
Annals of Global Analysis and Geometry (2024) 65:5
https://doi.org/10.1007/s10455-023-09923-y

Families of degenerating Poincaré–Einstein metrics onR4

Carlos A. Alvarado1 · Tristan Ozuch1 · Daniel A. Santiago1

Received: 6 April 2023 / Accepted: 31 August 2023 / Published online: 6 December 2023
© The Author(s) 2023

Abstract
We provide the first example of continuous families of Poincaré–Einstein metrics developing
cusps on the trivial topology R4. We also exhibit families of metrics with unexpected degen-
erations in their conformal infinity only. These are obtained from the Riemannian version of
an ansatz of Debever and Plebański–Demiański. We additionally indicate how to construct
similar examples on more complicated topologies.
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Introduction

An Einstein metric satisfies for some real number �:

Ric(g) = �g. (1)

This is a central equation in Geometry and in several instances of Physics, especially in
dimension 4. A Poincaré–Einstein metric is a noncompact Einstein metric with a specific
asymptotic behavior giving rise to a conformal boundary metric at infinity, the simplest
example being the Poincarémodel for hyperbolic space whose conformal infinity is the round
sphere. Poincaré–Einstein metrics were first notably used to construct a number of conformal
invariants of the boundary geometry; see [15, 16]. More recently, they have also played an
important role in the physics literature in relationship with AdS/CFT correspondence; see
[7, 31].

From several perspectives, dimension 4 is a threshold dimension in topology and geometry.
In this dimension, there are threeways for compact Einstein or Poincaré–Einsteinmetrics on a
given manifold to degenerate: orbifold singularity formation, collapsing and cusp formation.

Orbifold formation has been widely studied and is now reasonably understood. Numerous
examples of curves of such degenerations have been produced in the Kähler and Poincaré–
Einstein settings, see [8, 9, 25]. All such degenerations have moreover been reconstructed by
gluing-perturbation [27, 28].
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Despite deep general results such as [12], the collapsing and cusp formation remain com-
paratively mysterious. The collapsing situation has received a lot of attention, and many
examples of curves of Einstein metrics collapsing have been produced on K3 surfaces, see
for instance [17, 21]. The third situation of cusp formation has, however, never been observed
except from “trivial” examples of (warped) products of degenerating surfaces and from
sequences of metrics requiring infinitely many different topologies [5, 6]. More concretely,
the following question was left open:

Question 0.1 [4]Another interesting open question is whether cusps can actually form within
a given or fixed component of [the moduli space of Poincaré–Einstein metrics], on a fixed
manifold M.

A simple but not so appealing example showing that this exists is the so-called topological
black holemetric. Themetric is V (r)−1dr2+V (r)dθ2+r2gN for V (r) := −1+r2−2m/r2

withm large enough and gN the metric of a hyperbolic surface. Letting gN degenerate creates
a cusp that extends to the conformal infinity. This naive example answersAnderson’s question
but, to the authors’ knowledge, does not seem to have been mentioned before. This is still a
two-dimensional behavior, and we provide many more interesting examples here.

Another intriguing question is whether cusp formation requires some topology—like
orbifold degeneration requires nontrivial 2-homology. Anderson conjectured that it was the
case:

Question 0.2 [4] It would also be very interesting to know if the possible formation of cusps is
restricted by the topology of the ambient manifold M. [...] One might conjecture for instance
that on the 4-ball cusp formation is not possible.

We instead provide explicit examples of continuous families of smooth Poincaré–Einstein
metrics onR4 developing different kinds of cusps.Wemoreover find curves ofmetricswithout
any degeneration in the bulk but forming various conical, cusp or naked singularities in their
conformal infinity.

Debever and Plebański–Demiański’s local family of metrics

In this article, we study families of Poincaré–Einsteinmetrics exhibiting the above three types
of degenerations focusing on the least understood case of cusp formation. These examples are
surprisingly explicitly given in coordinates and are found in the families of Einstein metrics
whose Lorentzian counterparts were discovered by Debever [14] and which were given in
more convenient coordinates by Plebański–Demiański [29]. These metrics are known in the
physics literature as Plebański–Demiańskimetrics (PDmetrics). PDmetrics are algebraically
special of Petrov type D meaning (in the Riemannian setting) that at every point the selfdual
and anti-selfdual parts of theWeyl curvature have repeated eigenvalues. This is also equivalent
to the ambiKähler condition of [1]: the metric is conformally Kähler or Hermitian in both
orientations. This curvature condition forces toric symmetry by [18].

