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Abstract
We present a construction of closed 7-manifolds of holonomy G2, which generalises
Kovalev’s twisted connected sums by taking quotients of the pieces in the construction before
gluing. This makes it possible to realise a wider range of topological types, and Crowley,
Goette and the author use this to exhibit examples of closed 7-manifolds with disconnected
moduli space of holonomy G2 metrics.
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The twisted connected sum construction pioneered by Kovalev [1] is a way to construct
closed 7-dimensional Riemannian 7-manifolds with holonomy G2 from algebraic geometric
data. Corti, Haskins, Pacini and the author [2] employed the construction to exhibit many
examples of G2-manifolds whose topology can be understood in great detail. The aim of this
paper is to present a variation of the twisted connected sum construction that removes some
restrictions on the topology of the resulting 7-manifolds and G2-structures. In particular, it is
proved by Crowley, Goette and the author in [3] that this construction can be used to produce
examples of 7-manifolds such that the moduli space of G2 metrics is disconnected.

Seven-dimensionalmanifoldswith holonomyG2 appear as an exceptional case inBerger’s
classification of possible holonomy groups of Riemannian manifolds [4]. The first complete
examples of manifolds with holonomy G2 were found by Bryant and Salamon [5] and
have large symmetry group. In contrast, closed G2-manifolds can never have continuous
symmetries, because G2-metrics are always Ricci-flat. The first examples of holonomy G2

metrics on closed manifolds were found by Joyce [6], gluing together reducible pieces to
resolve quotients of flat orbifolds.

The twisted connected sum construction developed later by Kovalev [1] works by gluing
together two pieces, each of which is a product of a circle S1 and a complex 3-fold with an
asymptotically cylindrical Calabi–Yaumetric. Each piece thus has holonomy SU (3), a proper
subgroup of G2. The asymptotically cylindrical Calabi–Yau 3-folds can be obtained from
algebraic geometry data, e.g. starting from Fano 3-folds. The cross-section of the asymptotic
cylinder is of the form S1 × � for a K3 surface �. In the gluing, the asymptotic cylinders
of the pieces—each with cross-section S1 × S1 ×�—are identified by an isomorphism that
swaps the S1 factors in order to produce a simply connected 7-manifold M , admitting metrics

B Johannes Nordström
j.nordstrom@bath.ac.uk

1 Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-023-09893-1&domain=pdf


2 Page 2 of 80 Annals of Global Analysis and Geometry (2023) 64 :2

with holonomy exactly G2. This relies on finding a so-called hyper-Kähler rotation between
the K3 factors in the cross-sections, see Definition 1.8.

Corti, Haskins, Pacini and the author [2, 7] extended the supply of algebraic geometric
building blocks towhich the twisted connected sum construction can be applied, and analysed
the topology of millions of the resulting G2-manifolds. While the G2-manifolds constructed
by Joyce typically have nonzero second Betti number b2, many twisted connected sums—
indeed, the ones that can be constructed with the least effort—are 2-connected, making it
possible to apply the classification theory of Wilkens [8, 9], Crowley [10] and Crowley and
the author [11] (see Theorem 7.42) to completely determine the diffeomorphism type of the
underlying 7-manifold.

Twisted connected sumG2-manifolds M always have the following topological properties.

(i) b2(M)+ b3(M) is odd [1, (8.56)].
(ii) The torsion subgroup Tor H4(M) equipped with the linking form splits as G ×

Hom(G,Q/Z) for some finite group G [12, Proposition 3.8]. In particular, the size
of Tor H4(M) is a square integer.

(iii) The invariant ν ∈ Z/48 takes the value 24 [13, Theorem 1.7], and the refinement ν̄ ∈ Z

vanishes [3, Corollary 3].

Here ν and ν̄ are invariants not of the 7-manifold, but of the G2-metric. A metric with
holonomy exactly G2 is equivalent to a torsion-free G2-structure. A G2-structure means
a reduction of the structure group of the frame bundle from GL(7,R) to G2, but is sim-
plest described in terms of a smooth pointwise stable 3-form ϕ ∈ �3(M). The torsion-free
condition corresponds to a first-order partial differential equation for the 3-form ϕ.

Now, given a G2-structure ϕ on any closed 7-manifold, we may define ν(ϕ) ∈ Z/48 in
terms of a spin coboundary [13, Definition 3.1]. This is invariant under both diffeomorphisms
and homotopies (continuous deformations of the G2-structure, ignoring the torsion-free con-
dition). Further, [3,Definition1.4] introduces a refinement ν̄(ϕ) ∈ Z in termsof eta invariants.
It is a refinement in the sense that for G2-structures of holonomy G2 metrics, ν̄ determines ν
by the relation ν(ϕ) ≡ ν̄(ϕ)+24 mod 48.While ν̄(ϕ) too is invariant under diffeomorphisms,
it is not invariant under arbitrary homotopies of G2-structures. However, ν̄ is invariant under
deformations through torsion-free G2-structures.

Remark There is a parity constraint

ν(ϕ) = χ2(M) mod 2, (0.1)

where χ2(M) is the semi-characteristic
∑3

i=0 bi (M) ∈ Z/2. This reduces to 1 + b2(M) +
b3(M) for a simply connected 7-manifold. Thus, (iii) formally entails (i).

These invariants give a potential method to distinguish connected components of the G2

moduli space on a closed 7-manifold. However, even though there are many pairs of twisted
connected sums whose underlying 7-manifolds can be shown to be diffeomorphic by the
classification theory, (iii) means that ν and ν̄ fail to distinguish their components in the
moduli space in this case.

In this paper we modify the twisted connected sum construction by dividing either or
both of the two pieces in the construction by an involution before gluing. This maintains
many of the attractive features of the twisted connected sum construction: examples can
be generated starting from algebraic geometry data, topological invariants can be computed
from the algebraic inputs, and the resulting 7-manifolds are often 2-connected and simple
enough to apply diffeomorphism classification theory. On the other hand, the topology of the
result is less restrictive.
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(i’) There is no constraint on the parity of b2(M)+ b3(M).
(ii’) The size of Tor H4(M) need not be a square integer, and in particular the linking form

need not split.
(iii’) The values of ν and ν̄ can vary.

The drawback compared with the ordinary twisted connected sum construction is that
requiring an involution limits the range of algebraic building blocks to which the construction
can be applied. Also, the topological computations are more involved.

We exhibit a selection of 50 explicit examples of 7-manifolds with holonomy G2 obtained
from the new construction. All except Example 8.15 are 2-connected. Seven of those have
odd b3 and torsion-free H4(M), and 5 of those are diffeomorphic to some ordinary twisted
connected sum. The ν̄-invariant of extra-twisted connected sums is computed in [3, Corollary
2] (see Theorem 7.41) and used there to prove that these lead to examples of closed 7-
manifolds with disconnected moduli space of holonomy G2 metrics.

Among the examples in this paper, we also find

• A 7-manifold whose G2 moduli space has at least 3 components (see Examples 8.2 and
8.19, using the formula for ν̄ from [3]).

• A pair of G2-manifolds whose diffeomorphism types are distinguished only by the type
of the torsion linking form (Examples 8.3 and 8.4).

• A pair of G2-manifolds with equal ν̄-invariant, such that the underlying manifolds are
diffeomorphic, but (due to order 3 torsion in H4) only by an orientation-reversing diffeo-
morphism; thus, the fact that ν̄ changes sign under reversing orientation can be used to
distinguish connected components of the G2 moduli space on this 7-manifold (Examples
8.11 and 8.12).

• A G2-manifold that illustrates a subtlety in the calculation of the number of smooth
structures on 2-connected 7-manifolds with 8-torsion in H4: Wilkens [9, Conjecture
p. 548] predicts that Example 8.14 has a unique smooth structure, but according to [11,
Theorem 1.10] it has two.

Organisation

The paper consists of two strands. The first is to set up the general machinery of the extra-
twisted connected sum construction. The procedure for gluing ACyl Calabi–Yau manifolds
(possibly with involution) is made precise in Sect. 1, while Sect. 2 describes the closedKähler
3-fold “building blocks” from which we obtain ACyl Calabi–Yau 3-folds, and what data of
these blocks is important. The matching problem, i.e. how to find hyper-Kähler rotations
between pairs of ACyl Calabi–Yau 3-folds, is addressed in Sect. 6, and Sect. 7 explains how
to compute key invariants of the resulting G2-manifolds.

The second strand is producing examples. Two methods of producing building blocks are
provided in Sects. 3 and 5, starting from semi-Fano 3-folds and K3s with non-symplectic
involution, respectively. In Sect. 8, we exhibit a number of examples of matchings of those
blocks and compute the topology of the extra-twisted connected sums. In some cases, the
matchings rely on understanding of which K3 surfaces appear in certain families of building
blocks, which is studied in detail in Sect. 4.

Some of the machinery we set up—in particular the discussion of the matching problem
in Sect. 6—works in the same way in a more general setting where one allows to divide by
automorphisms of order greater than 2. This is studied further by Goette and the author in
[14]. However, the topological calculations are less tractable there.
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1 The basics of the construction

1.1 Reducible G2-manifolds

For ζ > 0, let S1
ζ denote R/ζZ, and u its coordinate (with period ζ ); the parameter ζ affects

the geometric meaning of the coordinate expressions for metrics below.

Theorem 1.1 [15, Theorem D] Let Z be a compact Kähler 3-fold containing a smooth anti-
canonical K3 surface � with trivial normal bundle. Let V := Z\�, and consider it as a
manifold with a cylindrical end of cross-section S1

ζ ×�. Let I be the complex structure on �

induced by Z, and let (ωI , ωJ , ωK ) be a hyper-Kähler K3 structure on � such that ωJ + iωK

is (2,0) with respect to I while [ωI ] is the restriction of some Kähler class k ∈ H2(Z;R).
For any ζ > 0 there is a unique ACyl Calabi–Yau structure (�, ω) on V , with ω ∈ k|V and
asymptotic limit

ω∞ := dt ∧ du + ωI ,

�∞ := (du − idt) ∧ (ωJ + iωK ).

(In this metric, the S1
ζ factor in the cross-section has circumference ζ .)

Given ξ > 0, define a product G2-structure ϕ on S1
ξ × V by

ϕ := dv ∧ ω + Re�,

where v denotes the coordinate on the external circle factor S1
ξ (whose circumference with

respect to the induced metric is ξ ). The asymptotic limit of ϕ is

ϕ∞ = dv ∧ dt ∧ du + dv ∧ ωI + du ∧ ωJ + dt ∧ ωK .

Letting

z = v + iu, (1.2)

we can rewrite the limit as

ϕ∞ = Re
(

dz ∧ (ωI − iωJ )
)
+ dt ∧

(
ωK − i

2dz ∧ dz̄
)
. (1.3)

Note that ζ and ξ are the side lengths of the rectangular T 2 factor in the cross-section of
S1
ξ ×V . If ∂u, ∂v ∈ R2 is the orthonormal frame dual to du, dv, then we can think of ζ∂u and

ξ∂v as the generators of the lattice defining the T 2. Let ϕs0 be the G2-structure obtained by
setting ζ = ξ = 1, as we do in the ordinary twisted connected sum construction; then, the
T 2 factor is simply the quotient of C by the unit square lattice as illustrated in Fig. 1. (Note
that real axis↔ u = 0 ↔ external circle factor.)

Suppose now that there is a holomorphic involution τ on Z such that� is a component of
the fixed set; cf. Definition 2.7. Then, the restriction of τ to V is asymptotic to the involution
a× Id on S1

ζ ×�, where a : S1
ζ → S1

ζ denotes the antipodal map v �→ v+ 1
2 ζ . If we choose

the Kähler class k in Theorem 1.1 to be τ -invariant, then so is the resulting Calabi–Yau
structure (�, ω). The product G2-structures above then descend to ones on the quotient

S1
ξ ×̃ V := S1

ξ×V / a×τ.

The cross-section is T 2×� for T 2 := S1
ξ × S1

ζ /a×a. Note that this T 2 is still a flat 2-torus,

but not a metric product of circles unless ξ = ζ . Let ϕs1, ϕh0 and ϕh1 be the G2-structures on
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Fig. 1 Tori

∂u
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√
2∂u

√
2∂v

ϕs1

√
3∂u

∂v

ϕh0

∂u

√
3∂v

ϕh1

S1
ξ ×̃V corresponding to (ζ, ξ) = (

√
2,
√
2), (

√
3, 1) and (1,

√
3), respectively. As illustrated

in Fig. 1, the T 2 factor in the cross-section is a unit square torus with respect to ϕs1, and a
hexagonal torus with side length 1 with respect to ϕh0 and ϕh1.

1.2 Gluing

Let (M+, ϕ+) and (M−, ϕ−) be a pair of reducible ACyl G2-manifolds, such that either
each is of the form (S1

ξ × V , ϕs0) or (S1
ξ ×̃ V , ϕs1), or each is of the form (S1

ξ ×̃ V , ϕh0) or

(S1
ξ ×̃ V , ϕh1) above. We strive to treat the cases as uniformly as possible and may use the

shorthand ϕab for symbols a ∈ {s, h} and b ∈ {0, 1}. Let (ωI±, ωJ±, ωK± ) be the corresponding
hyper-Kähler structures and define z± by (1.2).

Let ϑ ∈ R such that the isometry C → C, z+ �→ z− := eiϑ z̄+ descends to an isometry

t : T 2+ → T 2− (1.4)

of the torus factors in the cross-sections of M+ and M−. The condition that t is well-defined
on the quotient is equivalent to

ϑ =

⎧
⎪⎨

⎪⎩

kπ

2
if a = s,

kπ

3
if a = h,

(1.5)

for some k ∈ 1
2Z with k ≡ b++b−

2 mod Z. We call ϑ the gluing angle of t.
Let r : �+ → �− be a diffeomorphism, and

F := (−IdR)× t× r : R× T 2+ ×�+ −→ R× T 2− ×�−. (1.6)
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From (1.3), we see that (1.6) is an isomorphism of the asymptotic limits of ϕ± if and only if

r∗ωK− = −ωK+
r∗(ωI− + iωJ−) = eiϑ(ωI+ − iωJ+).

(1.7)

Definition 1.8 Call r : �+ → �− a ϑ-hyper-Kähler rotation if (1.7) holds.

We consider the problem of finding such hyper-Kähler rotations in Sect. 6. The special case of
a π

2 -hyper-Kähler rotation coincides with the notion of a hyper-Kähler rotation from previous
work on twisted connected sums, e.g. [2, Definition 3.10].

In these terms, suppose we can find a pair of reducible ACyl G2-manifolds (M±, ϕ±) of
the above form, with asymptotic cross-sections T 2± × �±. Suppose further we can find an
isometry t : T 2+ → T 2− as in (1.4), and a ϑ-hyper-Kähler rotation r : �+ → �− for ϑ the
gluing angle of t.

Theorem 1.9 For � � 0, let M±[�] be the truncation of M± at t = �, and form a closed
7-manifold M by gluing M+[�] to M−[�] along their boundaries by the diffeomorphism
t × r : T 2+ × �+ → T 2− × �−. Patch ϕ+ and ϕ− to a closed G2-structure ϕ̃� on M such
that ‖ϕ̃|M±[�] −ϕ±|M±[�]‖ = O(e−δ�) by using a cut-off function. Then, there exists a unique
torsion-free G2-structure ϕ in the cohomology class of ϕ̃� such that ‖ϕ − ϕ̃‖ = O(e−δ�).

Proof Analogous to [1, Theorem 5.34]. �
Construction 1.10 We call the 7-manifold M from Theorem 1.9 a ϑ-twisted connected sum.

When a = s and b+ = b− = 0, setting ϑ = π
2 recovers the usual notion of a twisted

connected sum (and ϑ ∈ πZ gives an “untwisted” connected sum, with b1(M) = 1 and
holonomy not all of G2).

1.3 Angles

Before we enumerate the possible combinations of (a, b+, b−, ϑ) that make it possible to
match ϕab+ to ϕab− with a torus matching t with gluing angle ϑ , let us discuss briefly the
geometric meaning of ϑ . We can think of ϑ as the angle in T 2 between the external circle
factors in M+ and M−, but that leaves an ambiguity of sign and complementary angles.
However, because the definition of the G2-structures involves an orientation of the external
circle factors the direction of the tangent vectors ∂v+ and ∂v− have some meaning, and the
angle between them is ϑ | ∈ (0, π). The sign can be described in terms of the complex
structure on the cross-section induced by the G2-structure on M+ (vector multiplication by
∂t ); because the T 2 factor is a complex curve, it makes sense to consider the oriented angle
from ∂v+ to ∂v− .

If we swap the roles of M+ and M−, then the complex structure on the cross-section is
conjugated, so even though ∂v+ and ∂v− are swapped the oriented angle ϑ is unchanged.
More formally, note that if r : �+ → �− is a ϑ-hyper-Kähler rotation, then so is r−1. Let
(M ′, ϕ′) be the corresponding ϑ-twisted connected sum of M− and M+. Then, there is a
tautological (oriented) diffeomorphism M → M ′, and that pulls back ϕ′ to ϕ.

Here is another symmetry to bear in mind. We obtained the product G2-structures ϕ± on
M± from ACyl Calabi–Yau structures (�±, ω±) on V±. Phase rotation by π gives an equally
good Calabi–Yau structure (−�±, ω±), and another product G2-structure ϕ′±. The asymp-
totic limit of ϕ′± is encoded by the hyper-Kähler structure (ωI±,−ωJ±,−ωK± ). Inspecting
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Fig. 2 Right-angle matching ∂u+ = ∂v−

∂v+ = ∂u−

ϑ =
π

2

∂v+

∂v−

∂u+

∂u−

ϑ = −π

2

(1.7) we see that a ϑ-hyper-Kähler rotation for ϕ+ and ϕ− is the same thing as a (−ϑ)-
hyper-Kähler rotation for ϕ′+ and ϕ′−. Let (M ′, ϕ′) be the resulting (−ϑ)-twisted connected
sum. Now (v±, x) �→ (−v±, x) defines an orientation-reversing diffeomorphism of M±,
pulling back ϕ′± to −ϕ±. These match up to define an orientation-reversing diffeomorphism
M → M ′ that pulls back ϕ′ to −ϕ.

Taking these symmetries into account, any extra-twisted connected sumwill be isomorphic
to one that hasb+ ≥ b− andϑ ∈ (0, π), anduses exactly the same (unordered) pair of building
blocks.

In listing the possibilities, we therefore restrict our attention to such cases. We find below
that there is essentially a single interesting type of ϑ-twisted connected sum for each

ϑ ∈
{
π

6
,
π

4
,
π

3
,
π

2
,
2π

3
,
3π

4
,
5π

6

}

. (1.11)

Remark 1.12 Finally, one can also argue that everyϑ-twisted connected sum is diffeomorphic
to some ϑ+π-twisted connected sum. Let V ′+ be V+ with the orientation reversed, equipped
with the ACyl Calabi–Yau structure (�̄+,−ω+). Then, a ϑ-hyper-Kähler rotation for M+
and M− is also a ϑ+π -hyper-Kähler rotation for M ′+ and M−. The orientation-preserving
diffeomorphism S1

ξ+ × V+ → S1
ξ+ × V ′+, (v+, x) �→ (−v+, x) descends to M+ → M ′+, and

pulls back ϕ′+ to ϕ+. It patches up with the identity map on M− to define an isomorphism
from M to the ϑ+π-twisted connected sum of M ′+ and M−.

Combined with the symmetries discussed above, this means that any extra-twisted con-
nected sum is isometric to some extra-twisted connected sum with ϑ ∈ (0, π

2 ], but not
necessarily using the same (in an oriented sense) ACyl Calabi–Yau manifolds.

Now we list and describe the possible combinations of (a, b+, b−, ϑ) (equivalently the dif-
ferent kinds of torus isometries t). In each case we illustrate the action on the T 2 factor with
a figure that shows the lattice corresponding to the two identified tori. The figure includes
arrows indicating the “external” and “internal” circle factors on each side, e.g. the orthogonal
arrows ζ+∂u+ and ξ+∂v+ indicate the overlattice (of index 2 if it is not the whole lattice)
corresponding to the metric product S1

ζ+ × S1
ξ+ that appears as the asymptotic cross-section

in V+ × S1
ξ+ . The gluing angle can be seen as the angle between the arrows ξ+∂v+ and ξ−∂v−

corresponding to the two external circle factors.

• Square, b+ = b− = 0, ϑ = π

2
.

As already explained, this corresponds to the usual twisted connected sums. ϑ = −π
2 is

the same up to orientation. See Fig. 2.

• Square, b+ = 1, b− = 0, ϑ = π

4
or

3π

4
.

See Fig. 3. The figures also help us understand the fundamental group. Note that
√
2∂u+

and ∂u− generate π1T 2. On the other hand, we can picture π1M± as the projection of the
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Fig. 3 Square matching
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Fig. 4 Symmetric hexagonal
matching

√
3∂v+

√
3∂v−
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∂u−

ϑ =
π

3

√
3∂v+

√
3∂v−

∂u+

∂u−
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Fig. 5 Asymmetric hexagonal
matching

√
3∂v+

∂v−
∂u+

√
3∂u−

ϑ =
π

6

√
3∂v+

∂v−

∂u+

√
3∂u−

ϑ =
5π
6

lattice onto the line spanned by ∂v± (this uses that V± is simply connected, which is a
consequence of our definition of what it means for Z± to be a building block, cf. Lemma
2.4(i)). Thus, we see that

√
2∂u+ is in the kernel of the push-forward to π1M+, while

its image in π1M− is a generator. Similarly, ∂u− is in the kernel of the push-forward to
π1M−, while its image in π1M+ is a generator. Van Kampen implies that the resulting
extra-twisted connected sums are simply connected.

• Hexagonal, b+ = b− = 1, ϑ = π

3
or

2π

3
.

See Fig. 4. The resulting extra-twisted connected sums are simply connected by the same
reasoning as in the previous case.

• Hexagonal, b+ = 1, b− = 0, ϑ = π

6
or

5π

6
.

See Fig. 5. Once more, the resulting extra-twisted connected sums are simply connected.

The remaining possibilities do not give simply connected extra-twisted connected sums and
are in fact quotients of twisted connected sums of the types above. By a “ϑ-twisted connected
sum” for ϑ as in (1.11), we will therefore usually mean one of the types above.
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Fig. 6 Square matching with
fundamental group Z/2

√
2∂u+=

√
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√
2∂u−

ϑ =
π

2

∂u+ = ∂v−

√
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=
√
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2

Fig. 7 Hexagonal matching with
fundamental group Z/3

∂v+

∂v−

√
3∂u+

√
3∂u−
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π

3

∂v+

∂v−

√
3∂u+ √

3∂u−

ϑ =
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3

• Square, b+ = b− = 1, ϑ = π

2
.

The lattice in Fig. 6 has index 2 in the direct sum of the projections onto the ∂v± axes,
so the fundamental group of the extra-twisted connected sum M is Z2. The universal
cover is the ordinary twisted connected sum M of S1√

2
× V+ and S1√

2
× V− (where

M± = S1√
2
×V±/a×τ±): the involutions a × τ± patch up to an involution on M with

quotient M .

• Hexagonal, b+ = 1, b− = 0, ϑ = π
2 .

See Fig. 6 . Clearly this configuration is essentially the same as the previous one, up to
some squashing of the T 2 factor.

• Hexagonal, b+ = b− = 0, ϑ = π

3
or

2π

3
.

See Fig. 7. Using {∂v+ , ∂v−} as a basis for π1T 2, and 1
2∂v± as generators for π1M±, the

push-forward π1T 2 → π1M+×π1M− is represented by
( 2 ±1
±1 2

)
. Since the determinant

is 3, we find π1M ∼= Z3.
Up to scale, the universal cover of M is a ϑ-twisted connected sum M of the form above,
i.e. with b+ = b− = 1. Note that M± = S1√

3
×V±/a×τ± has an innocuous order 3

automorphism ρ± : (v±, x) �→ (v±+ 1√
3
, x). The quotient M±/ρ± is diffeomorphic to

M±, but the covering map pulls back product G2-structures of the form ϕh1± to ones of
the form ϕh0± (up to a scale factor

√
3). The automorphisms ρ± patch up to an order 3

automorphism of the ϑ-twisted connected sum M , whose quotient is M .

123



2 Page 10 of 80 Annals of Global Analysis and Geometry (2023) 64 :2

2 Building blocks

In Sect. 1, we started off by using Theorem 1.1 to produce ACyl Calabi–Yau 3-folds V from
closed Kähler 3-folds Z . We now discuss how the topology of the ACyl Calabi–Yau 3-folds
is related to the topology of these building blocks, especially in the presence of an involution.
Further we discuss the second Chern class of the blocks, and the moduli space of K3s that
appear as anticanonical divisors in the blocks, as these will also prove relevant for finding
matchings and computing the topology of the resulting extra-twisted connected sums.

2.1 Ordinary building blocks

We begin by reviewing the results from [7, Section 5] in the absence of an involution. Like
there, we incorporate into our notion of building block some conditions beyond those needed
to apply Theorem 1.1, in order to simplify the topological calculations later.

Definition 2.1 A building block is a nonsingular algebraic 3-fold Z together with a projective
morphism f : Z → P1 satisfying the following assumptions:

(i) the anticanonical class −K Z ∈ H2(Z) is primitive.
(ii) � = f �(∞) is a nonsingular K3 surface and � ∼ −K Z .

Identify H2(�) with the K3 lattice L (i.e. choose a marking for �), and let N denote the
image of H2(Z) → H2(�).

(iii) The inclusion N ↪→ L is primitive, that is, L/N is torsion-free.
(iv) The group H3(Z)—and thus also H4(Z)—is torsion-free.

Lemma 2.2 ([7, Lemma 5-2], [2, Lemma 3.6]) If Z is a building block then

(i) π1(Z) = (0). In particular, H∗(Z) and H∗(Z) are torsion-free.
(ii) H2,0(Z) = 0, so N ⊆ Pic�.

We regard N as a lattice with the quadratic form inherited from L . In examples, N is
almost never unimodular, so the natural inclusion N ↪→ N∗ is not an isomorphism. We
write

T = N⊥ = {l ∈ L|〈l, n〉 = 0 ∀ n ∈ N }.
(T stands for “transcendental”; in examples, N and T are the Picard and transcendental
lattices of a lattice polarised K3 surface.) Using N primitive and L unimodular, we find
L/T � N∗.

Let V = Z \ �. Since the normal bundle of � in Z is trivial, there is an inclusion
ι : � ↪→ V whose homotopy class does not depend on any choices. We let

ρ = ι∗ : H2(V ) → L the natural restriction map, and K = ker(ρ). (2.3)

It follows from (ii) of the following lemma that the image of ρ equals N .

Lemma 2.4 [7, Lemma 5-3] Let f : Z → P1 be a building block. Then:

(i) π1(V ) = (0) and H1(V ) = (0);
(ii) the class [�] ∈ H2(Z) fits in a split exact sequence

(0) → Z
[�]−→ H2(Z) → H2(V ) → (0),

hence H2(Z) � Z[�] ⊕ H2(V ), and the restriction homomorphism H2(Z) → L
factors through ρ : H2(V ) → L;
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(iii) there is a split exact sequence

(0) → H3(Z) → H3(V ) → T → (0),

hence H3(V ) � H3(Z)⊕ T ;
(iv) there is a split exact sequence

(0) → N∗ → H4(Z) → H4(V ) → (0),

hence H4(Z) � H4(V )⊕ N∗;
(v) H5(V ) = (0).

