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Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and 
other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an 
essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and 
alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-
stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high 
levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation 
in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and 
asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ 
tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in  CD3+ T cell-rich areas or  CD20+ B-cell 
rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into 
tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune 
checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs 
in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory 
diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
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Introduction

Endothelial cells play critical roles in physiology and physi-
opathology, and are involved in many important diseases, 
including cardiovascular diseases, chronic inflammatory 
diseases and cancer. Although all vascular endothelial cells 
share certain common functions, considerable structural and 
functional heterogeneity exists along the length of the vascu-
lar tree and in the microvascular beds of various organs. One 
of the most striking examples of organ-specific endothelial 
cell differentiation occurs at the level of high endothelial 
venules (HEVs), specialized post-capillary venules found 
in lymph nodes (LNs) and other secondary lymphoid organs 

(Fig. 1) which mediate high levels of lymphocyte extravasa-
tion from the blood [1–6].

The most obvious characteristic of HEV endothelial cells 
(HECs) revealed by light-microscopic examination is their 
morphology. HECs have a plump, almost cuboidal appear-
ance very different from the flat appearance of endothelial 
cells that line other vessels. This cuboidal appearance pro-
vides the basis for the name of high endothelium. Thome 
first noted the plump morphology of HECs in LNs in 1898 
[10]. Thome wrote that, “at first notice, one is more inclined 
to think of the duct of a gland rather than that of a blood 
vessel”. A few months later, in 1899, von Schumacher con-
firmed the observations of Thome and noted the presence 
of numerous lymphocytes within HEV walls [11]. However, 
the direction and physiological significance of lymphocyte 
migration through HEVs remained unappreciated during 
many decades. In two landmark studies published in 1964, 
Gowans et al. showed that radioactively labeled lymphocytes 
injected intravenously migrated rapidly into rodent LNs by 
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crossing HEV walls [12, 13]. Gowans concluded that HEVs 
are the site of a large-scale migration of lymphocytes from 
the blood into secondary lymphoid organs. Indeed, HEV-
mediated recruitment of lymphocytes is a very efficient 
process. It is estimated that as many as 5 ×  106 lymphocytes 
migrate through the HEVs of the human body every second 
[2].

HEVs are present in all secondary lymphoid organs 
with the exception of spleen, including hundreds of LNs 
dispersed in the body, tonsils, adenoids, Peyer’s patches 
in the small intestine, appendix, and small aggregates of 
lymphoid tissue associated with the mucosal surfaces of 
the respiratory, gastrointestinal and urogenital tract. HECs 
range from 7 to 10 μm in width and 5–7 μm in height and 
are much less regular in outline than the term cuboidal 
would suggest. They exhibit great deformability and irreg-
ularity of shape [14]. The increased height of HECs might 
permit them to close about lymphocytes migrating through 

intercellular spaces, thus allowing lymphocytes to cross 
the endothelium like “ships in canal locks” with minimal 
vascular leakage [15]. Although the most striking feature 
of HECs is their unusual height, ultrastructural analysis 
revealed additional features generally not observed in 
endothelial cells from other vessels. At the ultrastructural 
level, HECs exhibit the characteristics of metabolically 
active secretory-type cells, with a prominent Golgi com-
plex, abundant mitochondria closely associated with rough 
endoplasmic reticulum, many ribosomes frequently found 
in polyribosome clusters, and a large rounded nucleus with 
one or two nucleoli [14, 16]. The Golgi is particularly 
developed in areas where lymphocyte crossing is intense 
and often oriented towards the transmigrating lymphocytes 
[17]. HEV ligands for L-selectin, the major lymphocyte 
homing receptor, pass through the Golgi apparatus during 
their biosynthesis and become reactive to L-selectin in 
large Trans-Golgi-Network-associated vesicles [18]. After 

Fig. 1  HEVs in secondary lymphoid organs. a Lymph nodes are 
encapsulated lymphoid organs subdivided into three regions: the cor-
tex, the paracortex and the medulla. Blood enters the LN through a 
main feeding artery that branches into arterioles and capillaries in the 
medulla and the paracortex, respectively. Then, blood flows from the 
capillary beds into the post-capillary HEVs that are located in the T 
cell zone of the LN. Finally, blood flows through medullary venules 
and leave the LN via a collecting vein. Immune cells enter the LN 

through HEVs or afferent lymphatic vessels and exit via the efferent 
lymphatic vessel in the medulla. b HEVs in human tonsils. MECA-79 
staining reveals the “plump” cuboidal morphology of HEV endothe-
lial cells (HECs) (Left). MECA-79+ HECs express high levels of the 
nuclear cytokine IL-33 [7]  (Right). The gene encoding IL-33 was 
originally discovered as a gene highly expressed in MECA-79+ HECs 
isolated from human tonsils, and IL-33 was thus initially designated 
as “nuclear factor from high endothelial venules” (NF-HEV) [8, 9]
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crossing the Golgi, these L-selectin ligands “en route” to 
the HEV lumen are present in cytoplasmic vesicles, likely 
to represent secretory vesicles. Another remarkable feature 
of HECs revealed by ultrastructural studies is the thick 
carbohydrate-rich glycocalyx that coats their luminal sur-
face and represents the true interface with circulating lym-
phocytes [2, 16, 19]. Direct measurements showed that the 
thickness of the glycocalyx varied from 490 ± 12 in capil-
laries to 1280 ± 108 Å in HEVs [16]. This feature of the 
HEV glycocalyx is noteworthy in view of the evidence that 
sulfated carbohydrates and glycoproteins serve as essential 
recognition determinants for lymphocyte L-selectin [6]. 
In addition, the HEV glycocalyx may also facilitate the 
retention (immobilization) of secreted molecules on the 
luminal surface of HEVs [2, 14]. Indeed, immobilization 
of chemokines by heparan sulfate is important for HEV-
mediated lymphocyte entry into LNs [20, 21].

Evidence accumulated over the past 40 years indicates 
that blood vessels with HEV features develop in non-lym-
phoid tissues in many human chronic inflammatory diseases 
[2, 6, 22]. During the 1980s, Freemont and Ziff visualized 
the presence of HEV-like blood vessels in areas of lympho-
cyte aggregation in the inflamed synovium of patients suf-
fering from rheumatoid arthritis (RA) [23, 24]. Such vessels 
distinguished by the plump morphology of their endothelial 
cells, and the presence of numerous lymphocytes within 
their walls, were not present in normal synovium. In their 
pioneering studies, Freemont and Ziff observed a strong cor-
relation between the “plumpness” of endothelial cells lining 
HEV-like blood vessels and the number and percentage of 
perivascular lymphocytes [23, 24]. Jalkanen, Butcher, and 
Freemont demonstrated the capacity of HEV-like blood ves-
sels to support lymphocyte adhesion in frozen sections of the 
inflamed synovium in vitro and to incorporate large amounts 
of radioactive sulfate, a unique metabolic property shared 
with lymph node HEVs [25, 26]. Together, these observa-
tions suggested that lymphocytes emigrated through HEV-
like blood vessels to enter the inflamed synovium during 
RA. Freemont extended his observations to many other 
human chronic inflammatory diseases [27]. He showed that 
HEV-like blood vessels with cuboidal endothelium, that 
mediated sulfate uptake and lymphocyte adhesion in vitro, 
were present in areas of lymphocyte infiltration (> 150 
lymphocytes/mm2) in many tissues and disease states [22]. 
Freemont made several important observations: HEV-like 
blood vessels developed in sites that did not contain such 
vessels under normal conditions; lymphocyte infiltration 
always preceded the development of these vessels; plump 
endothelial cells did not show mitotic activity. Based on 
these observations, he concluded that HEV-like blood ves-
sels develop from existing vessels following lymphocyte 
infiltration, and once developed, participate in a positive 
feedback loop increasing lymphocyte extravasation into the 

diseased tissues, thus contributing to the amplification and 
maintenance of chronic inflammation [22].

Ten years ago, we reported that blood vessels with HEV 
characteristics are frequently found in the stroma of many 
human solid tumors including melanomas, breast, ovar-
ian, colon and lung carcinomas [28, 29]. These findings 
extended initial observations made by Freemont in the 
1980′s [30]. In both breast tumors (n = 273) and primary 
melanomas (n = 225), the density of tumor-associated HEVs 
(TA-HEVs) was highly correlated with the density of  CD3+ 
T cells (including  CD8+ cytotoxic T cells) and  CD20+ B 
cells, indicating that TA-HEVs may function as major por-
tals of entry for lymphocytes into human solid tumors [28, 
29]. Interestingly, a high density of TA-HEVs in the tumor 
microenvironment significantly correlated with longer sur-
vival of breast cancer patients [28]. Blood vessels and tumor 
angiogenesis promote tumor growth and are generally asso-
ciated with unfavorable clinical outcome. Therefore, these 
studies introduced the concept that “the phenotype of tumor 
blood vessels is important and that some subsets of tumor 
blood vessels (i.e. TA-HEVs) can contribute to tumor sup-
pression rather than tumor growth” [28]. Studies in other 
human tumor types and murine tumor models confirmed 
these initial observations in primary breast cancer and mel-
anoma (see below). Together, the findings suggested that 
TA-HEVs represent attractive targets for cancer diagnosis 
and treatment, and that novel therapeutic strategies based on 
the modulation of TA-HEVs could have a major impact on 
antitumor immunity and clinical outcome of cancer patients.

There are comprehensive reviews about the role of HEVs 
in LNs and other secondary lymphoid organs, to which the 
reader is referred [1–6]. In our previous article, we reviewed 
the phenotype and function of HEVs in LNs at steady state 
[1]. In the present review, we highlight the role and regula-
tion of HEVs in homeostatic, inflamed and tumor-draining 
LNs, and those of HEV-like blood vessels in chronically 
inflamed tissues, and TA-HEVs in human and mouse tumors.

High endothelial venules and lymphocyte 
trafficking in lymph nodes

MECA‑79+ HEVs in homeostatic lymph nodes (LNs)

In mammals, HEVs are present not only in LNs and other 
secondary lymphoid organs [1–6] but also in unconventional 
lymphoid tissues such as nasopharyngeal-associated lym-
phoid tissue (NALT) [31–33], tear duct-associated lymphoid 
tissue (TALT) [34], intestinal isolated lymphoid follicles 
(ILF) [35], mediastinal fat-associated lymphoid clusters 
(FALC) [36], and omental milky spots [37, 38]. The precise 
phenotype and function of HEVs in these various lymphoid 
tissues go beyond the scope of this review. Butcher et al. 
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previously highlighted differences between HEVs in periph-
eral LNs, mucosal LNs and Peyer’s patches [3, 39, 40]. Since 
HEV biology has been mostly studied in peripheral LNs [1], 
we will focus our discussion in the following paragraphs 
on peripheral lymph node HEVs. Today, we have a good 
understanding of the molecular mechanisms regulating lym-
phocyte extravasation through HEVs, thanks to the major 
contributions of the groups of Rosen, Butcher, Von Andrian, 
Miyasaka, Fukuda, Cyster, Lowe and many others [1–6].