Themetrics of thePD family have a remarkably compact form (2) anddepend solely on two
related quartic polynomials P and Q of one variable. Still, despite their simplicity and their
discovery in the early 70’s, these explicit metrics, once extended to the Riemannian setting
contain in some limits most known examples of Einstein metrics (S4, S2 ×S

2, Fubini–Study,
Page’s metric, Taub-NUT, Taub–Bolt, Eguchi–Hanson, Schwarzschild, Kerr and their AdS
counterparts.) that were often discovered much later with complicated ansatz, see [24] where
smooth Ricci-flat and compact Einstein PD metrics are conjecturally classified. Extensions
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of these families more generally solve the Einstein–Maxwell equations and include known
metrics such as LeBrun’s earliest family of scalar-flat Kähler metrics [23].

This family also contains families developing orbifold singularities in the so-called AdS-
Taub–Bolt family. It moreover contains continuous families of metrics exhibiting global
collapsing bubbling out (Ricci-flat) Taub-NUT or Schwarzschild metrics in the so-called
AdS-Taub-NUT (or Pedersen’s) metrics or AdS-Schwarzschild families. We will focus on
cusp formation here.

Families of Poincaré–Einsteinmetrics forming cusps

Degeneration in the family of AdS C-metrics

It is now classical in the physics literature that a limit “without rotation or twisting” of
the PD metrics leads to the well-known AdS C-metrics whose Ricci-flat versions were
found by Levi-Civita [22] and Weyl [30] in the 1910s(!). In this family, we first find a
two-dimensional moduli space of smooth Poincaré–Einstein metrics on R

4 containing the
hyperbolic 4-metric and whose limiting behaviors include metrics forming one or two cusps.
A significant asymptotic quantity of Poincaré–Einstein metrics is the renormalized volume
defined in [20]. Despite the drastic degenerations presented in this article, the renormalized
volume stays bounded.

Theorem A (Sect. 2) There exists a smooth family of smooth Poincaré–Einstein metrics on
R
4 parametrized by an open region � in R

2. Approaching some points at the boundary ∂�,
the metrics converge smoothly to the hyperbolic space or degenerate forming one or two
codimension 2 cusps. These cusps have asymptotic behaviors:

dr21 + ae−r1dθ21 + dr22 + bdθ22 for r1 ∈ [0,+∞), r2 ∈ [0, 1], θ1, θ2 ∈ [0, 2π],
for a, b > 0 in the bulk of the manifold, and dr2 + ae−r dθ21 + bdθ22 at conformal infinity
with r ∈ [0,+∞). These examples have uniformly bounded renormalized volume.

An important question left open is the following one.

Question 0.3 Does there exist a continuous family of Poincaré–Einstein metrics forming
cusps separating the manifold into a complete finite volume piece and another complete
Poincaré–Einstein metric?

Remark 0.4 Unfortunately, this is impossible in our family of metrics and there is little hope
to find such a family of metrics explicitly given in coordinates. Indeed, in our case, one limit
of such a degeneration has to be an Einstein metric with negative Ricci curvature and with at
least one Killing vector field with finite length, which is impossible by Bochner’s formula;
see [32] for instance.

Degeneration in the Carter–Plebański family of metrics

The limits “without acceleration” of the PDmetrics constitute theCarter–Plebański family of
metrics. In Sect. 3, we exhibit a subfamily of smooth Poincaré–Einsteinmetricswith topology
CP

2\D4 forming cusp in some limits and discuss how other topologies may be reached.
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Degeneration in the full Plebański–Demiański family of metrics

In the full family of PD metrics, we also obtain cusps as in Theorem A which are this time
“twisted” as in (5). We additionally find families of smooth Poincaré–Einstein metrics onR4

where only the conformal infinity degenerates in some limit.

Theorem B (Section 4) There exists a smooth family of Poincaré–Einstein metrics on R
4

whose conformal infinity approaches one of the following behaviors in some limit: for a, b >

0

• A conical (edge) singularity: dr2 + a2r2dθ21 + b2dθ22 on (r , θ1, θ2) ∈ [0, 1]× [0, 2π]×
[0, 2π],

• A naked singularity: dr2 + a2r6dθ21 + b2dθ22 on (r , θ1, θ2) ∈ [0, 1]× [0, 2π]× [0, 2π],
or

• A cusp end: dr2 + a2e−4r dθ21 + b2dθ22 on (r , θ1, θ2) ∈ [0,+∞] × [0, 2π] × [0, 2π].
While approaching these behaviors at conformal infinity, the metrics converge smoothly in the
bulk metric in the pointed Cheeger–Gromov sense. These examples have uniformly bounded
renormalized volume.

These degenerations can occur in various limits that we describe in Sect. 4.

1 Regularity and asymptotics of the Plebański–Demiański family of
metrics

A “Euclideanized” Plebański–Demiański (PD) metric has the following form

gP D = 1

(x − y)2

[
Q(y)

1 − a2x2y2
(dψ − ax2dϕ)2 + 1 − a2x2y2

Q(y)
dy2

+ P(x)

1 − a2x2y2
(dϕ − ay2dψ)2 + 1 − a2x2y2

P(x)
dx2

]
(2)

where Q(y) and P(x) are polynomials of degree 4 which can be chosen depending on the
value of a ∈ R, physically understood as a rotation parameter, so that gP D is an Einstein
metric with RicgP D = −3gP D . This follows the Riemannian version of the computations
in [29], see also [24]. We will ensure that the metric has the right Riemannian signature by
choosing adapted ranges for the coordinates (x, y) where Q(y) > 0 and P(x) > 0. Up to
rescaling, we can assume a ∈ {0, 1}.

