms and in 
different pathological settings including cancer and ocular 
diseases (reviewed in [302]). Vascular-directed delivery of 

Fig. 7   SARS-CoV-2 a vascular disease. A Pathophysiology for 
microthrombosis by SARS-CoV-2 in patients. The figure summa-
rizes the hypothetical steps of the thrombotic sequence from direct 
or indirect effects of the virus on ECs—this may induce endotheli-
opathy and a coagulopathy leading to lung obstruction with potential 
consequences on the right heart ventricle. B H&E staining of a lung 
of a SARS-CoV-2 patient. Perivascular lymphocytic infiltrate and a 
microthrombus in an alveolar capillary are seen (bar = 100um). C 

Scanning electron microscopy demonstrating perivascular and inter-
stitial lymphocytes. Intravascular thrombus was observed in many 
vessels (white arrows; bar = 200um). D Corrosion casting image 
showing endothelial injury and endothelialitis. Intraluminal pillars 
(circles) reflect ongoing intussusceptive angiogenesis (bar = 200um). 
Figure is adapted from Smadja et al., 2021 [275]. Figure is created 
with BioRender.com and is available on request
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miRNAs via vascular-homing peptides or nanoparticles may 
thus be highly effective at targeting angiogenesis in a variety 
of pathological settings.

Vessel normalization

In the years following the discovery of tumor angiogenesis 
as a cancer hallmark and important driver of tumor growth 
and metastasis, multiple angiogenesis inhibitors were devel-
oped with the goal of pruning the tumor-associated vascu-
lature in the process starving tumors of nutrients and oxy-
gen. Thousands of pre-clinical studies have validated that 
blocking pro-angiogenic pathways is an effective strategy for 
inhibiting solid tumor growth; many of these strategies were 
translatable into human patients [303]. However, these thera-
pies have, in general, been less effective in human patients 
most likely due to a number of complex mechanisms. Stem-
ming from this work, it was observed that blocking angio-
genesis in tumors did not completely eliminate all vascular 
structures; instead, only the primitive immature vessels 
appeared to be eliminated. Moreover, the remaining vessels 
appeared more like “normal” counterpart vasculature. These 
“normalized” vessels were invested by pericytes, they had 
fewer lateral branches and filopodia, their diameters were 
uniform, and they were less permeable to intravenously 
injected tracers. Consequently, there was reduced hypoxia 
and tumor necrosis. These results suggested that angiogene-
sis inhibitors were not simply blunt-force tools for blood ves-
sel elimination, but could instead be optimized for dose and 
time in a treatment regimen that produce large-scale changes 
to the tumor microenvironment [304]. Indeed, a judicious 
use of angiogenesis inhibitors and in some cases a para-
doxical promotion of new tumor blood vessels, can improve 
the delivery and efficacy of chemotherapeutic drugs. In one 
example, Sunitinib (a tyrosine kinase inhibitor with activity 
for VEGFRs) was found to increase tumor vessel normaliza-
tion and, when combined with chemotherapy, resulted in a 
greater inhibition of tumor cell proliferation [305].

Large data analyses in angiogenesis

Without a doubt, single cell RNA (scRNAseq) sequenc-
ing has revolutionized the field of vascular biology [306]. 
While morphological and functional differences in ECs have 
been long-noted, scRNAseq confirmed there is both inter- 
and intra-vessel heterogeneity in different tissue and organ 
microenvironments (reviewed in [307]). This heterogene-
ity is not restricted to ECs, as recent work has cataloged 
substantial heterogeneity in smooth muscle cells through-
out the vascular tree [308]. Single cell transcriptomics has 
enabled the discovery of new vascular subtypes in a host 
of physiological and pathophysiological settings. Because 
these types of studies have grown exponentially in the past 