We can also use the triviality of the normal bundle of � in Z to get a natural inclusion
� × S1

ζ ⊂ V up to homotopy. Since we have not introduced any metric yet the notation S1
ζ

does not carry much meaning beyond serving to distinguish this “internal” circle factor from
the “external” one that will soon be introduced. Let u ∈ H1(S1

ζ ) denote the integral generator

(u = ζ−1[du] in terms of the coordinate u on S1
ζ ).

Lemma 2.5 [7, Corollary 5-4] Let f : Z → P1 be a building block. The natural restriction
homomorphisms:

βm : Hm(V ) → Hm(� × S1
ζ ) = Hm(�)⊕ uHm−1(�)

are computed as follows:

(i) β1 = 0;
(ii) β2 : H2(V ) → H2(�×S1

ζ ) = H2(�) is precisely the homomorphismρ : H2(V ) → L;

(iii) β3 : H3(V ) → H3(� × S1
ζ ) = uH2(�) is the composition of the maps H3(V ) �

T ↪→ L;
(iv) the natural surjective restriction homomorphism H4(Z) → H4(�) = Z factors through

β4 : H4(V ) → H4(� × S1
ζ ) = H4(�) = Z, and there is a split exact sequence:

(0) → K ∗ → H4(V )
β4

−→ H4(�) → (0).

When we use M := S1
ξ × V in a gluing construction for a twisted connected sum,

computing the cohomology of the result by Mayer–Vietoris requires understanding of the
boundary maps from cohomology of M to its cross-section W := S1

ξ × S1
ζ × �. These are

trivial to write down in terms of the maps in Lemma 2.5. Letting v ∈ H1(S1
ξ ) denote the

generator ξ−1[dv] of the “external” circle factor, we can write

Hm(M) = Hm(V )⊕ vHm−1(V )

Hm(W ) = Hm(�)⊕ uHm−1(�)⊕ vHm−1(�)⊕ uvHm−2(�).

Corollary 2.6 The homomorphisms γ m : Hm(M) → Hm(W ) are computed as follows:

(i) H1(M) = vH0(V ),
H1(W ) = vH0(�)⊕ uH0(�), and

γ 1 =
(
1
0

)

: H0(V ) → H0(�)⊕ H0(�)

is the natural isomorphism.
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(ii) H2(M) = H2(V ),
H2(W ) = H2(�)⊕ uvH0(�) = L ⊕ Z[�], and

γ 2 =
(
ρ

0

)

: H2(V ) → L ⊕ Z[�].

(iii) H3(M) = H3(V )⊕ vH2(V ),
H3(W ) = uH2(�)⊕ vH2(�), and

γ 3 =
(
β3 0
0 ρ

)

: H3(V )⊕ H2(V ) → L ⊕ L;

(iv) H4(M) = H4(V )⊕ vH3(V ),
H4(W ) = H4(�)⊕ uvH2(�) = H4(�)⊕ L, and

γ 4 =
(
β4 0
0 β3

)

: H4(V )⊕ H3(V ) → H4(�)⊕ L.

2.2 Building blocks with involution

Nextwe consider involutions of the type required in Sect. 1.1. Suppose (Z , f , �) is a building
block in the sense of Definition 2.1, and that τ : Z → Z is a holomorphic involution such
that� is a connected component of the fixed set of τ . Because f ◦ τ : Z → P1 is a fibration
with f �(∞) = �, it must be equal to f . Thus, τ covers an involution of P1, and WLOG that
is (z : w) �→ (z : −w). Thus, there is precisely one other fibre�′ := f �(0)mapped to itself
by τ .

Definition 2.7 Call (Z , f , �, τ) a building block with involution, or more briefly an involu-
tion block, if (Z , f , �) is a building block and τ : Z → Z is a holomorphic involution such
that � is a connected component of the fixed set of τ , and the other fixed fibre �′ is smooth
too.

As before, let V := Z \�. Let b±3 (Z) and b±3 (V ) denote the rank of the ±1-eigenlattice
of the action of τ on H3(Z) and H3(V ), respectively,

b±3 (Z) := rk H3(Z)±τ , b±3 (V ) := rk H3(V )±τ

(which will not be confused with (anti-)self-dual parts since the degree is odd). Further, since
the quotient by the sum of the invariant and anti-invariant subspaces is a 2-elementary group,
we can let

s := dimZ2

H3(V )

H3(V )τ ⊕ H3(V )−τ
.

(To see what s represents, it may be helpful to think about two different reflections on Z2:
(x, y) �→ (−x, y) has s = 0, while (x, y) �→ (y, x) has s = 1.)

We call the involution block pleasant if K = 0, i.e. the restriction map

H2(V ) ↪→ H2(�) (2.8)

is injective, and

s = b−3 (V ). (2.9)
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When we describe examples of blocks with involution, the data we specify that relates to
the involution is b+3 (Z) and whether the block is pleasant. Since H3(V ) ∼= H3(Z)⊕ T , so
that H3(V )τ ∼= H3(Z)τ ⊕ T over Q we can then recover

b+3 (V ) = b+3 (Z)+ 22− rk N . (2.10)

We will see in Sect. 7 that the conditions (2.8) and (2.9) make it much easier to grasp the
cohomology of the extra-twisted connected sums, and in Sects. 3 and 5 that the involution
blocks we can most readily write down do in fact satisfy this pleasantness condition.

Clearly H3(V ) ⊆ 1
2 H3(V )τ ⊕ 1

2 H3(V )−τ . The projections onto the components induce
injective maps H3(V )/H3(V )τ ⊕ H3(V )−τ ↪→ ( 1

2 H3(V )±τ
)
/H3(V )±τ , so

s ≤ min(b+3 (V ), b−3 (V )). (2.11)

Alternatively, s can be described as the dimension of the image of Id+ τ ∗ : H3(V ;Z2) →
H3(V ;Z2), and (2.11) as a consequence of the fact that Id+ τ ∗ is 0 on H3(V )±τ ⊗ Z2.

Note that it is not generally the case that H3(V )τ ∼= H3(Z)τ ⊕ T over Z. In particular, s
need not equal the Z2 rank of H3(Z)/(H3(Z)τ ⊕ H3(Z)−τ ).

Remark 2.12 The condition that the second fixed fibre �′ is smooth is not crucial to the
construction, but simplifies topological calculations. Since Z has a unique (up to scale)
holomorphic 3-form with pole along �, that must be preserved by τ . The action of τ on �′
must therefore be by a non-symplectic involution in the sense described in Sect. 5.1.

Other fibres of f , in particular�, need not admit a non-symplectic involution (see Exam-
ple 3.24).

The fixed set of τ in �′ is a smooth holomorphic curve C . The quotients Z0 := Z/τ and
V 0 := V /τ = Z0\� have orbifold singularities along the image of C . On the other hand,
according to the theory of non-symplectic involutions summarised in Sect. 5.1, Y := �′/τ
is a smooth (in fact rational) surface; �′ → Y is a double cover branched over C , and
C ∈ |−2KY |. In particular, because C is even in H2(Y ), the image of the restriction map
H2(Z0;Z2) → H2(C;Z2) is contained in the kernel of the integration map H2(C;Z2) →
Z2. Thus, if we let

m := rk(H2(Z0;Z2) → H2(C;Z2)),

k := #(connected components of C)− 1

then m ≤ k.

Lemma 2.13 If K = 0 then

b−3 (V )− s = dimZ2 T2H3(Z0)+ k − m.

In particular, an involution block is pleasant if and only if K = 0, H3(Z0) is torsion-free
and m = k.

Proof Note that b+3 (V ) = b3(V 0). If K = 0, then τ acts trivially on H4(V ) ∼= Z, so
b4(V 0) = 1.

By Lee–Weintraub [16, Theorem 1] there exists a long exact sequence

Hk(V 0;Z2)
π∗→ Hk(V ;Z2)

I→ Hk(V 0,C;Z2)
∪w1→ Hk+1(V 0;Z2), (2.14)

where I is fibre-wise integration, and the connecting map Hk(V 0,C;Z2) → Hk+1(V 0;Z2)

is the cup product with w1 ∈ H1(V 0 \ C;Z2) of the double cover. (If C were empty, this
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would just be the Gysin sequence of the double cover π : V → V 0 regarded as the unit
S0-bundle in a real line bundle.)

First note H5(V 0;Z2) ∼= H5(V 0,C;Z2) ∼= H1(V 0\C, S1 × �;Z2) is isomorphic to
the cokernel of the push-forward H1(S1 ×�;Z2) → H1(V 0\C;Z2) of the inclusion of the
S1 × � as the boundary of V 0. Since π1(S1 × �) → π1(V 0\C) is surjective, we find that
H5(V 0;Z2) is trivial.

Now, since b4(V 0) = 1, the universal coefficients theorem implies that the rank of
H4(V 0;Z2) ∼= H4(V 0,C;Z2) is one more than that of T2H4(V 0). By the exactness of
(2.14), we must have that in fact T2H4(V 0) = 0, and I4 : H4(V ;Z2) → H4(V 0,C;Z2) is
an isomorphism.

Weproceed to argue that the compositionof I3 with thepush-forward p :H3(V 0,C;Z2)→
H3(V 0;Z2) is surjective. Since p is surjective, it suffices to prove that ∪w1 maps ker p
onto H4(V 0;Z2). Equivalently, we need the composition of the snake map H2(C;Z2) →
H3(V 0,C;Z2) with ∪w1 to be non-trivial. The further composition with the restriction
H4(V 0;Z2) → H4(Y ;Z2)must in fact be non-trivial because the snake map H2(C;Z2) →
H3(Y ,C;Z2) and w1 both are. Hence, p ◦ I3 is surjective as claimed.

Because π∗ ◦ p ◦ I = Id+ τ ∗, it follows that H3(V 0;Z2) has the same image under π∗
as under Id+ τ ∗. Hence, s = rk π∗ = dim ker I3. The dimension of H3(V 0,C;Z2) can be
expressed as b3(V 0)+ (k + 1− m)+ dimZ2 T2H3(Z0), so

b−3 (V )− s = (b3(V )− b3(V
0))− (b3(V )− dimZ2 T2H3(V 0,C;Z2)+ 1)

= k − m + dimZ2 T2H3(Z0)

as desired. In particular, b−3 (V ) = s if and only if equality holds in k ≥ m and T2H3(Z0) is
trivial. The latter condition is equivalent to H3(Z0) being torsion-free, since H3(Z) being
torsion-free implies that the only possible torsion in H3(Z0) is 2-torsion. �

Remark 2.15 In this paper, we will only apply Lemma 2.13 in cases where C is connected,
so the condition m = k is automatically satisfied (both are 0). As a consequence of this, the
polarising lattice N of the resulting building blockswith involutionwill always be completely
even, in the sense that the product of any two elements is even; this is because N embeds
into the sublattice of H2(�′) that is fixed by the non-symplectic involution, which is totally
even when the fixed locus C is connected (see Lemma 5.1).

From now on, we assume (2.8). This implies in particular that τ acts trivially on H2(V ) ∼=
N and H4(V ) ∼= H4(�) ∼= Z, so V 0 has the same Betti numbers as V except in the middle
degree. Since π : V → V 0 is a double cover branched over C , we find

χ(V ) = 2χ(V 0)− χ(C),

from which we deduce

b3(V ) = 2b3(V
0)− 2− ρ + χ(C).

Similarly,

χ(Z) = 2χ(Z0)− χ(C)− χ(�)

implies (using χ(Z) = 4+ 2ρ − b3(Z) etc) that

b3(Z) = 2b+3 (Z0)+ 20− 2ρ − χ(C). (2.16)
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Now let

M := S1
ξ×V /a×τ.

The rational cohomology of M is simply the τ -invariant part of H∗(S1
ξ × V ). We see from

Lemma 2.4 and our description of τ ∗ that

b1(M) = 0 b2(M) = b2(V ) b3(M) = b2(V )+ b+3 (V )

b4(M) = b−3 (V )+ 1 b5(M) = 1 b6(M) = 0

We can also readily compute the integral cohomology of M from the Mayer–Vietoris
sequence

· · · → Hk−1(V ) → Hk(M) → Hk(V )
Id−τ∗−→ Hk(V ) → · · · (2.17)

Lemma 2.18 (i) Z
∼→ H1(M)

(ii) H2(M)
∼→ H2(V ) = N

(iii) 0→ H2(V ) → H3(M) → H3(V )τ → 0
(iv) 0→ H3(V )/(Id− τ ∗)H3(V ) → H4(M) → Z → 0
(v) Z

∼→ H5(M)

(vi) H6(M) = 0

Note that the only torsion in H∗(M) is

Tor H4(M) ∼= H3(V )−τ /(Id− τ ∗)H3(V ) ∼= Z
b−3 (V )−s
2 ;

thus H∗(M) is torsion-free when the involution block Z is pleasant.
We also need to understand the restriction map to the cross-section of the cylindrical

end, H∗(M) → H∗(T 2 × �), where T 2 := S1
ξ×S1

ζ /a × a. In particular, we need to
describe the image. Over Q, the image is the same as for the maps in Corollary 2.6, e.g.
H3(M;Q) → H3(T 2 × �;Q) has image vN ⊕ uT , but working with integer coefficients
is more complicated.

Notation 2.19 Here we are abuse notation slightly and denote classes in H∗(T 2) by their
pull-backs to H∗(S1

ξ×S1
ζ ); thus, 2v and 2u ∈ H1(T 2) are primitive classes, but they generate

a subgroup of index 2, and H2(T 2) is generated by 2vu.

Lemma 2.20 (i) H2(M) → H2(T 2 ×�) is an isomorphism onto N.
(ii) H3(M) → H3(T 2 ×�) has image contained in

I 3 := {vn + ut : n ∈ N , t ∈ T , n + t = 0 mod 2L}.
If s = b−3 (V ), then equality holds.

(iii) H4(M) → H4(T 2 ×�) has image 2vuT ⊕ H4(�).

Proof First part is obvious because H2(M) → H2(V ) is an isomorphism. Last part is
obvious because the Mayer–Vietoris boundary map in the computation of H∗(T 2×�)maps
Hk(S1

ξ ×�) → Hk+1(T 2 ×�) by x �→ 2vx .

I 3 is precisely the set of integral classes in the rational image

vN ⊕ uT ⊆ H3(T 2 ×�;Q),
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so the image of H3(M) is a finite index subgroup of I 3. The long exact sequence of coho-
mology of M relative to T 2 × � gives I 3/ Im H3(M) ↪→ H4

cpt (M) ∼= H3(M). Thus

I 3/ Im H3(M) ↪→ Tor H3(M) ∼= Tor H4(M), which is trivial if s = b−3 (V ). �

2.3 The second Chern class

When we compute characteristic classes of extra-twisted connected sums in Sect. 7.2, it will
prove convenient to present the second Chern class of a building block with K = 0 in the
following form:

c2(Z) = g(c̄2(Z))+ 24h, (2.21)

for some c̄2(Z) ∈ N∗ and h ∈ H4(Z) such that the restriction of h to � is the positive
generator of H4(Z), where g : N∗ → H4(Z) is dual to the restriction H2(Z) → N ⊂
H2(�). Alternatively, we can describe g as follows: for c̄ ∈ N∗ and any preimage x of c̄
under the duality map � : H2(�) → N∗ (which is surjective since H2(�) is unimodular),

g(c̄) = i∗∂(ux),

where ∂ : H3(S1
ζ × �) → H4

cpt (V ) is the snake map in the long exact sequence of the

cohomology of V relative to its boundary, and i∗ : H4
cpt (V ) → H4(Z) is the push-forward

of the inclusion V ↪→ Z .
For a building block with K = 0, Lemma 2.4(iv) and 2.5(iv) give exactness of

0→ N∗ g→ H4(Z) → H4(�) → 0.

Since the image of c2(Z) in H4(�) is χ(�) = 24 times the generator, c2(Z) can then always
be written in the form (2.21). This presentation is not unique, but we will make convenient
choices for c̄2(Z) and h for each class of building blocks. (If K �= 0, then we cannot
in general write c2(Z) in the form (2.21) and would need to make some further arbitrary
choices to capture the components in a direct summand isomorphic to K ∗.)

In the case of a building block Z with involution τ , we describe the second Chern class in
the same way, but in addition require the class h to be τ ∗-invariant. In the examples we care
about, we can in fact do more: we can essentially pick h to be represented by a τ -invariant
integral cochain.

Let us discuss more generally how to measure the failure of a τ -invariant class h ∈ H4(Z)

to be represented by a τ -invariant cochain. For any chain representative α, we can write
α − τ ∗α = dβ for some 3-cochain β. Then, β + τ ∗β is closed, and the resulting class

B(h) := [β + τ ∗β] ∈ H3(Z) (2.22)

depends on the choices only modulo the image of Id+ τ ∗ on H3(Z).
We can relate this to the cohomology of H4(S1

ξ ×̃ Z). By the Mayer–Vietoris sequence

analogous to (2.17), h ∈ H4(Z) has a pre-image h̃ ∈ H4(S1
ξ ×̃ Z), and such a pre-image can

be pulled back by π : S1 ×� → S1
ξ ×̃ Z . The H4(Z) component of π∗h̃ ∈ H4(S1 ×�) ∼=

H4(Z)⊕ H3(Z) is just h itself, while the H3(Z)-component depends on the choice of h̃. By
the Mayer–Vietoris sequence, the kernel of H4(S1

ξ ×̃ Z) → H4(Z) is the image of the snake

map δ : H3(Z) → H4(S1
ξ ×̃ Z), whose composition with π∗ equals Id + τ ∗ : H3(Z) →

H3(Z) ⊂ H4(S1 × Z). Thus, the H3(Z)-component of π∗h̃ depends on the choice of h̃ up
to the image of Id+ τ ∗, and in fact it equals B(h).
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Remark 2.23 For any h = [α] ∈ H4(Z), the τ -invariant cochain α + τ ∗α defines a class in
2̃h ∈ H4(S1

ξ ×̃ Z). This depends only on h (and since we assume H4(Z) is torsion-free, in

fact only on 2h), and is a pre-image of 2h such that π∗2̃ h ∈ H4(S1 × �) has no H3(Z)-
component (but if H4(S1

ξ ×̃ Z) has 2-torsion, then it is not the unique such pre-image).

However, even if h is τ -invariant, 2̃h need not be even in H4(S1
ξ ×̃ Z). Its parity is given by

∂B(h).

The fact that � ⊂ Z is fixed by τ allows us to define a refinement of B(h) supported
away from �, which will also play a role in Sect. 7.2. We can always choose a cochain
representative α of h to be τ -invariant in a neighbourhood of �. Thus, α − τ ∗α, which is
exact on Z , has compact support in V . Because H4

cpt (V ) ↪→ H4(Z) (since H3(�) = 0), we
can write α − τ ∗α = dβ for a compactly supported cochain β on V , and consider

B̂(h) = [β + τ ∗β] ∈ H3
cpt (V ). (2.24)

This is again defined up to the image of Id+ τ ∗ on H3
cpt (V ), and we can again relate it to the

mapping torus. For a pre-image h̃ ∈ H4(S1
ξ ×̃ Z) of h, we can pick a cochain representative

α̃ that near S1×� is a pull-back of a cochain on�. If we pick a cochain representative α of h
that near� is a pull-back of that same cochain on�, then the difference of the pull-backs of
α̃ and α to S1×� has compact support in S1× V . The H3

cpt (V ) component of the resulting

class in H4
cpt (S1 × V ) corresponds to B̂(h).

If a τ -invariant class h has a τ -invariant cochain representative, then certainly B(h) =
B̂(h) = 0. For our examples of involution blocks, we will not be able to argue that we can
choose a pre-image h ∈ H4(Z) of the generator of H4(�) to have a τ -invariant cochain
representative, but we will be able to pick it to be the Poincaré dual of a submanifold that is
preserved by τ .

Lemma 2.25 Suppose h = P D(C) for a τ -invariant submanifold C ⊂ �. Then, B(h) = 0.
If C is transverse to � then also B̂(h) = 0.

Proof The pre-image of C in S1
ξ ×̃ Z is simply S1×C . As a pre-image of h in H4(S1

ξ ×̃ Z),

we can take h̃ = P D(S1 × C). Then, certainly the pull-back of h̃ to S1 × Z has no H3(Z)

component, so B(h) = 0.
For the last claim, take a τ -invariant tubular neighbourhood U ⊂ Z of C , pick a cochain

representative α̃ of the above h̃ with support in S1
ξ ×̃U , and a cochain representative α of h

supported in U . Because C is transverse to �, we can in addition take both cochains to be
pull-backs of the same representative of P D(C ∩�) near �, so that the difference α′ of the
pull-backs to S1× Z is supported in S1× (U ∩ V ). Since the image of [α′] in H4

cpt (S1×U )

is clearly zero and H4
cpt (S1× (U ∩V )) → H4

cpt (U ) is injective, it follows that [α′] = 0, and

in particular the H3
cpt (Z)-component B̂(h) of its image in H4

cpt (S1 × Z) vanishes. �

2.4 Moduli of lattice-polarised K3s

The final property of building blocks that we will wish to study concerns the relation to
moduli spaces of K3s. Because a K3 surface � is simply connected, its Picard group Pic�
is isomorphic to H2(�;Z) ∩ H1,1(�;C). The Picard lattice is Pic� equipped with the
restriction of the intersection form of H2(�;Z).

Fix a non-singular lattice L of signature (3, 19). A marking of a K3 surface � is an
isomorphism h : H2(�;Z) → L . The Picard lattice of a marked K3 is thus identified
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with a (primitive) sublattice of L . Meanwhile, the period of the marked K3 is the image
in P(LC) of the 1-dimensional subspace H2,0(�;C) ⊂ H2(�;C). It lies in the subset
{� ∈ P(LC) : �2 = 0,�� > 0}. By the Torelli theorem, the moduli space of marked K3s
is (modulo some niceties about the choice of polarisations that do not concern us) isomorphic
to an open subset of this period domain.

Crucially, the K3 surfaces � that appear in a building block Z always belong to a more
restricted moduli space. According to Lemma 2.2(ii), the Picard lattice of � must contain
the polarising lattice N of Z . Therefore the period � of the marked K3 must be orthogonal
to N . In this situation we say that � is “N -polarised”.

Equivalently, we can think of the period as the positive definite 2-plane� ⊂ LR spanned
by the images of real and imaginary parts of H2,0(�;C). If� is N -polarised, then� belongs
to the Griffiths domain

DN := { positive-definite 2-planes � ∈ Gr(2, N⊥)}. (2.26)

A principle that is valid for all building blocks we consider in this paper is that they come
in families, such that a generic N -polarised K3 appears as an anticanonical divisor in some
element of the family, and moreover, we have some control on the size of the ample cone
(see Proposition 3.7). In Sect. 6 we find on the one hand that this genericity property is
often enough for producing matchings between some elements of a pair of families. On the
other hand, we find also that in some cases one needs to know that even generic elements
of a more restricted moduli space of K3s (with a larger polarising lattice � ⊃ N ) appear as
anticanonical divisors. We capture these conditions in the following definition.

Definition 2.27 Let N ⊂ L be a primitive sublattice, � ⊂ L a primitive overlattice of N ,
and AmpZ an open subcone of the positive cone in NR. We say that a family of building
blocks Z with polarising lattice N is (�,AmpZ )-generic if there is a subset UZ of the
Griffiths domain D� with complement a countable union of complex analytic submanifolds
of positive codimension with the property that: for any � ∈ UZ and k ∈ AmpZ there is a
building block (Z , �) ∈ Z and a marking h : L → H2(�;Z) such that h(�) = H2,0(�),
and h(k) is the image of the restriction to � of a Kähler class on Z .

2.5 Presentation of data

To finish the section, let us summarise what we consider to be the key pieces of data of a
building block, which will be sufficient to compute the topological invariants of the resulting
extra-twisted connected sums that we are interested in.

• The kernel K of H2(V ) → H2(�) and (for involution blocks) whether the block is
pleasant,

• b3(Z) and—in the case of blocks with involution—b+3 (Z),
• the form on the polarising lattice N ,
• an element c̄2(Z) ∈ N∗ encoding information about c2(Z) as in (2.21), and B̂(h) ∈

H4
cpt (V ),

• an open cone Amp ⊂ NR such that the family of blocks is (N ,Amp)-generic in the sense
of Definition 2.27.

Tables 1, 2 and 3 will include this and some auxiliary data. In fact, all the ordinary blocks
included in the tables will have K = 0, and all the involution blocks will be pleasant, with
B̂(h) = 0.
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Table 1 Rank 1 Fano blocks
r −K 3

Y b3(Y ) b3(Z) N c̄2(Z)

4 43 0 66 (4) 22

3 33 · 2 0 56 (6) 26

2 23 42 52 (2) 16

2 23 · 2 20 38 (4) 20

2 23 · 3 10 36 (6) 24

2 23 · 4 4 38 (8) 28

2 23 · 5 0 42 (10) 32

1 2 104 108 (2) 26

1 4 60 66 (4) 28

1 6 40 48 (6) 30

1 8 28 38 (8) 32

1 10 20 32 (10) 34

1 12 14 28 (12) 36

1 14 10 26 (14) 38

1 16 6 24 (16) 40

1 18 4 24 (18) 42

1 22 0 24 (22) 46

We always use the same basis of N for describing the form on N , c̄2(Z) and Amp. For
all blocks we consider, it turns out to be possible to choose a basis for N that consists of the
edges of Amp, and in the tables we always use such a basis.

Note that this means that the sign of c̄2(Z) is meaningful. Multiplying all elements of
the basis by −1 preserves the intersection form, but reverses the signs of c̄2(Z) and Amp
together. For instance, if N has rank 1, choosing Amp amounts to designating one of the
two generators of N to be positive. Whether c̄2(Z) evaluates to, say, 2 or −2 mod 24 on the
positive generator then has an invariant meaning, and can affect the homeomorphism class
of the extra-twisted connected sums built from the block.

Remark 2.28 If Z is a building block, then so is its complex conjugate Z , i.e. the same smooth
manifold, but with the complex structure J replaced by −J . This reverses the orientation of
Z , but preserves it on �, so the sign of the dual map g : N∗ → H4(Z) is reversed. At the
same time, the Kähler cone of � is multiplied by −1, so Z and Z are indistinguishable by
our topological data. This is quite reasonable, since in many cases it is clearly possible to
deform Z to a building block with a real structure and hence to its complex conjugate.

