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Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodel-
ling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone 
morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and 
fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified 
as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, 
endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased 
in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone 
significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory 
phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-
PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats 
with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the 
PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling 
pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.

Keywords  Pulmonary arterial hypertension · Vascular remodelling · Endothelial cell · TGF-β/BMP signalling · 
Inflammation

Introduction

Pulmonary arterial hypertension (PAH) is a progressive dis-
order in which endothelial dysfunction and vascular remod-
elling obstruct small pulmonary arteries. This results in a 
marked and sustained elevation of pulmonary artery (PA) Marie José Goumans and Rolf M. F. Berger have jointly 
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pressure, and eventually right ventricular (RV) failure and 
death [1–4]. The abnormal pulmonary vascular remodelling 
is characterized by a hyperproliferative, apoptosis-resistant 
and inflammatory phenotype of pulmonary arterial endothe-
lial cells (PAECs) and smooth muscle cells (SMCs) [5–9]. 
The pathophysiologic mechanism involves several signal-
ling pathways, including the TGF-β/BMP pathway [10–13]. 
Despite recent advances in the molecular understanding of 
the vascular remodelling in PAH, current therapies fail to 
reverse this vascular remodelling, resulting in only a modest 
improvement in morbidity and mortality. Therefore, there 
remains an urgent need to identify new molecular targets 
that can reverse vascular remodelling to develop effective 
and safe treatments for PAH patients.

We and others have previously shown that the peptidyl-
prolyl isomerase Pin1 acts as a critical driver of vascular 
cell proliferation, apoptosis and inflammation, and is impli-
cated in several cardiovascular diseases such as atheroscle-
rosis, coronary restenosis, and cardiac hypertrophy [14–16]. 
Pin1 regulates endothelial nitric oxide synthase and induces 
endothelial dysfunction [17]. Moreover, Pin1 inhibitor 
juglone prevents diabetes-induced endothelial dysfunction 
via NF-κB signalling [18]. In contrast, Pin1 knockout mice 
exhibited increased aortic endothelial nitric oxide synthase, 
endothelial dysfunction, and hypertension [19]. Pin1 belongs 
to the parvulin subfamily of peptidyl-prolyl cis–trans 
isomerase (PPIase) group of proteins. Pin1 is the only PPI-
ase that specifically binds phosphorylated Ser/Thr-Pro pro-
tein motifs and catalyzes the cis/trans isomerization of the 
peptide bond [20–23]. Through protein–protein interactions 
and inducing conformational changes on the substrates, Pin1 
regulates diverse cellular processes. Pin1 has been shown to 
modulate signal transduction by interacting with a diversity 
of transcription factors [20, 24–27]. Interestingly, Pin1 has 
been reported to interact with TGF-β/BMP-specific receptor-
regulated transcription factors Smad1, Smad2, and Smad3 
but not with the common mediator Smad Smad4 [28]. Pin1 
activity has been shown to be essential for skeletal mus-
cle fusion through structural modification of Smad3 in the 
linker region [29]. Furthermore, a positive feedback loop of 
TGF-β1/promyelocytic leukaemia SUMOylation/Pin1 has 
been shown to promote the cardiac fibrosis [30]. FOXM1 
and PLK1, two transcription factors able to modulate TGF-β 
signalling and shown to be involved in PAH pathogenesis 
[31, 32], are also substrates of Pin1. Although Pin1 interacts 
with TGF-β/BMP dependent Smad proteins, a function for 
Pin1 in the disturbed TGF-β/BMP signalling and vascular 
remodelling in PAH has not been reported to date.

Given the effect Pin1 has on proliferation, apoptosis and 
inflammation of ECs and SMCs, and its effects on several 
known PAH related signalling pathways, including the 
TGF-β/BMP cascade, we hypothesized that Pin1 is involved 
in PAH pathophysiology. Here, we show that inhibition of 

Pin1 decreases proliferation, inflammation, and TGF-β sig-
nalling in pulmonary microvascular ECs in vitro. Chronic 
oral administration of the Pin1 inhibitor juglone reversed 
abnormal vascular remodelling, without affecting RV func-
tion in a rat model of PAH nor in a rat model of isolated RV 
pressure loading. To our knowledge, this is the first time a 
role for Pin1 in PAH was demonstrated and suggests that 
selective inhibition of Pin1 represents a novel therapeutic 
target in PAH.