Let us first consider the larger familywith a = 1 fromwhich the other ones can be obtained
from various limiting procedures. The Einstein condition (1) with � = −3 is equivalent to
P and Q having the form

P(x) = bx4 + cx3 + dx2 + ex + b + 1 and

−Q(y) = (b + 1)y4 + cy3 + dy2 + ey + b, (3)

for b, c, d, e ∈ Rwhere we note the identity−Q(y) = P(y)+ y4−1. The local metric (2) is
then Einstein and Riemannian on ranges depending on roots of P and Q. When “closing-up”
at roots of P and Q, it may have codimension 2 cone-edge singularities (which wewill avoid)
or cusp ends which are discussed in Sect. 1.3

These metrics are moreover Poincaré–Einstein (when they are smooth) since they are
conformal to a metric with boundary: the boundary is given by {x = y} and the conformal
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factor is 1
(x−y)2

. The conformal infinity of these metrics is the conformal class of the metric

induced on {x = y} by (x − y)2gP D . We will see in different instances that these conformal
infinities may degenerate. The possible such degenerations are collected in Sect. 4.

Without loss of generality, we can write c = k+ + k−, e = k+ − k− in (3), in which
the set of eigenvalues of the ±-selfdual part of Weyl curvature WgP D is proportional to

k±
(1±xy)3

(2,−1,−1), see the computations of [29] and the Riemannian version of [24]. The
pointwise norm of the Riemannian tensor of gP D is then computed as

||RmgP D ||2 = 24 + 24(x − y)6

(
k2+

(1 + xy)6
+ k2−

(1 − xy)6

)
.

The volume element in these coordinates is −1+x2 y2

(x−y)4
dxdydϕdψ , and one checks that

‖WgP D ‖L2(gP D) is finite for the domains we consider, hence, by [3], the renormalized volume
is controlled for our examples.

Let us describe here the possible asymptotics of our metrics and give the regularity con-
ditions. The regularity conditions obtained for toric metrics are classical, and we focus on
ruling our conical singularities.

1.1 At a simple root x1 of P and a generic point y

As defined for instance in [2], a metric with cone-edge singularity of angle 2πβ > 0 along
a codimension 2 submanifold 
 has the following asymptotic at 
: for a 2π-periodic θ and
a 1-form ω on 


dr2 + β2r2(dθ + ω)2 + g
 + O(r1+ε), for ε > 0. (4)

Lemma 1.1 At a simple root x1 of P and a generic point y /∈ {−1/x1, 1/x1}, our metric (2)
with a ∈ {0, 1} has a cone-edge singularity whose angle is the period of |P ′(x1)|

2(1+a2x41 )
θ1, where

θ1 := ϕ + ax21ψ .

Proof To do this, we first note that close to its root x1, we have P(x) = P ′(x1)(x − x1) +
O((x − x1)2) at first order. Close to the root x = x1 and at y �= ±x−1

1 which is not a root of
Q, the metric therefore reads:

gP D = 1

(x1 − y)2

[
Q(y)

1 − a2x21 y2
(dψ − ax21dϕ)2 + 1 − a2x21 y2

Q(y)
dy2

+ P ′(x1)(x − x1)

1 − a2x21 y2
(dϕ − ay2dψ)2 + 1 − a2x21 y2

P ′(x1)(x − x1)
dx2

]
+ O((x − x1)

2).

Our codimension 2 submanifold 
 is given by {x = x1}, hence dx = 0 and θ1 := ϕ +
ax21ψ = cst , that is dθ1 = dϕ + ax21dψ = 0 (this is chosen as the orthogonal of the 1-form
dψ − ax21dϕ). The local coframe on 
 we will use is therefore dy and ω1 := dψ − ax21dϕ.
With these notations, the metric becomes:

gP D = 1

(x1 − y)2

[
Q(y)

1 − a2x21 y2
ω2
1 + 1 − a2x21 y2

Q(y)
dy2

+(1 − a2x21 y2)

(
P ′(x1)(x − x1)

(1 + a2x41 )
2

(dθ1 + f (y, x1)ω1)
2 + dx2

P ′(x1)(x − x1)

)]
+ O((x − x1)

2).
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where f (y, x1) = x21+y2

1−x21 y2
if a = 1 and f (y, x1) = 0 if a = 0. The regularity of the metric

close to x = x1 therefore reduces to the regularity of P ′(x1)(x−x1)
(1+x41 )2

(dθ1 + f (y, x1)ω1)
2 +

1
P ′(x1)(x−x1)

dx2.