3 Building blocks from semi-Fano 3-folds

The main method we use in this paper for producing examples of building blocks is to blow
up Fano 3-folds or semi-Fano 3-folds. Let us briefly recall some terminology. A projective
3-fold Y is weak Fano if the anticanonical bundle −KY is big and nef, i.e. if the sections
of a sufficiently high power of −KY define a morphism φ of Y to projective space, whose
image X (the anticanonical model) is 3-dimensional. If φ is an embedding, then Y is Fano,
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Table 2 Blocks of rank 2 and 3
from Construction 3.2 Ex r −K 3

Y b3(Y ) b3(Z) N c̄2(Z)

3.103 1 8 22 32
( 4 2
2 0

)
(20 12)

3.1010 1 16 6 24
( 8 4
4 0

)
(28 12)

3.1017 1 24 2 28
( 4 7
7 6

)
(22 26)

3.1027 1 38 0 40
( 2 5
5 4

)
(18 22)

3.1032 2 23 · 6 0 50
( 2 4
4 2

)
(18 18)

3.1035 2 23 · 7 0 58
( 4 4
4 2

)
(22 18)

3.11 2 23 · 6 0 50

(
0 2 2
2 0 2
2 2 0

)

( 12 12 12 )

3.12 1 4 2 12
( 4 9
9 8

)
(22 32)

3.32 2 0 42 44
( 2 2
2 0

)
(16 12)

3.132 2 23 20 30
( 4 4
4 2

)
(20 16)

3.133 2 23 · 2 10 28
( 6 6
6 4

)
(24 20)

3.134 2 23 · 3 4 30
( 8 8
8 6

)
(28 24)

3.135 2 23 · 4 0 34
( 10 10
10 8

)
(32 28)

3.142 2 23 · 2 0 18
( 4 6
6 2

)
(20 18)

3.143 2 23 · 3 0 26
( 6 6
6 2

)
(24 18)

3.144 2 23 · 4 0 34
( 8 6
6 2

)
(28 18)

3.145 2 23 · 5 0 42
( 10 6
6 2

)
(32 18)

3.151 2 23 8 18
( 2 4
4 0

)
(16 12)

3.152 2 23 · 2 6 24
( 4 4
4 0

)
(20 12)

3.153 2 23 · 3 4 30
( 6 4
4 0

)
(24 12)

3.154 2 23 · 4 2 36
( 8 4
4 0

)
(28 12)

3.155 2 23 · 5 0 42
( 10 4
4 0

)
(32 12)

3.33 1 0 6 8
( 8 8
8 0

)
(28 24)

i.e.−KY is ample. In the terminology from [7, Definition 4.11], for Y to be semi-Fano means
that the fibres of φ have dimension at most 1.

3.1 Ordinary building blocks from Fano 3-folds

Let us first summarise the results from [7] concerning how to construct building blocks
(without involution) from Fano or semi-Fano 3-folds, along with some previously studied
examples of applying this to Fano 3-folds mainly of Picard rank 1 or 2.

Proposition 3.1 [7, Prop 4.24] Let Y be a closed Kähler 3-fold with an anticanonical pencil
|�0 : �1| with smooth base locus C. Let Z be the blow-up of Y along C, and let � ⊂
Z be the proper transform of �0. Then, the image N of H2(Z) → H2(�) equals the
image of H2(Y ) → H2(�0), while the kernel of H2(Z) → H2(�) is isomorphic to Z ⊕
ker(H2(Y ) → H2(�)). Further Tor H3(Z) ∼= Tor H3(Y ), and the image of the Kähler cone
of Z in H1,1(�;R) contains the image of the Kähler cone of Y .

Construction 3.2 Let Y be a closed Kähler 3-fold such that
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Table 3 Examples of pleasant
involution blocks Ex −χ(C) b3(Z) b+3 (Z) N c̄2(Z)

3.24 16 38 18 〈4〉 20

3.251 2 108 46 〈2〉 26

3.252 4 66 26 〈4〉 28

3.253 6 48 18 〈6〉 30

3.254 8 38 14 〈8〉 32

3.255 10 32 12 〈10〉 34

3.266 12 32 14
( 2 4
4 2

)
(18 18)

3.268 14 34 16
( 4 4
4 2

)
(20 18)

3.27 12 30 14

(
0 2 2
2 0 2
2 2 0

)

( 12 12 12 )

3.31 0 104 44
( 2 2
2 0

)
(26 24)

3.282 2 62 24
( 4 4
4 2

)
(28 26)

3.283 4 44 16
( 6 6
6 4

)
(30 28)

3.284 6 34 12
( 8 8
8 6

)
(32 30)

3.285 8 28 10
( 10 10
10 8

)
(34 32)

3.292 4 24 6
( 4 6
6 2

)
(28 18)

3.293 6 26 8
( 6 6
6 2

)
(30 18)

3.294 8 28 10
( 8 6
6 2

)
(32 18)

3.295 10 30 12
( 10 6
6 2

)
(34 18)

3.301 2 38 12
( 2 4
4 0

)
(26 12)

3.302 4 36 12
( 4 4
4 0

)
(28 12)

3.303 6 34 12
( 6 4
4 0

)
(30 12)

3.304 8 32 12
( 8 4
4 0

)
(32 12)

3.305 10 30 12
( 10 4
4 0

)
(34 12)

5.20 16 96 32
( 0 2
2 0

)
(12 12)

5.211 18 108 36 〈2〉 18

5.212 16 96 32
( 2 2
2 0

)
(18 12)

5.213 14 84 28

(
2 2 2
2 0 2
2 2 0

)

( 18 12 12 )

(i) H3(Y ) torsion-free,
(ii) an anticanonical pencil |�0 : �1| with smooth base locus C, and
(iii) the image N of H2(Y ) → H2(�0) is primitive.

Let Z be the blow-up of Y along C, and let � ⊂ Z be the proper transform of �0. Then,
(Z , �) is a building block, with polarising lattice N, and K ∼= ker H2(Y ) → H2(�0).

Proposition 3.3 If Y is a semi-Fano 3-fold whose anti-canonical ring is generated in degree
1, then conditions (i) and (ii) in Construction 3.2 are satisfied, and K = 0.

Proof See [7, Remark 4.10 and Proposition 5.7]. �
For the anticanonical ring ofY to be generated in degree 1 is equivalent to the anticanonical

model X of Y to have very ample −K X . The only two classes of Fano 3-folds Y for which
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−KY fails to be very ample are number 1 in the Mori-Mukai list of rank 2 Fanos, and the
product of P1 with a degree 1 del Pezzo surface. The possible singular anticanonical models
X for which −K X fails to be very ample are listed by Jahnke-Radloff [17, Theorem 1.1].

Meanwhile, all known examples of semi-Fano 3-folds Y have torsion-free H3(Y ). Thus,
we can justifiably say that Construction 3.2 can be applied to produce a building block from
almost any semi-Fano 3-fold.

Now let us proceed to explain how to obtain the other data listed in Sect. 2.5.

Lemma 3.4 [7, Lemma 5.6] b3(Z) = b3(Y )+b1(C) = b3(Y )−χ(C)+2 = b3(Y )−K 3
Y+2.

Lemma 3.5 [7, Proposition 5.11] Let Z be a building block obtained from a closed Kähler
3-fold Y as in Construction 3.2, and let π : Z → Y denote the blow-up map. Let h ∈ H4(Z)

be the Poincaré dual to a P1 fibre of π , and let π! : H4(Z) → H4(Y ), g : N∗ → H4(Z)

and gY : N∗ → H4(Y ) be the Poincaré dual to π∗ : H2(Y ) → H2(Z) and the restrictions
H2(Z) → N and H2(Y ) → N, respectively. Then c2(Z) = g(c̄2(Z))+ 24h, for

c̄2(Z) = g−1Y π!c2(Z).

This description of c2(Z) is convenient when coupled with the following claim.

Lemma 3.6 [7, (5-13)] If π : Z → Y is the blow-up of some closed Kähler 3-fold Y along a
curve C contained in an anticanonical divisor �, then

π!(c2(Z)+ c1(Z)2) = c2(Y )+ c1(Y )2.

Finally, for the matching problem it is an important principle that our blocks come in
families, such that a generic N -polarised K3 surface appears as an anticanonical divisor in
some element of the family.

Proposition 3.7 [7, Proposition 6-9] Let Y be a semi-Fano 3-fold with Picard lattice N (i.e.
N is the image of H2(Y ) → H2(�) for an anticanonical � ⊂ Y ), and let Y be the set of
semi-Fano 3-folds in the deformation type of Y . Then, there is an open cone AmpY ⊂ NR

such that Y is (N ,AmpY )-generic in the sense of Definition 2.27.
In particular, the set of building blocks produced from Y by Construction 3.2 is also

(N ,AmpY )-generic.

Note, however, that Proposition 3.7 is limited in that it does not tell us what AmpY is. In
the examples we can work it out from the explicit description of the semi-Fanos.

Example 3.8 Table 1 summarises the key data of Fano 3-folds of rank 1 and the resulting
building blocks (cf. [7, Table 1]). Apart from the data highlighted in Sect. 2.5, we include in
the table the index r (i.e. the largest integer such that −KY = r H for some H ∈ Pic Y ), the
anticanonical degree −K 3

Y , and b3(Y ).
b3(Z) is simply obtained from the preceding data by Lemma 3.4. In the rank 1 case, c̄ is

also easily determined as follows: For any Fano, one has c2(Y )(−KY ) = 24, so if−KY = r H
then

(c2(Y )+ c1(Y )2)H = 24− K 3
Y

r
. (3.9)

So Lemma 3.5 implies that with respect to the basis of H4(Z) dual to H , c̄ is represented by

the coordinate
24−K 3

Y
r . The self-intersection of the generator of N (which is not mentioned

in the table) is simply
−K 3

Y
r2

.
Will refer to these examples as 3.8r

d .
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We now proceed with a selection of building blocks obtained from Fanos and semi-Fanos
of rank 2 or 3. For later use, we prioritise ones with index 2. We collect in Table 2 the
key data for these blocks highlighted in Sect. 2.5, along with the index r , the anticanonical
degree −K 3

Y and the Betti number b3(Y ) of the (semi-)Fano Y used. (Table 2 also includes
two blocks from Sect. 3.4 that result from applying Construction 3.2 to 3-folds that are not
semi-Fano.)

Example 3.10 Construction 3.2 can be applied to all but the first of the 36 entries in the Mori-
Mukai list of classes of rank 2 Fano 3-folds. We will refer to blocks resulting from the kth
entry as Example 3.10k . The invariants of the resulting blocks can be found in [12, Table 3].
Let us briefly describe those classes that we will make use of later.

k = 3 Double cover of P3 branched over a quartic, blown up in the pre-image of a line
(which is an elliptic curve).

k = 10 Complete intersection of two quadrics in P5, blown up in the intersection of two
hyperplanes.

k = 17 Blow-up of a smooth quadric in P4 along an elliptic curve of degree 5.
k = 27 Blow-up of P3 along a twisted cubic.
k = 32 A (1,1) divisor in P2 × P2.
k = 35 The blow-up of P3 in a point.

The last two cases (i.e. k = 32 and 35) are the only rank 2 Fanos of index 2.

Example 3.11 The only rank 3 Fano 3-fold of index 2 is Y = P1 × P1 × P1. It has

N ∼=
⎛

⎝
0 2 2
2 0 2
2 2 0

⎞

⎠ ,

b3(Z) = 50 and c̄2(Z) = ( 12 12 12 ).

3.2 Semi-Fano 3-folds of rank 2

Smooth weak Fano 3-folds must have Picard rank at least 2, and there is a classification
programme for Picard rank exactly 2, see e.g. Jahnke–Peternell [18], Blanc–Lamy [19],
Arap–Cutrone–Marshburn [20], Cutrone–Marshburn [21] and Fukuoka [22]. We will not
explore this fully, but focus on the cases that will prove most relevant later.

As seen in Examples 3.1017 and 3.1027, rank 2 Fano 3-folds are often obtained by blowing
up curves of small genus and degree in P3. Blanc and Lamy study cases where the degree is
a little larger relative to the genus and produce many semi-Fano 3-folds this way.

Example 3.12 Let Y be the blow-up of P3 in an elliptic curve of degree 7. Then, Y is semi-
Fano—indeed, −KY is a small contraction according to Blanc-Lamy [19, Table 1]. In the
basis formed by the pull-back of the hyperplane class from P3 and −KY (which also span
the nef cone), the Picard lattice is

N ∼=
(
4 9
9 8

)

.

Compute as above that b3(Y ) = 2 and b3(Z) = 12. Since Z can be viewed as the result of
performing two blow-ups, we can apply Lemma 3.6 and (3.9) twice to find c̄2(Z) = (22 32).
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We could produce blocks from 21 further cases in [19, Table 1] in a similar way, but let
us instead restrict attention to the case of rank 2 “semi del Pezzo 3-folds” (i.e. semi-Fanos of
index 2), where Jahnke-Peternell [18] have provided a complete classification.

Example 3.1035 produced a Fano 3-fold of index 2 by blowing up P3 at a point. It is true
more generally that the canonical bundle being even is preserved by blowing up a point, but
the Fano condition is not. However, for 4 of the 5 families of index 2 Fanos the blow-up has
small anticanonical morphism. (The remaining case is considered in Sect. 3.4.)

Example 3.13 For 2 ≤ d ≤ 5, let X ′ be a Fano of rank 1, index 2 and degree d as in
Example 3.25d . Blowing up X ′ at a generic point p yields a semi-Fano X [18, Theorem 3.7].

H ′ := π∗(− 1
2 K X ′) clearly spans one edge of the nef cone of X (the corresponding

morphism is just the blow-down X → X ′), and X being semi-Fano means that H :=
− 1

2 K X = H ′ − E spans the other (where E is the class of the exceptional divisor). In the
basis H , E the Picard form of X is simply

(
2d 0
0 −2

)
, so with respect to the basis H , H ′ for

the nef cone we get

N ∼=
(
2d 2d
2d 2d − 2

)

.

We see from (3.9) that c2(X) + c1(X)2 evaluates to 24 + 8d − 8 on −K X . On the other
hand, since−K X ′ can be represented by a divisor that does not contain the blow-up point, [7,
Lemma5.15] gives (c2(X)+c1(X)2)π∗(−K X ′) = (c2(X ′)+c1(X ′)2)(−K X ′) = 24−K 3

X ′ =
24+ 8d . Hence, c̄2(Z) = c2(X)+ c1(X)2 is represented by (12+4d 8+4d) with respect to the
basis of N∗ dual to H , H ′.

By Jahnke-Peternell [18], the remaining classes of rank 2 weak del Pezzos with small
anticanonical morphism fall into two categories: conic bundles over P2 and quadric bundles
over P1.

Example 3.14 For 2 ≤ d ≤ 5, according to [18, Theorem 3.7] there are degree d weak del
Pezzos with small anticanonical morphism of the form Y = P(E), where E → P2 is a rank
2 holomorphic vector bundle with c1(E) = −1 and c2(E) = 7− d .

Then,−KY = det E−2T+3F = 2(−T+F), where F is the pull-back of the hyperplane
class from P2 and T is the tautological bundle of P(E). As basis for the Picard lattice, we
take −T + F and F , which also span the nef cone. Note that T 2 = c1(E)T − c2(E) =
−T F + (d − 7)F2 and F3 = 0 to find that the Picard lattice is represented with respect to
our chosen basis by

N =
(
2d 6
6 2

)

.

Patently b3(Y ) = 0, so b3(Z) = −K 3
Y + 2 = 8d + 2.

To compute c2(Y ), note that T Y is stably isomorphic to (−T ) ⊗ E ⊕ F⊕3. We have
c2((−T )⊗ E) = c2(E)− T c1(E)+ T 2 = 0, so

c2(Y ) = 3F2 + 3Fc1(E)+ c2(E) = −6FT .

Hence,

c2(Y )+ c1(Y )2 = −6FT + 4(−T + F)2 = −18FT + (4d − 24)F2.

This evaluates to 18 on F and to 4d + 12 on −T + F , i.e. c̄2(Z) is represented with respect
to our chosen basis by the row vector (4d+12 18).

We refer to the building blocks arising from these semi del Pezzos as Example 3.14d .
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Example 3.15 For each 1 ≤ d ≤ 5, according to [18, Theorem3.5] there are semi del Pezzo 3-
folds Y of degree d that are divisors in the projectivisation of a rank 4 bundle E of c1 = 2−d
over P1. The class of the divisor Y is −2T + (4 − d)F , where F is the pull-back of the
hyperplane class of the P1 base, and T is the class of the tautological bundle of P(E)—so
the generic fibres of Y → P1 are quadric surfaces in P3.

The anticanonical class of Y is

−KY = −KP1 + det E − 4T − (−2T + (4− d)F) = −2T .

−T and F form a basis for the Picard lattice. Noting that on P(E) we have F2 = 0 and
T 4 = T 3c1(E) = d − 2, we see that the intersection form is represented in this basis by

N ∼=
(
2d 4
4 0

)

.

We compute the Chern classes of Y from the tangent bundle of P(E) being stably isomorphic
to (−T )⊗ E ⊕ F ⊕ F and hence find b3(Z) = 12+ 6d and c̄2(Z) = (12+4d 12).

We refer to the building blocks arising from these semi del Pezzos as Example 3.15d .

Remark 3.16 In [18, Theorem 3.5], there are actually two different classes with d = 2,
corresponding to E = O(−1, 0, 0, 1) or E being trivial over P1 (i.e. in the latter case Y is
a (2,2)-divisor on P1 × P3). However, these bundles can be deformed to each other, and so
can the semi del Pezzos, so as far as we are concerned they form a single family of building
blocks, cf. [7, Example 6.11(i)].

Remark 3.17 Any rank 2 semi-Fano whose anticanonical morphism is a small contraction
can be flopped, i.e. the anticanonical model has another small resolution that is also a rank
2 semi-Fano. In some cases, the flop is in the same class as the original semi-Fano, but in
some cases it can belong to a different family.

Consider, for instance, Example 3.134, the blow-up X of the complete intersection X ′ of
two quadrics in P5 at a point p ∈ X ′. The morphism defined by − 1

2 K X can be interpreted
as the projection from p to a hyperplane; it contracts the 4 lines passing through p, and the
image (i.e. the anticanonical model) is a cubic hypersurface X ′′ that contains a plane�. The
pre-image of � in X is the exceptional divisor of the blow-up X → X ′, whose intersection
number with the contracted lines in 1. We therefore find that X is the small resolution of X ′′
obtained by blowing up a quadric surface in X ′′ that intersects � in the singularities of X ′′.

If we instead resolve X ′′ by blowing up� itself, then we obtain a semi del Pezzo from the
class in Example 3.153. Indeed, we can see in Table 2 that Examples 3.134 and 3.153 have
equal b3(Y ) and −K 3

Y and isometric polarising lattices. However, the nef cones and c̄2(Z)

are not identified by that lattice isometry, so these blocks will produce different extra-twisted
connected sums (see Examples 8.19 and 8.20).

Similarly, Examples 3.144 and 3.135 are both small resolutions of a singular intersection
of two quadrics inP5, while Examples 3.145 and 3.155 are both small resolutions of a singular
del Pezzo 3-fold of degree 5.

3.3 Involution blocks from index 2 Fanos

We now wish to construct building blocks with involution, essentially by applying Con-
struction 3.2 to Kähler 3-folds Y that already admit an involution. One situation where the
involution on the resulting block has the features required in Definition 2.7 is when Y is
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a double cover of a smooth Kähler 3-fold X , branched over an anticanonical divisor. It is
expedient for us to set up the construction starting from X .

Construction 3.18 Let X be a simply connected non-singular complex 3-fold with −K X

even, and suppose there are smooth divisors � ∈ |−K X | and H ∈ |− 1
2 K X | with transverse

intersection C.
Let Y be the double cover of X branched over �, and Z the blow-up of Y in C. Because

C is contained in the branch set of Y , we can lift the branch-switching involution τ on Y to
an involution on Z. The proper transform in Z of � is an anticanonical divisor. Note that
H∗(Y )−τ has trivial image in H∗(�). In particular, H2(Y ) and H2(X) have the same image
N in H2(�) = L.

Remark 3.19 Proposition 3.20 establishes conditions that ensure that (Z , τ ) is a building
block with involution. Similarly to Proposition 3.3, these conditions are satisfied for most
semi-Fanos.

Lemma 5.2 can be used to prove that Y is Fano/semi-Fano if and only if X is. Note,
however, that there are usually Fano deformations of Y that are not double covers. Example
3.24 is one case where there are not.

Proposition 3.20 If N ⊂ L is primitive and H3(X) is torsion-free then (Z , τ ) is an involution
block in the sense of Definition 2.7. The image in H1,1(�) of the τ -invariant Kähler cone of
Z contains the image of the Kähler cone of X.

Proof That Z is a building block in the sense of Definition 2.1 follows from [7, Proposition
4.14], and the claim about Kähler cones is also analogous. The proper transform of � is a
fixed component of τ . The other fibre �′ preserved by τ is the pre-image of H , which is a
double cover of H branched over C , and thus smooth. Therefore Z is a building block with
involution in the sense of Definition 2.7. �

If Y is semi-Fano, then H2(Y ) → L is injective. We already used in [7, Proposition 5.7]
that this implies K = 0, the first of the conditions for the involution block to be pleasant.
Crucially, it implies the second condition (2.9) too. Let ρ := b2(X) = rk N .

Proposition 3.21 If, in addition to the hypotheses of Proposition 3.20, H2(Y ) → L is injec-
tive then so is H2(V ) → L (i.e. the building block Z has K = 0), and

(i) b2(Z)− 1 = b2(V ) = b2(Y ) = ρ.
(ii) b3(Z) = b1(C)+ b3(Y ) = b1(C)+ 2b3(X)+ 22− 2ρ.
(iii) b+3 (Z) = b1(C)+ b3(X).
(iv) s = b−3 (V ).

In particular, Z is pleasant.

Proof Since H2(Y ) and H2(X) have the same image in L , assuming H2(Y ) → L injective
implies that H2(X) ∼= H2(Y ).

Let W := Y\� and U := X\�. Then

χ(W ) = χ(Y )− 24 = 2ρ − b3(Y )− 22,

χ(U ) = χ(X)− 24 = 2ρ − b3(X)− 22.

Therefore χ(W ) = 2χ(U ) implies

b3(Y ) = 2b3(X)+ 22− 2ρ.
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b+3 (Z) = b3(Z0), where Z0 is the singular quotient Z/τ . Let E ⊂ Z0 be the image of
the exceptional divisor in Z , so that Z0\E ∼= X\C and E ∼= C × P1. Comparing the long
exact sequences of X relative to C and Z0 relative to E gives an exact sequence 0 →
H3(X) → H3(Z0) → H3(E) → H4(Z0, E). The kernel of the last map is free of rank
equal to b3(E) = b1(C), so b3(Z0) = b3(X)+ b1(C). Moreover, this shows H3(Z0) to be
torsion-free, so Z is pleasant by Lemma 2.13. �

To compute the Chern class data, it is convenient to use that T Y ⊕π∗(−K X ) ∼= π∗(T X⊕
(− 1

2 K X )) implies c2(Y ) = π∗(c2(X)). If we have already computed c2(X)+ c1(X)2, then
we can use

c2(Y )+ c1(Y )2 = π∗
(
c2(X)+ c1(X)2

)− 3c1(Y )2 (3.22)

to say that the building block Z constructed from Y has c2(Z) = g(c̄2(Y ))+ h for c̄2(Y ) =
2c̄2(X)− 3�(−KY ) ∈ N∗, and h ∈ H4(Z) the Poincaré dual of a P1 fibre over the blow-up
curve as before.

Remark 3.23 Such a P1 fibre is τ -invariant, so Lemma 2.25 implies the class B̂(h) from
(2.24) can be taken to be zero.

We now apply Construction 3.18 to the various index 2 Fano 3-folds and semi-Fano 3-
folds that we have already considered in Sects. 3.1–3.2. We collect the data for the resulting
pleasant involution blocks in Table 3; for convenience the table also includes a few blocks
from Sect. 5. The table displays the key data discussed in Sect. 2.5, along with the Euler
characteristic of the fixed curve C ⊂ Z of the involution (corresponding to −K 3

Y for semi-
Fano type blocks). Note that all the blocks in the table could equally well be used as ordinary
blocks if we choose to forget about the involution (but then there is some redundancy with
Table 1).

Example 3.24 Perhaps the simplest example does not in fact use an index two Fano, but
rather the unique one of index 4. Take X = P3, and let Y be the double cover branched over
a smooth quartic�. (In this case, all deformations of the Fano Y are in fact branched double
covers of P3.)

ρ = 1 and b3(X) = 0, and C is a degree 8 curve so has b1(C) = 18. Hence,

b3(Z) = 38, b+3 (Z) = 18.

The Picard lattice of Y is N ∼= 〈4〉. Because Y has index 2, (−KY )
3 = 16 and c̄2(Z) =

24+16
2 = 20 ∈ N∗ ∼= Z by (3.9). (Some of this simply recovers the data for Example 3.822 in

Table 1.)
Note that the the other preserved fibre of τ on Z is a double cover of a quadric, branched

over a bidegree (4, 4) curve in P1×P1, or equivalently a K3 with non-symplectic involution
and Picard lattice

(
0 2
2 0

)
(cf. Example 5.20). So the other preserved fibre is more special than

�.

Example 3.25 There are 5 families of Fano 3-folds X of rank 1 and index 2, and the com-
putation of the invariants of a double cover Y branched over an anticanonical K3 divisor �
and its blow-up Z in an anticanonical curve C ⊂ � follow the same pattern. We refer to the
resulting building blocks as Example 3.25d , where d = 1, . . . , 5 is the degree of X . Let us
provide some varying amounts of additional detail in the 5 cases.
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(i) X is a smooth sextic hypersurface inP4(3, 2, 1, 1, 1), such that the anticanonical section
� := {X1 = 0} is smooth (where X1 is the weight 2 coordinate). The double cover Y
of X branched over � is a sextic hypersurface in P4(3, 1, 1, 1, 1); it is a double cover
of P3 branched over a sextic surface.
Let C ⊂ � be the intersection with a hyperplane (of weight 1, like {X2 = 0}). C is a
double cover of P1 branched over 6 points, so has b1(C) = 4. Let Z be the blow-up of
Y at C . ρ = 1 and b3(X) = 42, so

b3(Z) = 108, b+3 (Z) = 46.

The Picard lattice of Y is N ∼= 〈2〉, and c̄2(Z) = 26 by (3.9).
The other fixed fibre is a double cover of a hyperplane section of X , which is a degree
1 del Pezzo surface; that fibre is therefore a K3 with non-symplectic involution and
diagonal Picard lattice 〈2〉 ⊕ 〈−2〉8.

(ii) X is a double cover ofP3, as appeared in Example 3.24. In this case the branched double
coverY of X is isomorphic to a quartic 3-fold inP4. Note, however, that a generic quartic
in P4 is not a double double cover of P3 (those in the form X4

0 + X2
0 Q2(X1, . . . X4)+

Q4(X1, . . . , X4) up to projective equivalence are).
(iii) Let X ⊂ P4 be a smooth cubic (which has b3(X) = 10) and � ⊂ X smooth section

by a quadric. The double cover Y over X branched over � can be identified with the
complete intersection of a cubic and a quadric in P5. Let C be a hyperplane section of
� (a genus 4 curve), and Z the blow-up of Y in C . Then, b3(Z) = 48, b+3 (Z) = 18,
N ∼= 〈6〉 and c̄2(Z) = 30.