Methods

Please see the supplementary material for detailed methods.

Cell culture and tissue sections

Collection of lung specimens was approved by the local 
ethical committee and written informed consent from 
patients was obtained. Human pulmonary artery micro-
vascular endothelial cells (MVECs) and smooth muscle 
cells (PASMCs) were isolated and cultured from idiopathic 
PAH patients and control lung explant tissue as previously 
described [33, 34].

Juglone treatment in the MCT + Shunt rat PAH 
model

All animal experiments were approved by the Dutch Central 
Ethical Committee for Animal Experiments and the Animal 
Care Committee of the University Medical Center Gron-
ingen and were carried out in compliance with guidelines 
issued by the Dutch government. All experiments were 
conducted according to published standards for preclinical 
and translational research in PAH [35]. The MCT + Shunt 
(MS) rat PAH model was used to study pulmonary vas-
cular remodelling in 25 male Wistar rats and was per-
formed as described previously [36]. Rats were randomly 
assigned to 3 groups: (1) MCT + Shunt sacrificed at T21 
(MS21) as a baseline group; (2) treatment with vehicle (5% 
DMSO in drinking water) from T21, with sacrifice at T35 
(MS35Veh); (3) treatment from T21 with 5 mg/kg juglone 
in vehicle (5%DMSO in drinking water) with sacrifice at 
T35 (MS35Juglone). Echocardiography was also performed 
before the treatment (at day 21) started to determine baseline 
cardiac function. All measurements and analyses were done 
in a blinded manner.

Juglone treatment in the PAB rat RV pressure load 
model

To assess direct myocardial effects of juglone in this setting, 
isolated RV pressure load was created in 16 male Wistar rats 
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by main pulmonary artery banding (PAB) surgery. Rats were 
randomly assigned to (1) treatment with vehicle (5% DMSO 
in drinking water) from T28 with sacrifice at T56 (PAB-
veh56), or (2) treatment with 5 mg/kg Juglone in vehicle (5% 
DMSO in drinking water) from T28 with sacrifice at T56. 
Before sacrifice, all rats underwent haemodynamic evalua-
tion by echocardiography, after which lungs and hearts were 
collected for histopathologic evaluation.

Quantitative pulmonary vascular morphometry

40 vessels (diameter < 50  µm) per lung were analysed 
according to a standardized pulmonary vascular morphom-
etry protocol, described in detail previously [36, 37].

Statistical analysis

Statistical analyses were performed using the GraphPad 
Prism software for windows, version 7.0. The mean value 
(± SD) was calculated for all samples, and significance was 
determined by either the unpaired t-test or analysis of vari-
ance (one- way ANOVA). Bonferroni multiple comparison 
test was applied to correct for multiple testing. A value of 
P < 0.05 was considered significant.

Results

Pin1 expression is increased in PAH

To determine if Pin1 is involved in the pathology of PAH 
we first performed immunofluorescent analysis of lung of 
idiopathic (iPAH) patients and showed that the expression 
of Pin1 is increased when compared to controls (Fig. 1A). 
Increased expression of Pin1 was also found in the rat 
lungs of MCT-, SuHx-, and MCT + shunt-induced PAH 
(Supplementary Fig. S1). In cultured human pulmonary 
MVECs, both mRNA and protein levels of Pin1 were mod-
estly increased in iPAH compared to controls (Fig. 1B, C). 
Consistent with these findings, protein levels of Pin1 were 
significantly increased in the total lung lysates of the MCT-
induced rat model of PH (Fig. 1D). In summary, Pin1 lev-
els are increased in lungs and pulmonary MVECs of iPAH 
patients.