Considering a change of variables x = x1 + P ′(x1)
4 r2, we find the conical singularity

metric:

|P ′(x1)|2
4(1 + a2x41 )

2
r2 (dθ1 + f (y, x1)ω1)

2 + dr2,

of angle the period of |P ′(x1)|
2(1+a2x41 )

θ1 by comparison with (4). It will be smooth if and only if

this period is 2π . ��
The case of a simple root y2 of Q is treated similarly and yields a cone-edge singularity

whose angle is given by the period of |Q′(y2)|
2(1+a2 y42 )

θ2, where θ2 is ψ + y22ϕ.

1.2 At x1 simple root of P and y2 simple root ofQ

Let us now consider y = y2, a simple root of Q, and still assume that x21 �= y−2
2 if a = 1.

Lemma 1.2 Assume that x1 is a simple root of P, and y2 is a simple root of Q, and 1 −
a2x21 y22 �= 0. Then, the metric (2) is smooth at (x1, y2) if and only if both |P ′(x1)|

2(1+a2x41 )
θ1 and

|Q′(y2)|
2(1+a2 y42 )

θ2 are 2π-periodic, where ω1 = dψ − ax21dϕ and ω2 = dϕ − ay22dψ .

Proof Expanding the metric near p = x1 and q = y2, a first-order development of the metric
gives:

gP D = 1

(x1 − y2)2

[
Q′(y2)(y − y2)

1 − a2x21 y22
(dθ2 + ω̃2)

2 + 1 − a2x21 y22
Q′(y2)(y − y2)

dy2

+(1 − a2x21 y22 )

(
P ′(x1)(x − x1)

(1 + a2x41 )
2

(dθ1 + ω̃1)
2 + 1

P ′(x1)(x − x1)
dx2

)]

+ O((x − x1)
2 + (y − y2)

2).

for some 1-forms ω̃1 = f1(y, x1)ω1 and ω̃2 = f2(x, y2)ω2 for some smooth functions f1
and f2 whose explicit value does not affect the regularity ( f1 = f2 = 0 if a = 0), and where
ω1 = dψ − ax21dϕ and ω2 = dϕ − ay22dψ .

The same change of variables as in Sect. 1.1 in both x and y ensures that the metric is
smooth at (x1, y2) if and only if |P ′(x1)|

2(1+a2x41 )
θ1 and

|Q′(y2)|
2(1+a2 y42 )

θ2 are 2π-periodic. ��

We conclude with the following regularity proposition.

Proposition 1.3 Let P and Q be polynomials such that P > 0 and Q > 0 on (x1, y2) ⊂ R

and assume that: x1 is a simple root of P, y2 is a simple root of Q, and 1 − a2x2y2 �= 0 for
x, y ∈ [x1, y2].

Then, the metric (2) is smooth if and only if the variables |P ′(x1)|
2(1+a2x41 )

θ1 and |Q′(y2)|
2(1+a2 y42 )

θ2 are

2π-periodic where θ1 := ϕ + ax21ψ and θ2 := ψ + ay22ϕ.
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1.3 At a double root x1 of P and a generic y: separating cusp

Similarly, close to x1 a double root of the polynomial, one has P(x) ≈ P ′′(x1)(x − x1)2/2.
As in Sect. 1.1, we find that close to the same codimension 2 submanifold 
, the metric is
asymptotic to:

(1 − a2x21 y2)

(
P ′′(x1)(x − x1)2

2(1 + a2x41 )
2

(dθ1 + f (y, x1)ω1)
2 + 2dx2

P ′′(x1)(x − x1)2

)
+ g
 (5)

for some smooth y �→ f (y, x1) vanishing when a = 0 which is an asymptotically cuspidal
metric. This is a smooth complete metric, but it adds a cuspidal end to the manifold.

1.4 Approaching a cuspidal end

Let us now explain how one can approach a codimension 2 cuspidal end by smooth metrics.
Assume that x1 ± iε are two complex conjugate roots of Pε for ε > 0 that we will send to
0. This time, we have the following second-order approximation for Pε(x) for x close to x1:
Pε(x) ≈ P ′′

ε (x1)
(
(x − x1)2 + ε2

)
/2 + O((x − x1)3).

This implies that the metric is approximately

(1 − a2x21 y2)

(
P ′′

ε (x1)
(
(x − x1)2 + ε2

)
2(1 + a2x41 )

2
(dθ1 + f (y, x1)ω1)

2

+ 2dx2

P ′′
ε (x1)

(
(x − x1)2 + ε2

)
)

+ g
. (6)

This is a smooth metric, but along {x = x1} it is close to a thin cylinder, see the left picture
of Fig. 1. As ε → 0, close to any x �= x1, the metric Cheeger–Gromov converges to the
cuspidal metric (5) on compact sets, see the right image in Fig. 1.