(iv) Let X ⊂ P5 be a complete intersection of two quadrics, � ⊂ X smooth section by
another quadric. The double cover Y of X branched over � embeds as a complete
intersection of 3 quadrics in P6.
b3(X) = 4, b1(C) = 10, b3(Y ) = 28, so b3(Z) = 38 and b+3 (Z) = 14. N ∼= 〈8〉, and
c̄2(Z) = 32.

(v) X is a section of the Grassmannian Gr(2, 5) ⊂ P9 by a codimension 3 plane.

Example 3.26 In the Mori-Mukai list of rank 2 Fano 3-folds, two entries are double covers
of index 2 Fanos.

k = 6 A branched double cover of a (1,1) divisor X ⊂ P2 × P2 (cf. Example 3.1032)
k = 8 A branched double cover of the blow-up of P3 in a point (cf. Example 3.1035).

In both cases, we can read off the topological data from [12, Table 3].

Example 3.27 Let X = P1 × P1 × P1. Then

N ∼=
⎛

⎝
0 2 2
2 0 2
2 2 0

⎞

⎠ ,

b3(Y ) = 16, b1(C) = 14, b3(Z) = 30, and b+3 (Z) = 14.

Example 3.28 Let Z be the building block obtained by applying Construction 3.18 to the
blow-up of a degree d del Pezzo 3-fold of rank 1 (cf. 3.13d ). We work out b3(Z) and
b+3 (Z) from b3(X) = b3(X ′) and b1(C) = −K 3

Y = 2d − 2. By (3.22), c2(Y ) + c1(Y )2 =
(24+8d 16+8d)− 3 (2d 2d−2) = (24+2d 22+2d).

We refer to these involution blocks as Example 3.28d .
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Example 3.29 For 2 ≤ d ≤ 5, let Z be the building block resulting from applying Construc-
tion 3.18 to the conic-fibred semi del Pezzo 3-fold of degree d (cf. Example 3.14d ). (3.22)
yields c̄2(Z) = (26+2d 18).

b3(Z) = 20+ 2d , b+3 (Z) = 2+ 2d .

Example 3.30 For 1 ≤ d ≤ 5, let Z be the building block resulting from applying Construc-
tion 3.18 to the quadric-fibred semi del Pezzo 3-fold of degree d (cf. Example 3.15d ). (3.22)
yields c̄2(Z) = (24+2d 12).

b3(Z) = 40− 2d , while b+3 (Z) = 12.

3.4 Ad hoc blocks

As we have seen, classes of semi-Fano 3-folds often come in sequences. Sometimes these
will be part of a bigger sequence, where the borderline case fails to be semi-Fano, yet satisfies
the hypotheses of Construction 3.2. However, not being able to apply Propositions 3.3 or 3.7
means it takes a bit more work to employ such blocks. We carry this out in two cases that
lead to blocks with useful polarising lattices of rank 2—with unusually small and unusually
large discriminants, respectively.

The first case comes from extrapolating the classes Example 3.13 consisting of one-point
blow-ups of rank 1 del Pezzo 3-folds of degree d = 2, . . . , 5. This leads us to consider X ′
a rank 1 del Pezzo 3-fold of degree 1, i.e. a smooth sextic hypersurface in P4(3, 2, 1, 1, 1)
(this is the family appearing in Example 3.251), and let X be the blow-up of X ′ at a point
p, say p = (0:0:0:0:1). Then, X fails to be weak Fano—in fact, generically −K X does not
even have any irreducible sections: H0(−K X ) is spanned by X2

2, X2X3 and X2
3.

We can, however, restrict attention to the case when X ′ ⊂ P4(3, 2, 1, 1, 1) is tangent
to {X1 = 0} at p. Then, the section �′ := {X1 = 0} ∩ X ′ has a double point at p;
generically it is an ordinary double point, and the proper transform � ⊂ X is a smooth
section of−K X . Now |−K X | is spanned by X1, X2

2, X2X3 and X2
3, and defines a morphism

onto a quadric cone in P3 (mapping p to the vertex of the cone); it is defined everywhere
because the conditions p ∈ X ′ and tangency with {X1 = 0} at p imply that the defining
polynomial of X ′ has no X6

4 or X0X3
4 coefficients, so that p is the only point on X ′ with

X1 = X2 = X3 = 0. (Geometrically, the morphism resolves the projection of X ′ onto
{X0 = X4 = 0} ∼= P2(2, 1, 1) ⊂ P4(3, 2, 1, 1, 1)).

Since−K X is evidently not big, even this non-generic blow-up fails to be weak Fano. We
can nevertheless apply Construction 3.2 to construct a building block from X , or Construction
3.18 to construct an involution block from the double coverY of X branched over�. However,
it takes more work since we now have to check some properties, which are automatic if Y is
semi-Fano, by hand:

• In the description of the example that follows, we show that H2(Y ) → L is injective
with image N primitive. Then, the hypotheses of Propositions 3.20 and 3.21 hold, so that
Z is a pleasant involution block.

• In Lemma 4.4 we show that any generic N -polarised K3 appears as an anticanonical
divisors in some member of the family of blocks.

Example 3.31 Note that there exist sections of O(−1) passing through p that meet X ′ trans-
versely, defining smooth H ′ ∈ |− 1

2 K X ′ |. The proper transform H ⊂ X of such a divisor
is in |− 1

2 K X |. Let C ⊂ � be the intersection with such a section. It is a double cover of
P2 branched over 4 points, so C is an elliptic curve (and b1(C) = 2). The nef cone of X is
spanned by H and π∗H ′ = H + E , where E is the exceptional P2.
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Let Y be the double cover of X branched over�, and let Z be the blow-up of Y at C . The
pre-image H̃ ⊂ Y of H is a smooth anticanonical divisor. The pencil |H̃ : �| ⊆ |−KY | has
base locus C , and yields an anticanonical fibration of Z .

ρ = 2 and b3(X) = 42, so

b3(Z) = 104, b+3 (Z) = 44.

The Picard lattice of Y is N ∼= (
2 0
0 −2

)
with respect to the basis {H̃+Ẽ, Ẽ}, where Ẽ is the

exceptional P1 × P1 ⊂ Y . Meanwhile the Picard group of � is generated by the hyperplane
section and the exceptional P1. Thus, we see directly that H2(Y ) → L is injective with
primitive image.

The other fixed fibre H̃ has diagonal Picard lattice 〈2〉 ⊕ 〈−2〉9, since it is a branched
double cover of H , which is a blow-up of a degree 1 del Pezzo H ′ at a point. The non-
genericity of the choice of blow-up point p ∈ X ′ is reflected in the fact that H is the result of
blowing up H ′ in the nodes of a sextic with 9 nodes rather than 9 generic points; H̃ is a K3
with non-symplectic involution whose fixed set is single elliptic curve (the proper transform
of the nodal sextic) isomorphic to C , as appears in Remark 5.22.

In the basis for N given by the edges H̃ + Ẽ, H̃ of the nef cone

N =
(
2 2
2 0

)

.

Analogously to Example 3.28, we find that c̄2(Z) = (26 24) with respect to this basis.

Example 3.32 Without taking double cover, we get an ordinary block with b3(Z) = b3(X)+
(−K X )3 + 2 = 42+ 0+ 2 = 44, and c̄2(Z) = (16 12).

(Now the blow-up curve is just a fibre of the morphism to the quadric cone—which is
generically smooth as required.)

Most of our building blocks have been obtained by applying Construction 3.2 to semi-
Fano 3-folds. In turn, many semi-Fano 3-folds Y are obtained by blowing up a curve C
on simpler Fano 3-fold X . In a sense, for Y to be Fano or semi-Fano requires C to be
contained in sufficiently many anticanonical divisors of X . But even if C lies on just a pencil
of anticanonical divisors, Y may still satisfy the conditions for applying Construction 3.2,
like in our second ad hoc example.

Example 3.33 Let Y be the blow-up of a complete intersection of quadrics X ⊂ P5 along an
elliptic curve of degree 8; that such X exist can be seen as a consequence of Lemma 4.10. The
polarising lattice is spanned by the pull-back H of the hyperplane class and the exceptional
divisor E . The nef cone is spanned by H and−KY = 2 H−E . With respect to that basis, the
polarising lattice is represented by

(
8 8
8 0

)
, and (applying Lemma 3.6 and (3.9) twice) c̄2(Z)

by (28 24).
b3(Y ) = 6, and b3(Z) = b3(Y )− K 3

Y + 2 = 8.

4 Genericity results

In Sect. 8, wewill exhibit examples of extra-twisted connected sums using blocks constructed
in Sect. 3. To match pairs of blocks in the required way (i.e. to find hyper-Kähler rotations
in the sense of Definition 1.8 between the K3 surface factors in their asymptotic cross-
sections), we will apply Theorem 6.10. That relies on establishing that the families of blocks
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used have certain genericity properties in the sense of Definition 2.27. As explained in Sect. 6,
precisely what genericity property is needed depends onwhat action on cohomology one tries
to achieve for the hyper-Kähler rotation, and in some examples, what is needed is stronger
than what Proposition 3.7 provides. We therefore collect here the genericity results that will
prove necessary for our selected examples.

Given a family of building blocks Z with polarising lattice N , the problem is basically to
establish sufficient conditions for an overlattice� ⊂ L of N that ensure that any K3 surface
� with Pic� ∼= � embeds as an anticanonical divisor in some element ofZ. If the conclusion
holds, then elements of N ⊂ � are given some geometric meaning, e.g. if elements of Z are
described in terms of some embedding into projective space, then there is an element H ∈ N
corresponding to the hyperplane class. The general strategy to reconstruct these embeddings
into projective space from knowing that Pic� ∼= �.

The first step is to recall that the positive cone of a complex K3 has a chamber structure,
where walls are planes orthogonal to (−2)-classes in Pic�, and the chambers are possible
nef cones. Thus, for a marked K3 with Pic� = � and H ∈ � such that has H2 > 0 and H
is orthogonal to all (−2)-classes in�, we can always choose a different marking (composing
the original choice with reflections in (−2)-classes) to assume WLOG that H is a nef class
for the marked K3.

Once we have a nef class H , we can try to apply results of Saint-Donat [23] to prove that

H is very ample, i.e. that its sections define an embedding � ↪→ P(H0(H)) ∼= P
H2
2 +1.

Lemma 4.1 (See Reid [24, Chapter 3]) Let � be a K3 surface, and H ∈ Pic� a nef class.

(a) If H2 ≥ 4, H is not twice an element of square 2, and

(i) there is no v ∈ Pic� such that v.H = 2 and v2 = 0 then |H | defines a birational

morphism to P
H2
2 +1, which is an isomorphism away from a set of contracted (−2)-

curves. If in addition
(ii) there is no v ∈ Pic� such that v.H = 0 and v2 = −2
then H is very ample.

(b) If H2 = 2 and (ii) holds, then |H | defines a double cover of P2, branched over a sextic
curve. ((ii) implies (i) in this case.) If we instead of (ii) assume that there is no v ∈ Pic�
such that v.H = 1 and v2 = 1, then |H | is basepoint-free and defines a generically
2-to-1 map � → P2, but may contract some (−2)-curves.

Using such a map to projective space, one can then proceed to try to “build an element of
Z around �”, but the details depend on Z. These problems are studied more systematically
by Wallis [25, Section 7.7], but here we are content to note a handful of consequences of
Lemma 4.1 that suffice for the examples in Sect. 8.

4.1 Hyper-elliptic K3s

Proposition 4.2 Let � ⊂ L be a primitive lattice, with H ∈ � such that H2 = 2. Suppose
that there is no v ∈ � such that

(i) v.H = 2 and v2 = 0, or
(ii) v.H = 0 and v2 = −2,

Then, for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines a double cover � → P2, branched over a smooth sextic curve.
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In particular, the families of blocks from Examples 3.821 and 3.251 (essentially the same
as 3.812) are (�, HR+)-generic.

Proof That � is branched over a smooth sextic is just a restatement of Lemma 4.1(b).
Now let F be the polynomial defining the sextic curve. Then for a generic homogeneous

quadric Q and quartic C in three variables, the sextic hypersurface

X := {X2
0 + X1C(X2, X3, X4)+ X2

1Q(X2, X3, X4)+F(X2, X3, X4) = 0}
⊂ P4(3, 2, 1, 1, 1)

(4.3)

is a smooth degree 1 del Pezzo 3-fold, with {X1 = 0} ∼= � as anticanonical divisor. Blowing
up a curve on X yields an building block in the family of Example 3.821. Taking a double
cover Y of X branched over� and then blowing up yields an element of the family Example
3.251.

Thus, a generic�-polarised K3 embeds as an anticanonical divisor in Examples 3.821 and
3.251 as required. �
Lemma 4.4 [12, Lemma 7.7] Let N ⊂ L be a primitive rank 2 lattice, with quadratic form
represented with respect to a basis G, H by

(
0 2
2 2

)
, let Amp ⊂ NR be the open cone spanned

by G and H. Let � ⊂ L be an overlattice of N , and suppose that

(i) there is no v ∈ � such that v.H = 1 and v2 = 0, and
(ii) there is no v ∈ � other than ±(H − G) such that v.H = 0 and v2 = −2,

Then, for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines a morphism � → P2, contracting a (−2)-curve E ⊂ � to a point p ∈ P2,
which is 2-to-1 except over a sextic curve C ⊂ P2 that is smooth apart from an ordinary
double point at p.

In particular, the families of building blocks from Examples 3.31 and 3.32 are (�,Amp)-
generic.

Proof The first part is immediate from Lemma 4.1(b).
Let F be the sextic polynomial that defines the curve with ordinary double point at p.

Then, a generic sextic hypersurface of the form (4.3) is a smooth degree 1 del Pezzo 3-fold
tangent to the hyperplane {X1 = 0} at p, so we can proceed to construct building blocks as
in Examples 3.31 and 3.32. �

4.2 Quartic K3s

The conditions on Pic� for� to embed as a quartic in P4 are immediate from Lemma 4.1(a).
We also use the following result from [12, Lemma 7.7, case #27] in an example.

Lemma 4.5 Let N ⊂ L be a primitive rank 2 lattice, with quadratic form represented with
respect to a basis G, H by

(
2 5
5 4

)
, let Amp ⊂ NR be the open cone spanned by G and H. Let

� ⊂ L be an overlattice of N , and suppose that there is no v ∈ � such that

(i) v.H = 2 and v2 = 0; or
(ii) v.H = 0 and v2 = −2; or
(iii) v.H = 1 and v2 ≥ −2.

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an embedding � → P3, whose image is a smooth quartic hypersurface
and 2G − H is represented by a twisted cubic curve C.

In particular, the family of building blocks from Example 3.1027 is (�,Amp)-generic.
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4.3 Sextic K3s

Proposition 4.6 Let � ⊂ L be a primitive lattice, with H ∈ � such that H2 = 6. Suppose
that there is no v ∈ � such that

(i) v.H = 2 and v2 = 0; or
(ii) v.H = 0 and v2 = −2.

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an � → P4, whose image is the intersection of a quadric (which may be
singular) and a smooth cubic.

In particular, the families of blocks from Examples 3.823 and 3.253 (essentially same as
3.816) are (�, HR+)-generic.

Proof Lemma 4.1 gives that H is very ample. It is well known that the image is then a
complete intersection of a quadric and a cubic and that the cubic may be taken to be smooth
(see Saint-Donat [23, Theorem 6.1]). �
Proposition 4.7 Let N ⊂ L be a primitive rank 2 lattice, with quadratic form represented
with respect to a basis H , � by

(
6 2
2 −2

)
. Let � ⊂ L be an overlattice of N , and suppose that

there is no v ∈ � such that

(i) v.H = 2 and v2 = 0; or
(ii) v.H = 0 and v2 = −2; or
(iii) v.H = 1 and v2 = −2.

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an embedding � → P4, whose image is the intersection of a quadric Q
and a cubic C, and contains a conic representing the class �.

The cubic C can be chosen so that it contains the plane � of the conic, and so that it has
no singularities other than 4 ordinary double points along �.

Further if Amp± ⊂ NR is the open cone spanned by H and H ±�, then Examples 3.134
and 3.284 are (�,Amp+)-generic, and Examples 3.153 and 3.303 are (�,Amp−)-generic.

Proof Using (i) and (ii), Lemma 4.1 implies that the class H is very ample, so � embeds as
a degree 6 surface in P4, so has to be a complete intersection of a quadric Q and a cubic C
[23, Theorem 6.1].

Since the (−2)-class � has positive intersection with H it is effective. (iii) implies that
� is irreducible, so represented by a smooth rational curve. The image in P4 is a smooth
rational curve of degree 2, so a conic as required.

Recall from Remark 3.17 that the semi-Fano 3-folds in Examples 3.134 and 3.153 (whose
double covers are used in Examples 3.284 and 3.303) are small resolutions of a cubic con-
taining a plane. Let us therefore consider the unique plane � ⊂ P4 that contains the conic
�.

As a variety in�, C is defined by the vanishing of q := Q|�. Since C ∩� contains �, we
can write C|� = q� for a line � on �. If we take L to be any hyperplane in P4 intersecting
� in �, then by replacing C with C − L Q we can assume without loss of generality that C
contains � as well as �.

Without loss of generality,� = {x0 = x1 = 0}. We obtain a 3-dimensional space of cubic
polynomials of the form (a0x0+ a1x1)Q+ a2C with base locus exactly� ∪�. By Bertini’s
theorem, a generic element of this linear system is smooth away from the base locus. On the
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other hand, it must also be smooth along the smooth Cartier divisor �, so any singularities
must lie on �.

If we write C = x0R0+ x1R1 for some quadrics R0, R1, then the singularities of (a0x0+
a1x1)Q + a2C = x0(a0Q + a2R0)+ x1(a1Q + a2R1) in � correspond to the intersection
points of a0q + a2r0 and a1Q + a2r1, where ri := Ri |�. The smoothness of Q ∩ C implies
that r0, r1 and q have no common zeros, i.e. the linear system that they span is basepoint-free.
Therefore for generic a0, a1, a2, the quadrics a0q+a2r0 and a1Q+a2r1 intersect transversely
in 4 points, and (a0x0 + a1x1)Q + a2C is smooth except for ordinary double points at those
4 points.

Blowing up C in�—or equivalently blowing up P4 in� and taking the proper transform
of C—gives a semi-Fano del Pezzo Y− of the class from Example 3.153, with � as an anti-
canonical divisor. The nef cone of the blow-up of P4 is spanned by H− and H−− E−, where
H− is the pull-back of the hyperplane class and E− is the exceptional divisor. The restriction
to� corresponds to Amp−, so Example 3.153 is (�,Amp−)-generic. Since Examples 3.153
and 3.303 have the same anticanonical divisors, Example 3.303 is (�,Amp−)-generic too.

Finally, consider the intersection of C with a generic hyperplane that contains �. This
intersection will be the union of � and a smooth quadric surface S that passes through the
singularities of C . Blowing up C in S yields another semi del Pezzo Y+, which belongs to the
class from Example 3.134. If E+ is the exceptional divisor of the corresponding blow-up of
P4, then the nef cone is generated by H+ and 2H+−E+. The restriction of E+ to� is H−�,
so the image of the nef cone of Y+ in H2(�;R) is spanned by H and 2 H−(H−�) = H+�.
Thus, Example 3.134 is (�,Amp+)-generic, as is Example 3.284. �
Lemma 4.8 ([12, Lemma 7.7, case #17]) Let N ⊂ L be a primitive rank 2 lattice, with
quadratic form represented with respect to a basis G, H by

(
4 7
7 6

)
, let Amp ⊂ NR be the

open cone spanned by G and H. Let � ⊂ L be an overlattice of N , and suppose that there
is no v ∈ � such that

(i) v.H = 2 or 3 and v2 = 0, or
(ii) v.H = 0 and v2 = −2, or
(iii) v.H = 1 or 2, and v2 ≥ −2
Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an embedding � → P4, whose image is contained in a smooth quadric
3-fold, and 2H − G is represented by an elliptic curve of degree 5.

In particular, the family of building blocks from Example 3.1017 is (�,Amp)-generic.

4.4 Octic K3s

We quote the following result from Wallis [25, Proposition 7.7.38].

Proposition 4.9 Let � ⊂ L be a primitive lattice, with a primitive class H ∈ � such that
H2 = 8. Suppose that there is no v ∈ � such that

(i) v.H = 2 or 3 and v2 = 0; or
(ii) v.H = 0 and v2 = −2.

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an embedding � → P5, whose image is the complete intersection of three
smooth quadrics. Moreover, one can choose two of those quadrics to intersect transversely.

In particular, the families of blocks from Examples 3.824 and 3.254 (essentially the same
as 3.818) are (�, HR+)-generic.
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Lemma 4.10 Let N ⊂ L be a primitive rank 2 lattice, with quadratic form represented with
respect to a basis G, H by

(
0 8
8 8

)
, and let Amp ⊂ NR be the open cone spanned by G and

H. Let � ⊂ L be an overlattice of N , and suppose that there is no v ∈ � such that

(i) v.H = 2 and v2 = 0; or
(ii) 0 < v.H ≤ 4 and v2 ≥ −2; or
(iii) v.H = 0 and v2 = −2.

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
system |H | defines an embedding � → P5, whose image is a complete intersection of 3
smooth quadrics, and 2H − G is represented by a smooth elliptic curve of degree 8.

In particular, the family of building blocks from Example 3.33 is (�,Amp)-generic.

Proof That |H | defines an embedding � → P5 whose image is a complete intersection
follows from Proposition 4.9. Now E := 2H − G is a class with E2 = 0 and H .E = 8. To
show that it is represented by an elliptic curve we use the following argument from the proof
of Lemma 4.8 from [12, Lemma 7.7, case #17].

(ii) rules out the existence of irreducible classes in Pic� with d ≤ 4, so E is irreducible. In
particular E does not have any (−2)-curve components, so E is nef. Therefore [24, Theorem
3.8(b)] implies that |E | is basepoint-free. A generic C ∈ |E | is therefore a smooth elliptic
curve of degree 8.

Finally let X ⊂ P5 be the complete intersection of a generic pencil in the 3-dimensional
space of quadrics cutting out the image of �. Then, the blow-up Y of X in the image of C
belongs to the family of 3-folds from which Example 3.33 is constructed. �

4.5 Divisors in P2 × P2

Our final genericity result is slightly different in that we are concerned with embedding a K3
surface as an anticanonical divisor not into a rank 1 Fano or a blow-up of a rank 1 Fano, but
rather into a primitive rank 2 Fano.

Proposition 4.11 Let N ⊂ L be a primitive rank 2 lattice, with quadratic form represented
with respect to a basis G, H by

(
2 4
4 2

)
. Let � ⊂ L be an overlattice of N , and suppose that

there is no v ∈ � such that

(i) v2 = −2, and (v.G)(v.H) ≤ 0; or
(ii) v2 = 0 and v.(G + H) = 2; or
(iii) v2 = 4 and v.G = v.H = 2

Then for any K3 with Picard lattice exactly �, we can choose a marking such that the linear
systems |G| and |H | define morphisms � → P2, and their product embeds � as a smooth
(1, 1) divisor in P2 × P2.

In particular, if we let Amp ⊂ NR be the open cone with edges spanned by G and H, then
the families of blocks from Examples 3.1032 and 3.266 are (�,Amp)-generic.

Proof Because (i) rules out the existence of any (−2)-class v ∈ � such that v.G and v.H
have opposite sign, G and H belong to the same chamber of the positive cone in�R. Hence,
it is possible to choose a marking so that G and H both belong to the nef chamber.

Using (i) again, Lemma 4.1 ensures that |G| and |H | both define branched double covers
� → P2. Since they are not the same double cover, the product |G| × |H | : � → P2 × P2

is birational onto its image.
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Meanwhile, the class G + H is nef too. As (G + H)2 = 12, h0(G + H) = 8. Using (ii),
and since (i) prevents the existence of any v ∈ � such that v2 = −2 and v.(G + H) = 0,
Lemma 4.1 implies that G + H is very ample, embedding � ↪→ P7.

Consider now the product map H0(G) ⊗ H0(H) → H0(G + H). As the domain has
dimension 9, the kernel has dimension at least 1. If the kernel has dimension at least 2, then
the image of |G| × |H | : � → P2 × P2 is a component of the intersection of two (1, 1)-
divisors, which is impossible by degree as |G| × |H | is birational onto its image. Thus, the
image of � lies on a unique (1,1)-divisor Y ⊂ P2 × P2.

Since H0(G)⊗ H0(H) maps onto H0(G + H), the composition of |G| × |H | with the
Segre embeddingP2×P2 → P8 equals the composition of the embedding |G+H | : � → P7

with inclusion into P8. In particular, |G| × |H | : � → Y is an embedding.
It remains to show that the (1,1)-divisor Y is smooth, i.e. that the bilinear formC3×C3 →

C that defines it has rank 3. If the rank were 1, then Y would be reducible, which is absurd.
So it remains to rule out that the bilinear form has rank 2, i.e. Y being isomorphic to

{((X0 : X1 : X2), (Y0 : Y1 : Y2)) ∈ P2 × P2 : X1Y2 = X2Y1}.
Then,Y would have a small resolution given by the blow-up Ỹ ofP3 at the points (1 : 0 : 0 : 0)
and (0 : 1 : 0 : 0), induced by the rational map

P3 ��� Y , (Z0 : Z1 : Z2 : Z3) �→ ((Z0 : Z2 : Z3), (Z1 : Z2 : Z3)).

As the image of � in Y is smooth, its proper transform in either Ỹ or its flop would be
isomorphic to �. In either case, there would be a class v ∈ Pic� (corresponding to OP3(1)
in the Ỹ case) such that v2 = 4 and v.G = v.H = 2. That contradicts (iii), so Y must be a
smooth divisor as desired. �

5 Building blocks from K3s with non-symplectic involution

Since involution blocks always contain a K3 fibre with non-symplectic involution by
Remark 2.12, it is natural to consider the construction of Kovalev and Lee [1] of build-
ing blocks starting from K3s with non-symplectic involution. We find that these do indeed
also lead to building blocks with involution. Moreover, by modifying their construction we
can also find some pleasant building blocks with involution.

5.1 K3s with non-symplectic involution

Let � be a K3 surface with a non-symplectic involution, i.e. a holomorphic involution τ

which acts as−1 on H2,0(�). Such involutions are classified by Nikulin [26] in terms of the
fixed part N of H2(�;Z) under the action of τ . We now summarise the relevant part of the
theory.

The discriminant groupof N is 2-elementary, i.e. N∗/N is of the formZa
2. The discriminant

form of N is the symmetric Q/Z-valued form b on N∗/N induced by the integral form on
N ; because N∗/N is 2-elementary, b takes values in 1

2Z/Z. (Because the lattice N is even, b
also has a 1

2Z/2Z-valued quadratic refinement, but that is unimportant to us.) The primitive
lattice N , and hence the deformation family of (�, τ), is characterised by the rank r , the
discriminant rank a, and a further invariant δ ∈ {0, 1} defined by

δ :=
{
0 if b(α, α) = 0 for all α ∈ N∗/N ,

1 otherwise.
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The quotient Y = �/τ is a smooth complex surface, which is rational when the fixed set
C of τ is non-empty (by Castelnuovo’s theorem [27]; if C is empty, then Y is an Enriques
surface, but this case is of no further interest to us).� is a double cover of Y , branched over a
smooth reduced divisor C ∈ |−2KY |, and τ corresponds to the branch-switching involution.
With a few exceptions, C has k + 1 components, where one has genus g and the other k are
P1s, for

k = r − a

2
, g = 22− r − a

2
.