Pin1 modulates TGF‑β/BMP‑SMAD signalling 
in MVECs

It is well accepted that disturbed TGF-β/BMP signalling 
plays a crucial role in the development and progression 
of PAH [10, 38], and several Smad proteins are substrates 

of Pin1 (Table 1). Therefore, we aimed to investigate if 
and how Pin1 influences TGF-β/BMP-SMAD signalling 
in MVECs. Interestingly, inhibition of Pin1 expression by 
shRNA (Supplementary Fig. S2A) significantly inhibited 
TGFβ-induced phosphorylation of Smad2 and Smad3 
(pSmad2/3) (Fig. 1E).[10] Inhibiting Pin1 isomerase activ-
ity with juglone (Fig. 1F) also decreased TGFβ-induced 
phosphorylation of Smad2/3 in MVECs (Fig. 1G). Fur-
thermore, juglone attenuated the mRNA levels of PAI1, 
a downstream target gene of TGFβ signalling in MVECs 
(Fig. 1H). In addition, knock-down of Pin1 also decreased 
expression of pSmad2/3 in PASMCs (Supplementary Fig. 
S2B).

To investigate the effect of Pin1 on canonical BMP signal-
ling, we determined the level of Smad1/5/8 phosphorylation 
upon knock-down of Pin1 and observed that reduced Pin1 
levels markedly increased the phosphorylation of Smad1/5/8 
upon BMP9 stimulation in PASMCs (Fig. 1I). In line with 
this, juglone augmented the expression levels of Id1 in PAH 
MVECs, a downstream target gene of BMP signalling. 
Moreover, Pin1 over-expression decreased whilst juglone 
enhanced BMP9-induced BMP/SMAD reporter (BRE-luc) 
activity in PAH MVECs (Supplementary Fig. S2C, D) [39]. 
Finally, under full serum and TNFα-stimulated conditions, 
knock-down of Pin1 enhanced BMPR2 and Id3 expression 
as demonstrated by western blot analysis (Supplementary 
Fig. S2E). Pin1 over-expression did not influence BMPR2 
stability in HEK293T cells (Supplementary Fig. S2F–H), 
suggesting that Pin1 might directly enhance the BMPR2 
expression. Taken together, our data demonstrated that inhi-
bition of Pin1 decreases TGF-β/SMAD2/3 signalling whilst 
increases BMP/SMAD1/5 signalling in MVECs.

Juglone attenuates cell viability and proliferation 
of MVECs and PASMCs

Next, we explored whether inhibition of Pin1 by juglone 
normalizes the hyper-proliferative status of PAH MVECs 
and observed that Juglone reduced cell viability and pro-
liferation of both PAH and control MVECs (Fig.  2A, 
B). Juglone also inhibited the cell viability of PASMCs 
(Fig. 2C). Since Pin1 is reported to induce cell prolifera-
tion by increasing the expression of CyclinD1 [40], we 
found that juglone decreased the mRNA levels of CyclinD1 
(Fig. 2D), a key mediator of cell proliferation. Consistent 
with this, over-expression of Pin1 increased (Fig. 2E) and 
inhibition of Pin1 activity by juglone decreased CyclinD1 
promoter activity in HEK293T cells (Fig. 2F). We further 
showed that medium conditioned by PAH MVECs induced 
proliferation of normal SMCs, whereas juglone treatment of 
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PAH MVECs resulted in conditioned medium that decreased 
SMC proliferation (Fig. 2G), signifying that juglone modu-
lates the pro-proliferative crosstalk of ECs to SMCs. Taken 
together, these data suggest that Pin1 drives PAH MVEC 
proliferation.

Juglone inhibits inflammation of MVECs 
by inhibiting NFκB activity

We next investigated the effect of juglone on the pro-
inflammatory status of PAH MVECs. Juglone significantly 
decreased TNFα-induced expression of MCP-1 at protein 
level (Fig. 2H) and inhibited the expression levels of MCP-
1, RANTES, and TNFα at mRNA level (Fig. 2I) in PAH 
MVECs. Furthermore, juglone strongly decreased whilst 
overexpression of Pin1 markedly increased the transcrip-
tional activity of the NFκB promoter (Fig. 2J; Supplemen-
tary Fig. S3A). Finally, we also found that juglone decreases 
expression of endothelin1, a known NFκB target gene [41] 
(Supplementary Fig. S3B). Altogether, these data suggest 
that inhibition of Pin1 attenuates the pro-inflammatory 
response of PAH MVECs through inhibition of the NFκB 
pathway.