five years, we cannot highlight all of them for the purposes 
of this review. However, one example includes the identi-
fication of novel sub-classifications of capillaries, ligand-
receptor connectomes and EC diversity in pulmonary 
hypertension [309]. In another study in the heart, scRNAseq 
coupled with lineage tracing helped to identify segregation 
of capillary ECs into two states during coronary develop-
ment and how ECs are regionally specified to respond to 
hypoxia and changes in blood flow [310]. Finally, brain ECs 
are also highly specialized and recent studies using scR-
NAseq have revealed new “reactive endothelial venules” 
that express constitutive cell adhesion molecules and may 
be important for immune responses in the neurovascular unit 
[311]. Numerous studies have used scRNAseq to character-
ize plasticity and heterogeneity in the tumor vasculature; 
collectively, these types of studies confirm that tumor ECs 
show tumor type specialization, they have unique metabolic 
dependencies and lipid-processing abilities and they display 
regional differences depending on their location within the 
tumor microenvironment [55, 312, 313]. Subtypes of tumor-
associated ECs also may also instigate immuno-regulatory 
programs, or even uptake and present antigens, that could 
impact immune infiltration by anti-tumor immune cells. scR-
NAseq has recently revealed that an EndMT and a stem-like 
transcriptional program is associated with poor clinical out-
comes in pancreatic adenocarcinoma [314]. Interestingly, 
recent work from the Bergers lab provided new insights into 
high endothelial venule (HEV) neogenesis in tumors and 
used lineage tracing and transcriptional trajectory analysis 
to identify post-capillary venule ECs as the likely precursor 
for HEV ECs [315].

Endothelial cell anergy and immune suppression

It is widely known that ongoing angiogenesis is associ-
ated with stimulation of pathways that promote immune 
suppression. Overexpression of angiogenic growth factors 
such as VEGF and FGF results in negative signaling in 
cytotoxic T-cells, while “pro-growth” signals are created 
for immune suppressive immune cells, such as regulatory 
T-cells and myeloid derived suppressor cells [316, 317]. 
Another important mechanism of angiogenesis-mediated 
immune evasion is the induction of unresponsiveness by 
endothelial cells to inflammatory cytokines. While under 
normal conditions endothelial cells upregulate adhesion 
molecules such as ICAM-1, VCAM-1 and E-selectin in 
response to tumor necrosis factor (TNFα), IFNγ, and 
interleukin-1, angiogenic tumor ECs are anergic to such 
signaling, resulting in suppressed immune cell infiltration 
into tumors [318–320]. It has recently been described that 
this EC anergy is a regulatory function of angiogenesis, 
originating from the process of embryonic development, 
where a growing embryo benefits from immunologically 
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silent vasculature [321]. Similarly, in the developing pla-
centa, where the fetus should be protected from maternal 
immunity against paternal epitopes, immune suppressive 
mechanisms are in place. In both the embryo and the pla-
centa, tissues are protected against immune infiltration 
by the suppression of EC adhesion molecules, which is 
mediated by angiogenic stimulation—it is this mechanism 
that is hijacked by cancer cells to suppress immune sur-
veillance [321]. Interestingly, copying embryonic traits by 
cancer cells has been known for long time [322, 323], but 
these observations show that cancer cells can also force 
heathy cells to resurrect embryonic gene expression pro-
grams [321]. These observations of angiogenesis-induced 
immune suppression represents a vascular immune check-
point (Fig. 8), which led to the hypothesis that inhibition 

of angiogenesis has proinflammatory activities [324, 
325]. Indeed, it was shown that angiogenesis inhibitors 
can induce expression of adhesion molecules in cultured 
endothelial cells [317, 326] and enhance lymphocyte 
infiltration in preclinical models [327, 328], as well as in 
human tumors [317, 329].

Angiogenesis inhibition and immunotherapy

One impact related to the discovery of endothelial cell 
anergy and the possibility to overcome it by angiogen-
esis inhibition relates to the successes of combinatorial 
immunotherapy and anti-angiogenic therapy. Clinical 
studies show that the success of immunotherapy, mainly 
immune checkpoint inhibition, is significantly enhanced 

Fig. 8   Endothelial cell anergy as a vascular immune checkpoint. 
Immune checkpoint molecules, such as PD-1 and PD-L1, dampen 
the activity of immune cells. A A tumor cell-specific CD8+ cyto-
toxic T-cell is prevented from its anti-tumor activity when immune 
checkpoint molecules are expressed on both cells. B Blocking these 
molecules by immune checkpoint inhibitory monoclonal antibodies 
unleashes the anti-tumor activity and cancer cells will be killed. C 
Angiogenic cancer cells, through secretion of angiogenic growth fac-
tors, can downregulate endothelial cell adhesion molecules that can 
make tumor endothelium unresponsive to proinflammatory cytokines. 
Such tumor EC anergy results in non-adhesive blood vessels and an 