The pull-back of the quotient map gives an inclusion H2(Y ) → H2(�). Denote

N ′ := Im(H2(Y ) → H2(�).

Then, N ′ is a subgroup of N , but not in general primitive; N is a finite index sublattice of N .
Note that since the quotient map has degree 2, the intersection form on N ′ is exactly twice the
unimodular form on H2(Y ). Its discriminant group is therefore Zr

2. Since N is an overlattice
with discriminant group Za

2, the index must be equal to 2k . (This can also be seen from the
long exact sequence (2.14).)

The quotient N/N ′ ∼= Zk
2 is generated by the Poincaré duals of the k + 1 components

Ci of the fixed set of τ ; the sum of these classes is contained in N ′ (as it is the image of
−KY ∈ H2(Y )), but (when k > 0) the individual classes are not.

Lemma 5.1 Let P ∈ N be the Poincaré dual of the fixed set C; equivalently, P :=
π∗(−KY ) ∈ N ′ ⊆ N. Then

(i) P.x = x2 mod 4 for any x ∈ N ′
(ii) α(P) = 2b(α, α) mod 2 for all α ∈ N∗, where b is the discriminant form. In particular

• P has even product with all elements of N .
• P is an even element of N if and only if δ = 0.

Proof (i) By Wu’s theorem, −KY = c1(Y ) = w2(Y ) ∈ H2(Y ) is characteristic for the
intersection form, i.e.

−KY .x = x2 mod 2

for any x ∈ H2(Y ). Hence, for any π∗x ∈ N ′,

P.π∗x = −2KY .x = 2x2 = (π∗x)2 mod 4.

(ii) Any α ∈ (N ′)∗, and hence also any α ∈ N∗ ⊆ (N ′)∗, can be written as 1
2 �(y) for

some y = π∗x ∈ N ′, where � : N → N∗ is induced by the intersection form. Then

α(P) = 1
2 y.P = 1

2 y2 mod 2,

while by definition of the discriminant form,

b(α, α) = ( 12 y)2 = 1
4 y2 ∈ Q/Z.

�
Let us now make some remarks on Picard lattices and ample cones, needed later in the

context of genericity of families of building blocks in the technical sense of Definition 2.27.
For any K3 surface� with non-symplectic involution, the fixed set N ⊂ H2(�) is contained
in Pic�. By the next lemma, the intersection of the ample cone of � with NR is simply the
image of the ample cone of Y := �/τ .
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Lemma 5.2 Let � → Y be a branched double cover. A class k ∈ Pic Y is ample if and only
if its image π∗k ∈ Pic� is ample.

Proof This is a special case of a well-known property of surjective morphisms of proper
schemes with finite fibres, see Hartshorne [28, Exercise III.5.7(d)] (though the special case
of double covers can also be proved by elementary arguments). �

In particular, the orthogonal complement of N in Pic� cannot contain any (−2)-classes.
Conversely

Proposition 5.3 For any K3 surface � such that Pic� contains a primitive 2-elementary
sublattice N, and the orthogonal complement of N in Pic� contains no (−2)-classes, there
exists a non-symplectic involution on � with fixed lattice N.

As one deforms � and Y , the ample cone of Y can jump due to the appearance of excep-
tional curves, i.e. a (−2) class in Pic Y could be represented by a curve for some Y in the
family but not others.

Example 5.4 Let α, β be linearly independent sections ofO(1) → P1, and for t ∈ C consider
the rank 2 bundle Et := {(x, y, z) ∈ O(0, 0, 1) : αx + β y + t z = 0} over P1. Then,
E0 ∼= O(1,−1) while Et is trivial for t �= 0. If we let Yt = P(Et ), then Y0 is the Hirzebruch
surface F2, while Yt ∼= P1 × P1 for t �= 0.

We can choose a basis G, H for Pic Yt so that the intersection form is represented by(
0 1
1 0

)
. For t �= 0 the ample cone of Yt is spanned by G and H , but for t = 0 the (−2)-class

G − H is represented by a section of the bundle, and the ample cone is smaller, spanned by
G + H and H .

Helpfully this change in the ample cone leaves a trace in Pic�. If there is a (−2)-curve
in Y , then that will not meet any smooth divisor in | − 2KY |, so the pre-image in � will be a
disjoint union of two (−2)-curvesC,C ′ that are swapped by the branch-switching involution.
In particular, they represent (−2)-classes in Pic� \ N . Conversely, because the orthogonal
complement of N in Pic� a priori cannot contain any (−2)-classes, any (−2)-classes in
Pic� \ N must come in pairs like this (and be half the sum of two classes of square−4, one
in N and one in its orthogonal complement in Pic�).

Definition 5.5 We call a K3 surface with involution degenerate if Pic�\N contains a (−2)-
class.

In the moduli space of K3 surface with involution with a fixed N , the non-degenerate ones
form a connected moduli space, with essentially constant ample cone.

Lemma 5.6 (cf. Nikulin–Saito [29, page 5 (D)]) Let N ⊂ L be a primitive 2-elementary
lattice. Then, there exists an open cone AmpN ⊂ NR such that for any non-degenerate K3
surface with non-symplectic involution (�, τ) and a marking H2(�) → L mapping the fixed
set of τ to N, the intersection of the image of the ample cone of � with NR equals AmpN .

If Y is a del Pezzo surface, then N ⊂ L is a totally even primitive sublattice of rank ≤ 9.
Because Y does not contain any (−2)-curves, (�, τ) must be non-degenerate. The converse
also holds.

Lemma 5.7 Let (�, τ) be a K3 surface with non-symplectic involution. Then, the quotient
�/τ is a del Pezzo surface if and only if (�, τ) is non-degenerate and N is totally even of
rank ≤ 9.
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Proof The intersection forms of del Pezzo surfaces are precisely the unimodular lattices of
rank≤ 9. For a del Pezzo surface Y , a smooth section of−2KY is connected, so the resulting
K3 surface with involution has N = N ′ totally even.

Conversely, if (�, τ) is non-degenerate with N totally even of rank r ≤ 9, then P =
π∗(−KY ) has a smooth connected section, and P2 = 20− 2r ≥ 2, so P is nef.

If we set H = 3P , then condition (i) of Lemma 4.1 certainly holds. ByLemma 5.1(i), there
can be no (−2)-classes in N that are orthogonal to P . The non-degeneracy condition means
that there are no other (−2)-classes in Pic�, so condition (ii) holds too. Hence, Lemma 4.1
shows that 3P is very ample. By Lemma 5.2, −KY must therefore be ample. �

5.2 Kovalev–Lee blocks

Let � be a K3 with non-symplectic involution τ , and let ψ : P1 → P1 be the holomorphic
involutionψ : (x : y) �→ (y : x). Kovalev and Lee [30, Section 4] use the following complex
3-folds Z as blocks in the twisted connected sum construction. The quotient Z0 of � × P1

by τ ×ψ has orbifold singularities along the 2k + 2 components of C × {(1 : 1), (1 : −1)}.
Construction 5.8 Let Z be the blow-up of Z0 along its singular locus.

Kovalev and Lee computed the rational cohomology of these 3-folds. By computing the
integral cohomology, we find that Z are indeed building blocks also in the sense of Definition
2.1.Moreover, if we let σ : P1 → P1 be the involution (x : y) �→ (x : −y), which commutes
with ψ , then Id� × σ induces an involution on Z , making it a building block with involution
in the sense of Definition 2.7.

Proposition 5.9 Let � be a K3 surface with non-symplectic involution τ , and non-empty
fixed set C. Then

b2(Z) = r + 2k + 3 = 2r − a + 3,

b3(Z) = 4g = 44− 2r − 2a,

rk K = 2k + 2 = 2+ r − a.

Further H3(Z) is torsion-free, and the image of H2(Z) → H2(�) is the fixed lattice N of
τ (which is primitive). In particular, Z is a building block in the sense of Definition 2.1.

Proof The Betti numbers were computed in [30, Proposition 4.3, and (4.3)].
Z0 can be viewed as the result of gluing two copies ofU0 = (�×�)/(τ,−1), along their

common boundary which is the mapping torus T of τ . π1(T ) ∼= T , and by a Mayer–Vietoris
sequence

H2(T ) ∼= ker(1− τ ∗) = N , H3(T ) ∼= coker(1− τ ∗) ∼= N∗ × Z
2g
2 .

The restriction map H2(T ) → H2(�) for the slices� ⊂ T is the natural inclusion N ↪→ L .
U0 deformation retracts to the simply connected rational surface Y = �/τ . The restriction

map H2(U0) → H2(T ) corresponds to the inclusion N ′ ↪→ N .
Let U be the blow-up of U0 at its singular locus. Comparing the long exact sequences of

U and U0 relative to neighbourhoods of the exceptional divisor E and singular set C , respec-
tively, shows that the difference between H∗(U ) and H∗(U0) is the same as the difference
between H∗(E) ∼= H∗(C)⊗ H∗(P1) and H∗(C), i.e.

H2(U ) ∼= N ′ × Zk+1, H3(U ) ∼= Z2g.
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However, the added factors are not simply generated by duals of cycles in the exceptional set,
so it does not follow that H∗(U ) and H∗(U0) have the same image in H∗(T ) (though this is
the case with real coefficients). For example, for a component Ci of C , consider the proper
transform in U of the image of Ci ×� in U0, and let ci ∈ H2(U ) be the class it represents.
Then, the image of ci in H2(T ) ∼= N ⊂ H2(�) corresponds to the dual of Ci in H2(�),
which is precisely one of the generators for N/N ′ we described before. So H2(U ) → H2(T )

is surjective. The class in H2(U ) represented by the exceptional set over Ci is 2ci modulo
the image of H2(U0) in H2(U ).

Now Mayer–Vietoris for Z as a union of two copies of U shows that

H2(Z) ∼= Z× Z2k+2 × N , H3(Z) ∼= Z4g.

So the cohomology is torsion-free, the image of H2(Z) → H2(�) is the primitive sublattice
N , rk K = 2k + 2 = r − a + 2 and b3(Z) = 4g = 44− 2r − 2a. �
Proposition 5.10 Fix a primitive 2-elementary lattice N ⊂ L, and let Z be the set of building
blocks obtained by applying Construction 5.8 to K3s with non-symplectic involution with
fixed lattice N. Then, there exists an open cone Amp ⊂ NR such that if � ⊂ L is primitive
sublattice that contains N and �\N does not contain any (−2)-classes, then Z is (�,Amp)-
generic.

Proof Immediate from Proposition 5.3 and Lemma 5.6. �

5.3 Smoothing

Let � be a K3 surface with non-symplectic involution τ , and Z0 := � × P1/τ × ψ as
above. Instead of desingularising Z0 by blowing up each component of the singular set, we
can attempt to smooth those components that have positive genus while blowing up the P1s.
Further, we can carry out the smoothing in such a way that the involution Id × σ on Z0

persists, yielding a building block with involution.
For simplicity, we consider only the cases when the the fixed curve C ⊂ � of τ has no P1

components. Moreover, we ignore the cases where C consists of elliptic curves (a = 10 and
r = 8 or 10). That leaves precisely the 10 cases where Y is a del Pezzo surface, one each for
a = r ∈ {1, 3, 4, . . . , 9}, and two with a = r = 2.

We can regard Z0 as the double cover of Y ×P1 branched over the zero set of the reducible
section (x2+ y2)s ofOP1(2)−2KY , where s is a section of−2KY cutting out C . The normal
crossing singularities of the divisor correspond precisely to the orbifold singularities of Z0.

Considering instead a double cover of Y×P1 branched over a smooth divisor in |OP1(2)−
2KY | we obtain a smoothing of Z0, which is moreover a building block in the sense of
Definition 2.1. It is convenient to consider the following concrete realisation of the double
cover.

Construction 5.11 Let Y be a del Pezzo surface, and z ∈ P1. Let f be a section of the line
bundle OP1(2)− 2KY over Y × P1, such that both its zero locus D and C := D ∩ Y × {z}
are smooth. Thinking of f as a homogeneous quadratic polynomial on C2 that takes values
in sections of −2KY , we can define a smooth subvariety Z of the total space G of the
projectivisation of −KY ⊕ C2 → Y by

Z := {(α : β : γ ) ∈ G : α2 = f (β, γ )}. (5.12)

The projection map p : G ��� P1, (α : β : γ ) �→ (β : γ ) is defined away from the section
β = γ = 0, and hence in particular on Z. If π : G → Y is the bundle projection map, then
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the restriction π × p : Z → Y × P1 realises Z as the double cover branched over D. The
fibre

� := p−1(z)

is a double cover of Y branched over C ∈ |−2KY |, so is a K3 surface with non-symplectic
involution.

Proposition 5.13 (Z , �) is a building block. Moreover, the image of H2(Z) → H2(�)

is precisely N, the subset invariant under the action of the branch-switching involution of
� → Y . Further K = 0.

Proof The canonical bundle of G is

π∗(KY − det(−KY ⊕ C2))+ 3T = 2π∗(KY )+ 3T ,

where T is the tautological bundle. Z is defined by a degree 2 homogeneous polynomial taking
values in −2π∗KY , i.e. it is cut out by a section of −2T − 2π∗KY . Therefore its canonical
bundle is T|Z ; this equals the pull-back of the tautological bundle of P1 by p : Z → P1, so
the fibres of p are anticanonical divisors. (Each of the fibres is a double cover of Y branched
over a divisor in the linear system Im f ⊆ | − 2KY |, so they are deformations of � with
non-symplectic involution.)

The fact that −2KY is very ample on the del Pezzo surface Y implies that the sections of
−2T − 2π∗KY define a morphism G → P(H0(−2T − 2π∗KY )

∗), and it is easy to see that
the only set that is contracted is the section {β = γ = 0} ⊂ G. In particular the morphism is
semi-small, and the “relative Lefschetz theorem with large fibres” of Goresky–MacPherson
[31, Theorem 1.1, page 150] implies H3(Z) torsion-free, and H2(Z) ∼= H2(G) ∼= H2(Y )⊕
H2(P1). Since a = r implies that H2(Y ) → H2(�) has image N , the image of H2(Z) →
H2(�) is also precisely N . So Z is a building block, with K = 0. �

Note that since the pull-back π∗ : H2(Y × P1) → H2(Z) is an isomorphism, π∗ :
H4(Y ×P1) → H4(Z)must have image exactly 2 H4(Z). Let h ∈ H4(Z) be half the image
of the generator of H4(Y ).

Remark 5.14 Geometrically, the pull-back of the generator of H4(Y ) is the Poincaré dual
of the pre-image in Z of {x} × P1 for any x ∈ Y . For generic x that preimage is itself
a P1 (a double cover of P1 branched over 2 points). However, for x in the zero locus of
the discriminant � ∈ −4KY of f (considered as a quartic with coefficients in −2KY ), the
pre-image is a disjoint union of two lines, and h is the Poincaré dual of either of these two
lines.

Lemma 5.15 b3(Z) = 12(10− r), and c2(Z) = 24 h + 3π∗KY .

Proof As a complex vector bundle, T G = Tvert G ⊕ π∗T Y is stably isomorphic to T−1 ⊗
π∗(−KY ⊕C2)⊕ T Y . Using that π∗(−KY )

2 = (20− 2r)h ∈ H4(Y ) and T 2|Z = 0 we find

c(Z) = π∗c(Y )(1− T )2(1− T − π∗KY )

1− 2T − 2π∗KY

= 1− T + (3Tπ∗KY + 24h)+ (116− 14r)T h ∈ H∗(Z).

This gives the claimed value of c2(Z) and also shows χ(Z) = −116 + 14r . This we can
determine b3(Z), since we know the other Betti numbers:

χ(Z) = 2+ 2(1+ r)− b3(Z).
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Alternatively, we can compute χ(Z) from

χ(Z) = 2χ(Y × P1)− χ(D).

In turn, we can understand χ(D) by considering the projection D → Y . Generically, the
linear system Im f ⊆ |−2KY | is base-point free, so that the projection does not contract
any curves. Then, the projection is a double cover, whose branch locus B ⊂ Y is cut out
by the discriminant of f , which is a section of −4KY . By adjunction, K B = 3KY |B , so
χ(B) = (3KY )(−4KY ) = −12(10− r), and

χ(D) = 2χ(Y )− χ(B).

Hence,

χ(Z) = 2χ(Y )− 12(10− r),

giving the same result as above. �
By considering more special smoothings of Z0 we obtain building blocks with involution.

Let σ : P1 → P1, (x : y) �→ (x : −y) like before, an involution with fixed points (1 : 0)
and (0 : 1). The subset of the space of sections of OP1(2)− 2KY that is invariant under the
action of IdY × σ , consists of elements of the form x2 s + y2 s′, for s, s′ sections of −2KY .
This linear system is base-point free, so a general element is smooth.

Construction 5.16 Let Y be a del Pezzo surface, and let f be a section of OP1(2)−2KY that
is invariant under Id× σ , such that both its zero locus D and C := D ∩ (Y×{(1 : 0)}) are
smooth. Define G, Z and � as in Construction 5.11. Define an involution τ : Z → Z as the
restriction of the involution (α : β : γ ) �→ (α : −β : γ ). Then, τ fixes � := p−1(1 : 0),
and acts as a non-symplectic involution on �′ := p−1(0 : 1). (If we instead lifted Id × σ

to Z as (α : β : γ ) �→ (α : β : −γ ), then the lift would fix �′ and map � to itself by a
non-symplectic involution.)

Proposition 5.17 (Z , �) is a pleasant involution block.

Proof We already know from Proposition 5.13 that K = 0. Since C is connected, to apply
Lemma 2.13 it remains only to check that H3(Z0) is torsion-free for Z0 := Z/τ .

Now observe that the branched double cover G → G, (α : β : γ ) �→ (α : β2 : γ 2)

induced an embedding Z0 ↪→ G. If f = (x2 − y2)s + (x2 + y2)s′, then the image of Z0 in
G is

{(α : β : γ ) ∈ G : α2 = β((β − γ )s + (β + γ )s′)}.
So Z0 is cut out by a section of the line bundle−2T − 2π∗KY , which we argued to be semi-
ample in the proof of Proposition 5.13.While Z0 is singular along the curve α = β = s′ = 0,
that is no obstacle to applying Goresky–MacPherson’s Lefschetz theorem with large fibres
as in Proposition 5.13 to deduce that H3(Z0) is torsion-free. �
Remark 5.18 The pre-image h ∈ H4(Z) for the generator of H4(�) chosen above is patently
τ -invariant. To understand the action of τ on its cochain representatives, we can think geo-
metrically in terms of the conic fibration Z → Y like in Remark 5.14.

In this case, the discriminant � = ss′ is reducible. At non-singular points x ∈ Y where
s(x) = 0, the fibre over x is a union of two lines that intersect � in distinct points, so each
of these lines is mapped to itself by τ . Thus, h can be viewed as the Poincaré dual to a
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τ -invariant submanifold, and Lemma 2.25 implies that B̂(h) ∈ H3
cpt (V ) from (2.24) can be

taken to be 0.
Meanwhile, at a non-singular point where s′(x) = 0, the fibre is a union of two lines that

intersect� in their common intersection point, and τ interchanges the lines. At a point where
s(x) = s′(x) = 0, the fibre is a single line tangent to �.

Applying (2.16), with ρ = r and χ(C) = 2r − 20, we obtain

b+3 (Z) = 1
2 (120− 12r − 20+ 2r + 2r − 20) = 40− 4r . (5.19)

Example 5.20 Consider the del Pezzo Y = P1 × P1, and a double cover � branched over a
bidegree (2, 2) divisor C . The intersection form on the invariant lattice N ⊂ H2(�) is twice
that on H2(P1 × P1), i.e. in the obvious basis given by the pull-backs of the generators of
H2 of the two P1 factors,

N ∼=
(
0 2
2 0

)

.

These basis vectors also span the nef cone. In this basis −π∗KY = (
2
2

)
, and the image

c̄2(Z) ∈ N∗ of −3π∗KY is (12 12).

Example 5.21 For r ∈ {1, . . . , 9}, consider the blow-up Y of P2 in r − 1 points in general
position.

Remark 5.22 There are two non-symplectic involutions with r = a = 10, one of which
corresponds to Y being an Enriques surface (which is of no interest to us, since the involution
has no fixed points), and the other to Y being P2 blown up in 9 points that are the nodes of a
nodal sextic curve. In the latter case, |−2KY | is a pencil spanned by the proper transform of
the given sextic (which is an elliptic curve) and the square of the unique cubic passing through
them. A double cover branched over a generic section of |−2KY | therefore gives a K3 with
non-symplectic involution whose fixed set is an elliptic curve. We can construct a complex
3-fold Z as a double cover of Y × P1 branched over a smooth divisor D ∈ |OP1 − 2KY |
as above. However, because −KY is not ample, we cannot apply the Lefschetz hyperplane
theorem to prove that H3(Z) is torsion-free; indeed, considering D as a branched double
cover of Y shows that the conclusions of the Lefschetz theorem are in fact false.

Finally,we note that the blocks obtained by smoothing have the same convenient genericity
features as the ones obtained by blow-up.

Proposition 5.23 Let N ⊂ L be a primitive sublattice, isometric to twice the intersection
lattice of a del Pezzo surface Y . Let Amp ⊂ NR be the subcone corresponding to the ample
cone of Y , and let Z be the set of building blocks obtained by applying Construction 5.16 to
the deformation family of Y . Then Z is (�,Amp)-generic for any primitive sublattice � ⊂ L
that contains N such that �\N does not contain any (−2)-classes.

Proof Combine Proposition 5.3 and Lemmas 5.2 and 5.6. �

6 Thematching problem

To use the extra-twisted connected sum construction to produce closed G2-manifolds it
not enough to produce some examples of ACyl Calabi–Yau 3-folds V±—possibly with
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involutions—as in Sect. 1.1 and pick a compatible torus isometry t as in Sect. 1.3, since
we also need the asymptotic K3s of V± to be related by a ϑ-hyper-Kähler rotation r. It is
helpful to rearrange the problem as: fix a pair Z+,Z− of deformation families of building
blocks with automorphism groups �±, fix t, and then construct the pair V+, V− with the
desired r from elements of Z±.

A key step is that we note in Sect. 6.3 that if one prescribes the action of r on H2 of the
K3s (captured by the “configuration” in Definition 6.3) then that defines certain overlattices
�± of the polarising lattices N± of the building blocks, such that the K3s in a solution to the
matching problem will be�±-polarised. In Sect. 6.4 we turn that around to say roughly that
if any generic �±-polarised K3 appears as the anticanonical divisor in some member of Z±
(see Definition 2.27), then the matching problem can be solved.

The argument is largely the same as that for matching in rectangular twisted connected
sums in [2, Section 6] or [12, Section 5] (more closely following the latter), themain difference
being how the description of the lattices �± depends on the gluing angle ϑ .

6.1 Matchings and hyper-Kähler rotations

Let us consider the consequences of the ϑ-hyper-Kähler rotation condition for the action of r
on cohomology. Let NR± ⊂ H2(�±) be the image of H2(V±;R) → H2(�±;R) (generated
by the polarising lattice N± as defined in 2.1), and let �± ⊂ H2(�±) be period of �±, i.e.
the space of classes of type (2,0) + (0,2). Then, [ωI±] ∈ NR± , and it is moreover the restriction
of a Kähler class from Z±. Meanwhile�± is orthogonal to NR± , and is spanned by [ωJ±] and
[ωJ±]. If we let π± : H2(�±;R) → NR± be the orthogonal projection, and π⊥± = Id − π±,
then r : �+ → �− satisfying (1.7) implies the following condition also holds.

Definition 6.1 Given building blocks (Z+, �+) and (Z−, �−) and ϑ �= 0, call a diffeomor-
phism r : �+ → �− a ϑ-matching if there are Kähler classes on Z± whose restrictions
k± ∈ H2(�±;R) satisfy

• π+r∗k− = (cosϑ)k+ and π−(r−1)∗k+ = (cosϑ)k−;
• π⊥+ r∗k− ∈ �+ and π⊥− (r−1)∗k+ ∈ �− and moreover
• r∗�− ∩�+ is non-trivial.

Lemma 6.2 Given blocks (Z±, �±), a diffeomorphism r : �+ → �− is a ϑ-matching if and
only if there exist hyper-Kähler triples ωI±, ωJ±, ωK± on �± such that [ωI±] is the restriction
of a Kähler class from Z±, and r is a ϑ-hyper-Kähler rotation with respect to the triples.

Proof If r is aϑ-hyper-Kähler rotation then takingk± = [ωI±] satisfies the first two conditions
in Definition 6.1, while [ωK+] ∈ r∗�− ∩�+.

For the converse, note that π⊥+ r∗k− is a nonzero element of�+, but is not in r∗�−∩�+.
Therefore �+ has a holomorphic 2-form ωJ+ + iωK+ with [ωJ+] ∈ π⊥+ r∗k− and [ωK+] ∈
r∗�− ∩�+. By the Calabi–Yau theorem, there is a Ricci-flat Kähler metric ωI+ ∈ k+.

ChoosingωI−, ωJ−, ωK− analogously and normalising ensures that [r∗ωI−] = (cosϑ)[ωI+]+
(sin ϑ)[ωJ+], [(r−1)∗ωI+] = (cosϑ)[ωI−] + (sin ϑ)[ωJ−] and [r∗ωK−] = [ωK+]. Uniqueness of
Ricci-flat Kähler metrics in their Kähler class implies (1.7), so r is a hyper-Kähler rotation.
�

Note that in combination with Theorem 1.1, whenever we find a ϑ-matching of a pair of
building blocks we can also construct a pair of ACyl Calabi–Yau manifolds with a hyper-
Kähler rotation. If we have also chosen a torus matching with gluing angle ϑ , and the
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blocks have any necessary involutions, then we have all the ingredients needed to apply
Construction 1.10.

6.2 Marked K3s and configurations

To understand the topology of the extra-twisted connected sum M arising from some ϑ-
matching r : �+ → �− of a pair of building blocks Z+, Z−, we need to know not just
some data about Z± (described in Sect. 2.5), but also something about the action of r∗ :
H2(�−) → H2(�+); for a start, r∗ clearly plays a role in the Mayer–Vietoris calculation of
the cohomology of M (see Sect. 7.1).

At this point is convenient to switch to the language of marked K3 surfaces, i.e. choose
isomorphisms h± : L → H2(�±) where L is a fixed copy of the unimodular lattice of sig-
nature (3, 19). Choices of markings of anticanonical divisors in building blocks in particular
identify the polarising lattices N± with primitive sublattices of L . Now, if we are given a
ϑ-hyper-Kähler rotation or ϑ-matching r : �+ → �−, then we could choose h− := r∗ ◦h+.
Thus, we obtain a pair of embeddings of N+ and N− into L , depending only on the choice
of h+.

Definition 6.3 A configuration of polarising lattices N+, N− is a pair of primitive embeddings
N± ↪→ L . Two configurations are equivalent if they are related by the action of the isometry
group O(L).