Juglone treatment reverses the development 
of PAH, attenuates inflammation, and inhibits TGF‑β 
signalling in vivo

Since our in vitro data suggest that inhibiting Pin1 with 
juglone has therapeutic potential in the treatment of PAH, 
we induced PAH in rats using the MCT + Shunt model 
and treated them with juglone (1 mg/kg/day) orally in 

drinking water from 21 days onwards after the induction 
of PAH (Fig. 3A). As can be appreciated, the vascular 
occlusion score, intimal thickness,  medial thickness, and 
% of vessels with neointima formation were comparable 
in the MS21 and MS35veh rats (Fig. 3B–F), indicating 
that treatment was initiated at a time point (21 days) at 
which advanced pulmonary vascular disease had devel-
oped. Juglone significantly reduced vascular occlusion 
(Fig. 3C), intimal thickness (Fig. 3D), and % of neointima 
(Fig. 3F) compared to vehicle-treated rats after 14 days 
of treatment. We did not observe an effect of juglone on 
medial thickness (Fig. 3E). Pulmonary artery acceleration 
time (PAAT), an indirect measure of pulmonary vascular 
resistance, was significantly improved in juglone-treated 
rats, when compared to vehicle-treated rats (Fig. 3H). 
However, juglone had no effect on the Fulton index [RV/
(LV + IVS) weight ratio] and cardiac output (CO) (Fig. 3G, 
I). In conclusion, oral treatment with juglone reversed 
abnormal vascular remodelling and improved PAAT in 
MS-PAH rats.

Since Pin1 modulates TGF-β signalling [28], we next 
examined the effect of juglone treatment on TGF-β signal-
ling in the lungs of the MS-rats. We found that juglone sig-
nificantly decreased the expression levels of pSmad2/3 as 
demonstrated by western blot analysis (Fig. 4A, B), which 
was confirmed using immunofluorescent analysis (Fig. 4C). 
Juglone slightly decreased the expression levels of Pin1 and 
CyclinD1 in the western blot analysis (Fig. 4A, B). However, 
immunofluorescent analysis shows that juglone decreased 
expression levels of CyclinD1 (Fig. 4C). Finally, juglone 
inhibited the expression levels of endothelial adhesion mol-
ecules and pro-inflammatory cytokines such as VCAM-1, 
ICAM-1, CCL5, and MCP-1 (Fig. 4D). Altogether, juglone 
reduced TGF-β signalling, decreased cell proliferation, and 
attenuated inflammation, at least partly, in vivo via Pin1.

Juglone does not harm RV function during increased 
pressure load

We next studied the direct effects of juglone treatment on 
RV remodelling in the setting of isolated RV pressure load, 
induced by PAB in rats. At day 14, we measured PAB pres-
sure gradient using echocardiography to confirm effective 
and equal pressure load at baseline. In both groups, the 
pressure gradient equally increased from day 14 to day 56, 
indicating adaptation to pressure load (Supplementary Fig-
ure S4A). Although juglone decreased Fulton index, cardiac 
index, tricuspid annular plane systolic excursion (TAPSE), 
LV fractional shortening, RV hypertrophy, RV fibrosis, the 
number of capillaries in both LV and RV, and the ratio of 

Fig. 1   Pin1 expression is increased in PAH and Pin1 inhibition mod-
ulates TGFβ/BMP signalling in microvascular ECs. A Representative 
immunofluorescence photomicrographs of Pin1 (red) and α-smooth 
muscle actin (SM-actin, white) in human pulmonary arteries from 
control and iPAH lungs (n = 5). DAPI (blue). B qRT-PCR was per-
formed to assess mRNA expression of Pin1 in MVECs from control 
and iPAH patients (n = 6 per group). C) Representative western blots 
with relative densitometric analyses showing Pin1 in MVECs from 
control and iPAH patients (n = 4 per group). D Representative west-
ern blots with relative densitometric analyses showing Pin1 in total 
lungs from MCT-induced PAH rats (n = 4 per group). E Representa-
tive western blots showing pSmad2 in MVECs following knock-down 
of Pin1 by shPin1 lentivirus. F qRT-PCR was performed to assess 
mRNA expression of Pin1 in MVECs, following treatment with Pin1 
inhibitor, juglone. G Representative western blots showing pSmad2 
in MVECs, following treatment with juglone. H qRT-PCR was per-
formed to assess mRNA expression of PAI-1 in MVECs, following 
treatment with juglone (n = 6). I Representative western blots show-
ing pSmad1/5 in PASMCs following knock-down of Pin1 by shPin1 
lentivirus. J qRT-PCR was performed to assess mRNA expression of 
Id1 in MVECs, following treatment with juglone (n = 6). *P < 0.05. 
Error bars, mean ± SD