immunologically silent tumor microenvironment. Immune suppres-
sion based on EC anergy is considered a vascular immune check-
point. D Inhibition of angiogenesis through growth factor receptor 
blockade (with tyrosine kinase inhibitors) or neutralization of growth 
factors (with monoclonal antibodies) overcomes endothelial anergy 
making cancer cells vulnerable to immune cells. IFN, interferon; 
PD-1, programmed cell death 1; PD-L1, programmed cell death 1 
ligand 1; TCR, T-cell receptor; TNF, tumor necrosis factor. Figure 
is adapted from Huinen et al., 2021 [158]. Figure is created with 
BioRender.com and is available on request
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by simultaneous treatment with angiogenesis inhibitors, 
mainly demonstrated with those targeting the VEGF sign-
aling pathway [330]. Seven of such combination studies 
have resulted in eight FDA approvals since 2018. Two 
studies in renal cell carcinoma demonstrated that axitinib 
addition to avelumab [(anti-programmed death-ligand 1 
(PD-L1) antibody)] or pembrolizumab (anti-PD-1 anti-
body) resulted in a doubling of overall response rate and 
number of complete remissions [156, 331]. Two other 
studies in non-small cell lung cancer [332] and hepatocel-
lular carcinoma [157] combined atezolizumab with the 
anti-VEGF antibody bevacizumab. Also here, the combi-
nation arms showed significant benefit when compared 
to the arms without bevacizumab. Interestingly, in the 
patients with hepatocellular carcinoma, the combina-
tion treatment led to 18% complete remissions, while no 
complete remissions were observed in the treatment arm 
without bevacizumab. A fifth study in endometrial carci-
noma reported similar results of significant improvement 
of immunotherapy with pembrolizumab by co-treatment 
with Lenvatinib, a multitargeted tyrosine kinase inhibi-
tor [333]. The results of these and other studies (see 
Table 1) support the hypothesis that overcoming angio-
genesis-induced EC anergy has a potentiating effect on 
immunity. It should be noted that this is also expected for 
other immunotherapy strategies, such as adoptive T-cell 
therapy, CAR T-cell therapy, and multiple vaccination 
approaches [334, 335], and it is expected to be valid for 
anti-angiogenic strategies that involves signaling apart 
from the VEGF signaling pathway (e.g. the ANGPT2 
pathway). In a good example, blockade of VEGF along-
side ANGPT2, when combined with CD40 agonistic anti-
bodies, had an anti-angiogenic and immunostimulatory 
effect resulting in T-cell mediated killing of cancer cells 
in a colorectal tumor model [336].

High endothelial venules and tertiary lymphoid 
structures

In lymph nodes, including bronchus- and gut associated 
tissues, post-capillary venules can adopt a ‘high endothe-
lial’ phenotype where ECs acquire a cuboidal or “plump 
and tall” morphology [337]. These HEV ECs play an 
important role in the re-circulation of leukocytes during 
a normal immune response (Fig. 9). In tissues with long-
term persistent inflammation, such as a rheumatic joints 
or in tumors, ECs can also adopt a similar cuboidal mor-
phology and associate with large numbers of infiltrated 
leukocytes. Such areas may acquire features of secondary 
lymphoid tissues—therefore, these structures are referred 
to as tertiary lymphoid structures (TLSs) [315, 338]. TLSs 
are organized by B-cells, T-cells, and fibroblast reticular 
cells and they can be induced to a larger size by immuno-
therapies [339]. Interestingly, combining anti-angiogenic 
therapy with anti-PD-L1 therapy, resulted in anti-tumor 
immunity through stimulation of HEV EC formation 
[340]. HEV ECs have different transcriptional profiles 
compared to blood vessel ECs; for example, HEV ECs 
harbor peripheral lymph node addressin (PNAd) which 
comprises sulfated carbohydrate ligands for L-selectin, in 
addition to several other homing receptors, chemokines, 
and transcription factors [341]. Tumor-associated HEV 
ECs are thought to be a major site of lymphocyte entry and 
their presence can predict a better response to checkpoint 
blockade; particularly in colorectal cancers with micros-
atellite instability [342, 343]. Interestingly, molecular sig-
natures in breast cancer HEV ECs, including expression 
of MEOX2 and TSPAN7, associate with better response 
to checkpoint blockade and better overall survival [344]. 
Thus, strategies to promote HEV EC neogenesis in tumors 
may be warranted. LIGHT and lymphotoxin, typically 