The first interaction between naive lymphocytes and 
HEVs is initiated by lymphocyte L-selectin (also known 
as CD62L) that recognizes a family of sulfated mucin-like 
glycoproteins known as HEV sialomucins [1, 6]. Although 
not specific to HECs, these HEV sialomucins, which include 
CD34, podocalyxin, endomucin, nepmucin and glycosyla-
tion-dependent cell adhesion molecule 1 (GlyCAM-1, only 
present in rodents; pseudogene in humans), become effective 
L-selectin ligands when they are post-translationally modi-
fied by enzymes highly expressed in HECs. For instance, 
CD34 that is broadly expressed on endothelial cells along 
the vascular tree, as well as on hematopoietic progenitors, 
functions as an L-selectin counter-receptor only when appro-
priately decorated by HEC-specific sulfated, fucosylated 
and sialylated oligosaccharides [41, 42]. The critical car-
bohydrate determinant for L-selectin recognition, 6-sulfo 
sialyl  LewisX (sialic acidα2-3Galβ1-4(Fucα1-3(sulfo-6)
GlcNAcβ1-R), is abundantly produced in HEVs and is pre-
sent on both N-glycans and extended core 1 and 2 O-glycans 
decorating HEV sialomucins [6, 43–49]. The expression of 
high levels of the L-selectin-binding HEV-specific glyco-
forms of HEV sialomucins is undoubtedly one of the most 
important features of the HEV endothelium. Indeed, mono-
clonal antibodies (mAbs) that define the best HEV mark-
ers currently available are directed against HEV-specific 
oligosaccharides decorating HEV sialomucins [43–46, 50]. 
For instance, the HEV-specific mAb “Mouse Endothelial 
Cell Antigen-79” (MECA-79), generated by Butcher et al. 
in 1988 [50], specifically recognizes 6-sulfo sialyl  LewisX 
structures on extended core 1 O-glycans [45]. The MECA-79 
epitope is often designated peripheral lymph node addressin 
(PNAd) [50, 51]. However, it is important to mention that 
MECA-79 reacts not only with peripheral LN HEVs, but 
also with mucosal LN HEVs, Peyer’s patches HEVs and 
HEV-like blood vessels in non-lymphoid tissues. Therefore, 
although the term PNAd is widely used to designate MECA-
79 reactive antigens in both lymphoid and non-lymphoid 
organs, MECA-79+ antigens and MECA-79+ blood vessels 
may be more appropriate designations than PNAd outside 
of peripheral LNs. MECA-79 is a fantastic tool for HEV 
studies. It is a very robust mAb for immunohistochemistry 
and immunofluorescence studies, which reacts specifically 
with HEVs in both humans and mice (no cross-reaction with 
other blood vessels in the body), and in both lymphoid and 

non-lymphoid organs [50, 51]. Importantly, this is a func-
tion-blocking mAb that inhibits interactions of lymphocytes 
with HEVs in vitro and in vivo [50, 52].

Crucial insights about the HEV phenotype came from 
genome-wide transcriptomic analyses of HECs from mouse 
peripheral LNs [40, 53, 54] that extended pioneering stud-
ies of isolated human and mouse MECA-79+ HECs by dif-
ferential expression and subtractive hybridization strategies 
[55–58]. MECA-79+ HECs displayed a unique transcrip-
tional program clearly distinct from that of all other endothe-
lial cell subsets in the LN [40, 53, 54]. Single-cell RNA 
sequencing (scRNA-seq) revealed that genes encoding HEV 
sialomucin GlyCAM-1 (Glycam1), CC-chemokine ligand 21 
(CCL21; Ccl21a), and critical HEV enzymes (sulfotrans-
ferases: Chst4, Chst2; glycosyltransferases: Fut7, Gcnt1, 
B3gnt3, St3gal6) [45, 47–49, 59, 60], were among the top 
genes differentially and highly expressed in HECs [53]. In 
contrast, genes encoding other HEV sialomucins (Cd34, 
Emcn, …), were not differentially expressed in HECs. These 
transcriptomic analyses confirmed that the unique capacity 
of HECs to capture large numbers of lymphocytes is based 
on the coordinated expression of the different enzymes 
involved in the decoration of HEV sialomucins with high 
affinity 6-sulfo sialyl  LewisX L-selectin ligands [40, 53]. 
Transcriptional analysis also confirmed high expression in 
HECs of several genes implicated in HEV function (Enpp2, 
Spns2, Sphk1) that were previously or subsequently identi-
fied through in vivo studies in mice [61–65]. Another strik-
ing feature of HECs revealed by scRNA-seq is their cellular 
heterogeneity in homeostatic LNs [53]. Indeed, the two most 
abundant HEV genes in mouse peripheral LNs, Glycam1 
and Ccl21a exhibit differential expression in HECs. In a 
subset of HEVs, some MECA-79+ HECs expressed high 
levels of Glycam1 (or Ccl21a) mRNAs, although adjacent 
cells expressed none [53]. We also observed spatial hetero-
geneity of HEVs. MECA-79+ HECs in the LN paracortex 
had higher expression levels of GlyCAM-1 protein than 
MECA-79+ HECs located close to the medulla. The func-
tional consequences of this HEC heterogeneity are currently 
unknown, but it reveals the highly plastic nature of the HEV 
phenotype. The spatial localization of HECs within the LN 
microenvironment might dictate accessibility to factors regu-
lating HEV gene and protein expression and thereby contrib-
ute to the remarkable heterogeneity of HECs at steady state.

HEV‑mediated entry of lymphocytes in lymph nodes

In homeostatic LNs, HEVs almost exclusively recruit naive 
and central memory lymphocytes [1]. Migration of naive 
T and B cells through HEVs, which has been precisely 
described thanks to the intravital microscopy technique set 
up by von Andrian in 1996 [52], occurs via a multistep adhe-
sion cascade composed of rolling, firm arrest (sticking) and 
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transmigration (Fig. 2a) [1, 52, 66]. Lymphocytes circulating 
in the blood first tether and roll on HEV walls through the 
binding of L-selectin to 6-sulfo sialyl  LeX motifs decorating 
HEV sialomucins (Fig. 2b). This initial tethering interaction 
significantly reduces the velocity of lymphocytes, allowing 
them to interact with chemokines immobilized and presented 
on the luminal surface of HEVs by heparan sulfate [20, 21]. 
Homeostatically expressed chemokines CCL21, CCL19, 
CXCL13 and to a lesser extent CXCL12, are pivotal fac-
tors during lymphocyte migration across HEVs because 
they mediate the activation of integrins essential for lym-
phocyte arrest in HEVs [67–71]. Indeed, while L-selectin 
is constitutively active, integrins require prior activation to 
recognize their ligands and subsequently mediate firm adhe-
sion (sticking) to endothelial cells. Naive T cells express 
CC-chemokine receptor 7 (CCR7) and CXC-chemokine 

receptor 4 (CXCR4), the receptors for CCL21, CCL19 and 
CXCL12, whereas B cells express CXC-chemokine receptor 
5 (CXCR5), the receptor for CXCL13, in addition to CXCR4 
and CCR7 [72, 73]. Endothelium-presented chemokines are 
either produced by HEVs (such as CCL21 in mice but not 
in humans) or produced by neighboring stromal cells (fibro-
blastic reticular cells (FRCs) and follicular dendritic cells 
(FDCs)) and then transcytosed through HEVs [73–75].

The integrin lymphocyte function-associated antigen 1 
(LFA1), which binds to intercellular adhesion molecule 1 
and 2 (ICAM1 and ICAM2) expressed on endothelial cells, 
is the major integrin for T and B cell arrest in peripheral LN 
HEVs. In mesenteric LNs and other gut-associated lymphoid 
tissue (GALT), including Peyer’s patches, the integrin α4β7, 
a major ligand of mucosal addressin cell adhesion molecule 
1 (MAdCAM-1), is also critical for lymphocyte recruitment 
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Fig. 2  HEV-mediated recruitment of lymphocytes in peripheral 
lymph nodes. a Naive T and B cells circulating in the blood tether 
and roll on HEV walls. Subsequently, rolling lymphocytes inter-
act with chemokines immobilized on the HEV luminal surface. 
Chemokine receptor-dependent signaling induces activation of 
lymphocyte integrins that mediate firm binding (sticking) to their 
counter-receptors on HEV endothelium. Then, lymphocytes crawl 
on the HEV surface for a few minutes before transmigrating across 
the HEV endothelium via “exit ramps”. Some lymphocytes also 
accumulate transiently in “HEV pockets”. b Naive lymphocytes roll 
on HEV endothelium through the binding of L-selectin to 6-sulfo 
sialyl Lewis X motifs decorating both O-glycans and N-glycans on 
HEV sialomucins (Left). Representation of a bi-antennary O-linked 
glycan on a HEV sialomucin (Right). Both extended core-1 and 
core-2 branch structures can display the 6-sulfo sialyl Lewis X motif 
(highlighted in yellow). The 6-sulfo sialyl Lewis X motif is a tetra-

saccharide composed of N-acetylglucosamine (GlcNAc), galactose 
(Gal), sialic acid (Sia) and fucose (Fuc), linked through N-acetylga-
lactosamine (GalNAc) to a serine (Ser) or threonine (Thr) residue of 
the core HEV sialomucin protein. α and β linkages of the saccharide 
units are shown. The epitope of MECA-79 (highlighted in blue) is a 
component of the core-1 extension. The C-6 sulfation (red SO3-) of 
N-acetylglucosamine, that is referred to as “6-sulfo”, is required for 
both L-selectin and MECA-79 recognition. Black rectangles indicate 
genes encoding enzymes involved in the synthesis of the 6-sulfo sia-
lyl Lewis X motif. c Naive lymphocytes rolling on HEV walls inter-
act with chemokines that are presented by heparan sulfate such as 
CCL21. Signaling through CCR7 induces conformational changes in 
the lymphocyte integrin LFA1, which mediate binding to ICAM1 and 
ICAM2 on the HEV endothelium, leading to firm arrest (sticking) of 
the lymphocytes. Following a rapid step of crawling, lymphocytes 
eventually transmigrate through HEVs to enter the lymphoid tissue
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through HEVs [6, 76]. The combination of shear forces of 
the blood flow and G protein-coupled chemokine receptor 
signaling induces conformational changes in LFA1 mol-
ecules, leading to firm adhesion of lymphocytes to ICAM1 
and ICAM2 expressed on HECs (Fig. 2c) [68, 70, 77]. Fol-
lowing stable arrest, lymphocytes can be observed crawling 
along the luminal surface of HEVs, looking for appropri-
ate transmigration sites [78]. When they finally find an exit 
site, lymphocytes rapidly cross the endothelial barrier via 
paracellular (between adjacent endothelial cells) or transcel-
lular (through the cytoplasm of endothelial cells) migration 
even if the paracellular migration route seems to be largely 
favored [79–83]. Remarkably, lymphocytes tend to follow 
each other through discrete hot spots that are called “exit 
ramps” when transmigrating through HEVs [78]. However, 
crawling lymphocytes can also transiently accumulate in 
endothelial structures called HEV pockets before entering 
the LN parenchyma [83, 84]. These “waiting areas” could 
be instrumental in homeostatic LNs to maintain a constant 
steady-state cellularity while supporting extensive lympho-
cyte trafficking. In addition to the mechanisms described 
above, other adhesion molecules implicated in lymphocyte 
trans-endothelial migration exist. For additional information, 
readers are referred to “state-of-the-art” reviews on leuko-
cyte transmigration [85, 86].