◂
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capillaries to myocytes both in LV and RV were not affected 
by juglone (Fig. 5, Supplementary Figure S4). Finally, we 
did not observe an effect of juglone on the haemoglobin 
and platelet count. A statistically significant, but clinically 
insignificant increase in the number of white blood cells was 
observed (Supplementary Figure S4F). Collectively, these 
data indicated that juglone does not seem to benefit nor harm 
cardiac function in response to increased RV pressure load, 

with no signs of altered or adverse remodelling. We sum-
marized our findings in Fig. 6.

Discussion

In this study, we identify the peptidyl-prolyl isomerase Pin1 
as a novel regulator of vascular remodelling and TGF-β/
BMP signalling in PAH. We demonstrate that Pin1 is 

Table 1   pSer/Thr-Pro motif analysis of known Pin1 substrates and TGF-β/BMP signalling components

Motif analysis data represents results obtained from PROSITE (Swiss Institute of Bioinformatics, Lausanne, Switzerland). Column 1 (Protein) 
represents all analysed proteins. Column 2 (Literature) shows whether proteins are known Pin1 substrates according to published literature. 
Column 3 (Pro-rich region) represents proline-rich region search (where Pin1 has more binding affinity) within the analysed proteins. Col-
umn 4 (pSer/Thr-Pro motif) shows whether proteins contained Pin1 binding motif. Column 5 illustrates other domains found within the protein 
sequences. Column 6 depicts whether proteins are Pin1 substrates. aa. amino acid numbers, PK Protein Kinase, DBD DNA-binding Domain

Protein Known Pin1 substrate Proline-rich region pSer/Thr-Pro Motif Domains and other protein 
regions

Pin1 Substrate

BMPR2 No – – PK ATP-binding region 
(aa. 209–230). Thr-rich 
region profile (aa. 
603–643)

No

ID1 No – – Myc-type basic helix-
loop-helix domain

No

SMAD1 Yes [28, 50] (aa.164–252) pSer-Pro
(aa.171- 174)

MH1 (aa. 112–136) and 
MH2 (aa. 271–465)

Yes

SMAD5 Yes [28, 50] (aa.165–229) pSer-Pro
(aa.172–175)

MH1 (aa.13–137) and 
MH2 (aa.271–465)

Yes

SMAD8/9 Yes [28, 50] – pSer-Pro
(aa.176–179)

MH1 (aa.16–140) and 
MH2 (aa.236–430)

Yes

SMAD2 Yes [28, 50, 51] – pSer-Pro
(aa.245–248)

MH1 (aa.10–176) and 
MH2 (aa.274–467)

Yes

SMAD3 Yes [28, 50] – pThr-Pro motif (aa.: 
179–180)

MH1 (aa.10–137) and 
MH2 (aa.232–425)

Yes

ACVR2A Isoform I No – – PKdomain (aa.192–485) 
and Ser/Thr active site 
(aa. 318–330)

No

ACVR2A Isoform 2 No – – PPK domain (aa.84–377) 
and Ser/Thr active site 
(aa. 210–222)

No

ACVR2B No – – PPK domain (aa.190–480) 
and Ser/Thr active site 
(aa.317–329)

No

CDC25c Yes [52] – pThr-Pro
(aa.:67–69)

Rodanese domain (aa. 
321–428) and active site 
(aa. 377)

Yes

Microtubule-associated 
Tau Isoform 1

Yes [52] – pSer-Pro
(aa.: 228–231)

Tau and MAP proteins 
tubulin-binding repeats 
(aa: 561–591, 592–622, 
623–653, 654–685)

Yes

Cyclin D1 Yes [14, 51] – pThr-Pro motif (aa.: 
286–289)

Cyclin signature Yes

Nur77 (NR4A1 Isoform 1) Yes [14] – pSer-Pro motif (aa.: 
152–155)