Table 1   FDA approved combinations of checkpoint inhibition plus angiogenesis inhibitors

Atezolizumab (anti-PD-L1 antibody); Pembrolizumab (anti-PD-1 antibody); Avelumab (anti-PD-L1 antibody); Nivolumab (anti-PD-1 antibody); 
Bevacizumab (anti-VEGF antibody); Axitinib (tyrosine kinase inhibitor of VEGFR1-3); Lenvatinib (tyrosine kinase inhibitor of VEGFR1-3, 
FGFR1-4, PDGFR, c-Kit, RET); Cabozantinib (small molecule inhibitor of the kinase receptors c-Met, VEGFR2 and AXL); NSCLC non-small 
cell lung cancer

Immune checkpoint 
inhibitor

Anti-angiogenic compound Cancer type Approval date Trial registration num-
ber [reference]

Atezolizumab Bevacizumab + chemotherapy Advanced non-squamous NSCLC December 6th, 2018 NCT02366143
[332]

Pembrolizumab Axitinib Renal cell carcinoma April 19th, 2019 NCT02853331 [156]
Avelumab Axitinib Advanced renal cell carcinoma May 14th, 2019 NCT02684006 [331]
Pembrolizumab Lenvatinib Advanced endometrial carcinoma September 17th, 2019 NCT02501096 [333]
Atezolizumab Bevacizumab Hepatocellular carcinoma May 29th, 2020 NCT03434379 [157]
Nivolumab Cabozantinib Renal cell carcinoma January 22nd, 2021 NCT03141177 [383]
Pembrolizumab
Pembrolizumab

Lenvatinib
Lenvatinib

Endometrial cancer
Advanced renal cell carcinoma

July 21st, 2021
August 10th, 2021

NCT03517449 [384]
NCT02811861 [385]
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secreted by dendritic cells or T-cells, are required for 
HEV EC neogenesis and these factors can be delivered 
to the vasculature using vascular-homing peptides which 
also enhance immunotherapy [345]. Studies in mice have 
shown that EC-specific deletion of Notch results in sponta-
neous HEV EC formation and TLSs suggesting that Notch 
may suppress HEV EC neogenesis [346]. In glioma where 
few, if any, HEV ECs are present, agonistic CD40 therapy 
induced TLSs but resulted in hypofunctional T-cells that 
ultimately impaired the response to immunotherapy [347]. 
While targeted induction of HEV EC neogenesis in tumors 
is an exciting prospect to improve responses to checkpoint 
blockade, these approaches could inadvertently enable 
metastases since HEVs or HEV-like vessels could form 
new conduits for cancer cell invasion/dissemination [348].

Endothelial plasticity

ECs are highly pliable and programmed to adapt to perturba-
tions in metabolic/nutrient flux and changes in oxygen levels 
and flow. Some of these adaptations, for example changes 

in cell shape or tension (i.e. tensegrity), can occur rapidly 
which allows the vasculature to maintain hemostasis in the 
face of acute challenges. While inter-vessel, intra-vessel, and 
organotypic heterogeneity in ECs has been long appreciated, 
scRNAseq has allowed for unparalleled resolution in terms 
of understanding EC diversity and plasticity at the single cell 
level (reviewed in [3, 349]).

One of the best-characterized examples of endothelial 
plasticity is the transition of ECs into hematopoietic cells 
(endothelial-to-hematopoietic transition) which give rise 
to hematopoietic stem and progenitor cells during develop-
ment (for review see Canu et al. [350]). Similarly, ECs can 
shape-shift and acquire mesenchymal-like features as they 
invade new microenvironments, especially in the heart. In 
early studies, Frid et al. found that in vitro cultured mature 
aortic vascular ECs lost EC characteristics such VE-cadherin 
expression and gained mesenchymal features reminiscent of 
smooth muscle cells through a process termed “endothelial-
mesenchymal trans-differentiation” (also called EndMT) 
[351]. The percentage of ECs capable of this process was 
quite low (estimated at 0.01–0.03%), but the authors con-
sistently found “transitional” ECs that co-expressed both 
EC and mesenchymal markers. It is possible that “younger” 
ECs (i.e. in developing tissues) retain a more plastic phe-
notype and a greater ability to acquire smooth muscle-like 
or mesenchymal-like characteristics, perhaps due to fewer 
epigenetic silencing events (heterochromatin) which are 
gradually established throughout the EC genome as the ECs 
become more differentiated and specialized (reviewed in 
Aird et al.) [352]. Especially in the developing heart valves, 
the molecular mechanisms, including the opposing activi-
ties of Notch and VEGF that control EC differentiation have 
been further refined and described, as progenitor-like cells 
with mesenchymal plasticity serve to replenish valvular cells 
in response to injury [353]. Interestingly, mitral valve ECs 
acquire the hematopoietic marker CD45 after myocardial 
infarction and a CD45 phosphatase inhibitor is sufficient 
to inhibit EndMT suggesting a new functional role for this 
typically hematopoietic cell-restricted factor in ECs [354].