So in these terms any hyper-Kähler rotation or matching has an associated configuration
whose equivalence class is well-defined. As we see in Sect. 7, the configuration captures
enough information that we can compute many topological invariants.

On the other hand, for a fixed pair of building blocks there is usually little chance of
finding a matching. Following the pattern of [2, Section 6] and [12, Section 5], it is more
fruitful to set up the matching problem as
Given ϑ ∈ R/2πZ and a pair Z+, Z− of sets of building blocks with fixed topological type
and polarising lattices N±, which configurations of embeddings N± ⊂ L arise from some
matching of elements of Z+ and Z−?
Using the Torelli theorem, we can reduce the problem of finding building blocks with a
ϑ-matching compatible with a given configuration to finding certain triples of classes in LR.

Lemma 6.4 Let (Z±, �±) be a pair of blocks, and let h± : L → H2(�±) be markings.
Then, there exists a ϑ-matching r : �+ → �− with r∗ = h+ ◦ h−1− if and only if there exists
a triple of unit positive classes k0,k+,k− in LR such that

• k0 ⊥ k±
• k+.k− = cosϑ , and
• h±(k±) ∈ H2(�±;R) is the restriction of a Kähler class from Z±,
• 〈k∓ − cosϑ k±,±k0〉 is the period of the marked K3 (�±, h±).

Proof Let k′± := k∓−cosϑ k±
sin ϑ

, which is a unit class perpendicular to k± and k0. LetωJ−+iωK−
be the holomorphic 2-form on �− in the cohomology class h−(k′− − ik0), and let ωI− be
the unique Ricci-flat Kähler metric in k−. Then, ωI−, ωJ−, ωK− is a hyper-Kähler triple. The
closed complex 2-form�′ := −(cosϑ)ωI−+(sin ϑ)ωJ−−iωK− defines an integrable complex
structure on �−. Let �′− denote �− equipped with this complex structure for which �′ is
holomorphic. Then, ω′ := −(sin ϑ)ωI− − (cosϑ)ωJ− is a Kähler form on �′−.
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Now h+◦h−1− : H2(�′−;Z) → H2(�+;Z) is an isometry thatmaps [�′] to h+(k′++ik0),
and [ω′] to h(k+). Thus, h+◦h−1− is a Hodge isometry, and by the Torelli theorem it is realised
as r∗ for some biholomorphism r : �+ → �′−. �
Remark 6.5 Given a configuration of N+ and N−, we obtain lattice

W := N+ + N− ⊆ L

containing N+ and N− as primitive sublattices. In general, it is possible for W to fail to be
primitive in L (see [2, Example No 8] for such a twisted connected sum), but for simplicity
we will not look for such configurations in this paper. By only using examples of small rank
and with W primitively embedded in L , the equivalence classes of the configurations are
completely characterised just by the embeddings of N± into W . This is a consequence of the
following result of Nikulin [32, Theorem 1.12.4].

Theorem 6.6 Let W be an even non-degenerate lattice of signature (t+, t−), and L an even
unimodular lattice of indefinite signature (�+, �−). If t+ ≤ �+, t− ≤ �− and 2 rk W ≤ rk L,
then there exists a primitive embedding W ↪→ L, unique up to O(L).

6.3 Necessary conditions for matching

Let us next consider what necessary conditions Lemma 6.4 imposes on a configuration for it
to be realised by amatching of blocks. Note first of all that onemust have k± ∈ N±, while the
period 〈k∓−cosϑ k±,±k0〉 is orthogonal to N±. Hence, π±k∓ is precisely cosϑ k±, where
π± : LR → N±(R) is the orthogonal projection. Observe that π+π− : N+(R) → N+(R) is
self-adjoint (since 〈x, π+π−y〉 = 〈π−x, π−y〉 is symmetric in x, y ∈ N+) so N+(R) splits
as a direct sum of eigenspaces.

Notation 6.7 For ψ ∈ R, let Nψ
± ⊂ N±(R) denote the (cosψ)2-eigenspace of π∓ ◦ π∓.

Clearly π+ maps N+(R)ψ to N−(R)ψ , and is invertible if ψ �= 0. Of course, N+(R)0 =
N−(R)0 = N+(R) ∩ N−(R). For any x ∈ N+(R)ψ and y := π+x

(x .y)2

(x .x)(y.y)
= (cosψ)2, y.y = (cosψ)2(x .x). (6.8)

In particular, it is necessary that k± ∈ Nϑ± .
Here is a qualitative difference between the matching problem for rectangular twisted

connected sums (ϑ = π
2 ) and extra-twisted connected sums (ϑ �= π

2 ): in the former case we

can choose k± ∈ N
π
2± = N±(R) ∩ N⊥∓ independently of each other, while in the latter case

k+ and k− determine each other.

Remark If the ambient space L were positive-definite, then the eigenvalues λ of π+ ◦ π−
would obviously be forced to lie in [0, 1]. In a space of indefinite signature it could in general
happen that

• λ < 0, if x ∈ N+ such that x2 and (π−x)2 have opposite sign, e.g. if N± in hyperbolic
space with bilinear form

(
0 1
1 0

)
are spanned by x+ = (2, 1) and x− = (1,−2), then

π∓x± = ± 3
4 x∓, and the unique eigenvalue of π+π− is − 9

16 ; or that
• λ > 1, if x ∈ N+ and π−x ∈ N− span an indefinite 2-dimensional subspace but x2 and

(π−x)2 have the same sign, e.g. if we take N± in the hyperbolic space to be the subspaces
spanned by x+ = (2, 1) and x− = (1, 2), then π∓x± = 5

4 x∓, and the unique eigenvalue
of π+π− is 25

16 .
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However, for matchings with the given configuration to exist, we saw above that there must
exist some positive classes k± ∈ Nϑ± , which are also orthogonal to the positive class k0.
That forces N+ + N− to split as an orthogonal direct sum of its intersection with the orthog-
onal complement in L to the span of k+,k− and k0, which is negative definite, and the
2-dimensional positive definite span of k+ and k−. That forces all eigenvalues of π+π− to
lie in [0, 1], so that they can be written as (cosψ)2.

The existence of a ϑ-matching with a given configuration may also impose constraints
on the Picard lattices of the K3s �±, beyond the a priori condition that Pic�± contains
N±. Let N �=ϑ

± ⊂ N± denote the orthogonal complement of Nϑ± . Then k0 ⊥ N �=ϑ
± because

N �=ϑ
± ⊂ N±, while k+,k− ⊥ N �=ϑ

± because k± ∈ Nϑ± . Therefore

�± := primitive overlattice of N± + N �=ϑ
± ⊂ L (6.9)

is perpendicular to the period 〈k∓ − cosϑ k±,±k0〉 of �±, i.e. �± ⊂ Pic�±.
In summary, given a pair of families of building blocks Z±, to find some pair of elements

(Z±, �±) ∈ Z± with a ϑ-matching r : �+ → �− it is necessary that we can take the
marked (Z±, �±, h±) such that

(i) The intersection of N±(R)ϑ with the image KZ± ⊂ LR of the Kähler cone of Z± is
non-empty. Moreover, if ϑ �= π

2 then the intersection of επ−(N+ ∩ KZ+) and KZ− is
non-empty too, where

ε:=(sign of cosϑ) ∈ {±1}.
(ii) �± is �±-polarised.

6.4 Sufficient conditions for existence of matching

On the other hand, for the family Z± to be (�±,AmpZ±)-generic for some open cone
AmpZ± ⊂ N±(R) (Definition 2.27) says roughly that a generic �±-polarised K3 can be
embedded as an anticanonical divisor in some block Z± ∈ Z±, and moreover in such a way
that the Kähler cone of Z± contains AmpZ± . This genericity property is enough to obtain a
sufficient condition for the existence of ϑ-matchings.

Theorem 6.10 Let Z± be a pair of families of building blocks with polarising lattices N±,
and ϑ ∈ R\π

2 Z. Let N± ↪→ L be a configuration of the polarising lattices, and define �±
as in (6.9). Suppose that the family Z± is (�±,AmpZ±)-generic. If

επ−(N+(R)ϑ ∩ AmpZ+) ∩ AmpZ− �= ∅. (6.11)

then there exist (Z±, �±) ∈ Z± with an angle ϑ K3 matching r : �+ → �− with the
prescribed configuration.

Proof The proof uses the same basic idea as in the proof of the ϑ = π
2 case from [2,

Proposition 6.18], but the way that k+ and k− determine each other in this case makes it
slightly different.

Let W± be the orthogonal complement of N±(R)ϑ in N+(R)ϑ ⊕ N−(R)ϑ , and T the
orthogonal complement of N+(R)+ N−(R) in LR. W± and T all have signature (1, rk−1).
Note that W± ⊕ T is the orthogonal complement of �±. Thus, a pair of real lines in the
positive cones of W± and T span a positive-definite 2-plane in �⊥±, so

P
(
W+±

)× P
(
T+)
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can be regarded as a submanifold of G�± . Analogously to [2, Proposition 6.18] it is an
analytic, totally real submanifold. Moreover, because �⊥± is exactly W± ⊕ T ,

dimR P
(
W+±

)× P
(
T+) = dimC G�± .

Therefore the intersection of the submanifold P
(
W+±

) × P
(
T+) ⊂ G�± with the subset

UZ± ⊂ G�± from Definition 2.27 is an open dense subset of P
(
W+±

)× P
(
T+)

.
Now we wish to find (�+, �0) ∈ P(N+(R)ϑ )× P(T+) such that

(i) �+ ∈ AmpZ+ ,
(ii) επ−�+ ∈ AmpZ− ,

(iii)
(
w+(�+), �0

) ∈ (
P
(
W++

)× P
(
T+)) ∩UZ+ ,

(iv)
(
w−(�+), �0

) ∈ (
P
(
W+−

)× P
(
T+)) ∩UZ− ,

where w± : N+(R)ϑ → W± are the orthogonal projections (which are both isomorphisms
since ϑ �= π

2 ). The first two conditions define open subsets whose intersection is non-empty
by the hypothesis (6.11). The intersection with the open dense subsets defined by the last two
conditions is therefore non-empty. Hence, there is a pair (�+, �0) satisfying (i)–(iv).

By the definition of Z± being (�±,AmpZ±)-generic, this means there exist (Z±, �±) ∈
Z± with periods

(
w+(�±), �0

)
such that AmpZ± is contained in the image of Kähler cone

of Z± Taking k+, k− and k0 to be the unit norm representatives of �+, επ−�+ and �0,
respectively, we can therefore apply Lemma 6.4 to obtain the desired ϑ-matching r : �+ →
�−. �

6.5 Configuration angles and pure configurations

The following invariants of a configuration turn out to have several uses.

Definition 6.12 Given a configuration N+, N− ⊂ L , let A± : LR → LR denote the reflection
of LR := L⊗R in N± (with respect to the intersection form of LR; this is well-defined since
N± is non-degenerate). Suppose that A+◦A− preserves some decomposition LR = L+⊕L−
as a sum of positive- and negative-definite subspaces. Then the configuration angles are the
arguments α+1 , α+2 , α+3 and α−1 , . . . , α−19 of the eigenvalues of the restrictions A+ ◦ A− :
L+ → L+ and A+ ◦ A− : L− → L−, respectively.

Note that if the configuration is to be realised by a ϑ-hyper-Kähler rotation, then A+ ◦ A−
preserves the decomposition of LR into the subspaces that self-dual and anti-self-dual with
respect to the hyper-Kähler metric, so the configuration angles are defined. Further, the
necessary condition (i) from Sect. 6.3 can be expressed in terms of the configuration angles
as requiring that α+1 , α+2 , α+3 are precisely 0 and ±2ϑ .

In view of Proposition 3.7, the hypothesis that the family Y± is (�±,AmpY±)-generic
(for some cone AmpY± ) is easiest to verify in the case of configurations where �± = N±.
This amounts to requiring that N �=ϑ

∓ is contained in N±, or equivalently that N∓ is spanned
(at least rationally) by N 0∓ = N+ ∩ N− and Nϑ∓ . Noting that for 0 < |ψ | < π

2

multiplicity of 2ψas a configuration angle = dim Nψ
+ = dim Nψ

− , (6.13)

this is in turn equivalent to requiring that the only nonzero configuration angles are ±2ϑ .
This is in particular the case if Nϑ± = N±; we refer to such configurations as having “pure
angle ϑ”.
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Configurations with pure angle π
2 are very easy to produce (as long as rk N+ + rk N− ≤

11): simply apply Theorem 6.6 to embed the perpendicular direct sum N+ ⊥ N− primitively
in L . On the other hand, for ϑ �= π

2 , the existence of a pure angle ϑ configuration of a given
pair of lattices N+, N− is a non-trivial condition. To be able to define a bilinear form on
W := N+ ⊕ N− that restricts to the prescribed one on N± and such that Nϑ± = N±, it is
necessary but not sufficient that the ranks be equal.

Consider the case when rk N± both have rank 1, with generator n± (chosen to be positive,
i.e. n± ∈ AmpZ± ). Then there is only a single cross-term to choose in W , and by (6.8) we
must set

n+.n− = (cosϑ)
√
(n+.n+)(n−.n−). (6.14)

Thus, in this case W exists if and only if the RHS is an integer.

Example 6.15 We can make a ϑ = π
4 or ϑ = 3π

4 matching of the involution block from
Example 3.251 and a regular block from Example 3.841 using

W =
(

2 ε 2
ε 2 4

)

. (6.16)

(This leads to a 2-connected π
4 -twisted connected sumwith b3(M) = 134 and p(M) divisible

by 24, see Table 4).

Remark 6.17 If there does exist a pure angle ϑ configuration between the polarising lat-
tices, then for ϑ �= π

2 it does not need to be unique, and different pure angle matchings of
blocks from the same families can lead to non-diffeomorphic ϑ-twisted connected sums; see
Examples 8.17 and 8.18.

Let us think a moment about the meaning of changing the sign of ϑ or replacing it by a
complementary angle. For a start, the condition in Definition 6.1 for r to be a ϑ-matching
is actually independent of the sign of ϑ , which is related to the earlier observation that a
±ϑ-twisted connected sums of phase rotated ACyl Calabi–Yaus are (orientation-reversing)
diffeomorphic. So the sign is unimportant.

There are several natural ways to modify a matching in order to complement the angle.We
could change the signs of the cross-terms in W like in (6.16) while keeping everything else
the same, or equivalently, we could change the sign of the marking on (�+, I+) (keeping W
the same, but multiplyingAmpZ± by−1). Alternatively, we could replace the block Z+ by its
complex conjugate; if we keep the marking the same, then AmpZ+ is multiplied by−1. This
is precisely the same way of relating extra-twisted connected sums with complementary
angles as in Remark 1.12. Any of these changes leaves the cohomology and p1 of the
resulting G2-manifolds unchanged, so we will not be concerned with distinguishing between
complementary angles in the examples.

7 Topology

We now turn to the problem of computing topological properties of extra-twisted connected
sums. All our computations will be expressed in terms of data of the building blocks listed in
Tables 1, 2 and 3 (see Sect. 2.5), alongwith the choice of torus isometry, and the configuration
of the hyper-Kähler rotation in the sense of Definition 6.3.

The invariants we compute are the integral cohomology, torsion linking form, and a spin
characteristic class (more or less equivalent to the first Pontryagin class). Computing the
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cohomology is routine, though the details of understanding in particular the torsion in H4 are
a bit tedious. The computation of the spin characteristic class is more involved, and takes up
Sects. 7.2–7.5. The pay-off is that—as explained in Sect. 7.8—the invariants we compute are
sufficient to apply classification results for 2-connected 7-manifolds to completely determine
the diffeomorphism types of most examples considered in this paper.

7.1 Mayer–Vietoris generalities

It seems inevitable that computing the full integral cohomology of an extra-twisted connected
sum will involve some case by case checking for different gluing angles ϑ . However, some
parts of the computation are common to all non-rectangular extra-twisted connected sums.

Let us briefly recap the context. We are gluing two ACyl G2-manifolds M+ and M−, each
of which is either a product S1

ξ± ×V± or a mapping torus S1
ξ ×̃V± = (S1

ξ± ×V±)/(a×τ±) of
an involution τ± (a denotes the antipodal map on the circle). The asymptotic cross-section is
of the form S1

ξ± × S1
ζ± ×� or (S1

ξ± × S1
ζ±)/(a×a) accordingly. To make the construction, we

use a torus matching t and hyper-Kähler rotation r to identify the asymptotic cross-section
from each side with a single T 2 ×�. We now want to apply the Mayer–Vietoris theorem to
M = M+ ∪ M−, with M+ ∩ M− � T 2 ×�.

We set up notation for various cohomology classes on this cross-section T 2×�, mirroring
that used in Sect. 2. On the asymptotic cross-section S1

ξ± × S1
ζ± × � of S1

ξ± × V± let v± ∈
H1(S1

ξ± × S1
ζ± × �) correspond to the generator of the “external” factor H1(S1

ξ±), and let

u± ∈ H1(S1
ξ± × S1

ζ± × �) correspond to the generator of the “internal” factor H1(S1
ζ±). If

V± has an involution, then like in Notation 2.19 we abuse notation to denote cohomology
classes on the asymptotic cross-section (S1

ξ± × S1
ζ±)/(a×a) of S1

ξ ×̃V± identically with their

pull-backs to S1
ξ± × S1

ζ± ×�. Thus, 2v± and 2u± denote primitive elements in H1(T 2×�)

in this case, but the subgroup they generate has index 2. In particular, v−,u− ∈ H1(T 2×�)

make sense only when M− is not a mapping torus, like for π
4 -matchings in Sect. 7.6 (“square”

ones with b+ = 1 and b− = 0 in terms of the discussion in Sect. 1.3).
H1(M±) → H1(T 2 × �) is an isomorphism onto the cyclic subgroup of H1(T 2) dual

to the internal circle factor, i.e. the image is generated by v± or 2v± depending on whether
M± comes from an ordinary block or an involution block. The images never intersect, so
H1(M) = 0. The sum of the images is primitive precisely for the arrangements when M is
simply connected; otherwise the contribution to H2(M) is (obviously) the finite cyclic group
π1(M), but we ignore this case from now on.

H2(M±) → H2(T 2 × �) is an isomorphism onto N± ⊂ H2(�), regardless of whether
M± comes from an ordinary or an involution block. Thus, H2(M) = N+ ∩ N−, and we get
a contribution Z ⊕ L/(N+ + N−) to H3(M). Whether this is torsion-free depends on the
choice of push-out W in the matching, and on whether we embed W primitively in L or not.

Since H3(M±) are torsion-free, there is no other contribution to the torsion in H3(M).
Thus, we get M 2-connected if and only if we use building blocks with K± = 0 and a
configuration such that N+ ∩ N− = 0 and N+ ⊕ N− is primitive in L .

To determine H3(M) we only need to deal with H3(M±) → H3(T 2×�) rationally; the
contribution to the torsion in H4(M) will have to be dealt with case by case. The image of
H3(M±;Q) is the Lagrangian v±N± ⊕ u±T± ⊂ H3(T 2 ×�; Q). Since

v+ = cosϑv− + sin ϑu−, u+ = sin ϑv− − cosϑu−, (7.1)
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for v+n++u+t+ to equal v−n−+u−t− for some n± ∈ N± and t± ∈ T± implies thatπ±n∓ =
cosϑn±, and thus, n± ∈ Nϑ± in Notation 6.7. Hence, the dimension of the intersection of
the images of H3(M±,Q) equals dϑ = rk Nϑ+ = rk Nϑ− (or the multiplicity of ϑ as a
configuration angle (6.13)). On the other hand, the kernel in H3(M;Q) is the τ -invariant
subgroup H3(Z;Q)τ , or just H3(Z;Q) in the case of an ordinary block. Denoting the
dimension of that by b+3 (Z±), we obtain

b3(M) = 23− ρ+ − ρ− + b2(M)+ b+3 (Z+)+ b+3 (Z−)+ dϑ . (7.2)

Remark 7.3 b+3 (Z±) is always even since H3(Z±)τ ⊆ H3(Z±) is symplectic. Therefore

1+ b2(M)+ b3(M) = ρ+ + ρ− + dϑ mod 2.

Further, ρ+ + ρ− = rk N
π
2+ + rk N

π
2− mod 2, the rank of the perpendicular parts. Hence, the

“semi-characteristic” of M equals dϑ + rk N
π
2+ + rk N

π
2− .

Remark 7.4 For ϑ = π
2 we should interpret dϑ to mean rk N

π
2+ + rk N

π
2− = rk(N+ ∩ T−)+

rk(N− ∩ T+). In the case of an orthogonal matching we get dϑ = ρ+ + ρ− − 2b2(M), and
(7.2) recovers the claim from [1, (8.56)] that b2(M) + b3(M) = 23 + b3(Z+) + b3(Z−)
in this setting. (And from Remark 7.3 we get that the semi-characteristic is even for any
rectangular twisted connected sum, equivalent to claim (i) of the introduction.)

Remark 7.5 When the involution blocks are pleasant, then H4(M±) is torsion-free, so the
image δ(H3(T 2×�)) of the Mayer–Vietoris boundary map is a direct summand of H4(M),
and contains all torsion in H4(M).

In Sects. 7.6–7.7 we study δ(H3(T 2×�)) in further detail in the cases ϑ = π
4 and π

6 . We
can make a general statement about the torsion linking form bM (cf. [33, Propositon 3.2]).

Lemma 7.6 Let M7 = M+ ∪X M− be a gluing of manifolds with boundary X, and let
I± ⊆ H3(X) be the image of H3(M±). Let p1, p2 ∈ H3(X) be classes that are torsion
modulo I+ + I−, so that their images δ(p1), δ(p2) ∈ H4(M) under the Mayer–Vietoris
boundary map are torsion classes. Then we can write mp1 = p+1 − p−1 for some m ∈ Z and
p±1 ∈ I±, and

bM (δ(p1), δ(p2)) = 1

m
p+1 p2 = 1

m
p−1 p2 ∈ Q/Z.

Proof To compute the torsion linking form, we first need a pre-image of δ(p1) under the
Bockstein map β : H3(M;Q/Z) → H4(M;Z). First let q± ∈ H3(M±;Q) be a pre-image
of 1

m p±1 ∈ H3(X;Q).
TheMayer–Vietoris sequences with coefficients Z,Q or Q/Z form a commuting periodic

grid with the change-of-coefficients sequences. It is a general feature of such grids that equal-
ity of the images in H3(X;Q) of p1 ∈ H3(X;Z) and (q+, q−) ∈ H3(M+;Q)⊕H3(M−;Q)

implies that there exists q ∈ H3(M;Q/Z) such that q|M± = 1
m q± ∈ H3(M±;Q/Z) while

β(q) = −δ(p1).
More explicitly, pick cochain representatives σ of p1 and ρ± of q±. We can write σ =

τ+X − τ−|X for some (τ+, τ−) ∈ C3(M+;Z) ⊕ C3(M−;Z). Meanwhile the cochain mσ −
ρ+|X + ρ−|X on X is exact, so we can pick a pre-differential ν ∈ C2(X;Z), which we in

turn write as ν = μ+|X − μ−|X for some (μ+, μ−) ∈ C2(M+;Z) ⊕ C2(M−;Q/Z). Then
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( 1
m (ρ+ + dμ+)− τ+, 1

m (ρ− + dν−)− τ−
)
has a pre-image in C3(M;Q). That is closed

mod Z, and we can take q to be the class represented by the mod Z reduction.
Using−q as a pre-image of δ(p1) in the definition of the torsion linking form now gives

b(δ(p1), δ(p2)) = (−q ∪ δ(p2))[M] = (q|X ∪ p2)[X ] = 1

m
(p+1 p2)[X ]. �

7.2 The spin characteristic class

Apart from the integral cohomology, the main invariant of an extra-twisted connected sum
that we are interested in is the spin characteristic class p(M) ∈ H4(M). It is a refinement
of the first Pontryagin class p1(M) in the sense that p1(M) = 2p(M) (so in the absence of
2-torsion in H4(M), p(M) is in fact determined by p1(M)), see e.g. [11, Subsection 2.1].
Here are essentially the only facts we need about p(M) beyond it being a characteristic class.

Lemma 7.7 (See [11, Lemmas 2.2 and 2.39])

(i) p(M) ∈ H4(M) is even for any spin manifold of dimension ≤ 7.
(ii) p(M) = −c2(M) for any SU-manifold.

While we should remember that the building blocks Z± are not spin (because c1(Z±) =
P D(�) is primitive, and in particular odd), nevertheless c2(Z±) ∈ H4(Z±) is always even,
see [7, Lemma 5.10]. Our plan is to think of p(M) as the result of patching up the classes
−c2(Z±) ∈ 2H4(Z±), and we make this precise in Theorem 7.21. However, even once
we have a formula for p(M), one needs to look carefully at the Mayer–Vietoris sequence
to understand what it means (e.g. what the greatest divisor in H4(M) is), which we do in
Sects. 7.6–7.7.

To apply classification results for 2-connected manifolds (see Sect. 7.8), all we need to
know about p(M) is the class of (H4(M), p(M)) up to isomorphisms of abelian groups with
a distinguished element. If H4(M) is torsion-free this simply amounts to determining the
greatest integer dividing p(M) (while in general one would also need to capture information
such as the greatest integer dividing p(M) modulo torsion). Since the image of p(M) in
H4(�) is divisible by exactly χ(K3) = 24, we effectively care about the value of p(M)

only modulo 24.
This proves practical to evaluatewhen c2(Z±) has been computed in the form (2.21), as we

have done for all the pleasant involution blocks in Sects. 2 and 5. Recall also from Remarks
3.23 and 5.18 that the class B̂(h) ∈ H3

cpt (V ) from (2.24) vanishes in all those examples.

Theorem 7.8 Write c2(Z±) = g±c̄2(Z±) + 24h± as in (2.21), and suppose that h± is
τ -invariant with B̂±(h±) = 0. Then

p(M) = δ(u+c̄2(Z+)− u−c̄2(Z−)) mod 24,

where δ : H3(T 2 ×�) → H4(M) is the Mayer–Vietoris snake map.

Note that c̄2(Z±) ∈ N∗± = L/T± is always even, say c̄2(Z±) = 2y± mod T± for some
y± ∈ L . Because the image of H3(M±) → H3(T 2×�) always contains 2u±T± (regardless
of whether M± is of the form S1 × V± or S1

ξ ×̃ V±), the value of the Mayer–Vietoris map

δ : H3(T 2 × �) → H4(M) on 2u±y± is independent of the choice of y±, and can be
interpreted as a well-defined element δ(u±c̄2(Z±)) ∈ H4(M). (But there is in general no
guarantee that these are even elements of H4(M), even though their sum must be even, see
Remarks 7.20 and 7.33.)
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Wewill proveTheorem7.8 in the next three subsections. In practicewe apply the following
special case.

Corollary 7.9 If in addition the building blocks Z+ and Z− are both pleasant then the equiv-
alence class of p(M) ∈ H4(M) (modulo isomorphisms of the abelian group H4(M)) is
determined by

u+c̄2(Z+)− u−c̄2(Z−) ∈ H3(T 2 ×�) mod I+ + I− (7.10)

where I± are the images of H3(M±). In particular, the greatest integer dividing p(M) is
gcd(24, n), where n is the greatest integer dividing (7.10).