Mechanisms regulating the phenotype and function 
of HEVs in lymph nodes

Pioneering studies performed more than 30  years ago 
revealed that LN afferent lymphatic vessel ligation results 
in HEV dedifferentiation [87]. This process, which involves 
HEV morphology “flattening”, downregulation of MECA-
79 antigens and reduced ability to support lymphocyte 
adhesion, is fully revertible following interruption of liga-
tion [88–90]. Interestingly, subsequent studies demonstrated 
that lymph-borne molecules such as chemokines can reach 
HEVs through a stromal conduit system composed of FRCs, 
revealing a special connection between HEVs and the lymph 
coming from drained tissues [75, 91, 92]. Together with phe-
notypic analyses showing that freshly purified human HECs 
rapidly lose the specialized HEV phenotype when cultured 
ex vivo [93], these results indicated that HEVs exhibit a 
remarkable plasticity and are highly dependent on the lym-
phoid microenvironment and lymph-derived cells and/or 
factors.

Eventually, we discovered that  CD11c+ dendritic cells 
(DCs) are critical for maintenance of HEV phenotype and 
function in homeostatic LNs [94]. Indeed, in vivo depletion 
of  CD11c+ DCs induces a reversion to an immature HEV 
phenotype characterized by reduced expression of MECA-
79 antigens, downregulation of HEV-specific genes (Chst4, 
Fut7, Glycam1) and upregulation of the mucosal addressin 

MAdCAM-1, a marker of immature HEVs in neonatal 
peripheral LNs [95]. The functional consequence of this 
altered HEV phenotype is a profound defect in lymphocyte 
recruitment to LNs that culminates in LN hypocellularity. 
Additional studies confirmed the pivotal role of DCs in 
HEV-mediated lymphocyte homing to LNs [96, 97]. Inter-
estingly, it has also been shown that DCs contribute to HEV 
growth in a vascular endothelial growth factor (VEGF)-
dependent fashion, which confers additional regulating 
properties to DCs [96, 98].

The lymphotoxin-β receptor (LTβR) and downstream 
non-canonical nuclear factor kB (NF-kB) signaling pathway 
are essential for HEV maintenance and lymphocyte homing 
to adult LNs [99–102]. Endothelial cell-specific deletion of 
LTβR and treatment with LTβR-immunoglobulin (Ig) solu-
ble decoy receptor indicate that continuous triggering of 
LTβR on HECs is critical for the expression of several genes 
related to HEV biology (Glycam1, Fut7, Chst4, Gcnt1), 
demonstrating that many HEV-specific genes are LTβR-
dependent genes [53, 99, 102, 103]. scRNA-seq analyses 
after treatment with LTβR-Ig revealed that Chst4 requires 
lower levels of LTβR-dependent signals for expression than 
the other HEV genes (Glycam1, Fut7, Gcnt1) [53]. LTβR 
stimulation results in activation of both canonical and non-
canonical NF-kB signaling pathway whereas tumor necrosis 
factor receptor 1 (TNFR1) engagement mediates canonical 
NF-kB signaling only [104]. Neither the phenotype of HEVs 
nor the expression of HEV-specific genes are affected in 
TNFR1-deficient mice and mice treated with TNFR-Ig [99, 
101]. On the contrary, LN HEVs from mice deficient in com-
ponents of the non-canonical NF-kB signaling pathway have 
reduced expression of MECA-79 antigens, GlyCAM-1 and 
GlcNAc6ST-2 (Chst4), showing that LTβR ability to induce 
the non-canonical NF-kB signaling pathway is essential for 
the regulation of HEVs [100, 101].

In fact, we demonstrated that  CD11c+ DC are a major 
source of LTβR ligands, lymphotoxin α (LTα), lymphotoxin 
β (LTβ) and LIGHT, and that DC-derived lymphotoxin is 
critical for HEV-mediated lymphocyte recruitment to home-
ostatic LNs [94]. Because intranodal DCs are positioned 
close to HEVs both at steady-state and during inflamma-
tion [105–107], we proposed a model in which DCs regulate 
HEV phenotype and function through direct stimulation of 
LTβR [1]. Future studies will be required to identify the 
precise DC subsets involved in the process although LN-
resident conventional DC 1 and 2 (cDC1 and cDC2) appear 
as obvious candidates because of their frequent association 
with HEVs [107].

HEVs in inflamed lymph nodes

LNs can be regarded as immune hubs strategically positioned 
in the organism to provide regional immune surveillance 



725Angiogenesis (2021) 24:719–753 

1 3

[108]. These highly specialized organs orchestrate the ini-
tiation and the maintenance of adaptive immune responses 
during infection and cancer. Following immune challenge, 
the LN draining inflamed tissues is the site of an important 
stromal remodeling enabling its increase in size and cellular-
ity [109, 110]. Within the inflamed LN, the number but also 
the phenotype of HEVs are modified to support the ongoing 
immune response (Fig. 3) [53, 98, 103, 111, 112].

Soon after the initial inflammatory stimulus, the LN 
blood vasculature undergoes substantial enlargement and 
remodeling which includes expansion of the primary feed 
arterioles and HEV network, a process that is thought to 
increase influx of lymphocytes and therefore the effi-
ciency of screening for rare antigen-specific lymphocytes 
[112–114]. Mechanistically, it has been shown in models 
of multicolor fate mapping that LN blood vascular growth 
relies on the clonal proliferation of some HECs that act as 
local progenitors to create both capillaries and HEV neo-
vessels [112]. More recently, scRNA-seq studies of mouse 
LN endothelial cells identified a population of progenitor-
like activated capillary endothelial cells, defined as capillary 
resident precursors (CRPs), that are actively mobilized for 

LN angiogenesis after immunization [54]. Among LN BECs, 
CRPs selectively express Apln and can be observed by stain-
ing for the human estrogen receptor (ER), which serves as a 
surrogate for Apln expression. At steady state,  ER+ endothe-
lial cells are present in capillaries whereas HECs do not 
express the receptor. However, Apln-reporter mice revealed 
that many HECs and capillary endothelial cells are posi-
tive for the reporter three weeks after an immune challenge, 
showing that Alpln-expressing CRPs can also contribute to 
inflammation-induced HEV neogenesis, in addition to HECs 
themselves [112].

DC mobilization increases during the initial phase of LN 
swelling [115]. DC accumulation in the inflamed LN could 
be the initial trigger for blood vasculature enlargement as 
DCs have been shown to control proliferation of endothelial 
cells (including HECs) in LNs [98, 116], although B and 
T cells may participate too [117–119]. In both instances, 
LTβR ligands and VEGF-A are the critical mediators of LN 
vasculature remodeling. At later stages, afferent lymphatic 
function is transiently diminished, likely causing dilution of 
DCs in the LN microenvironment [103]. Concurrently to this 
afferent lymph flow shutdown, HECs acquire an inflamed 

Homeostatic HECs

Recruitment of naive 
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lymphocytes, activated 
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myeloid cells
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Fig. 3  HEVs in inflamed lymph nodes. During an immune challenge, 
the HEV network expands, contributing to the increase in size and 
cellularity of the reactive LN (Top). HECs in reactive LNs are phe-
notypically different from HECs in homeostatic LNs at steady state 
(Bottom). scRNA-seq analyses revealed the precise phenotypes of 
homeostatic and inflamed LN HECs [53]. Several genes encoding 

inflammatory proteins are upregulated (P- and E-selectins, CXCL9), 
resulting in the recruitment of novel immune cells such as activated 
lymphocytes and myeloid cells. Importantly, the recruitment of naïve 
lymphocytes in inflamed LNs is still efficient despite downregulation 
of mature HEV genes, probably because levels of MECA-79 antigens 
and chemokine CCL21 remain very high
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endothelial cell phenotype (Fig. 3) that is marked by tempo-
rary downregulation of mature HEV genes (Glycam1, Fut7, 
Gcnt1), maintenance of strong MECA-79 expression, and 
upregulation of inflammatory proteins (P-selectin, E-selectin 
and CXCL9) and immature HEV marker MAdCAM-1 [53, 
103, 120–123]. As a consequence of this phenotypic switch, 
novel immune cell populations such as neutrophils and acti-
vated effector/effector memory T cells are recruited through 
inflamed HEVs [121, 122, 124–127]. Importantly, the ability 
of inflamed HEVs to mediate L-selectin-dependent naive 
lymphocyte recruitment is not compromised despite down-
regulation of mature HEV genes [53, 120]. Interestingly, 
recent work from the Butcher’s lab revealed that non-HEV 
medullary post-capillary venules could also be involved in 
myeloid cell homing to inflamed LNs via an L-selectin-inde-
pendent mechanism, unveiling the existence of local venular 
specializations for the recruitment of specific immune cell 
populations during acute inflammation of the LN [54].

HEVs in tumor‑draining lymph nodes

The tumor-draining lymph node (tdLN), which is the first 
regional lymph node draining established tumors, is consid-
ered as the major activation site of tumor-specific lympho-
cytes [128]. The TdLN is not only important for the initia-
tion of T-cell-dependent antitumor responses, but also for 
response to various cancer treatments, including radiother-
apy and immune checkpoint blockade [129, 130]. However, 
as a sentinel LN, the tdLN is also a privileged site for cancer 
cell metastasis, revealing its dual role in cancer [131, 132].

Because they mediate naive lymphocyte entry to tdLNs, 
HEVs indirectly participate to the priming of naive lympho-
cytes specific for cancer antigens and are consequently cru-
cial components of T-cell-dependent antitumor responses. 
In fact, HEV-mediated homing of naive lymphocytes to 
tdLNs is even targeted by the primary tumor which reduces 
expression of CCL21 on HEVs, thereby reducing lympho-
cyte adhesion to the endothelium [133]. This process is a 
striking illustration of the capacity of the primary tumor to 
drive HEV reprogramming in the tdLN [132]. Indeed, sev-
eral reports in mouse models and human patients indicate 
that tdLN HEVs exhibit extensive phenotypical and morpho-
logical changes during tumor progression, including vessel 
dilatation, thinning of HEC morphology and discontinuous 
expression of MECA-79 antigens [134–138]. TdLN HEV 
remodeling occurs before the apparition of nodal metastases, 
suggesting that it is part of a pre-metastatic niche establish-
ment program induced by the primary tumor [134–136]. 
Nevertheless, the density of abnormal HEVs is significantly 
higher in patients with established metastases in their LNs, 
showing that HEV identity and function might by highly 
compromised in metastatic LNs [135]. In some instances, 
the level of HEV remodeling in the tdLN correlated with 

disease progression and clinical outcome [135, 136]. For 
instance, abnormal HEVs with red blood cells observed in 
their lumen, which is a feature of HEVs with altered vascular 
integrity [139], have been associated with a worse prognosis 
in squamous cell carcinoma [135].