Fig. 1 Stages of cusp formation. The cusp on the right is infinitely long
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2 Degenerations of AdS C-metrics

2.1 Non-rotating limit: AdS C-metrics

For this section, we will follow [10] and will adopt their notation. Our study and goals are
purely geometric and differ from theirs. The AdS C-metrics are obtained from the general
Plebański–Demiański family (2) by taking the non-rotating limit a → 0. These metrics are
the Riemannian analogues of the metrics considered in [11] and have the form

gC = 1

(x − y)2

[
Q(y)dψ2 + dy2

Q(y)
+ dx2

P(x)
+ P(x)dϕ2

]
(7)

where we will assume that Q and P are parametrized by two variables μ, ν as

P(x) = (1 + x)
(
1 + νx + μx2

)
, and

−Q(y) = y
[
1 + ν + (μ + ν)y + μy2

]
, (8)

Note the identity −Q(y) = P(y)−1. This ensures Einstein condition (1) is satisfied and the
pointwise norm of the Riemannian tensor of gC is given by

‖RmgC ‖2gC
= 24 + 12(x − y)6μ2.

More precisely, from the computations of [10], one has Ric(gC ) = −3gC and the eigenvalues
of both the selfdual and anti-selfdual parts of WgC are equal to μ

4 (y − x)3(2,−1,−1). As
expected, these eigenvalues go to zero as x → y and when μ = 0, the metric is locally
hyperbolic. A direct computation ensures again that ‖WgC ‖2

L2(gC )
is bounded. In particular,

from [3], these examples have bounded renormalized volume.

2.2 Proof of Theorem A

In this section, we study a specific 2-dimensional family of AdS C-metrics on R
4 forming

one or two cusps in different limits. The cusps forming here effectively separate the manifold
into two or three Poincaré–Einstein metrics with cusps ends in their bulk and their conformal
infinities. We prove Theorem A.

As in Sect. 2.1, we consider the metric (7) where −Q(y) = y
[
1 + ν + (μ + ν)y + μy2

]
and P(x) = (1 + x)

(
1 + νx + μx2

)
. The roots of P and Q, respectively, are as follows

x0 = −1, x± = −ν ± √
ν2 − 4μ

2μ
, and

y0 = 0, y± = −(μ + ν) ± √
(μ + ν)2 − 4μ(1 + ν)

2μ
. (9)

In order to approach metrics with cusp ends in this family by smooth metrics, we consider
the case when x±, y± are complex conjugate roots which we will let approach a real double
root—leading to a cusp degeneration by Sect. 1.4. In the (μ, ν) plane, this condition means
that (μ, ν) lies in the region bounded by the curves ν = 2

√
μ and ν = μ − 2

√
μ.

We then consider −1 < x < y < 0 where the conformal infinity is at {x = y}, see
Fig. 2b. For the metric to be smooth, we require that 1−ν+μ

2 ϕ and 1+ν
2 ψ be 2π-periodic, see

Proposition 1.3. We further impose that μ > max(ν/2,−ν). This corresponds to forcing
the real part of x± and y± to be in (−1, 0), this way the double root degeneration (when
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Fig. 2 Parameter ranges considered. The dashed {x = y} is the conformal infinity

the imaginary part of the roots tends to zero) happens where the metric is defined and is
geometrically meaningful. We end up with the region D4 in [10] shaded in Fig. 2a in theμ, ν

plane bounded by the curves ν = 2
√

μ, ν = μ − 2
√

μ, ν = 2μ and ν = −μ.

Remark 2.1 In the limit (μ, ν) → 0 from our region shaded in Fig. 2a, our metrics converge
smoothly to the hyperbolic 4-space. Indeed, the metric is already locally hyperbolic by
our curvature computations and the change of variables x = − sin2 ((u − π)/2) , at the
conformal infinity {x = y}, the restriction of the metric (x − y)2gC with μ = ν = 0 takes
the form

du2 + cos

(
u − π

2

)2

dϕ2 + sin

(
u − π

2

)2

dψ2.

Thus, we recover the metric of the round 3-sphere in Hopf’s coordinates since ϕ and ψ

are 4π-periodic. This in particular ensures that the topology we consider is R4.

From (9), we see that, for (μ, ν) in the shaded region in Fig. 2a, if one of P, Q has a double
root, then (μ, ν) lies on at least one of the boundary curves ν = 2

√
μ or ν = μ − 2

√
μ,

respectively, in blue and red in Fig. 2, see the first two columns of Fig. 3 for the associated
polynomials and geometric representation. The intersection of these curves, (μ, ν) = (16, 8),
is the unique case when P and Q have double roots at x = −1

4 and y = −3
4 ) as described

in Fig. 3c, f, respectively, leading to two cusps dividing the manifold in three regions, while
the point (μ, ν) = (0, 0) corresponds to hyperbolic 4-space from Remark 2.1. The possible
double roots of P and Q, respectively, lie in the intervals (−1, −1

4 ] and [−3
4 , 0).