Ser-rich region (aa.79–
164). Nuclear hormone 
receptor DBD (aa. 
264–339) and signature 
(aa. 267–293)

Yes
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Fig. 2   Pin1 modulates proliferation and inflammation of MVECs. A, 
B MTT (upper panel) and cell count (lower panel) assays were per-
formed to assess proliferation of control (A) and PAH (B) MVECs 
following treatment with juglone (n = 3). C MTT assays were per-
formed to assess proliferation of healthy PASMCs following treat-
ment with juglone (n = 3). D qRT-PCR was performed to assess 
mRNA expression of CyclinD1 in PAH MVECs following treatment 
with juglone (n = 6). E, F CyclinD1 promoter luciferase activity in 
HEK293T cells was measured following ectopic expression of Pin1 
(E) and treatment with juglone (F). G SMCs cultured in medium con-

ditioned by PAH MVECs treated with vehicle or juglone. H ELISAs 
for MCP-1 were performed using supernatants from MVECs follow-
ing treatment with juglone and stimulation with TNFα for 6 h (n = 3). 
I qRT-PCR was performed to assess mRNA expression of MCP-1, 
RANTES, and TNFα following treatment with juglone and stimu-
lation with TNFα for 6  h (n = 6). J TNFα-induced NFκB-luciferase 
activity in HEK293T cells was measured following treatment with 
juglone and stimulation with TNFα for 6 h (n = 6). **P < 0.05. Error 
bars, mean ± SD
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up-regulated in the pulmonary vasculature in PAH, and pos-
tulate that inhibition of Pin1 isomerase activity by juglone 
could be a novel therapeutic option to reverse the abnor-
mal vascular remodelling in PAH. The model we propose 
(Fig. 6) is based on our observations that (i) Pin1 expres-
sion is up-regulated in both pulmonary MVECs and lungs of 
iPAH patients; (ii) lack of Pin1 inhibits EC dysfunction and 
PA-SMC proliferation; (iii) inhibition of Pin1 by juglone as 
well as Pin1 knock-down attenuates inflammation through 
inhibition of the NFκB pathway; (iv) juglone inhibits MVEC 
dysfunction, inhibits TGF-β signalling, and potently aug-
ments BMP/SMAD signalling in MVECs in vitro and rat 
lungs in vivo. Furthermore, we demonstrated that (v) Pin1 
inhibition reduces abnormal remodelling of the pulmonary 
vasculature in a rat model of neointimal PAH. Finally, in a 
second rat model of proximal RV pressure load, where RV 
remodelling occurs independently from effects on the pul-
monary vasculature, (vi) Pin1 inhibition does not affect car-
diac function, in the context of isolated RV pressure loading.

Pin1 has been implicated in several vascular diseases, 
including atherosclerosis, cardiac hypertrophy, and coronary 
restenosis, where Pin1 induces proliferation of endothelial 
cells, smooth muscle cells, and fibroblasts, whilst at the 
same time promotes inflammation through activation of 
the NFκB pathway [14–16]. Pulmonary vascular cell pro-
liferation and inflammation are key features of pulmonary 
vascular remodelling in PAH [5–8]. A key mechanism by 
which Pin1 and its inhibitor juglone inhibit cell proliferation 
is through regulation of CyclinD1, a known substrate of Pin1 
[40]. Indeed, in the present study we demonstrated that inhi-
bition of Pin1 in PAH MVECs reduced CyclinD1 expression 
and cellular proliferation. We found that Pin1 is a key player 
at the interplay between these cells since the secretome of 
diseased PA-ECs stimulated the growth of PA-SMC. Pin1 
and its inhibitor juglone inhibit EC and SMC prolifera-
tion via inhibition of the NFκB pathway, thereby reducing 
the production of several cytokines. Here, we confirm that 
juglone reduces the secretion of inflammatory cytokines in 
pulmonary MVECs and in lung tissue of the juglone-treated 
rats with PAH.