The participation of the tdLN in the dissemination of can-
cer cells to distant organs is a widely accepted hypothesis 
[131]. Efferent lymphatics and subsequent passage through 
thoracic duct is the major dissemination route for cancer 
cells, but the ability of abnormal HEVs to provide extra-
lymphatic route of dissemination has also been questioned 
[140]. Two recent studies based on intralymphatic injection 
of high numbers of cancer cells in afferent lymphatics con-
cluded that LN HEVs could constitute an effective exit route 
for cancer cell dissemination in the blood circulation [141, 
142]. However, intralymphatic injection of non-physiologic 
numbers of cancer cells might not accurately mimic the 
metastatic processes observed in human patients, thus chal-
lenging the clinical relevance of these results. Moreover, 
whether incriminated HEVs are bona fide HEVs or pro-
foundly abnormal venules that have lost their HEV function 
remains unclear. Metastasis is more likely to occur through 
de-differentiated HEVs that are no longer functional for lym-
phocyte recruitment.

HEV‑like blood vessels in chronic 
inflammatory diseases

MECA‑79+ HEV‑like blood vessels in chronically 
inflamed tissues

Inflammation is an evolutionary conserved process charac-
terized by the activation of immune and non-immune cells 
to protect the host from foreign invaders during tissue injury, 
infection and cancer [143]. Acute inflammation is a tempo-
rally restricted protective response that is rapidly resolved to 
limit excessive tissue damage. In contrast, chronic inflamma-
tion is a persistent and non-resolving response causing tissue 
destruction and loss of function with progressive clinical 
symptoms. Immune cell-induced reprogramming of stromal 
cells is an important feature of chronic inflammation and 
is thought to exacerbate inappropriate immune responses 
[144]. HEV-like blood vessels phenotypically similar to 
lymphoid tissue HEVs appear in many human inflammatory 
diseases affecting different anatomic sites (Table 1), includ-
ing chronic inflammatory diseases such as RA (Fig. 4a) and 
inflammatory bowel diseases (Crohn’s disease, ulcerative 
colitis), and allergic diseases such as asthma and allergic 
rhinitis [2, 6, 145–148]. Thus, development of HEV-like 
blood vessels is not disease- or organ-specific and might be 
a universal property of chronically inflamed tissues.
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Table 1  MECA-79+ HEV-like blood vessels in human inflammation

HECA-452 mAb recognizing non-sulfated sLex, TCM central memory T cells, TN naive T cells, TLSs B cell-rich tertiary lymphoid structures

Condition Target organ Associated features

Allergic diseases
Bronchial asthma [149, 150] Lung Co-expression of sLex epitope HECA-452
Allergic rhinitis [151] Nasal mucosa
Allergic contact dermatitis [51] Skin
Chronic inflammatory diseases
Rheumatoid arthritis [51, 152–156] Synovium Disappearance after anti-TNFα treatment; Expression of Glc-

NAc6ST-2 (CHST4); Co-expression of sLex epitope HECA-
452; Perivascular stromal cells producing CCL21; Presence 
of TLSs in high-grade inflammatory lesions

Inflammatory bowel diseases (Crohn’s disease, ulcerative 
colitis) [152, 155, 157–162]

Gut Disappearance during remission in ulcerative colitis; Associ-
ated with  TN and  TCM infiltration

Preferentially associated with T cells, particularly  CD4+ T 
cells; Co-expression of sLex epitope HECA-452; Perivascular 
stromal cells producing CCL21; Presence of TLSs

Autoimmune thyroiditis (Hashimoto’s disease, Graves’ dis-
ease) [51, 157]

Thyroid Co-expression of sLex epitope HECA-452

Arthritis [163] Synovium
Spondyloarthritis [164] Skeleton Disappearance after anti-IL-17A treatment (Secukinimab)
Inflammatory skin diseases (psoriasis, lichen planus, cutane-

ous lymphoid hyperplasia, cutaneous lupus erythematosus) 
[51, 157, 165, 166]

Skin Lymphoid infiltrates but not organized in TLSs; Co-expression 
of sLex epitope HECA-452

Conjunctival inflammation [167] Conjunctiva Not reduced after hydrocortisone treatment
Chronic rhinosinusitis [168, 169] Nasal and 

paranasal 
mucosa

Associated with severity of inflammation

Sjögren’s syndrome [155, 170, 171] Salivary glands Perivascular stromal cells producing CCL21; Presence of TLSs
Lichen planus [165] Oral mucosa Preferentially associated with T cells, particularly CD4+ T cells
Type I autoimmune pancreatitis [172] Pancreas
Inflammatory myopathies [173] Muscle Presence of TLSs
Bronchiectasis [174] Lung
Idiopathic pulmonary arterial hypertension [175] Lung Presence of TLSs
Glomerulonephritis [176] Kidney
Infection
Chronic Helicobacter pylori gastritis [235–237] Stomach  Associated with progression of inflammation; Disappearance 

after eradication of H. pylori
Organ transplant rejection
Acute heart allograft rejection [177, 178] Heart Associated with severity of graft rejection; Co-expression of 

sLex epitope HECA-452; Presence of TLSs
Acute kidney allograft rejection [179, 180] Kidney Co-expression of sLex epitope HECA-452; Presence of TLSs
Obliterative bronchiolitis after lung transplantation [181] Lung
Hyperplasia and benign neoplasms
Warthin’s tumor [182] Salivary gland Preferentially associated with T cells
Benign prostatic hyperplasia [183] Prostate Preferentially associated with T cells, particularly  CD4+ T 

cells; Associated with severity of inflammation and lower 
urinary tract symptoms

Cutaneous pseudolymphomas [184] Skin
Pregnancy
Pregnant uterus [185] Decidua Reduced density of MECA-79+ HEV-like blood vessels is 

associated with idiopathic recurrent pregnancy losses
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The HEV-specific mAb MECA-79 recognizes HEVs 
from lymphoid tissues, but also HEV-like blood vessels from 
extra-lymphoid tissues in both mice and humans, making 
it a very useful tool for the identification of ectopic HEV-
like blood vessels. Indeed, systematic surveys involving 
large numbers of independent samples revealed that HEV-
like blood vessels are recognized by MECA-79 in various 
human chronic inflammatory diseases affecting many dif-
ferent organs [51, 157]. MECA-79+ HEV-like blood ves-
sels express the post-capillary venule marker Duffy antigen 
receptor for chemokines (DARC) [186], similar to HEVs in 
lymphoid organs [56], suggesting that they likely arise from 
inflammation-induced reprogramming of pre-existing post-
capillary venules [152]. HEV-like blood vessels also express 
the mucosal addressin MAdCAM-1 in GALT during inflam-
matory bowel diseases [187]. In many diseases, the intensity 
of MECA-79 staining correlated with the extent of mono-
nuclear cell infiltration in inflamed lesions, which suggests 
that the level of expression of MECA-79 antigens might be 
a good indicator of the functional competence of HEV-like 
blood vessels. Interestingly, some flat-walled blood vessels 
are positive for MECA-79, indicating that MECA-79+ blood 
vessels encompass a wide range of venules with distinct 
degree of maturation regarding the HEV phenotype. Histo-
logical examinations of HEV-like blood vessels in human 
chronically inflamed tissues precludes definitive conclusions 
on their functionality and their ability to mediate lymphocyte 
recruitment. In contrast, mouse models of chronic inflamma-
tion, which recapitulate several features of human diseases 
including the development of HEV-like blood vessels, allow 
for in vivo functional investigations. A comprehensive list 

of mouse inflammatory conditions in which MECA-79+ 
HEV-like blood vessels develop is included in Table 2. AKR 
mice develop hyperplastic thymus containing MECA-79+ 
HEV-like blood vessels in close association with T and B 
cells, before the onset of T cell lymphoma [188]. Short-term 
in vivo homing assays showed that MECA-79+ HEV-like 
blood vessels are involved in lymphocyte trafficking to the 
hyperplastic thymus. Indeed, injection of blocking amounts 
of MECA-79 or anti-L-selectin mAb MEL-14 abolished the 
recruitment of adoptively transferred lymphocytes, reveal-
ing the functional significance of MECA-79 expression on 
HEV-like blood vessels [188]. Similar findings were obtained 
in the inflamed lacrimal glands of NOD mice, a model for 
autoimmune-mediated insulin-dependent diabetes mellitus 
(IDDM) in which ectopic lymphoid infiltrates containing 
MECA-79+ HEV-like blood vessels are observed in several 
tissues [189]. After seven months of life, NOD mice also 
develop bronchus-associated lymphoid tissue (BALT) in the 
lung. Interestingly, treatment with MECA-79 and MEL-14 
antibodies blocked the homing of adoptively transferred lym-
phocytes from blood into inflamed bronchopulmonary tissues 
[190]. These results obtained in three distinct inflamed tis-
sues demonstrate first, that MECA-79+ HEV-like blood ves-
sels are functional, and second, that the L-selectin-MECA-79 
antigens axis is involved in lymphocyte trafficking to vari-
ous chronically inflamed tissues. In contrast to MECA-79 
antigens, MAdCAM-1 is not involved in the recruitment of 
adoptively transferred lymphocytes to the inflamed lacrimal 
glands and BALT of NOD mice [189, 190].

HEV-like blood vessels of chronically inflamed tissues 
can be observed close to diffuse non-organized lymphoid 
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Fig. 4  HEV-like blood vessels in chronic inflammation. a A MECA-
79+ HEV-like blood vessel in the inflamed synovium from a patient 
suffering from RA. Endothelial cells exhibit a “plump” cuboidal mor-
phology. Staining with MECA-79 is more intense on the side of the 
vessel in contact with the immune infiltrate (arrow). b During acute 
inflammation, MECA-79− blood vessels are able to recruit activated 
lymphocytes and myeloid cells (Left). Prolonged inflammatory sig-
nals (such as LTα3) trigger TNFR1 signaling that induces expression 

of MECA-79 antigens on post-capillary venules lined by flat endothe-
lial cells, during the initial stages of chronic inflammation (Middle). 
Maintenance of chronic inflammation and subsequent activation of 
LTβR signaling induce additional maturation and acquisition of a 
fully mature HEV-like phenotype that is associated with increased 
luminal expression of MECA-79 antigens, cuboidal morphology and 
enhanced recruitment of naive lymphocytes (Right)
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Table 2  MECA-79+ HEV-like blood vessels in mouse inflamed tissues

Condition Target organ Associated features

Models of chronic inflammation
Diabetes (NOD mice) [191–193] Pancreas Co-expression of MAdCAM-1; Expression of the HEV-

restricted sulfotransferase GlcNAc6ST-2 (Chst4)
Autoimmune sialoadenitis (NOD mice) [191, 192, 194] Salivary gland Expression of the HEV-restricted sulfotransferase Glc-

NAc6ST-2 (Chst4); Reduced after LTβR-Ig treatment; Pres-
ence of TLSs

Autoimmune dacryoadenitis (NOD mice) [189, 191, 195] Lacrimal gland Expression of the HEV-restricted sulfotransferase Glc-
NAc6ST-2 (Chst4); MECA-79 and anti-CD62L block 
migration of adoptively transferred lymphocytes to inflamed 
lacrimal glands; Reduced after LTβR-Ig treatment; Presence 
of TLSs