Numerous pathophysiological conditions are character-
ized by a process of EndMT where transitional or “hybrid” 
ECs have been identified. These hybrid ECs are suggested 
to be “maladapted” in that their conversion to a fibroblast or 
(myo)fibroblast-like state is associated with EC dysfunction 
[355]. A good example is TGFβ-driven EndMT in vein graft 
remodeling and neointima formation which is a major cause 
of vein graft failure due to stenosis [356, 357]. In prostate 
tumors and in prostate cancer metastasis to bone, TGFβ and/
or BMP was shown to promote EndMT resulting in aberrant 
differentiation of tumor -associated ECs into cells with fea-
tures of bone [60, 358]. A similar process has been described 
using hemangioma stem cells and in progenitor-like ECs 
from the heart valve, where EC reversion to a mesenchymal 

Fig. 9   High endothelial venues (HEVs). A HEVs in secondary lym-
phoid organs present in the T-cell zone of the lymph node is the 
location with active extravasation of leukocytes. B HEVs display a 
cuboidal EC morphology. C An HEV in the inflamed synovium of 
a rheumatoid arthritis patient. D HEVs in human tonsils, stained for 
MECA-79 and the HEV nuclear cytokine IL-33 (right). Photomicro-
graphs by courtesy of Drs. Blanchard and Girard, Toulouse, France 
[338]. Figure is created with BioRender.com and is available on 
request
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phenotype precedes the acquisition of new, multi-lineage 
features (i.e. bone and cartilage) [359, 360]. In glioma, 
recent studies suggest that cancer-related EndMT results 
in a drug-resistant state to angiogenesis inhibitors due to 
down-regulation of VEGF receptors [361]. Also in glioma, 
EndMT enhanced tumor-associated EC migration and acti-
vation of a cMET/ETS-1/MMP14 axis that promoted VE-
cadherin degradation and enhanced EC permeability/vascu-
lar abnormalities [362]. In cerebral CCM, a condition driven 
by mutations in CCM1 (KRIT1), CCM2 (OSM), or CCM3 
(PDCD10) (see above for discussion), dysplastic brain ECs 
form enlarged hemorrhagic lesions and show evidence of a 
TGFβ/BMP-driven EndMT-like state in addition to activa-
tion of ROCK-dependent Senescence-Associated Secretory 
Phenotype, SASP [256, 363].

In myocardial infarction (MI), an elegant recent study 
found that 3–7 days after MI, ECs transiently acquire mes-
enchymal gene expression which the authors suggest is an 
adaptation to metabolic/hypoxic insult. These ECs under-
went partial EndMT, indicated by reductions in most pan EC 
markers such as VE-cadherin and PECAM, while gaining 
mesenchymal markers including several collagens and the 
intermediate filament vimentin. Over time, it was found that 
partially differentiated ECs re-acquired their EC characteris-
tics indicating the process is reversible to some extent [364]. 
In atherosclerosis, it was shown that EndMT-derived cells 
co-expressing EC and fibroblastic markers are common in 
atherosclerotic lesions and are readily detected in human 
plaques. Interestingly, the degree of EndMT (identified by 
cells co-expressing FAP and vWF) in neointimal plaques, 
correlated with unstable or ruptured plaques suggesting that 
EndMT negatively contributes to atherosclerosis progression 
[365]. Recent work from the Owens lab found that multiple 
cell types contribute to the pool of smooth muscle cells and 
myofibroblasts in the fibrous cap of atherosclerotic plaques 
including ECs that are induced to differentiate by IL1β and 
TGFβ [366]. Of note, FGF2 appears to be a natural antago-
nist to TGFβ-induced EndMT through complex mechanisms 
involving activation of ERK, let-7 and miR-20a and down-
regulation of the TGFβ receptor, as reviewed in Xiao et al. 
[367]. Cultured tumor-associated ECs that readily transition 
into myofibroblast-like cells in response to TGFβ fail to do 
so in the presence of high concentrations of FGF2 [368].