This completes the proof of Theorem A.

3 Degenerations in Carter–Plebański family of metrics

3.1 Non-accelerating limit: Carter–Plebański metrics

The Carter–Plebański family of metrics is a special limit of the Plebański–Demiański family
of metrics (2) after a change of coordinates. To do this, start from (2) in the coordinates of
[24] and perform a rescaling by b > 0 (acceleration parameter) of coordinates as in [19,
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Fig. 3 Different configurations of double roots

Section 2.2], which yields the following metric:

gP D = 1

(1 − bpq)2

[
p2 − q2

Pb(p)
dp2 + p2 − q2

Qb(q)
dq2 + Pb(p)

p2 − q2

(
dτ + q2dσ

)2

+ Qb(q)

p2 − q2

(
dτ + p2dσ

)2]
(10)

for polynomialsPb andQb depending on b > 0 chosen to satisfy (1)with� = −3. Taking the
“no acceleration limit” b → 0 as in [19, Section 5], we obtain from (10) theCarter–Plebański
metric

gC P := p2 − q2

P(p)
dp2 + p2 − q2

Q(q)
dq2 + P(p)

p2 − q2

(
dτ + q2dσ

)2 + Q(q)

p2 − q2

(
dτ + p2dσ

)2
,

(11)

where the limiting polynomials P and Q are of the form:

P(p) = p4 + E2 p2 − 2N p + α and

Q(q) = −q4 − E2q2 + 2Mq − α (12)

following the notations of [26] for some real numbers E , M , N and α.
We will consider intervals where P(p) � 0 and Q(q) � 0. This time, the range in p will

be compact of the form [p−, p+] for p± roots of P and the range in q will be of the form
[q+,+∞) for q+ root of Q.

This metric is Poincaré–Einstein and as q → +∞ (the infinity in these coordinates), the
metric looks like

gC P ≈ dq2

q2 + q2
(

− dp2

P(p)
− P(p)dσ 2 + (dτ + p2dσ)2

)
(13)
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Fig. 4 Polynomial and range of coordinates

so the metric at conformal infinity is − dp2

P(p)
− P(p)dσ 2 + (dτ + p2dσ)2.

3.2 An example with different topology

In this section, we indicate how to find families of metrics forming cusps with different
topologies. We take the simplest example here on CP

2\D4 with conformal infinity S
3. We

follow [26, Sections 2.1, 2.2 and 2.3] for our regularity conditions: we impose τ and σ to be
as [26, Sections 2.13 and 2.17]. This also requires N = M , which is equivalent to the metric
being self-dual, and forcing P = −Q.

We will moreover parametrize our polynomial by the roots and looking for a metric with
a cusp, we will consider a polynomial with a double root: for p3, p4, p0 ∈ R (following
notations of [26]):

P(p) = (p − p3)(p − p4)(p − p0)
2. (14)

We will then consider the range (p, q) ∈ [p3, p4] × [p4,+∞], where the associated metric
is indeed Riemannian (Fig. 4).

Remark 3.1 Recall that from Remark 0.4, we cannot have a double root in Q on (p4,+∞).
All we will find instead is a double root of P on (p3, p4) corresponding to a cusp in the
manifold extending to infinity.

We need our double root p0, to lie in (p3, p4) so that it is reflected in our metric. Since
the sum of the roots is 0 (the cubic coefficient of the polynomial is zero), p0 = − p3+p4

2 and
so p0 ∈ (p3, p4) imposes

p3 < 0 < p4, and
1

3
|p3| < |p4| < 3|p3|. (15)

We can find this polynomial (14) as a limit of polynomials with two complex conjugate roots:
for ε � 0

Pε(p) = (p − p3)(p − p4)
((

p + 1

2
(p3 + p4)

)2 + ε2
)

(16)

where we get the double root mentioned above when ε → 0 and we also let −Qε = Pε to
satisfy the above regularity condition of [26]. Since the roots of the polynomials are the same,
the intervals in which these are defined stay the same. Geometrically, in the limit ε → 0,
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the metrics (11) associated with −Qε = Pε develop a cusp along {p = −(p3 + p4)/2}
separating the manifold in two parts by an argument similar to Sect. 1.3.

The topology of the manifold is that of CP2 minus a ball and the conformal infinity is
S
3. The “bolt” of the metric is reached at [p3, p4] × {q = 1} which is a codimension 2

submanifold (a 2-sphere), see [26].

Remark 3.2 It is likely possible to obtain infinitelymany different topologies from theCarter–
Plebański family of metrics by having a larger and larger “self-intersection” for the 2-sphere
while obtaining a conformal infinityS3/Zk forZk a cyclic subgroup of SU (2) acting freely on
S
3. See [13, Section 5.1] for a discussion of the regularity conditions and possible topologies.