BALT (NOD mice) [190] Lung MECA-79 and anti-CD62L block migration of adoptively 
transferred B and T lymphocytes to BALT; Presence of TLSs

Thymic hyperplasia (AKR mice) [188, 191, 196] Thymus Co-expression of MAdCAM-1; Expression of the HEV-
restricted sulfotransferase GlcNAc6ST-2 (Chst4) and 
fucosyltransferase Fuc-T7 (Fut7); Associated with binding of 
L-selectin-IgM chimera; MECA-79 and anti-CD62L block 
migration of adoptively transferred lymphocytes to hyper-
plastic thymus

Neonatal thymectomy-induced autoimmune gastritis [197] Gastric mucosa Presence of TLSs
Diabetes (H8 mice derived-DC injection in RIP-LCMV-GP 

mice) [198]
Pancreas Presence of TLSs

Collagen-induced arthritis [199] Synovial tissue Expression of the HEV-restricted sulfotransferase Glc-
NAc6ST-2 (Chst4)

Pristane-induced peritoneum inflammation [200] Peritoneum Presence of TLSs
Atherosclerosis  (apoE−/− mice) [201] Aorta Associated with migration of adoptively transferred lympho-

cytes; Reduced after LTβR-Ig treatment; Presence of TLSs
LPS-induced iBALT [202] Lung Present in  Rorc−/− and  Id2−/− mice; Absent in LTα−/− and DKO 

mice, and after LTβR-Ig treatment; Presence of TLSs
Sialoadenitis (submandibular gland administration of AdV5) 

[203]
Salivary gland Presence of TLSs

Bleomycin-induced lung fibrosis [36] Lung Presence of TLSs
Lupus nephritis (NZB/W lupus-prone mice) [204] Kidney Presence of TLSs
Skin inflammation (intradermal injection of newborn lymph 

node-derived cells) [205]
Skin Absent with LTα−/− mice-derived cells; Presence of TLSs

Skin inflammation (subcutaneous injection of lymph node-
derived stromal cell lines) [206]

Skin Presence of TLSs

Infection
Probionibacterium acnes-induced granulomatous liver 

disease [207]
Liver Presence of TLSs

Helicobacter-induced chronic hepatitis [208] Liver Co-expression of MAdCAM-1; Expression of CCL21; Pres-
ence of TLSs

Helicobacter pylori-induced gastritis [209] Gastric mucosa Presence of TLSs
Influenza-induced iBALT [210, 211] Lung Present in  CXCL13−/− mice; Reduced in plt/plt mice; Absent in 

LTα−/− mice; Presence of TLS
Genetically modified mice
Hyperplastic pancreatic islets (RIP1-Tag5 mice) [212] Pancreas
Inflammed pancreatic islets (RIP-CCL19 mice) [213] Pancreas Presence of TLSs
Inflammed pancreatic islets (RIP-CCL21, RIP-CCL21a and 

RIP-CCL21b) [213–215]
Pancreas Present in  Ikaros−/− mice but absent in  Rag1−/− mice, and 

reduced after LTβR-Ig treatment; Presence of TLSs
Inflammed pancreatic islets (RIP-CXCL13) [191, 216] Pancreas Present in  TNFR1−/− mice but reduced in µM−/− and LTα−/− 

mice, and after LTβR-Ig treatment; Expression of the HEV-
restricted sulfotransferase GlcNAc6ST-2 (Chst4); Presence 
of TLSs
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infiltrates, but they are also frequently associated with highly 
organized lymphoid clusters defined as tertiary lymphoid 
structures (TLSs) (Table 2) [6, 147, 227]. TLSs, also known 
as tertiary lymphoid organs (TLOs) [228], demonstrate sev-
eral features of lymphoid organs, including compartmen-
talization of B and T cells in discrete zones, presence of 
dendritic cells and formation of HEV-like blood vessels 
[147]. By mediating lymphocyte entry into TLSs, HEV-like 
blood vessels may be critical for their maintenance and their 
function. The development of TLSs, referred to as lymphoid 
neogenesis [147, 148, 227], is observed in various chronic 
inflammatory diseases and is generally associated with dele-
terious outcomes in patients [148, 228, 229]. Indeed, several 
lines of evidence indicate that TLSs not only recapitulate the 
cellular and structural organization of lymphoid tissues, but 
can also support immune functions. In particular, TLSs can 
contain active germinal centers that foster B cell responses 
in situ [230–232], suggesting that TLSs might be regarded 
as B cell-oriented structures, at least regarding functional 
aspects.

Mechanisms regulating the development 
of HEV‑like blood vessels in chronic inflammation

HEV-like blood vessels are nearly always present when pro-
nounced lymphocyte infiltration is present over the course 
of chronic inflammation, suggesting an important role of 
lymphocytes in the development of these specialized blood 
vessels. Interestingly, a growing body of evidence indicate 

that several mechanisms occurring during the development 
of physiological HEVs in lymphoid tissues are involved 
in the development of ectopic HEV-like blood vessels, 
with an especially strong participation of cytokines and 
chemokines.

As mentioned in the introduction, initial morphometric 
studies made by Ziff with electron microscopy revealed that 
HEV-like blood vessel “plumpness”, which can be regarded 
as a surrogate of HEV maturity, is associated with the num-
ber of perivascular lymphocytes [24]. Another feature high-
lighting the close relationship between HEV-like blood ves-
sels and lymphocytes is the increased intensity of MECA-79 
staining of HEV-like endothelial cells localized close to the 
lymphocytic infiltrates (Fig. 4a). These observations sug-
gested that HEV-like blood vessel development could be 
the consequence of lymphocyte infiltration in chronically 
inflamed tissues. Subsequent studies further documented the 
intimate relationship between HEV-like blood vessels and 
lymphocytes [149, 157]. A striking finding is the influence 
of the nature of the immune infiltrate on the presence or 
absence of HEV-like blood vessels in diseases occurring in 
the same organs. For instance, MECA-79+ HEV-like blood 
vessels are induced in the skin and lungs during diseases 
associated with lymphocyte infiltration, such as psoriasis 
and bronchial asthma, but they are absent during diseases 
characterized by neutrophil infiltration, like vasculitis in 
the skin or adult respiratory distress syndrome in the lung 
[149, 157]. These observations suggest that HEV-like blood 
vessel induction is a hallmark of lymphocyte infiltration in 

AdV5 replication-defective adenovirus 5, BALT bronchus-associated lymphoid tissue, CCL19 CC-chemokine ligand 19, DKO mice lacking the 
chemokines CXCL13, CCL19 and CCL21a, H8 mice transgenic mice constitutively expressing the LCMV immunodominant epitope GP33, 
iBALT inducible BALT, LCMV-GP lymphocytic choriomeningitis virus glycoprotein, LPS lipopolysaccharide, LT lymphotoxin α, LTαβ lym-
photoxin α and β, NOD non-obese diabetic, NZB/W New Zealand black × New Zealand white F1 mice, plt/plt mice lacking CCL19 and CCL21a, 
RIP rat insulin promoter, TG thyroglobulin, TLSs B cell-rich tertiary lymphoid structures, µM B-cell-deficient mice

Table 2  (continued)

Condition Target organ Associated features

Inflammed pancreatic islets (RIP-LT mice) [217, 218] Pancreas Absent in  Rag2−/− and  p55−/− (TNFR1) mice; Reduced infiltra-
tion of naive lymphocytes in LTβ−/− mice; Presence of TLSs

Inflammed pancreatic islets (RIP-LTαβ mice) [219] Pancreas MECA-79+ HEV-like blood vessels with luminal expression 
of MECA-79 antigens and expression of the HEV-restricted 
sulfotransferase GlcNAc6ST-2 (Chst4); Present in LTβ−/− 
mice; Presence of TLSs

Autoimmune pancreatitis (Tg(Ela1-LTα,β) mice) [220, 221] Pancreas Presence of TLSs; Reduced after LTβR-Ig treatment
Inflammed thyroid (TG-CCL21 mice) [222–224] Thyroid Present in  Id2−/−; Absent in  Rag1−/− mice and phenotypic res-

cue with adoptive transfer of  CD4+ T cells; MECA-79+ HEV-
like blood vessels with only abluminal expression of PNAd, 
flat morphology and no expression of the HEV-restricted sul-
fotransferase GlcNAc6ST-2 (Chst4) in LTα−/− mice; Absent 
after LTβR-Ig treatment; Presence of TLSs

Organ transplant rejection
Cardiac allografts [225, 226] Heart Reduced after LTβR-Ig treatment; Presence of TLSs; Present in 

TLSs and outside TLSs in lymphocyte-rich areas
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chronically inflamed tissues, and that lymphocytes might be 
regulating their development and maintenance.

Mouse models of chronic inflammation have been instru-
mental for the identification of the mechanisms regulating 
HEV-like blood vessel development (Table 2). A major 
contribution of lymphoid tissue-associated cytokines and 
chemokines is strongly supported by results obtained in 
transgenic mice in which MECA-79+ HEV-like blood ves-
sels are induced in pancreatic islets or thyroid in response to 
ectopic expression of TNF/lymphotoxin cytokines, CCL21 
or CXCL13 [213, 214, 216, 217, 219]. LTα and LTβ have 
a central role in HEV development during LN organogen-
esis [233], and a similar scenario may apply for the de novo 
induction of HEV-like blood vessels. However, the pheno-
type of ectopic HEVs vary depending on the nature of the 
stimulus. When LTα is overexpressed in pancreatic islets, 
MECA-79+ HEV-like blood vessels exhibit mostly ablumi-
nal expression of MECA-79 antigens due to the absence of 
the sulfotransferase GlcNAc6ST-2 (Chst4) responsible for 
MECA-79 luminal expression [191, 234], and their develop-
ment is dependent on TNFR1 signaling [218, 219]. On the 
other hand, co-expression of LTα and LTβ and consequent 
LTβR signaling in the exocrine pancreas is associated with 
the development of MECA-79+ HEV-like blood vessels 
expressing GlcNAc6ST-2 and high levels of luminal MECA-
79 antigens [219]. These landmark studies of Ruddle et al. 
indicate that TNFR1 signaling is sufficient to initiate the for-
mation of MECA-79+ HEV-like blood vessels but that LTβR 
signaling is required to generate vessels with increased HEV 
maturity and that might have an improved ability to capture 
L-selectin-expressing lymphocytes (Fig. 4b). Chemokines 
may induce HEV neogenesis through the recruitment of 
lymphocytes expressing LTβR ligands. Indeed, MECA-79+ 
HEV-like blood vessels induction in pancreatic islets follow-
ing CCL21 or CXCL13 ectopic expression is abolished or 
reduced in lymphocyte-deficient mice [214, 216]. Moreover, 
crossing these transgenic mice with LTα−/− mice or treating 
them with LTβR-Ig significantly reduces HEV-like blood 
vessel development [213, 216]. In fact, it was demonstrated 
that CCL21 and CXCL13 upregulate LTβR ligands on 
 CD4+ T cells and B cells, respectively [213], showing that 
chemokines cooperate with TNF/lymphotoxin cytokines for 
the induction of HEV-like blood vessels in chronic inflam-
mation. Interestingly, MECA-79+ HEV-like blood vessels 
induced in the thyroid after ectopic expression of CCL21 are 
lost in lymphocyte-deficient mice but can be rescued follow-
ing adoptive transfer of  CD4+ T cells [222, 223]. These later 
results confirmed that lymphocytes are critical regulators 
of HEV-like blood vessels, but also suggested that  CD4+ T 
cells, that are preferentially associated with HEV-like blood 
vessels in several human chronically inflamed tissues [158, 
159, 165, 183], are major inducers of HEV-like blood ves-
sels in chronic inflammation.