To test efficacy of juglone in vivo, we showed that oral 
treatment with juglone to rats with established PAH halted 
and even reversed the phenotype. To our knowledge, this 
is the first time a pathological role for Pin1 in abnormal 

pulmonary remodelling of PAH was shown, providing a 
rationale for Pin1 inhibition as a novel therapeutic strategy 
for PAH. Juglone as an inhibitor of Pin1 was evaluated in 
MCT-Shunt model of PAH, which demonstrates endothelial 
dysfunction, vascular remodelling, and neointimal forma-
tion similarly to human PAH. Current PAH treatments aim 
to relieve vasoconstriction rather than directly inhibiting 
pulmonary vascular remodelling and improving RV func-
tion. Here, we demonstrate that juglone reduced pulmonary 
vascular remodelling and that the therapeutic efficacy con-
ferred by juglone was not likely due to vasodilation, because 
chronic inhibition of Pin1 did not affect systemic blood pres-
sures and heart rate in this model. Therefore, the efficacy 
of Pin1 inhibition on improving the pulmonary accelera-
tion time in vivo was likely due to attenuation of pulmo-
nary vascular remodelling. Indeed, we found that juglone 
reduced vascular remodelling which was accompanied by 
the restoration of EC function, inhibition of TGFβ signal-
ling, and augmented BMP signalling. Furthermore, germline 
mutations in BMPR2 are the strongest known genetic risk 
factor associated with PAH, and both BMPR2 and BMP 
signalling are reduced even in iPAH patients [4]. Impor-
tantly, loss of BMPR2 has been linked to increased inflam-
mation and proliferation of pulmonary ECs, and contributes 
to abnormal vascular remodelling in PAH [42], and either 
enhanced BMP signalling or inhibition of TGF-β signal-
ling reduced the development of PAH in pre-clinical mod-
els [43–46]. Our data provides the first in vitro and in vivo 
evidence that juglone inhibits increased TGF-β signalling 
whilst augmenting impaired BMP signalling. Our findings 
imply that juglone, via the modulation of TGF-β/BMP sig-
nalling, may significantly promote EC function in iPAH. 
Therefore, inhibition of Pin1 can serve as a novel therapeutic 
approach for PAH patients with augmented TGF-β signalling 
and impaired BMP signalling. Based on our present data, 
as well as literature describing a role for both TGF-β/BMP 
signalling pathways in ECs and SMCs, further research is 
warranted to dissect the mechanistic role of Pin1 on these 
pathways in ECs and SMCs.

Although Pin1 inhibition supports RV function in the 
MS-PAH rat model in vivo, any effects on the RV in this 
model could very well have resulted from reduced pulmo-
nary pressure and afterload. Therefore, to examine the direct 
effect of Pin1 inhibition on RV function and the RV myo-
cardium, juglone was evaluated in a rat model of isolated 
RV pressure load. Oral administration of juglone, starting 
28 days after PAB surgery when RV dysfunction was estab-
lished, did not influence RV function, demonstrating that 
whilst reducing pulmonary vascular remodelling, Pin1 inhi-
bition did not benefit nor harm the RV in the context of RV 
pressure load. Previous studies demonstrated in animal mod-
els of LV remodelling and heart failure that juglone reduces 
fibrosis and improves LV function. However, juglone had no 

Fig. 3   Juglone reverses pulmonary vascular remodelling in  vivo. A 
Experimental design for the in vivo intervention study with juglone in 
MCT-shunt rats (MS-PAH). B EvG staining. representative examples 
of vascular lesions. Scale bars, 50 um. C–F Quantification of vascu-
lar occlusion (C), intimal thickness (D), medial thickness (E), and % 
of the neointimal lesions (F). G–I Quantification of haemodynamics: 
Fulton index (G), pulmonary artery acceleration time (PAAT; H), 
and cardiac output (CO, I). n = 4–9 per group. **P < 0.05. Error bars, 
mean ± SD. Veh  vehicle (5% DMSO)

◂
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effect on the pathological RV remodelling and RV haemody-
namics in the PAB model, possibly due to shorter duration of 
treatment, dosage, or most importantly, differences in LV vs 
RV remodelling mechanisms [47]. Future studies are needed 
to understand the role of Pin1 in the RV function.