In the larger Plebański–Demiański family of metrics, we believe that there is also a large
class of additional possible topologies, with two “bolts” (and a “NUT”). The conformal
infinity, could this time be an arbitrary lens space. See [13, Section 5.2] for a discussion of
the regularity conditions and possible topologies.

4 Degenerations in the Plebański–Demiański family of metrics

We will now turn to the general PD family of metrics. The above degenerations of Sects. 2
and 3 can be found in the full family of Plebański–Demiański, but we focus on exhibiting
new behaviors of complete metrics whose conformal infinities develop unexpected types of
singularities. We prove Theorem B.

In this section, we consider a subfamily of metrics in (2) with a = 1, parametrizing our
polynomials as

P∞(x) = C∞(x − α1)((x − 1 + α2)
2 + α3)(x − α4) (17)

withC∞ = (−1+α1α
2
2α4+α1α4−2α1α2α4+α1α3α4)

−1 and−Q∞(y) = P∞(y)+ y4−1.
These metrics satisfy the Einstein Condition (1) with � = −3 for all α1, α2, α3, α4 ∈ R.

As for the bulk metric, the conformal infinity {x = y} has different possible asymptotic
behaviors close to roots of P∞ or Q∞. We consider (2), whose conformal metric at infinity
is:

gbdr y = (1 − a2x4)

(
1

P∞(x)
+ 1

Q∞(x)

)
dx2 + Q∞(x)

1 − a2x4
(dψ − ax2dϕ)2

+ P∞(x)

1 − a2x4
(dϕ − ax2dψ)2. (18)

We will moreover assume that the regularity conditions for the bulk of Proposition (1.3) are
satisfied whenever applicable. Simpler arguments than Sects. 1.1 and 1.3 imply the following
result.

Proposition 4.1 Under the assumptions of Proposition 1.3, the conformal metric is smooth.
Moreover, if P∞ (or Q∞) has a double root at −1 < x0 < 1, then the conformal boundary
metric of (18) has a codimension 2 separating cusp as described in (5).

We will see that allowing the roots to be at ±1 leads to different degenerate behavior
for the conformal infinity alone. Setting α2 = α3 = 0 and choosing distinct α1, α4 ∈ R in
(17), the polynomial P∞ has a double root only at x = 1 while Q∞ has a simple root at
1. This will correspond to a Naked Singularity in the metric, which we describe in Sect. 4.1
once we ensure that our metric is smooth and Riemannian. We first need to verify that we
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have the correct signs P∞ > 0 and Q∞ > 0 on the region α1 � x < y � 1. Assume that

α1 < 1 � α4, then the inequality P ′∞(α1) = (α1−1)2(α1−α4)
α1α4−1 > 0, which is satisfied whenever

α1 < α−1
4 , guarantees that P∞ > 0 on (α1, 1). To guarantee that Q∞ has the right sign, it is

enough to impose −1 < α1 < 0.

Remark 4.2 This is true on a larger range of values of α1 which we do not attempt to describe.

Lastly, we assume that ϕ and ψ satisfy the periodicity conditions imposed in Proposition
1.3 to ensure that we find smooth metrics.

4.1 A naked singularity

Assuming that 1 is a double root of P∞ and a simple root of Q∞, at x = 1, the metric (18)
approaches

C1

(1 − x)
dx2 + C2θ1(x)2 + C3(x − 1)3θ2(x)2 (19)

for θ1(x) → dϕ − dψ , θ2(x) → dϕ + dψ as x → 1 and where C1 = 8
P ′′∞(1) , C2 = Q′∞(1)

4

and 4C2C3 = P ′′∞(1)
2 Q′∞(1) so C3 = P ′′∞(1)

2 . A change of variables r = 2
√
1 − x in (19)

Fig. 5 Naked singularity, not
infinitely long

Fig. 6 Example polynomials and region for metric with naked singularity at infinity
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Fig. 7 Smooth metric to naked singularity

yields the naked singularity metric: close to r = 0,

C1dr2 + C2θ1(x)2 + C3

4
r6θ2(x)2. (20)

The metrics obtained in this way can be approached by perturbing the parameters α2 and
α3 in various ways around (0, 0). This gives the following different types of degenerations,
which we describe below (Figs. 5, 6).

4.2 Degeneration 1: from a smoothmetric to a naked singularity.

By taking α3 > 0 and keeping α2 = 0, the double root of P∞ at 1 is replaced with two
complex roots, see Fig. 7a. Taking the limit α3 → 0 yields the above naked singularity.
Similarly, by taking α2 < 0 and α3 = 0, the double root of P∞ is moved past the conformal
infinity y = x , see Fig. 7b. Taking the limit α2 → 0 yields the above naked singularity.

Both of these situations yield a smooth metric at conformal infinity by Proposition 4.1.
Indeed, P∞ does not have any root close to the root of Q∞.