Therapeutic targeting of HEV‑like blood vessels 
in chronic inflammation

Accumulating evidence indicates that HEV-like blood ves-
sels induced at sites of chronic inflammation contribute to 
lymphocyte trafficking in the diseased tissue in a manner 
similar to lymphocyte homing in LNs. These specialized 
blood vessels sustain chronic inflammation and subsequent 
pathology. Therefore, their therapeutic targeting may offer a 
novel way of influencing the progression of chronic inflam-
mation and could have broad applications because MECA-
79+ HEV-like blood vessels appear in many distinct human 
inflammatory diseases (Table 1).

The presence of MECA-79+ HEV-like blood vessels 
correlates with the progression of inflammation and dis-
ease severity in several human inflammatory pathologies. 
In Helicobacter pylori chronic gastritis, MECA-79+ HEV-
like blood vessels are likely to contribute to the forma-
tion of mucosa-associated lymphoid tissue (MALT) of the 
gastric mucosa that fosters local tissue inflammation and 
increases the risk of extranodal marginal zone lymphoma 
of MALT type (MALT lymphoma) [235–237]. By examin-
ing more than 140 human specimens, Fukuda and cowork-
ers demonstrated that MECA-79+ HEV-like blood vessels 
positively correlated with the progression of inflammation 
in the gastric mucosa [235]. Furthermore, they showed that 
eradication of H. pylori by treatment with antibiotics and a 
proton pump inhibitor is associated with the disappearance 
of HEV-like blood vessels and minimal lymphocyte infiltra-
tion, suggesting that local post-capillary venules reacquire 
a normal phenotype after treatment and are no longer able 
to sustain extensive lymphocyte recruitment. Therapeutic 
agents also have an impact on HEV-like blood vessels in 
other diseases. For instance, in RA and psoriatic arthritis, 
reduced inflammation in the synovium after TNFα blockade 
with different biological agents (adalimumab, infliximab, 
etanercept) was associated with reduced numbers of MECA-
79+ HEV-like blood vessels [153, 238]. Inflammatory bowel 
diseases (IBDs) such as ulcerative colitis provide another 
example of inflammatory pathologies in which HEV-like 
blood vessels are involved and modulated during disease 
progression [152, 157–161]. Analysis of colonic mucosa 
biopsies representing both active and remission phases of 
ulcerative colitis revealed that MECA-79+ HEV-like blood 
vessels are preferentially induced in the active phase of the 
disease [158, 161]. Finally, similar clinical correlations were 
observed in other human inflammatory disorders including 
begnin prostatic hyperplasia, chronic maxillary rhinosi-
nusitis and acute heart allograft rejection [168, 177, 183], 
indicating that HEV-like blood vessels are tightly associated 
with persistent inflammation and active disease in humans.

Interfering with the development and/or maintenance of 
HEV-like blood vessels or with HEV-associated molecules 
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controlling lymphocyte recruitment is likely to provide 
therapeutic benefits in many human inflammatory diseases 
(Table 1). In fact, several reports mention disease ame-
lioration following therapeutic manipulation of HEV-like 
blood vessels in preclinical models. In a sheep model of 
human asthma associated with development of MECA-79+ 
HEV-like blood vessels in the lung, Rosen et al. showed 
that intravenous administration of MECA-79 antibody pre-
vents airway hyper-responsiveness induced by allergen chal-
lenge and inhibits the accumulation of leukocytes in bron-
choalveolar lavage fluid [150]. These results provided the 
first evidence that direct targeting of MECA-79+ HEV-like 
blood vessels can have therapeutic efficacy [150]. Similar 
findings were obtained in the same model using an anti-
L-selectin mAb instead of MECA-79 [239]. Interestingly, 
blockade of L-selectin function has been associated with 
reduced leukocyte recruitment in various inflammatory 
conditions [240] and can inhibit insulitis and subsequent 
development of diabetes in NOD mice [241]. Another rel-
evant approach for HEV-like blood vessel inhibition is the 
targeting of the HEV master regulator LTβR. In NOD mice, 
inhibition of MECA-79+ HEV-like blood vessels after treat-
ment with LTβR-Ig is associated with improved function 
of salivary and lacrimal glands [194, 195], suggesting that 
LTβR inhibition may ameliorate disease in human Sjögren’s 
syndrome. Interestingly, LTβR-Ig reduces development of 
MECA-79+ HEV-like blood vessels in several murine tis-
sue sites, including inflamed pancreatic islets, heart trans-
plant allografts, and inflamed aorta during atherosclerosis in 
apoE−/− mice (Table 2) [201, 216, 225]. However, a human 
LTβR-Ig fusion protein (Baminercept) failed to produce 
significant clinical efficacy in RA and Sjögren’s syndrome 
[242, 243]. The unique targeting of lymphocyte recruitment 
to inflamed tissues may thus not be sufficient to yield thera-
peutic benefits. The simultaneous targeting of distinct steps 
of the lymphocyte-dependent response with combination of 
different treatments will likely provide maximal therapeutic 
benefits in humans.

Tumor‑associated HEVs (TA‑HEVs) in cancer 
immunology and immunotherapy

MECA‑79+ TA‑HEVs in tumors

Although detrimental in chronic inflammatory diseases, the 
development of HEV-like blood vessels can be advantageous 
in other instances where increased lymphocyte recruitment 
is beneficial. The immune response against cancer is criti-
cally dependent on the activity of tumor-specific lympho-
cytes that are able to recognize and eliminate tumor cells. To 
get inside the tumor, lymphocytes first need to extravasate 
through tumor blood vessels. By facilitating lymphocyte 

trafficking to the tumor, TA-HEVs could play a key role in 
cancer immunity and immunotherapy.

The first descriptions of MECA-79+ HEV-like blood ves-
sels in a human cancer setting were reported in cutaneous 
and gastric MALT lymphomas [51, 244, 245]. Given the 
known role of lymphocytes in the regulation of HEV-like 
blood vessels, it is not surprising that such vessels are pre-
sent in extra-lymphoid tissues where malignant lymphoid 
cells accumulate. However, we now know that the develop-
ment of MECA-79+ HEV-like blood vessels go far beyond 
lymphoid neoplasms, and they are in fact observed in many 
distinct human solid tumors [28], demonstrating that acqui-
sition of HEV-specific attributes by tumor blood vessels is 
a widely conserved process in malignant tissues. Our initial 
observations showing the strong correlation between the 
density of MECA-79+ TA-HEVs and densities of tumor-
infiltrating  CD3+ T cells,  CD8+ T cells, and  CD20+ B cells 
in primary breast cancer and melanoma [28, 29], have been 
confirmed in many studies and extended to multiple human 
malignancies (Table 3). The density of MECA-79+ TA-
HEVs is positively correlated with clinical parameters indic-
ative of reduced tumor progression and invasion in primary 
melanoma [29, 246, 247] and with increased metastasis-free 
survival and overall survival in primary breast cancer [28]. 
MECA-79+ TA-HEVs are also associated with increased 
lymphocyte infiltration, progression free-survival and over-
all survival in head and neck cancer [248–250]. Moreover, 
combined high densities of MECA-79+ TA-HEVs and  CD8+ 
T cells are a prognostic factor for overall survival in gastric 
cancer [251]. Together, these results suggest that TA-HEVs 
function as major gateways for lymphocyte infiltration into 
human tumors, thus promoting antitumor immune response 
and improving clinical outcome.

MECA-79+ TA-HEVs express pan-endothelial cell mark-
ers such as CD31 or von Willebrand factor (vWF) but also 
the marker DARC, indicating that they likely derive from 
post-capillary venules similar to HEV-like blood vessels 
in chronic inflammation [28, 29]. Endothelial cells lining 
human MECA-79+ TA-HEVs exhibit a cuboidal appearance 
reminiscent of the plump morphology of LN HECs (Fig. 5), 
but they can also display a flat morphology, frequently 
associated with a dilated vessel lumen [138, 246, 249]. As 
observed in chronic inflammatory diseases, MECA-79+ TA-
HEVs might encompass a wide spectrum of HEV-like blood 
vessels with different degrees of maturation. Besides human 
studies, a main part of our knowledge on TA-HEVs come 
from studies performed in mouse models. Table 4 lists the 
different mouse tumors exhibiting MECA-79+ TA-HEVs. 
MECA-79+ TA-HEVs were first observed in mice follow-
ing various treatments such as adoptive transfer of  CD8+ 
T cells, administration of tumor-targeted LTα or genetic 
depletion of  Foxp3+ regulatory T cells (Tregs) [282–285]. 
However, Engelhard et al. demonstrated that, in some tumor 
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models, MECA-79+ TA-HEVs can spontaneously develop 
in the tumor microenvironment in the absence of any treat-
ment [286]. Importantly, TA-HEVs are induced in differ-
ent types of tumors, including subcutaneous transplanted 
tumors, orthotopically transplanted tumors and genetically 
engineered tumor models [252, 266, 286, 287]. In contrast 
to their human counterparts, endothelial cells lining mouse 
MECA-79+ TA-HEVs generally do not exhibit the HEV-
specific cuboidal shape and they are characterized by a flat 
morphology associated with reduced expression of MECA-
79 in comparison with LN HEVs [282, 286]. Neverthe-
less, they are surrounded by high numbers of lymphocytes 
akin to human TA-HEVs, providing an early clue to their 
functional significance [286]. Based on short-term in vivo 
homing assays, it was shown that MECA-79+ TA-HEVs are 
associated with the recruitment of naive lymphocytes into 
tumors [286], suggesting that LN HEV functional proper-
ties are conserved to some degree by TA-HEVs, and that 
HEV-mediated homing of lymphocytes in LN might be reca-
pitulated in tumors. This later possibility is also supported 
by human studies in which high densities of MECA-79+ 
TA-HEVs correlated with increased infiltration of naive and 
central memory T cells [28].