Juglone significantly reversed abnormal vascular remod-
elling and increased the pulmonary acceleration time in the 
MS-PAH rat model. Importantly, the beneficial effect of 
juglone was associated with inhibition of Pin1 expression 
and TGF-β signalling and activation of BMP signalling. 
Although juglone exhibited beneficial effects in MS-PAH 
rats in this short treatment period, prolonged use of juglone 
might be toxic [48]. In the current study, we provide proof 
of principle showing that Pin1 inhibition might be beneficial 
in experimental PAH. Arguably, selective inhibition of Pin1 

with a more specific inhibitor, with a prolonged time period 
may even result in a stronger reversal of PAH. Although 
no side effects were observed in these preclinical models, 
future studies should test novel selective inhibitors of Pin1 
in combination with other PAH drugs and also should aim 
to develop lung-specific delivery methods[49] to achieve 
efficient efficacy at low concentrations.

In summary, we provide evidence that Pin1 plays a role 
in inducing EC dysfunction and thereby promotes adverse 
vascular remodelling in PAH. Inhibition of Pin1 reduces pro-
liferation, inflammation and TGF-β signalling, and augments 
BMP signalling. We conclude that inhibition of Pin1 dis-
plays beneficial effects in vitro and in vivo, and the develop-
ment of a more selective Pin1 inhibitor might be beneficial 

A B

C
D

Vehicle Juglone

pSmad2

Pin1

Vinculin

Vehicle Juglone

CyclinD1

124kDa

34kDa

18kDa

60kDa

pSmad2     PECAM        DAPI

CyclinD1 PECAM        DAPI

*

Ve
hic
le

Ju
glo
ne

0.0

0.2

0.4

0.6

0.8

pS
m
ad

2/
Vi
nc

ul
in

*

Ve
hic
le

Ju
glo
ne

0

2

4

6

8

10

R
el
at
iv
e
m
R
N
A

le
ve

ls
(a
.u
)

*

Ve
hic
le

Ju
glo
ne

0

50

100

150

200

R
el
at
iv
e
m
R
N
A

le
ve

ls
(a
.u
)

Ve
hic
le

Ju
glo
ne

0.0

0.5

1.0

1.5

P
in
1/
V
in
cu

lin

Ve
hic
le

Ju
glo
ne

0

50

100

150

200

R
el
at
iv
e
m
R
N
A

le
ve

ls
(a
.u
)

*

Ve
hic
le

Ju
glo
ne

0.00

0.05

0.10

0.15

0.20

R
el
at
iv
e
m
R
N
A

le
ve

ls
(a
.u
)

*

Ve
hic
le

Ju
glo
ne

0.0

0.5

1.0

1.5

C
yc
lin
D
1/
Vi
nc

ul
in *

Fig. 4   In vivo effects of juglone on TGF-β signalling, proliferation, 
and inflammation. A, B Representative western blots with relative 
densitometric analyses showing pSmad2, Pin1, and CyclinD1 in 
whole-lung lysates of vehicle and juglone-treated MS-rats (n = 4–5/
group). Vinculin served as loading control. C Representative immu-
nofluorescence photomicrographs of pSmad2 (red, upper panel) and 

CyclinD1 (green, lower panel) in vehicle and juglone-treated MS-rats 
(n = 6/group). PECAM (white) and DAPI (Blue). D qRT-PCR was 
performed to assess mRNA expression of VCAM-1, ICAM-1, MCP-
1, and CCL5 in vehicle and juglone-treated MS-rats (n = 5–8/group). 
**P < 0.05. Error bars, mean ± SD. Veh vehicle (5% DMSO)
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Fig. 5   Juglone has no direct cardioprotective effect. A Experimental 
design for the in vivo intervention study with juglone in the rat pul-
monary artery banding (PAB) model for isolated RV pressure load. 
B–D Quantification of haemodynamics: Fulton index (B), Cardiac 
index (C), and TAPSE (D). E Wheat germ agglutinin staining for 
cardiomyocyte cross-sectional area measurement and quantification. 

F Weight of the RV. G Masson staining for fibrosis measurement. 
(H) LV fractional shortening. n = 7 per group. **P < 0.05. Error bars, 
mean ± SD. Veh = vehicle (5% DMSO), CSA cross-sectional area 
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(either alone or in combination with existing therapeutic 
approaches) for treating this deadly disease PAH.
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tary material available at https://​doi.​org/​10.​1007/​s10456-​021-​09812-7.
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