Proof We noted in Remark 7.5 that if Z+ and Z− are pleasant then the image of δ is a direct
summand in H4(M). �

If M± = S1 × V (i.e. does not involve dividing by an involution) then I± is simply
v±N±⊕u±T±, while if M± = S1

ξ ×̃V± and comes from a pleasant involution block then I±
is determined in Lemma 2.20(ii). However, even in the auspicious setting of Corollary 7.9,
we still need to work out more details about δ(H3(T 2 ×�)) ∼= H3(T 2 ×�)/(I+ + I−).

That will have to proceed case by case for different choices of gluing angle ϑ and torus
isometry (see in particular Propositions 7.29 and 7.37), but let us point out an important
qualitative difference between the cases ϑ = π

2 and ϑ �= π
2 : For rectangular TCS, the images

of δ(u+c̄2(Z+)) and δ(u−c̄2(Z−)) belong to two different direct summands in H4(M) (the
respective images of the push-forward maps H4

cpt (M±) → H4(M)), so that it suffices to
compute the greatest divisors separately and then take their greatest common divisor. But for
extra-twisted connected sums the images of H4

cpt (M±) → H4(M) can overlap, so there can
be cancellation between δ(u+c̄2(Z+)) and δ(u−c̄2(Z−)), and we need to know both terms
precisely.

7.3 Gluing vertical cohomology classes

Let

H4(M+)⊕0 H4(M−) = {(x+, x−) ∈ H4(M+)⊕ H4(M−) : γ+x+ = γ−x−},
the subspace of classes whose images under γ± : H4(M±) → H4(T 2×�), the pull-back by
the inclusion T 2 ×� ↪→ M±, agree. At the most elementary level, the problem we need to
deal with in describing p(M) is that the map H4(M) → H4(M+)⊕H4(M−) in the Mayer–
Vietoris sequence, whose image is H4(M+) ⊕0 H4(M−), does not have a canonical right
inverse H4(M+)⊕0 H4(M−) → H4(M). Thus, it is not possible to determine p(M) just
from its restrictions p(M+) and p(M−).Wewish to exploit thatwe do not just know p(M±) ∈
H4(M±), we also know p(S1

ξ ×̃ Z) ∈ H4(S1
ξ ×̃ Z) which contain much more information.

To be able to reconstruct p(M) from that, we further need to exploit that p(S1
ξ ×̃ Z) is in

some sense a “vertical” class.
Certainly, the restriction of p(M) to a neighbourhood of S1×� ⊂ S1

ξ ×̃ Z is a pull-back

of p(�) ∈ H4(�). Now given cocycles on S1
ξ ×̃ Z+ and S1

ξ ×̃ Z− whose restrictions to

neighbourhoods of S1 × � are pull-backs of the same cocycle on �, we could patch their
pull-backs to M± to a cocycle on M . The computation in [2, Proposition 4.20] of p(M) of a
rectangular TCS is carried out in terms of a gluing map [2, Definition 4.15] described in these
terms, but it is complicated and does not adapt well to the XTCS setting. Instead we wish to
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define essentially the gluing map in terms of pull-backs of maps between certain auxiliary
spaces.

To this end, we first consider a space S1×̂Z obtained from S1
ξ ×̃ Z by collapsing the

external circle factor over� ⊂ Z , and the projection map ρ : S1
ξ ×̃ Z → S1×̂Z . (A cochain

on S1
ξ ×̃ Z that near � is a pull-back of a cochain on � is thus roughly the same thing as a

pull-back of a cochain from S1×̂Z .)
Further, given a pair of blocks that are used to form an extra-twisted connected sum M ,

let R := S1×̂Z+ ∪� S1×̂Z−. We can define a collapsing map

κ : M → R,

as well as obvious inclusion maps

j± : S1×̂Z± ↪→ R.

By Mayer–Vietoris,

( j∗+, j∗−) : H4(R) → H4(S1×̂Z+)× H4(S1×̂Z−)

is an isomorphism onto the subgroup H4(S1×̂Z+)⊕0 H4(S1×̂Z−) of pairs with equal image
in H4(�). Thus composing the inverse with κ∗ gives a canonical way to glue elements of
H4(S1×̂Z+)⊕0 H4(S1×̂Z−).

In a sense, this repackages the problem of gluing classes in H4(S1
ξ ×̃ Z±) as a problem

of finding pre-images of those classes in H4(S1×̂Z±). The issue now is that while ρ∗ :
H4(S1×̂Z±) → H4(S1

ξ ×̃ Z) is surjective, it is certainly not injective. We could now ask

ourselves for which subsets of H4(S1
ξ ×̃ Z) there is a canonical right inverse to ρ∗, and try

to give an answer in terms of certain kinds of “vertical” classes (e.g. ρ∗ is injective on the
kernel of a natural map H4(S1×̂Z±) → H3

cpt (V±)).
Something that is good enough for our purposes is to define a map

2H4(Z)τ → H4(S1×̂Z), 2x �→ 2̂x (7.11)

as follows. If x is a τ -invariant class, pick a cochain representative α whose restriction to a
neighbourhood of � is a pull-back of a cochain on �. Then the cocycle α + τ ∗α on S1 × Z
descends to S1

ξ ×̃ Z . Because its restriction to a neighbourhood of the collapsing set S1 ×�

is a pull-back from �, it is moreover a pull-back of a cocycle on S1×̂Z . The resulting class
2̂x ∈ H4(S1×̂Z) is clearly independent of the choice of representative α of x . Because
H4(Z) is assumed to be torsion-free, it then depends only on 2x (and not on x).

Definition 7.12 Define

Y : 2H4(Z+)τ ⊕0 2H4(Z−)τ → H4(M) (7.13)

to be the composition of 2x �→ 2̂x , the inverse of ( j∗+, j∗−), and the pull-back κ∗ : H4(R) →
H4(M).

In Theorem 7.21, we express p(M) as a gluing of c2(Z±) in this sense, but to prove it we
need to know something about how ĉ2(Z±) ∈ H4(S1×̂Z±) relate to some actual bundles.
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7.4 Pre-image of the vertical tangent bundle

It is natural to ask whether the pull-back of ĉ2(Z±) in H4(S1
ξ ×̃ Z±) equals the second Chern

class of the vertical tangent bundle Tvt (S1
ξ ×̃ Z±). We will in fact need the stronger claim that

there is a bundle Ê → S1×̂Z such that c2(Ê) = ĉ2(Z), while the pull-back of Ê to S1
ξ ×̃ Z

is Tvt (S1
ξ ×̃ Z±).

To describe Ê and related bundles, it is convenient to present bundles on S1
ξ ×̃Z asmapping

tori of a bundle involution of a bundle on Z that covers τ (just like Tvt (S1
ξ ×̃ Z) itself could

be described as the mapping torus of Dτ : T Z → T Z ).
Since the normal bundle of � ⊂ Z is trivial, it has a tubular neighbourhood �×� for a

disc�. We can think of Z as the result of gluing V to�×� along R× S1×� ∼= �× ×�.

Lemma 7.14 There exists an SU (3)-bundle E → Z with a bundle isomorphism τE covering
τ such that

(i) T Z ⊕ C is Z2-invariantly isomorphic to E ⊕ −K Z (where Z2 acts trivially on C and
by Dτ ∗ on −K Z );

(ii) E|V ∼= T V , identifying τE with Dτ ;
(iii) E|�×�

∼= C⊕ T�, and the restriction of τE is the corresponding trivial lift.

Proof Given (ii) and (iii), to construct E all that remains is to describe how the two pieces
are glued together. On a collar neighbourhoodR+× S1

ζ ×� of the boundary of V , we use the

isomorphism f : T (R+× S1
ζ ×�) → C⊕T� coming from the “obvious” R× S1-invariant

trivialisation of T (R× S1). This matches up the action of Dτ on T V with the trivial action
on C⊕ T�, so τE is well-defined.

To prove (i), we now describe −K Z and T Z in similar terms. If we glue C → V to
T� → �×� by g : 1 �→ eiu ∂

∂z , then the resulting line bundle over Z clearly has a section
vanishing precisely along �, so in other words it is the complex line bundle −K Z .

We may also consider T Z itself as the result of gluing T V over V to T (� × U ) over
�×U by the derivative of R+ × S1

ζ ×� ∼= �∗ ×�, (t, u) �→ z = x + iy = e−t−iu , which
equals precisely (g × IdT�) ◦ f .

Now let us compare C⊕T Z with−K Z ⊕ E . By the above, we can regard both of them as
the result of gluingC⊕T V toC⊕T�⊕T�. For the first, the gluing map is the composition
of (Id × f ) : C ⊕ T V → C ⊕ C ⊕ T� with

( Id 0
0 g

) × IdT� . For the second, we instead

compose with
( 0 g
Id 0

) × IdT� . All the maps are Z2-equivariant provided that we choose the
Z2 action on C⊕ C⊕ T� over �× ×� to be the trivial lift of τ .

Hence, the composition of one gluingmapwith the inverse of the other is the automorphism(
0 Id
Id 0

)× IdT� of C2 ⊕ T�, which is trivially homotopic to the identity in the space of Z2-
equivariant complex vector bundle automorphisms, which proves (i). �
By taking themapping torus of τE , we obtain an SU (3)-bundle Ẽ → S1

ξ ×̃ Z , which is stably

isomorphic to Tvt (S1
ξ ×̃ Z)⊕ det(T ∗

vt (S1
ξ ×̃ Z)) by Lemma 7.14(i). Since c1(Tvt (S1

ξ ×̃ Z)) is

Poincaré dual to S1 ×�, which can be deformed off itself, it squares to 0, so

c2(Ẽ) = c2(Tvt (S1
ξ ×̃ Z)). (7.15)

Remark 7.16 An alternative justification (which will be more crucial below) of (7.15) that
does not rely on Lemma 7.14(i) starts by noting that since Ẽ and Tvt (S1

ξ ×̃ Z) are isomorphic

over S1
ξ ×̃V , the difference of their c2s lies in H4(S1

ξ ×̃Z , S1
ξ ×̃V ) ∼= H4(�×�,�××�) ∼=
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H2
cpt (�)×H2(�). Following Atiyah [34, Subsection 2.6] we can make this more precise by

considering the pair (Ẽ, Tvt (S1
ξ ×̃ Z)) together with the natural isomorphism over S1

ξ ×̃ V
as an element

[Ẽ, Tvt (S1
ξ ×̃ Z)] ∈ K (S1

ξ ×̃ Z , S1
ξ ×̃ V ) ∼= K (�×�,�× ×�),

of relative K-theory. (To reduce notational clutter, we are a little careless and omit the isomor-
phism from the notation for the difference element despite its significance, instead relying
on describing the isomorphism in the text.) Now D = [Ẽ, Tvt (S1

ξ ×̃ Z)] has Chern classes

in H∗(S1
ξ ×̃ Z , S1

ξ ×̃ V ) and we can write

c2(Ẽ) = c2(Tvt (S1
ξ ×̃ Z))+ c1(Tvt (S1

ξ ×̃ Z))c1(D)+ c2(D).

Because the image of D in K (� × �,�× × �) is a pull-back from K (�,�×), it is clear
that c2(D) = c1(Tvt (S1

ξ ×̃ Z))c1(D) = 0.

Next, note that the mapping torus Ẽ of τE is by construction identified with C ⊕ T�

near S1 × � ⊂ S1
ξ ×̃ Z . Thus, the fibres over each point on one of the collapsed S1s are all

identified, defining a bundle Ê → S1×̂Z such that ρ∗ Ê = Ẽ .

Proposition 7.17 c2(Ê) = ĉ2(Z)

The remainder of this subsection is devoted to the proof of Proposition 7.17. We first
construct a further SU (3)-bundle F → Z with involution τF as follows.

Recall from Sect. 2.2 that in addition to the K3 divisor � that is fixed point-wise by τ ,
there is a second invariant K3 divisor �′ ⊂ Z . The fixed set of τ is the union of � and a
curve C ⊂ �′. Consider a tubular neighbourhood W of C in �′ (so W ∼= unit disc bundle in
NC/�

∼= T ∗C). Then �× W is a tubular neighbourhood of C in Z .
We define F as a gluing of E|Z\C and T (�×W ). The overlap region deformation-retracts

to the unit 3-sphere bundle S of T ∗C ⊕ C → C (using some arbitrary Hermitian metric on
T ∗C) and the restriction of both bundles to the overlap is T C⊕T ∗C⊕C. We define F using
the gluing map

S → SU (T C ⊕ T ∗C ⊕ C), (α, z) �→
⎛

⎝
1 0 0
0 z α

0 ᾱ z̄

⎞

⎠ .

Next, define a bundle isomorphism τF : F → F covering τ by patching up τE over Z\C
(where F ∼= E) and the trivial lift of τ over�×W (where F ∼= T C⊕T ∗C⊕C). This works
because on the overlap, E ∼= T V ∼= T C⊕T ∗C⊕C identifies τE ∼= Dτ ∼= diag(1,−1,−1),
which equals the difference of the glue map evaluated at p ∈ S and τ(p).

Now because τF acts trivially over the fixed set � ∪C of τ , the quotient defines a bundle
F0 → Z0, whose pull-back by Z → Z0 is F . F0 can also be pulled back to a bundle
F̂ → S1×̂Z .

Lemma 7.18 (i) c2(F) = c2(E)+ P D(C) ∈ H4(Z).
(ii) c2(F̂) = c2(Ê)+ P D(S1 × C) ∈ H4(S1×̂Z).

Proof Since F and E are constructed to be isomorphic outside C , the difference of their
c2s is in the image of H4(Z , Z\C) ∼= H4

cpt (� × W ), i.e. the difference is a multiple of
the Poincaré dual P D(C) ∈ H4(Z). In turn, H4

cpt (� × W ) ∼= H4
cpt (A) for any fibre A of
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T ∗C ⊕ C → C . We can reason like in Remark 7.16 and consider the difference element
[E, F] ∈ K (Z , Z , \C) defined by E, F and the given isomorphism away from C , and its
image in K (A, A×). The second Chern class of the latter is clearly the generator of H4

cpt (A),
which pins down the coefficient of P D(C) in (i).

(ii) is proved by the same argument. �
Lemma 7.19 c2(F0) ∈ H4(Z0) is even.

Proof Consider the blow-up π : Z → Z0 in the singular curve C . We will exploit that
c2(Z) ∈ H4(Z) is even because Z is a smooth complex 3-manifold with c1(Z)2 = 0 [7,
Lemma 5.10].

Let E ⊂ Z be the exceptional set (a P1-bundle over C). Then the sequence 0 →
H4(Z0)

π∗→ H4(Z) → H4(E) → 0 is split exact, so it suffices to show that c2(π∗F0)

is even in H4(Z).
Analogously to Remark 7.16, we consider the difference element [π∗F, T Z ] ∈

K (Z , Z\E) defined by the isomorphism between π∗F0 and T Z away from E , and its second
Chern class c2[π∗F0, T Z ] ∈ H4(Z , Z\E) ∼= H4

cpt (U ), for a tubular neighbourhood U of
E . Then c2(π∗F0)− c2(Z) is the image of c2[π∗F0, T Z ] (since c1(F0) = 0).

Thinking of E as the projectivisation of the rank 2 bundle C ⊕ T ∗C over C , U is the
total space of OE (−2). T U splits as TvtU ⊕ T C . TvtU can itself be further split as a pull-
back of the line bundle OE (−2) itself, and the pull-back of the line bundle Tvt E over E .
Meanwhile the restriction of F0 to a neighbourhood of C is by construction the pull-back of
C⊕ T ∗C ⊕ T C from C , and hence, the same is true for π∗F0 over U .

The identification of these bundles along the boundary of U maps

• the T C summand in T U identically to the T C summand in π∗F0,
• the OE (−2) summand to C, taking the “outward” section of OE (−2) to a constant one

in C

• the pull-back of Tvt E to T ∗C .

Writing

c2[T Z , π∗F0] = c2[TvtU , C⊕ T ∗C] + c1(T C)c1[TvtU , C⊕ T ∗C],
the second term will always be even because c1(C) is. In turn,

c2[TvtU , C⊕ T ∗C] = c1(OE (−2))c1[Tvt E, T ∗C] + c1[OE (−2), C]c1(T ∗C),

and the factors c1(OE (−2)) and c1(T ∗C) ∈ H2(U ) are both even. (Looking closer at the
identifications at the boundary one can also see e.g. that c1[OE (−2), C] ∈ H2

cpt (U ) is the
Poincaré dual to E , but that does not actually seem necessary if we just need to know the
parity of c2[T Z , π∗F0].) �

Now it is clear that ĉ2(F) = c2(F̂), and (since P D(C) is even, which we could also see
as a consequence of Lemma 5.15) that P̂ D(C) = P D(S1 × C), completing the proof of
Proposition 7.17.

Remark 7.20 As a by-product of the above lemmas, we find that the mod 2 residue of c2(Ê) is
the Poincaré dual of S1×C , so it is not even in general. At first sight, it seems disconcerting
that some of the intermediate steps in the calculation of p(M) are odd, even though p(M)

itself must always be even by Lemma 7.7. The explanation is that thanks to Lemma 5.15, the
parity of P D(S1×C) is controlled by the bilinear form on N , which of course also controls
the matchings.
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7.5 Completing the proof of Theorem 7.8

We are now ready to express p(M) in terms of the gluing map Y from Definition 7.12.

Theorem 7.21 p(M) = −Y (c2(Z+), c2(Z−)).

Proof We define a Spin(7)-bundle T → R such that

(i) j∗±T is isomorphic to Ê± ⊕ R, so in particular j∗± p(T ) = −c2(Ê±), and
(ii) κ∗T is isomorphic to T M .

The claim then follows immediately Proposition 7.17 and the definition of Y .
If we define T by gluing Ê+ ⊕ R to Ê− ⊕ R by any way bundle isomorphism over the

overlap � = S1×̂Z+ ∩ S1×̂Z− ⊂ R then (i) will automatically hold, so we just need to
choose the gluing map to ensure (ii) holds too.

The construction of Ê± amounts to a gluing of Tvt (S1
ξ ×̃V±) over V± ⊂ S1×̂Z± toC⊕T�

over a neighbourhood of� in S1×̂Z±, using the bundle isomorphism f± : (x ∂
∂t , y ∂

∂u , v) �→
(x + iy, v) from the proof of Lemma 7.14. Thus, the gluing map we use to construct T over
R should be a bundle map h : R⊕ C⊕ T� → R⊕ C⊕ T� over �.

Meanwhile, the tangent bundle of the XTCS M can be viewed as a gluing of T (S1
ξ ×̃ V+)

and T (S1
ξ ×̃ V−) by the derivative of the map F from (1.6) that is used to glue together

S1
ξ ×̃ V+ to S1

ξ ×̃ V−. The crucial point is that the bundle map DF over R× T 2 ×� clearly
depends only on the � factor. To make sense of this more formally we first need to identify
the bundles with pull-backs from �, so we define

f̃± : T (S1
ξ ×̃ V±) → R⊕ C, (x ∂

∂t , y ∂
∂u , s ∂

∂v
, w) �→ (s, x + iy, w).

Then the composition f̃ −1+ ◦ DF ◦ f− : R⊕ C⊕ T� → R⊕ C⊕ T� is a pull-back of a
bundle map h over the � factor. (To be really explicit, the action of h on the R×C factor is
the conjugation of (s, z) �→ (−s, eiϑ z̄) by (s, x + iy) �→ (x, s + iy), so is independent of
the coordinates on the base). If we use that h in the construction of T , then κ∗T = T M as
desired. �

To complete the proof of Theorem 7.8, it remains to explain how to interpret Theorem 7.21
in terms of c2(Z±), presented in the form (2.21); i.e. we write c2(Z±) = g±c̄2(Z±)+ 24h±
for some c̄2(Z±) ∈ N∗± and some h± ∈ H4(Z±)whose image in H4(�) is a generator, with
h± assumed to be τ -invariant if Z± is an involution block.

Recall that g± : H2(�) → H4(Z±) is the Poincaré dual of the restriction map. Define
g̃± : H2(�) ∼= H2(S1 × �) → H4(S1

ξ ×̃ Z±) analogously, and recall from Notation 2.19

that on the cross-section (S1
ξ± × S1

ζ±)/(a × a) × � ∼= T 2 × � of (S1
ξ± × M±)/(a × τ),

2u± ∈ H1(T 2 × �) denotes the (primitive) element whose pull-back to S1
ξ × S1

ζ × �

corresponds to twice the generator u± from the internal S1 factor.

Lemma 7.22 For any y ∈ H2(�)

Y (2g+(y)), 0) = δ((2u+)y)

and

Y (0, 2g−(y))) = −δ((2u−)y),

where δ : H3(T 2 ×�) → H4(M) is the Mayer–Vietoris snake map.
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Proof Recall g+(y) can be written as i+∗∂+(u+y), for i+∗ : H4
cpt (V+) → H4(Z+) the push-

forward of the inclusion i+ : V+ → Z+ and ∂+ : H3(S1 × �) → H4
cpt (V+) is the snake

map in the relative cohomology sequence for the pair (Z+, �). From the cochain description
of (7.11), it is clear that

2̂g+(y) = ι̂+∗∂̃+(2u+y)),

for the push-forward ι̂+∗ : H4
cpt (S1

ξ ×̃ V+) → H4(S1×̂Z+) of the inclusion map ι̂+ :
S1
ξ ×̃ V+ → S1×̂Z+, and the snake map ∂̃+ : H3(T 2 ×�) → H4

cpt (S1
ξ ×̃ V+).

Now the composition κ∗ ◦ ι̂+∗ : H4
cpt (S1

ξ ×̃ V+) → H4(M) is simply the push-forward

of the inclusion S1
ξ ×̃ V+ → M , and its composition with ∂̃+ equals δ. Hence,

Y (2g̃+(y), 0) = κ∗(ι̂+∗∂̃+((2u+)y))) = δ((2u+)y). �
Corollary 7.23 Suppose that c2(Z±) = g±c̄2(Z±)+ 24h± as in (2.21). Then

p(M) = δ(u+c̄2(Z+)− u−c̄2(Z−))+ 12Y (2h+, 2h−).

Lemma 7.24 Let (h+, h−) ∈ H4(Z+)τ ⊕0 H4(Z−)τ . Then

Y (2h+, 2h−) = (k+)∗(s+(B̂+(h+)))+ (k−)∗(s−(B̂−(h−))) mod 2,

where s± : H3
cpt (V ) → H4

cpt (S1
ξ ×̃V ) are the snake maps in the compactly supported version

of the exact sequence (2.17) for the cohomology of the mapping torus and k± : S1
ξ ×̃V → M

are the obvious inclusions.

Proof Note that the mod 2 residue of 2̂h± in H4(S1×̂Z±) is (ι̂±)±(s±(B̂±(h±))), for ι̂± the
inclusion S1

ξ ×̃ V± → S1×̂Z± as before, and that the maps j± and γ in the definition of Y
satisfy j± = γ ◦ k± ◦ ι̂±. �

If B̂±(h±) = 0, then the final term in Corollary 7.23 is divisible by 24, completing the
proof of Theorem 7.8. In general

• If either of B̂± has nonzero image in H3(V±)/ Im(Id + τ ∗), then the image of
Y (2h+, 2h−) in H4(M±) is odd, and the image of p(M) in H4(M±) is divisible by
exactly 12. Thus, the class of (H4(M), p(M)) is determined by the mod 12 residue of
p(M), which Corollary 7.23 says is equal to δ(u+c̄2(Z+)− u−c̄2(Z−)). In particular, if
the involution blocks are pleasant then the greatest divisor of p(M) is gcd(12, n), where
n is the greatest integer dividing (7.10).

• If both B̂± can be chosen to have zero image in H3(V±), then we can write B̂± = ∂±b±
for some b± ∈ L , and

p(M) = δ
(
u+c̄2(Z+)− u−c̄2(Z−)+ 12v+b+ − 12v−b−

)
mod 24.

In particular, if the involution blocks are pleasant then the greatest integer dividing p(M)

is gcd(24, n)where n is the greatest integer dividing u+c̄2(Z+)−u−c̄2(Z−)+12v+b+−
12v−b− ∈ H3(T 2 ×�) mod I+ + I−.

7.6 �
4 -twisted connected sums

Now we describe how to work out the torsion in H4(M) and the divisibility of p(M) in the
case ϑ = π

4 , and carry it out for some examples.
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As described before, we use a block Z+ with involution and an ordinary block Z−.
We assume that Z+ is pleasant, in order that H4(M+) is torsion-free. Therefore the only
contribution to the torsion comes from the Mayer–Vietoris map δ : H3(T 2×�) → H4(M),
whose image is a split summand in H4(M).

By Lemma 2.20 the assumption that Z+ is pleasant ensures that the image of H3(M+) →
H3(T 2 ×�) is exactly

I+ := {v+n + u+t : n ∈ N+, t ∈ T+, n + t = 0 mod 2L}. (7.25)

On the other hand, the image of H3(M−) is just

I− := v−N− ⊕ u−T−.

The image δ(H3(T 2 ×�)) is isomorphic to H3(T 2 ×�)/(I+ + I−).
To make this more manageable, note that {2u+,u−} is a basis of H1(T 2), and that we

may define a surjective homomorphism

H3(T 2 ×�) → N∗+ ⊕ N∗−,
2u+x + u−y �→ (�+(x), �−(y))

(7.26)

for x, y ∈ L , where �± : L → N∗± is defined by the intersection form. Elements in the kernel
of (7.26) have x ∈ T+, y ∈ T−, so definitely lie in I+ + I−. Hence,

δ(H3(T 2 ×�)) ∼= (N∗+ ⊕ N∗−)/( Ī+ + Ī−), (7.27)

where Ī± is the image of I± under (7.26). Using that

v+ = u+ + u−, v− = 2u+ + u−

in a ϑ = π
4 matching, we find

Ī+ = {( 12 �+(x), �−(x)) : x ∈ N̄+},
Ī− = {(�+(y), �−(y)) : y ∈ N−},

(7.28)

where N̄+ = {x ∈ N+ : �+(x) ∈ 2N∗+}.
Proposition 7.29 Let M be a π

4 -twisted connected sum of blocks Z+ and Z−, where Z+ is
pleasant, and let

Ŵ : N̄+ ⊕ N− → N∗+ ⊕ N∗−, (x, y) �→ ( 12 �
+(x)+ �+(y), �−(x)+ �−(y)).

Then

(i) δ(H3(T 2 ×�)) ∼= coker Ŵ .
(ii) Under the hypotheses of Corollary 7.9, this isomorphism maps p(M) mod 24 to the

image of ( 12 c̄+,−c̄−).
(iii) Let z1, z2 ∈ Tor δ(H3(T 2 × �)), let (α1, β1), (α2, β2) ∈ N∗+ ⊕ N∗− be representatives

of the images of z1 and z2 in coker Ŵ , and pick some (x, y) ∈ N̄+ × N− such that
m(α1, β1) = Ŵ (x, y). Then bM (z1, z2) = 1

m (α2(x)+ β2(y)) ∈ Q/Z.