Resistance to anti‑angiogenic drugs

Anti-angiogenic therapy was initially presented as a treat-
ment modality in cancer that could potentially avoid drug 
resistance since the target of therapy is the endothelium. 
Unlike cancer cells, ECs are thought to be genetically stable 
and therefore are not expected to mutate or resist therapy. 
Furthermore, because most anti-angiogenic drugs are tar-
geted towards angiogenic growth factors, their receptors, 

and their cellular signaling axes, cancer cells should not be 
directly affected (however, some cancer cells may express 
receptors found on ECs, such as VEGFR2) [59]. VEGF has 
long been the prototypical target for anti-angiogenic therapy 
in cancer. However, it has become apparent that mature ves-
sels may not require VEGF for survival; therefore, targeting 
VEGF is expected to have no ability to eliminate mature 
feeding vessels into solid tumors [369, 370]. The role of 
tumor cell plasticity in the resistance to anti-angiogenic 
therapies is underscored by the fact that angiogenesis inhi-
bition works well in benign diseases, especially ophthalmo-
logical disorders [371]. Resistance to angiogenesis inhibitors 
in malignant diseases involves many different mechanisms. 
Probably the most important is the redundancy of EC growth 
factors. For example, treatment of tumor-bearing mice with 
VEGF neutralizing antibodies resulted in significant induc-
tion of placental growth factor, PlGF [372, 373]. What is 
learned from these observations is that targeting cancer cells 
by indirect neutralization of their angiogenic growth factor 
repertoire is a treatment strategy that can lead to eventual 
drug resistance in a “whack-a-mole” scenario, where inhib-
iting one pathway is rescued by activation of another path-
way. More favorable approaches might be achieved by direct 
targeting of the vulnerabilities unique to tumor-associated 
ECs themselves, making it less likely that drug resistance 
develops. A plethora of cell types in the tumor and tumor 
stroma [374] can contribute to resistance, among which bone 
marrow-derived cells such as immune suppressive regula-
tory T-cells, myeloid derived suppressor cells [329, 375] and 
hypoxia-recruited progenitor-like cells [376]. Local stromal 
cells are also reported to contribute to resistance. For exam-
ple, cancer-associated fibroblasts can be induced by anti-
VEGF therapy to produce pro-angiogenic growth factors 
[377]. Tumors also have the capacity to become relatively 
independent of angiogenesis by transitioning into a non-
angiogenic form of tumor growth, such as vessel co-option 
and/or vasculogenic mimicry [89, 378]. Detailed descrip-
tion of the mechanisms of resistance to anti-angiogenic com-
pounds in malignant diseases can be found in these excellent 
reviews [59, 379].

Conclusions and perspectives

Targeting pathological angiogenesis has long been consid-
ered an anti-cancer treatment strategy. However, it is now 
apparent that many diseases and pathological conditions 
have underlying dysfunctional angiogenesis or maladapted 
ECs that contribute to disease progression. This raises the 
question of whether long-term clinical management of con-
ditions such as arthritis or obesity can be managed by the 
judicious use of highly selective angiogenesis inhibitors. 
Anti-angiogenic approaches of course come with the caveat 
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that physiological angiogenesis may also be affected (e.g. 
wound healing) so this would have to be carefully consid-
ered. As has been shown in benign (non-cancer-associated) 
conditions such as macular degeneration, the targeted use of 
angiogenesis inhibitors can be used safely with high success. 
In the cancer setting, resistance to angiogenesis inhibitors 
presents a significant challenge to the continued develop-
ment and use of this approach clinically. Compensation by 
upregulation of complementary growth factors, and switches 
to different modes of vascularization have made these types 
of therapies less effective. However, there has been some 
good success with using anti-angiogenic therapies in combi-
nation with chemotherapy or immunotherapy and we expect 
these approaches will continue to be optimized to produce 
better overall outcomes. In the future, new and exciting 
approaches applied to vascular biology such as artificial 
intelligence (AI) and machine learning could help to guide 
rational decision-making for novel drug combinations, aid 
with diagnosis, and help to identify biomarkers that predict 
responsiveness to anti-angiogenic therapies for multiple 
pathological settings [380–382].
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