The recruitment of naive T cells into tumors is of par-
ticular interest since their priming and subsequent conver-
sion into effectors can be realized directly within the tumor 
[301, 302]. Bypassing activation of naive T cells in LNs is 
proposed to accelerate and foster antitumor response and 
is likely to occur in tumor TLSs [303, 304]. TA-HEVs are 
present in B-cell rich TLSs that develop in some human 
tumors (Fig. 6a) [277, 303, 305] and might contribute to 
their function in a similar way to HEV-like blood vessels 
in TLSs from chronic inflammatory diseases [306–310]. 
However, TA-HEVs and tumor-associated TLSs are two 
distinct elements. Indeed, TA-HEVs are more frequent than 
TLSs in human tumors. For instance, we detected MECA-
79+ TA-HEVs in > 74% of primary breast tumors (n = 127) 
[28], whereas TLSs were found in only 37% of tumors in a 
cohort of 248 breast cancer patients [311]. In primary mel-
anoma, we found TA-HEVs in > 66% of tumors (n = 225) 
[29], whereas TLSs are rarely detected in primary mela-
noma lesions [256]. Indeed, MECA-79+ TA-HEVs are often 
found in T-cell rich areas containing DCs but no B cell fol-
licles (Fig. 6b) [29, 247, 253, 256, 262]. These structures 
enriched in T cells and DCs, that are highly similar to the 
T-cell zones of lymphoid tissues, may provide a supportive 
niche for  CD8+ T cells in human tumors [312]. Jansen et al. 
also reported the presence of TLSs in their tumor samples 
[312], but these TLSs were located in distinct areas and 
were mainly composed of B cells, suggesting that  CD8+ 
T cell- and B cell-dependent responses may occur in dis-
tinct structures in human tumors. Whether TA-HEVs are an 
integral part of the T-cell oriented structures remains to be D
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confirmed, but the known association of TA-HEVs with both 
T cells and DCs in human tumors is in agreement with this 
hypothesis [28, 29, 253].

Importantly, although TLSs containing MECA-79+ TA-
HEVs are associated with a favorable clinical outcome in 
most cancer types [303], they may be detrimental in some 
instances. Hepatocellular carcinoma (HCC) is an inflamma-
tion-driven cancer characterized by abundant TLSs that were 
associated with increased risk of recurrence [290]. In fact, 
Finkin et al. demonstrated that TLSs could serve as niches 
for malignant hepatocyte progenitors in an HCC mouse 
model, suggesting that TLSs could support tumor progres-
sion in inflammation-dependent tumors. In addition, TLSs 
have been reported to be privileged sites for Treg accumu-
lation in some mouse tumor models [289, 292]. Therefore, 
TLSs are generally associated with antitumor functions but 
could also shelter cells promoting tumor growth, showing 
that the impact of TLSs on prognosis is dependent on cancer 
types.

Mechanisms regulating the development of TA‑HEVs 
in cancer

Induction of TA-HEVs in solid tumors highlights the 
remarkable capacity of immune cells to modify their target 
tissue to maximize the immune response, even in highly hos-
tile microenvironments. Despite similarities with HEV-like 
blood vessels of chronic inflammatory diseases, the mecha-
nisms regulating TA-HEV development also have distinc-
tive features related to the particular nature of solid tumors. 
Determining the cellular actors and molecular signals trig-
gering the HEV differentiation program in tumor blood 
vessels is essential to better define their role in antitumor 
immunity, and to provide important insights for the design of 
novel therapeutic approaches based on TA-HEV induction.

Because DCs control HEV phenotype and function in 
lymph nodes [94] and since they are frequently associ-
ated with TA-HEVs in human melanoma and breast cancer 
[29, 253], lymphotoxin-expressing DCs were initially pro-
posed as critical regulators of TA-HEVs in humans [313]. 

Fig. 5  TA-HEVs and T cell infiltration in human primary melanoma 
and breast cancer. a MECA-79+ TA-HEVs in human primary mela-
noma. TA-HEVs are present in a regressing tumor area infiltrated by 
 CD3+ T cells. b MECA-79+ TA-HEVs in human primary breast can-

cer. TA-HEVs are present in tumor areas infiltrated by  CD3+ T cells. 
MECA-79 staining is more intense on the side of the blood vessels 
in contact with the lymphocytic infiltrate (arrows). See original refer-
ences from Martinet, Garrido et al. [28, 29]
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However, results obtained in mouse models point towards 
a more dominant role for lymphocytes. As observed for 
HEV-like blood vessels in models of chronic inflamma-
tion, MECA-79+ TA-HEVs are lost in tumors grown in 
lymphocyte-deficient Rag2−/− mice [286]. Moreover, adop-
tive transfer of  CD8+ T cells is sufficient to induce develop-
ment of MECA-79+ TA-HEVs in Rag2−/− mice, indicating 
that  CD8+ T cells could be major inducers of TA-HEVs 
in tumors. In contrast, Tregs, which are known as major 
immunosuppressive cells in the tumor microenvironment, 
seem to limit TA-HEV development in tumors as revealed 
by the induction of MECA-79+ TA-HEVs following deple-
tion of Foxp3-expressing cells in  Foxp3DTR mice [282, 291]. 
Whether Tregs inhibit HEV neogenesis via direct action on 
tumor blood vessels or indirectly via inhibition of lympho-
cyte subsets critical for TA-HEV development is currently 
unknown. Interestingly, depletion of  CD8+ T cells was 
shown to abrogate MECA-79+ TA-HEV induction consecu-
tive to Treg depletion [291], confirming the important role of 
 CD8+ T cells in the regulation of TA-HEVs. The increased 
MECA-79 staining of TA-HEV endothelial cells in close 
proximity with  CD3+ T cells in human primary melanoma 
(Fig. 5) further highlights the importance of lymphocytes 
in TA-HEV regulation. Together, these results indicate 
that lymphocytes are able to induce specialized blood ves-
sels facilitating their trafficking into tumors, revealing an 
important immune-vascular crosstalk in favor of antitumor 
immunity.

MECA-79+ TA-HEVs observed in mouse tumor models 
express low amounts of MECA-79 antigens at their surface. 
In line with this immature phenotype, their development is 
critically dependent on TNFR1/2 signaling and not LTβR 
pathway. Indeed, TNFR1/2−/− mice do not develop TA-
HEVs while treatment with LTβR-Ig has no impact on the 
development of MECA-79+ TA-HEVs in wild type mice 
[286]. Similar findings were obtained for TA-HEVs induced 
following Treg depletion as their development is blocked 
by TNFR-Ig fusion protein but not LTβR-Ig [291]. Because 
TA-HEVs are not affected in TNFα−/− mice and because 
LTα−/−  CD8+ T cells induce significantly less MECA-79+ 
TA-HEVs in lymphocyte-deficient mice than wild type 
 CD8+ T cells, LTα, a TNFR1 ligand, was proposed as a key 
mediator for the development of TA-HEVs [286]. Consist-
ent with this, tumors of mice treated with tumor-targeted 
LTα or bearing cancer cells genetically engineered to secrete 
LTα develop MECA-79+ TA-HEVs whereas control tumors 
are devoid of such vessels [283, 284, 293]. Although LTβR 
signaling is not required for the development of most TA-
HEVs observed in mouse tumors, several reports indicate 
that stimulation of this receptor leads to the development 
of MECA-79+ TA-HEVs. Indeed, treatment with the LTβR 
ligand LIGHT or LTβR agonistic antibodies is sufficient to 
induce TA-HEVs in mouse tumors [287, 294, 296, 297]. AO
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Therefore, LTβR signaling is dispensable for the develop-
ment of mouse TA-HEVs, which probably explains their rel-
ative immaturity in comparison to LN HEVs, but therapeutic 
targeting of this receptor induces TA-HEVs. The two-step 
differentiation model of HEV-like blood vessels in chronic 
inflammation could also be true for TA-HEVs (Fig. 4). How-
ever, additional studies are required to determine if LTβR 
stimulation is actually able to increase the degree of matura-
tion of mouse TA-HEVs. Signaling through LTβR may be 
critical for induction of fully mature TA-HEVs in tumors.

The association of histological examinations of TA-
HEVs with clinical parameters indicate that TA-HEV 
density is dependent on the tumor stage in humans. Bres-
low tumor thickness is used as a prognostic biomarker for 
staging primary cutaneous melanomas and it was shown 
that densities of MECA-79+ TA-HEVs are inversely cor-
related with Breslow thickness, indicating that TA-HEVs 
are more abundant during the initial stages of melanoma 
[29]. Analysis of head and neck cancer with the tumor-
node-metastasis (TNM) staging system revealed that T1 
tumors exhibit higher densities of TA-HEVs as compared 
to tumors of later stages [248, 249]. Interestingly, the 
progression from in situ to invasive ductal carcinoma is 
associated with a progressive loss of TA-HEVs in breast 
cancer [253]. These correlations suggest that induction of 

TA-HEVs is maximal during the initial stages of tumor 
development when the immune response is likely to be 
the highest. In fact, results obtained in transgenic mice 
expressing the oncoprotein Tag (simian virus 40 large 
T antigen) under control of the rat insulin gene regula-
tory region (RIP1-Tag5 mice) corroborate the observa-
tions obtained in human tumors. In RIP1-Tag5 mice, Tag 
expression in the insulin-producing cells of the pancre-
atic islets induces multistage carcinogenesis of pancreatic 
islets starting with benign hyperplasia and ending with the 
development of solid tumors and premature death [314]. 
In striking contrast to the highly infiltrated hyperplas-
tic islets that contain MECA-79+ TA-HEVs, tumors are 
poorly infiltrated by lymphocytes and do not develop TA-
HEVs although they are highly vascularized [212]. These 
observations confirmed that tumor progression influences 
the presence of TA-HEVs and suggested that tumor immu-
nogenicity may control induction and/or maintenance of 
TA-HEVs. In agreement with this later possibility, mice 
with B16F1 tumors contain far less MECA-79+ TA-HEVs 
than mice with B16F1 tumors expressing ovalbumin that 
are known to elicit robust lymphocyte-dependent antitu-
mor response because of the high level of antigenicity of 
ovalbumin [286]. Therefore, the presence of TA-HEVs in 
tumors might be a good proxy to evaluate the intensity 

Fig. 6  TA-HEVs are present in both T cell-rich areas and B cell-rich 
TLSs. a MECA-79+ TA-HEVs in human primary breast cancer. TA-
HEVs are present in a tumor area highly infiltrated by  CD20+ B cells. 
These lymphoid aggregates enriched in B cells are designated B cell-

rich TLSs. b MECA-79+ TA-HEVs in human primary melanoma. 
TA-HEVs are present in a tumor area highly infiltrated by  CD3+ T 
cells and by some  CD20+ B cells with no apparent organization into 
TLSs. See original references from Martinet, Garrido et al. [28, 29]
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of the ongoing antitumor immune response. The loss of 
TA-HEVs during tumor progression may be due to the 
loss of strong neoantigens by cancer immunoediting [315, 
316]. However, the impact of cancer immunoediting on 
TA-HEVs is currently unknown.

Therapeutic induction of TA‑HEVs in cancer

Trafficking of lymphocytes to tumors is critical for antitumor 
immunity and cancer immunotherapy with immune check-
point inhibitors (ICIs), vaccines or adoptive T cell therapy 
(ACT) [317–321]. Tumor-infiltrating lymphocytes (TILs) 
are associated with improved clinical outcome in many 
cancers, and the presence of high numbers of  CD8+ T cells 
in human tumors is predictive of therapeutic response to 
cancer treatments, especially to ICIs [322–325]. However, 
the mechanisms governing the magnitude of the  CD8+ T cell 
response remain incompletely defined. Why some tumors 
have high  CD8+ T cell infiltration while others have poor 
infiltration is not entirely clear. Increasing the density and 
maturation of MECA-79+ TA-HEVs in the tumor microenvi-
ronment may enhance lymphocyte trafficking to tumors and 
improve the efficacy of various cancer treatments (Fig. 7), 
including immunotherapies with ICIs, ACT or vaccines, but 
also potentially targeted therapies and conventional cancer 
therapies (radiotherapy, chemotherapy).