4.3 Degeneration 2: from a conical singularity to a naked singularity.

Let us assume that 1 is a simple root of both P∞ and Q∞ for the metric (18). The case of
−1 is treated similarly. As x → 1, we obtain that the metric (18) is asymptotic to

C1dx2 + C2θ1(x)2 + C3(x − 1)2θ2(x)2

where θ1(x) → dϕ−dψ , θ2(x) → dϕ+dψ as x → 1, andC1 = 4
(

1
P ′∞(1) + 1

Q′∞(1)

)
,C2 =

P ′∞(1)+Q′∞(1)
4 and C3 = P ′∞(1)Q′∞(1)

P ′∞(1)+Q′∞(1) =
(

1
P ′∞(1) + 1

Q′∞(1)

)−1
. This yields a codimension 2

cone-edge singularity of angle −P ′∞(1)Q′∞(1)
2(P ′∞(1)+Q′∞(1)) .

By taking α3 < 0 and α2 = 0, see Fig. 8a, the double root of P∞ at 1 is split in two
real roots x− < 1 < x+. This changes the topology and creates a codimension 2 cone-edge
singularity along {x = x−} by Lemma 1.1, extending to the conformal infinity {x = y}. As
α3 → 0, the angle tends to zero and a naked singularity appears while the singularities in
the bulk are “sent to infinity”.
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Fig. 8 Conical singularity to naked singularity

By setting α3 < 0 and α2 = −√−α3 as in Fig. 8b, the double root of P∞ at 1 is split into
a single root at 1 and a root larger than 1. This gives a conical singularity in the metric at the
conformal infinity only this time. As α3 → 0, the angle tends to zero and a naked singularity
appears in the limit.

4.4 Degeneration 3: from cusp to naked singularity

By taking α2 > 0 and α3 = 0, the double root 1 − α2 of P∞ is moved to the left of the
root in Q∞. This creates a cusp in the bulk metric as well as in its infinity by Sect. 1.3 and
Proposition 4.1.

As in Sect. 2.1, this cusp at {x = 1 − α2} separates the manifold in two regions infinitely
far apart, and the conformal infinity in two finite volume manifolds with cusp ends.

When α2 → 0, the volume of {1 − α2 < x = y < 1} tends to zero and the region
disappears, and the metric on {α1 < x = y < 1 − α2} has infinite diameter for α2 > 0 but
finite diameter in the limit α2 → 0 (these remarks do not depend on the representative of the
conformal class) (Fig. 9).

This is a manifestation of cusp degenerations in the bulk manifold comparable to those
of Sect. 2.1. Indeed, in the family of metrics obtained from (17), there is a four-dimensional

Fig. 9 Cusp to naked singularity
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family of smooth Poincaré–Einstein metrics with a (three-dimensional) boundary constituted
of metrics with one cusp separating the manifold in two set, and a two-dimensional family
with two cusps separating the manifold in three.

Remark 4.3 There are important differences with Sect. 2.1. The cusps from (2) for a = 1 are
“twisted” (see (5)) and do not look like mere products of surfaces in the limit. Moreover, as
described above, as α2 → 0 the cusps “escapes” to infinity creating the above unexpected
naked singularity at infinity. This was impossible in the family (7) because the double root
in P could not approach 0 and the double root in Q could not approach −1.

4.5 Two cusps at conformal infinity only

We finally assume that 1 is a triple root of P∞ and a simple root of Q∞. The metric (18) is
asymptotic to

C1

(1 − x)2
dx2 + C2θ1(x)2 + C3(x − 1)4θ2(x)2 (21)

where again, θ1(x) → dϕ − dψ , θ2(x) → dϕ + dψ as x → 1 and where C1 = 24
P(3)∞ (1)

,

C2 = Q′∞(1)
4 and C3 = P(3)∞ (1)

6 . A change of variables r = − log(1 − x) in (21) yields the
cusp end metric: for r close to +∞,

C1dr2 + C2θ1(x)2 + C3e−4rθ2(x)2. (22)

This time, we exhibit a metric with codimension 2 cusps ends at the conformal infinity only—
in particular, the conformal infinity is not compact. Unlike the example of Sect. 2, these cusps
do not cut the manifold in different pieces. Consider

P2,∞(x) = −1

2
(x − 1)3(x + 1) and

Q2,∞(y) = −1

2
(y − 1)(y + 1)3

which are limit of the polynomials in (17) for α1 = −1, α2 = 0, α3 = 0 and α4 = 1. These
polynomials have the desired signs on the region −1 � x � 1,−1 � y � 1 making the

Fig. 10 Two cusps at conformal
infinity only
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metric (2) with a = 1 Riemannian. Its infinity has two cusp ends at the points (−1,−1) and
(1, 1) thanks to (21). This is a limiting case for all the previous degenerations as well as a
limit of naked singularities at either 1 or −1 (Fig. 10).

Remark 4.4 From Sect. 1, one moreover notices that this metric is anti-selfdual since the
linear and cubic coefficients of P2,∞ are opposite.
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