Checkpoint blockade therapy with anti-PD-1 and anti-
CTLA-4 antibodies provides remarkable and durable 

responses for many patients across different types of cancer 
[317, 318, 320]. However, ICIs do not benefit all patients 
and novel therapeutic strategies are required for increas-
ing their efficacy. Recent studies indicate that a subset of 
tumor-reactive  CD8+ T cells may be critical for antitumor 
immunity at baseline and also for response to cancer immu-
notherapies with ICIs [312, 326–328]. This particular T cell 
subset encompasses less differentiated and less dysfunc-
tional (exhausted)  CD8+ T cells designated stem-like  CD8+ 
T cells because of their capacity to self-renew while being 
able to generate more differentiated effector  CD8+ T cells. 
Interestingly, analyses of T cells in patients treated with 
ICIs revealed that continuous recruitment of fresh and less 
exhausted T cells from the periphery into the tumor may be 
important for clinical response [329, 330]. Together, these 
findings suggest that strategies aiming to ameliorate the 
migration of peripheral stem-like  CD8+ T cells into tumors 
could result in increased numbers of patients responding to 
ICIs. As specialized blood vessels for lymphocyte traffick-
ing, TA-HEVs may be major gateways for entry of stem-like 
 CD8+ T cells into tumors, and their therapeutic modulation 
could enhance the infiltration of these critical cells, thus 
increasing the efficacy of ICIs. Infiltration of naïve and cen-
tral memory  CD8+ T cells,  CD4+ T cells and B cells through 
TA-HEVs may also play important roles in the response to 
ICIs [277, 305] and other forms of cancer therapies (Fig. 7).

As expected, LTβR agonists are potent inducers of TA-
HEVs in tumors. Targeting LIGHT directly to tumor blood 

Therapeutic 
induction 

of TA-HEVs

MECA-79-

blood vessel

CD4+ T cell

CD8+ T cell

CD20+ B cell

MECA-79+

TA-HEV

Absence of TA-HEVs
MECA-79neg, CD8low, CD4low, CD20low, DC-Lamplow

NO RESPONSE TO
CANCER THERAPY

RESPONSE TO
CANCER THERAPY

DC-Lamp+

dendritic cell

Enriched in TA-HEVs
MECA-79high, CD8high, CD4high, CD20high, DC-Lamphigh

Fig. 7  Therapeutic induction of TA-HEVs for cancer therapy. Induc-
tion of MECA-79+ TA-HEVs in the tumor microenvironment may 
increase infiltration of various subsets of  CD8+ and  CD4+ T cells, 
as well as  CD20+ B cells, and may improve antitumor immunity and 

efficacy of various cancer treatments, including immunotherapies 
with immune checkpoint inhibitors, adoptive T cell therapy or vac-
cines, but also potentially targeted therapies and conventional cancer 
therapies (radiotherapy, chemotherapy)
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vessels via fusion to vascular targeting peptides (VTP) 
induces MECA-79+ TA-HEVs in various mouse tumor 
models [294, 296, 297]. Similar results were obtained with 
a tumor-targeted nanoparticle co-loaded with an anti-fibrotic 
molecule and a plasmid encoding LIGHT [298]. LIGHT-
induced development of TA-HEVs is associated with 
increased lymphocyte infiltration and response to ICIs [294]. 
Notably, LIGHT-associated therapies were also shown to 
overcome resistance to anti-PD-1 or anti-PD-L1 monothera-
pies and to sensitize refractory lung metastases to anti-PD-1 
immunotherapy [296, 298, 331]. LTβR agonistic antibod-
ies (anti-LTβR) were also reported to induce MECA-79+ 
TA-HEV and to enhance lymphocyte infiltration in distinct 
mouse tumor models, and treatment with anti-LTβR enabled 
response to anti-VEGFR2 and anti-PD-L1 combination ther-
apy in a recalcitrant glioblastoma model [287]. Different cell 
types express LTβR in the tumor microenvironment. Thera-
peutic stimulation of LTβR with LIGHT or LTβR agonistic 
antibodies may thus reprogram intratumoral stromal cells 
and dendritic cells, in addition to blood vessel endothelial 
cells [332]. Along with LTβR stimulation, TNFR1 stimula-
tion may also provide an effective way to induce TA-HEVs. 
Indeed, previous studies with a tumor-targeted antibody-
LTα fusion protein showed that stimulating TNFR1 in the 
tumor microenvironment was able to induce MECA-79+ 
TA-HEV and to eradicate established tumors [283, 284]. 
Whether these MECA-79+ tumor blood vessels are identical 
to MECA-79+ TA-HEVs induced through LTβR stimulation 
warrants further studies, but in both instances, neogenesis 
of TA-HEVs correlated with a robust lymphocyte-mediated 
antitumor response. Intriguingly, other agents targeting 
signaling pathways not related to HEV biology induce TA-
HEVs. For instance, intratumoral injection of STING ago-
nists (ADU-S100) or treatment with a PARP inhibitor (BMN 
673) both induce MECA-79+ TA-HEVs in mouse tumor 
models [295, 299]. Together these studies in mice provide a 
proof-of-concept that induction of TA-HEVs within tumors 
can unleash lymphocyte-dependent immunity and improve 
therapeutic outcomes.

Therapeutic induction of TA-HEVs in tumors might 
enhance trafficking of endogenous lymphocytes but also of 
adoptively transferred lymphocytes. If cell-based immuno-
therapies with chimeric antigen receptor (CAR) T cells are 
showing great promises in the treatment of hematological 
malignancies (e.g. CD19-targeted CAR T cells for B-cell 
acute lymphocytic leukemia), they are usually ineffective for 
treatment of solid tumors [333]. Pre-conditioning the tumor 
vasculature for maximal lymphocyte trafficking through 
induction of TA-HEVs could thus provide therapeutic 
benefits in ACT immunotherapy of solid tumors, includ-
ing with CAR T cells. Interestingly, the success of ACT 
using ex vivo-expanded autologous TILs is dependent on the 
presence of stem-like  CD8+ T cells within transferred cells, 

demonstrating the crucial role of these particular  CD8+ T 
cells in cell-based immunotherapies in human cancer [334]. 
In addition, several studies demonstrated that transferring 
less-differentiated  CD8+ T cells (e.g. central memory T 
cells) elicit better antitumor responses during therapeutic 
ACT in mouse tumor models [335–337]. Therefore, the 
unique ability of TA-HEVs to capture naive and naive-like 
lymphocytes might be particularly valuable for ACT immu-
notherapy, especially when using early differentiated cells 
that express L-selectin and CCR7.

Conclusion

Blood vessels that are structurally and phenotypically simi-
lar to HEVs from lymphoid organs appear in non-lymphoid 
tissues during chronic inflammation and cancer. HEV-like 
blood vessels in chronically inflamed tissues and TA-HEVs 
in tumors are associated with lymphocyte infiltration simi-
lar to lymphoid tissue HEVs, indicating that induction of 
specialized blood vessels for lymphocyte trafficking is a 
universal property of tissues exposed to intense lympho-
cyte activity. In chronic inflammatory diseases, HEV-like 
blood vessels facilitate influx of pathological lymphocytes, 
leading to amplification and maintenance of chronic inflam-
mation. In contrast, TA-HEVs are generally beneficial in 
cancer, showing that the clinical significance of ectopic 
HEV-like blood vessels is highly dependent on the patho-
logical context.

In the past 30 years, there has been considerable pro-
gress in our understanding of the mechanisms regulating 
the phenotype and function of HEVs in LNs, both at steady 
state and following immune challenge. However, several 
questions remain regarding the phenotype and functionality 
of HEV-like blood vessels and TA-HEVs. For instance, the 
use of intravital microscopy, which is the only experimen-
tal approach enabling visualization of lymphocyte recruit-
ment through blood vessels in vivo [52], will be crucial to 
demonstrate the functional competence of these vessels. In 
particular, determining the relative contribution of MECA-
79+ blood vessels versus MECA-79− blood vessels will be 
important to confirm the increased capacity of HEV-like 
blood vessels and TA-HEVs to mediate lymphocyte recruit-
ment into tissues. Recent transcriptomic analyses of mouse 
MECA-79+ HECs delineate the HEV phenotype in homeo-
static and inflamed LNs [40, 53, 54]. Investigating the tran-
scriptomes of endothelial cells lining HEV-like blood ves-
sels and TA-HEVs and comparing them with those of LN 
HECs and non-HEV endothelial cells in mouse and human 
tissues could provide great insights about potential pathways 
for modulation of these vessels in chronic inflammation and 
cancer.
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Great promises stem from the potential of TA-HEVs to 
increase lymphocyte trafficking into tumors, especially for 
cancer immunotherapy, which has to face unmet clinical needs. 
Because of their unique ability to mediate the recruitment of 
L-selectin-expressing lymphocytes, therapeutic induction of 
MECA-79+ TA-HEVs could not only increase lymphocyte 
trafficking quantitatively, but also qualitatively by enabling the 
entry of specific lymphocyte subsets that may be critical for 
antitumor immunity. These may include naive, central memory 
and stem-like  CD8+ T cells, but also  CD4+ T cells and B cells 
[277, 305, 338]. However, we have to learn lessons from the 
clinical failure of therapeutic agents targeting HEV-like blood 
vessels in chronic inflammatory diseases. Solely inducing TA-
HEVs will be probably insufficient to obtain significant clini-
cal responses, but therapeutic combinations with ICIs, ACT or 
other forms of cancer therapy are likely to provide important 
therapeutic benefits for cancer patients.

In chronic inflammation, MECA-79+ HEV-like blood ves-
sels accurately accompany lymphocyte-dependent activity and 
disease progression. Similar findings in solid tumors mean 
that MECA-79+ TA-HEVs go along with antitumor immune 
response and may represent a biomarker to identify highly 
immunogenic tumors that are more likely to respond to can-
cer immunotherapies. Indeed, it is important to identify bio-
markers predicting response to ICIs because they are widely 
used for metastatic patients who are frequently non-responsive 
and develop severe immune-related adverse events [318, 339]. 
Since MECA-79+ TA-HEVs are present in metastatic lesions, 
there is an urgent need to investigate their capacity to predict 
response to ICIs in cancer patients.

In this article, we presented a comprehensive review on 
HEVs and HEV-like blood vessels in immunity, inflammation 
and cancer. HEVs in lymphoid organs have fascinated many 
researchers over the past century. We are convinced that HEVs 
and HEV-like blood vessels will continue to attract the interest 
of scientists and clinicians in the next decades, particularly 
those working in the areas of vascular biology (angiogenesis), 
immunology, inflammation, cancer biology (tumor micro-
environment) and cancer immunotherapy. Although many 
aspects of HEV-like blood vessels are still to be discovered, 
their therapeutic modulation already offers promising avenues, 
especially for cancer treatment.
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