Proof (i) is proved in the preceding discussion, while (ii) is immediate from Corollary 7.9.
For (iii), let p1, p2 be δ-pre-images of z1, z2 in H3(T 2 ×�). According to Lemma 7.6,

bM (z1, z2) = 1

m
p−1 p2,

123



Annals of Global Analysis and Geometry (2023) 64 :2 Page 61 of 80 2

where mp1 = p+1 − p−1 ∈ I+ + I−. Now δ(p1) = z1 means that (7.26) maps p1 to (α1, β1).
Hence, m(α1, β1) = Ŵ (x, y) means that mp1 = u+(x + 2y + t+) + u−(x + y + t−) for
some t± ∈ T± (with x + t+ even). Therefore

p+1 = v+x + u+t+ = u+(x + t+)+ u−x,

−p−1 = v−y + u−t− = 2u+y + u−(y + t−),

and in particular y + t− = −x mod m. Hence, writing p2 = 2u+w+ + u−w− for w± ∈ L
(so that α2 = �+(w+) and β2 = �−(w−)),

p−1 p2 = −(v−y + u−t−)(v−w+ + u−(w− − w+)) = −t−w+ + y(w− − w+)
= yw− − w+(y + t−) = yw− + w+x = β2(y)+ α2(x) mod m. �

Nowconsider the casewhen N+ and N− are purely at angle π
4 . Letπ± : N∓(R) → N±(R)

be the orthogonal projections, and recall that pure angle π
4 means that π±(x).π±(y) = 1

2 x .y
for any x, y ∈ N∓(R). In particular, note that π∗−N∗− ⊂ N∗+(R) equals (2π+N−)∗. Therefore
N∗+ + 2π∗−N∗− = (N+ ∩ 2π+N−)∗, and we get a surjective homomorphism

N∗+ ⊕ N∗− → (N+ ∩ 2π+N−)∗,
(α, β) �→ α − π∗−β.

(7.30)

Note further that π∗− ◦ �− equals �+ on N−(R) and 1
2 �
+ on N+(R). Therefore Ī± are both

contained in the kernel of (7.30). The kernel is in fact

{(α, β) : α = π∗−β ∈ (N+ + 2π+N−)∗},
isomorphic to (N+ + 2π+N−)∗ by projection to the first component. The images of Ī± in
there are simply �+( 12 N̄+) and �+(N−), respectively. Notice that

�+( 12 N̄+)+ �+(N−) = { 12 �+(x) : x ∈ N+ + 2π+N−, �+(x) ∈ 2(N+ + 2π+N−)∗}.
(7.31)

Hence, there is a surjection f from the discriminant group � of the even integral lattice
N+ + 2π+N− to the coquotient of Im Ŵ = Ī+ + Ī− in the kernel of (7.30), with kernel
precisely the 2-torsion T2�; thus, Tor δ(H3(T 2 ×�)) ∼= �/T2�.

To evaluate the torsion linking form on a pair of elements in Tor H4(M) corresponding
to images in � of α1, α2 ∈ (N+ + 2π+N−)∗, note that the corresponding elements in
N∗+ ⊕ N∗− are (αi , 2π∗+αi ). If mα1 = 1

2 �
+(x + 2π+y) for x ∈ N̄+ and y ∈ N−, then

m(α1, 2π∗+α1) = Ŵ (x, y) and Proposition 7.29 gives bM ( f (α1), f (α2)) = 1
m (α2(x) +

(2π∗+α2)(y)) = 1
m α2(x + 2π+y). In summary

Corollary 7.32 For a pure π
4 matching where Z+ is pleasant

• There is an isomorphism f : �/T2� → Tor H4(M).
• For x, y ∈ �, bM ( f (x), f (y)) = 2b�(x, y), where b� is the discriminant form of �.
• The free part of δ(H3(T 2×�)) is naturally isomorphic to (N+∩2π+N−)∗

2π∗+∼= (π−N+∩
N−)∗.

• The image of p(M) mod 24 in the free part of δ(H3(T 2 × �)) corresponds to 1
2 c̄+ +

π∗−c̄− ∈ (N+ ∩ 2π+N−)∗, or π∗+c̄+ + c̄− ∈ (π−N+ ∩ N−)∗.

Note in particular that if N+ has 2-elementary discriminant then automatically � = T2�
and 2π+N− ⊆ N+ (and π−N+ ⊇ N−), so H4(M) is torsion-free, and the direct summand
δ(H3(T 2 ×�)) ⊆ H4(M) is naturally isomorphic to N∗−.
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Remark 7.33 In Remark 7.20 we pointed out that some of the expressions for p(M) are not
obviously even, even though Lemma 7.7 tells us that p(M) is even for any closed 7-manifold.
The appearance of 1

2 as the coefficient of c̄+ in Corollary 7.32 is an instance of this: c̄− ∈ N−
is even, and hence so is its contribution to p(M), but it is not obvious why that of 1

2 c̄+ should
be too. Indeed, c̄+ need not be even considered as an element of 2N∗+ + �(N+), and for
arbitrary even elements c ∈ N∗+, the image of 1

2c in (N+ ∩ 2π+N−)∗ need not be even.
However, note that N+ ∩ 2π+N− ⊆ N̄+, and that any x ∈ N+ ∩ 2π+N− has x2 divisible

by 4.Meanwhile Remark 7.20 and Lemma 5.15 imply that c̄+x = x2 mod 4 for any x ∈ N̄+,
explaining why 1

2 c̄+ must be even as an element of (N+ ∩ 2π+N−)∗.

7.7 �
6 -twisted connected sums

Now we move on to describing the torsion in H4(M) and the divisibility of p(M) in the
case ϑ = π

6 . The calculations are very similar to the case ϑ = π
4 , but the details are just

sufficiently different to require repetition.
We use a pair of involution blocks Z±, but recall that there is a basic asymmetry in the

set-up. (see Fig. 5). We assume that Z± are both pleasant, in order that H4(M±) are torsion-
free. Therefore the only contribution to the torsion comes from the Mayer–Vietoris map
δ : H3(T 2 × �) → H4(M), whose image is a split summand in H4(M). By Lemma 2.20
the image of H3(M±) → H3(T 2 ×�) is exactly

I± := {v±n + u±t : n ∈ N±, t ∈ T±, n + t = 0 mod 2L}. (7.34)

The image δ(H3(T 2 ×�)) is isomorphic to H3(T 2 ×�)/(I+ + I−).
Note that {2u+, 2u−} is a basis of H1(T 2), so that we may define a surjective homomor-

phism

H3(T 2 ×�) → N∗+ ⊕ N∗−,
2u+x + 2u−y �→ (�+(x), �−(y))

(7.35)

for x, y ∈ L , where �± : L → N∗± is defined by the intersection form. Elements in the kernel
of (7.35) have x ∈ T+, y ∈ T−, so definitely lie in I+ + I−. This reduces the problem to
understanding the image of the induced isomorphism

δ(H3(T 2 ×�)) ∼= (N∗+ ⊕ N∗−)/( Ī+ + Ī−), (7.36)

where Ī± is the image of I± under (7.35). Using that

v+ = u+ + 2u−, v− = 2u+ + 3u−
in a ϑ = π

6 matching, we find

Ī+ = {( 12 �+(x), �−(x)) : x ∈ N̄+},
Ī− = {(�+(y), 3

2 �
−(y)) : y ∈ N̄−},

where N̄± = {x ∈ N± : �±(x) ∈ 2N∗±}.
Proposition 7.37 Let M be a π

6 -twisted connected sum of pleasant involution blocks Z+ and
Z−, and let

Ŵ : N̄+ ⊕ N̄− → N∗+ ⊕ N∗−, (x, y) �→ ( 12 �
+(x)+ �+(y), �−(x)+ 3

2 �
−(y)).

Then
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(i) δ(H3(T 2 ×�)) ∼= coker Ŵ .
(ii) Under the hypotheses of Corollary 7.9, this isomorphism maps p(M) mod 24 to the

image of ( 12 c̄+,− 1
2 c̄−).

(iii) Let z1, z2 ∈ Tor δ(H3(T 2 × �)), let (α1, β1), (α2, β2) ∈ N∗+ ⊕ N∗− be representatives
of the images in (N∗+ ⊕ N∗−)/( Ī+ + Ī−), and pick some (x, y) ∈ N̄+ × N̄− such that
m(α1, β1) = Ŵ (x, y). Then bM (z1, z2) = 1

m (α2(x)+ β2(y)) ∈ Q/Z.

Proof (i) is proved in the preceding discussion, while (ii) is immediate from Corollary 7.9.
For (iii), let p1, p2 be δ-pre-images of z1, z2 in H3(T 2 ×�). According to Lemma 7.6,

bM (z1, z2) = 1

m
p−1 p2,

where mp1 = p+1 − p−1 ∈ I+ + I−. Now

p+1 = v+x + u+t+ = u+(x + t+)+ 2u−x,

−p−1 = v−y + u−t− = 2u+y + u−(3y + t−),

for some t± ∈ T± (with x + t+ and y + t− both even). In particular, 3y+t−
2 = −x mod m.

Hence, writing p2 = 2u+w+ + 2u−w− for w± ∈ L ,

p−1 p2 = −(v−y + u−t−)(v−w+ + u−(2w− − 3w+)) = 1
2 (−t−w+ + y(2w− − 3w+))

= yw− − w+
3y + t−

2
= yw− + w+x = β2(y)+ α2(x) mod m. �

Now let us assume that N+ and N− are purely at angle π
6 . Let π± : N∓(R) → N±(R)

be the orthogonal projections, and recall that pure angle π
6 means that π±(x).π±(y) = 3

4 x .y
for any x, y ∈ N∓(R). In particular, see that 2

3π
∗−N∗− ⊂ N∗+(R) equals (2π+N−)∗. We can

therefore surjectively map

N∗+ ⊕ N∗− → (N+ ∩ 2π+N−)∗,
(α, β) �→ α − 2

3π
∗−β.

(7.38)

Note further that π∗− ◦ �− equals �+ on N−(R) and 3
4 �
+ on N+(R). Therefore Ī± are both

contained in the kernel of (7.38). The kernel is in fact

{(α, β) : α = 2
3π

∗−β ∈ (N+ + 2π+N−)∗},
isomorphic to (N+ + 2π+N−)∗ by projection to the first component. The images of Ī± in
there are simply �+( 12 N̄+) and �+(N̄−), respectively. Like in the ϑ = π

4 case, their sum
is described by (7.31), implying that the coquotient of Ī+ + Ī− in the kernel of (7.38) is
isomorphic to the discriminant group� of the even integral lattice N+ + 2π+N− modulo its
2-torsion T2�.

Similarly to Corollary 7.32 we thus obtain

Corollary 7.39 For a pure π
6 matching where Z± are both pleasant

• There is an isomorphism f : �/T2� → Tor H4(M).
• For x, y ∈ �, bM ( f (x), f (y)) = 2b�(x, y), where b� is the discriminant form of �.

• The free part of δ(H3(T 2 × �)) is naturally isomorphic to (N+ ∩ 2π+N−)∗
2π∗+∼=

( 23π−N+ ∩ N−)∗.
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• The image of p(M) mod 24 in the free part of δ(H3(T 2 × �)) corresponds to 1
2 c̄+ +

1
3π

∗+c̄− ∈ (N+ ∩ 2π+N−)∗, or π∗+c̄+ + 1
2 c̄− ∈ ( 23π−N+ ∩ N−)∗.

Note in particular that if N+ has 2-elementary discriminant then automatically � = T2�
and 2π+N− ⊆ N+ (or N− ⊆ 2

3π−N+), so H4(M) is torsion-free, and δ(H3(T 2 × �))

is naturally isomorphic to N∗−. (The asymmetry of the construction entails that N− being
2-elementary is not as helpful: note that 2π+N− is isometric to N−(3) which always has
some 3-primary discriminant.)

7.8 Further invariants and classification results

Any metric of holonomy G2 has an associated torsion-free G2-structure. To a G2-structure ϕ
on closed 7-manifolds, [13, Definition 1.2] associates a value ν(ϕ) ∈ Z/48 which is invariant
under diffeomorphisms and homotopies, and can thus in particular distinguish components
of the moduli space of metrics of holonomy G2.

A stronger invariant ν̄(ϕ) ∈ Z is introduced in [3, Definition 1.4]; for manifolds with
holonomy G2 the value of ν(ϕ) is recovered by

ν(ϕ) = ν̄(ϕ)+ 24 mod 48. (7.40)

For extra-twisted connected sums (involving only involutions as in this paper), it can be
computed purely in terms of the gluing angle ϑ and the configuration angles of the matching
(Definition 6.12).

Theorem 7.41 [3, Corollary 2] Let (M, ϕ) be an extra-twisted connected sum G2-manifold
as in Construction 1.10 with gluing angle ϑ . Set ρ := π − 2ϑ . Then

ν̄(ϕ) = −72 ρ

π

+ 3(sign ρ)
(
#
{

j
∣
∣ α−j ∈ {π − |ρ|, π} }− 1+ 2 #

{
j
∣
∣ α−j ∈ (π − |ρ|, π)

})
,

where α−1 , . . . , α−19 are the configuration angles of the configuration of the hyper-Kähler
rotation used in the construction.

There are a number of further invariants of closed 7-manifolds with G2-structure that
we do not compute: the quadratic refinement q of the torsion linking form [10, Definition
2.32], the generalised Eells-Kuiper invariant μ that can detect different smooth structures
[11, (26)], and the diffeomorphism and homotopy invariant ξ(ϕ) of the G2-structure [13,
Definition 6.8]. The problem is that these invariants are defined in terms of coboundaries,
and we have not identified any explicit coboundaries of our extra-twisted connected sums.
(The invariant ν(ϕ) is also defined in terms of coboundaries, but in this case the analytic
formula for ν̄ above gives an alternative method of calculation.) In the case of 2-connected
7-manifolds we have good classification results, but they do in general rely on all of the
invariants.

Theorem 7.42 [11, Theorem 1.2 & 1.3] Let M1 and M2 be closed 2-connected 7-manifolds,
and let F : H4(M2) → H4(M1) be a group isomorphism. Then F is realised as f ∗ for some
homeomorphism f : M1 → M2 if and only if F(p(M2)) = p(M1) and F preserves b and q.
F is realised as f ∗ of some diffeomorphism if and only if F is in addition preserves μ.
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Theorem 7.43 [13, Theorem 6.9] Let M1 and M2 be closed 2-connected 7-manifolds with
G2-structures ϕ1 and ϕ2, and let F : H4(M2) → H4(M1) be a group isomorphism. Then
F is realised as f ∗ for some diffeomorphism f : M1 → M2 with f ∗ϕ2 homotopic to ϕ1 if
and only if F(p(M2)) = p(M1), ν(ϕ1) = ν(ϕ2) and F preserves b, q and ξ .

However, in many examples the invariants q ,μ and ξ are redundant. The quadratic refine-
ment q is uniquely determined by b unless T H4(M) has 2-torsion. The Eells-Kuiper invariant
is vacuous unless p(M) is divisible by 8 modulo torsion, and ξ is completely determined
by μ and ν when the greatest divisor of p(M) modulo torsion divides 112. Therefore, even
though we have not computed q ,μ and ξ we can still apply the above classification theorems
to many of the examples in Sect. 8.

For rectangular twisted connected sums, q and μ were computed in [12], and ξ by Wallis
[35].

8 Examples of extra-twisted connected sums

We now combine the preceding results to produce examples of extra-twisted connected
sums. We select 50 convenient examples that illustrate some interesting phenomena. All but
Example 8.15 are 2-connected, and their properties are summarised in Tables 4 and 5. In
each case, we describe a configuration of the polarising lattices in terms of a push-out W
as described in Remark 6.5, and deduce from Theorem 6.10 that the given configuration is
realised by some ϑ-matching.

8.1 Matchings with pure angle �
4

We begin by considering π
4 -extra twisted connected sums, using configurations where the

polarising lattices are at “pure angle” π
4 as discussed in Sect. 6.4, so that Theorem 6.10 can

be applied to produce matchings without using any genericity results beyond Proposition
3.7. The topology is also easy to compute using Corollary 7.32.

Matchings among rank 1 blocks are relatively easy to study systematically. We have listed
7 involution blocks of rank 1 (Examples 3.24, 3.251, …3.255 and 5.211), and 18 ordinary
rank 1 blocks (17 in Example 3.8, and one in Example 5.21).

If the squares of the generators x+ and x− of the polarising lattices of the building blocks
are n+ and n−, respectively, then as in (6.14) the necessary and sufficient condition for the
existence of a matching is that 2n+n− be a square. A simple computer script identifies that
the condition is satisfied for 25 of the 119 pairs of blocks, and computes the topological
invariants from the data in Tables 1 and 3 as follows.

If the condition holds then we can uniquely write n+ = 2mq2+ and n− = mq2−, for q+
and q− coprime, and define the configuration by

W =
(
2mq2+ mq+q−

mq+q− mq2−

)

.

We can now apply Corollary 7.32 to compute the topological invariants. We find that π+
maps x− to q−

2q+ x+, so N++2π+N− is generated by 1
q+ x+, which has square 2m. Therefore

Tor H4(M) ∼= Zm . Meanwhile π−N+ ∩ N− is generated by q+x−, and hence, the greatest
divisor of p(M) modulo torsion is (π∗+c̄+ + c̄−)(q+x−) = q−

2 c̄+(x+)+ q+c̄−(x−).
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In those cases where the order m of Tor H4(M) divides the greatest divisor of p(M)

modulo torsion, the above computation does not suffice to determine p(M) up to isomor-
phisms of H4(M). However, in all cases it turns out that the greatest divisor of p(M) equals
the greatest divisor of p(M) modulo torsion; then, it is possible to choose the isomorphism
H4(M) ∼= Zb3(M) × Zm so that the image of p(M) has no Zm component. When m = 2
there is nothing to check, since p(M) is even a priori for any spin 7-manifold according to
Lemma 7.7. In the remaining 4 cases, we find that 1

2 c̄+ and c̄− are both divisible by m, so
p(M) is too.

Finally, b3(M) is simply 22+b+3 (Z+)+b3(Z−) by (7.2). This is even, so cannot coincide
with b3 of any 2-connected ordinary TCS.

These topological invariants of the 25 π
4 -matchings of rank 1 blocks are summarised in

Table 4, listing b3(M), the greatest divisor d of p(M) and the order of T H4(M). We also
list the self-linking of a generator of T H4(M) when it is not vacuous (i.e. when the order
of the cyclic group T H4(M) is greater than 2). We have not included the ν̄-invariant in the
table, since it is the same in all cases: for a π

4 -matching of rank 1 blocks, the only possibility
for the configuration angles is that α−1 = · · · = α−19 = 0, so Theorem 7.41 gives ν̄ = −39.

We now give 5 examples of pure angle π
4 -matchings of blocks of rank 2. In each case

we define the desired configuration by writing down a symmetric 4 × 4 matrix W , where
the diagonal 2× 2 blocks are the polarising lattices N+ and N− of the two building blocks,

and the off-diagonal blocks are chosen to ensure that N
π
4± = N±; this can be verified by

checking that π+(x).π+(y) = 1
2 x .y for any x, y ∈ N+. By using bases for N+ and N−

that consist of edges of the respective ample cones (i.e. the bases used in Tables 2 and 3),
verifying hypothesis (6.11) of Theorem 6.10 becomes a simple matter of checking that some
element in the positive quadrant of N+ is mapped to the positive quadrant of N− by π+
(or vice versa). Theorem 6.10 then produces a matching with the desired configuration. The
resulting π

4 -twisted connected sum M has b3(M) = 21 + b+3 (Z+) + b3(Z−) by (7.2), and
the main remaining topological invariants are easily computed using Corollary 7.32.

For a pure angle π
4 configuration of rank 2 blocks, two of the configuration angles take

the values π
2 and −π

2 while the remaining 17 configuration angles are 0. Hence, Theorem
7.41 gives ν̄ = −36.

We collect the data of these and all remaining 2-connected examples in Table 5. We list
for each example the gluing angle, the blocks used, b3(M), the greatest divisor d of p(M)

in H4(M;Z) (which for all examples except 8.14 is the same as the greatest divisor modulo
torsion), the order of the torsion subgroup T H4(M), a description of the torsion linking form
b, and ν̄. When the torsion T H4(M) is cyclic we describe the linking form by giving the
self-linking of a generator. The only examples of non-cyclic T H4(M) are (Z/2)2, where the

possibilities for the linking form are that it is diagonalisable

( 1
2 0
0 1

2

)

or hyperbolic

(
0 1

2
1
2 0

)

.

Example 8.1 We match the involution block from Example 3.31 (from one-point blow-up
of degree 1 del Pezzo 3-fold) and the regular block from Example 3.103 (from degree 1
del Pezzo 3-fold blown up in an elliptic curve) at pure angle π

4 . The polarising lattices are
N+ =

(
2 2
2 0

)
and N− =

(
4 2
2 0

)
, and we define the configuration using the matrix

W =

⎛

⎜
⎜
⎝

2 2 2 1
2 0 2 0
2 2 4 2
1 0 2 0

⎞

⎟
⎟
⎠ .
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Actually, because Example 3.31 is not a semi-Fano block, Proposition 3.7 does not provide
the genericity result needed for Theorem 6.10 to produce matchings; the required genericity
result is instead Lemma 4.4.

The resulting π
4 -twisted connected sum M is 2-connected, with b3(M) = 21+44+32 =

97. Because N+ has 2-elementary discriminant, it is immediate from Corollary 7.32 that
H4(M) is torsion-free. In the respective bases for N∗±, we have c̄+ = (26 24) and c̄− =
(20 12), while π+ : N− → N+ is represented by

(
1 0
0 1

2

)
. In the basis for N∗− we thus get

π∗+c̄+ = (26 24)
(
1 0
0 1

2

)
= (26 12), and

π∗+c̄+ + c̄− = (26+20 12+12) = (46 24) ,

so p(M) has greatest divisor 2 by Corollary 7.32.
By Theorem 7.42, there is a unique diffeomorphism class of 2-connected 7-manifolds M

with b3(M) = 97, torsion-free H4(M) and d = 2. According to [2, Table 3], there are two
different rectangular twisted connected sums of rank 1 Fano blocks with these invariants,
so yield further torsion-free G2-structures on the same manifold. However, the π

4 -twisted
connected sum has ν = 36 while the rectangular twisted connected sums have ν = 24, so the
G2-structures cannot be homotopic. In particular, the moduli space of holonomy G2 metrics
on this manifold is disconnected.

Example 8.2 MatchExample 5.20 (fromK3with non-symplectic involution that is a branched
double cover of P1×P1) and Example 3.1010 (from blow-up of complete intersection of two
quadrics in an elliptic curve) using the configuration defined by

W =

⎛

⎜
⎜
⎝

0 2 4 0
2 0 1 1
2 2 8 4
2 0 4 0

⎞

⎟
⎟
⎠

Now b3(M) = 21 + 32 + 24 = 77. Corollary 7.32 gives that H4(M) is torsion-free. Also,

π∗+c̄+ + c̄− = (12 12)
(

1
2

1
2

2 0

)
+ (28 12) = (30+28 6+12) = (58 18), whose greatest divisor is 2.

These are the same invariants as Example 8.19. Moreover, according to [2, Table 3] there
is also a rectangular twisted connected sum of rank 1 Fano-type blocks (namely Examples
3.8112 and 3.8114) with these invariants. Thus, the smooth 2-connected 7-manifold M with
b3(M) = 77, torsion-free H4(M) and d = 2 admits torsion-free G2-structures with ν̄(ϕ) =
−36,−48 and 0, so its moduli space of holonomy G2 metrics has at least 3 components.

Example 8.3 Match Examples 3.302 (from double cover of quadric-fibred degree 2 semi del
Pezzo 3-fold) and 3.1010 using the configuration defined by

W =

⎛

⎜
⎜
⎝

4 4 4 2
4 0 4 0
4 4 8 4
2 0 4 0

⎞

⎟
⎟
⎠ .

b3(M) = 21+ 12+ 24 = 57.
To use Corollary 7.32 to compute T H4(M), note that 2π+N− is contained in N+, so

N+ + 2π+N− = N+. The discriminant is a diagonal � ∼= (Z/4)2, so T H4(M) ∼= (Z/2)2

with diagonal linking form.
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Table 4 Extra-twisted connected sums of rank 1 one blocks, with ϑ = π
4

Z+ Z− b3 d T H4 b

3.254 3.8116 60 24 4 1
4

3.24 3.8118 64 24 2

3.253 3.8112 68 6 3 1
3

3.252 3.8118 72 12 2

3.254 3.822 74 12 4 1
4

3.24 3.818 78 4 2

3.24 3.824 78 24 2

5.211 3.8116 82 4

3.252 3.824 86 8 2

3.252 3.818 86 12 2

3.251 3.8116 92 4

3.24 3.821 92 2 2

5.211 3.822 96 2

3.252 3.821 100 6 2

3.254 3.841 102 2 4 1
4

3.254 3.814 102 4 4 1
4

3.251 3.822 106 2

5.211 3.814 124 2

5.211 3.841 124 8

3.251 3.814 134 6

3.251 3.841 134 24

3.24 5.211 148 4 2

3.24 3.812 148 12 2

3.252 3.812 156 8 2

3.252 5.211 156 8 2

π∗+c̄++ c̄− = (28 12)
(
1 0
0 1

2

)
+(28 12) = (56 18), so Corollary 7.32 implies that the greatest

divisor of p(M)modulo torsion is 2. Since there is only 2-torsion, and p(M) is even a priori,
p(M) cannot have any interesting torsion component.

Example 8.4 Matching Examples 3.304 (from double cover of quadric-fibred degree 4 semi
del Pezzo 3-fold) and 3.1010 using

W =

⎛

⎜
⎜
⎝

8 4 6 4
4 0 2 0
6 2 8 4
4 0 4 0

⎞

⎟
⎟
⎠ .

The calculations are very similar to the previous example. We again find b3(M) = 21+
12 + 24 = 57. However, this time the discriminant form on � ∼= (Z/4)2 is hyperbolic, so
although T H4(M) ∼= (Z/2)2 again, the torsion linking form is hyperbolic is hyperbolic in
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Table 5 Examples of
2-connected extra-twisted
connected sums

Ex ϑ Z+ Z− b3 d T H4 b ν̄

8.1 π
4 3.31 3.103 97 2 - 36

8.2 π
4 5.20 3.1010 77 2 -36

8.3 π
4 3.302 3.1010 57 2 2 · 2

( 1
2 0

0 1
2

)

-36

8.4 π
4 3.304 3.1010 57 2 2 · 2

(
0 1

2
1
2 0

)

-36

8.5 π
4 3.292 3.142 45 2 7 − 1

7 -36

8.6 π
4 5.213 3.11 98 6 -33

8.7 π
4 3.251 3.1010 91 4 -36

8.8 π
4 5.212 3.1027 92 4 -33

8.9 π
4 3.303 3.1017 60 6 -33

8.10 π
4 3.284 3.1017 60 6 -39

8.11 π
4 3.253 3.266 71 6 3 1

3 -36

8.12 −π
4 3.266 3.823 71 6 3 1

3 36

8.14 π
4 3.266 3.33 42 4† 8 -33

8.16 π
6 3.254 3.253 54 6 -51

8.16 π
6 3.253 3.254 54 2 3 1

3 -51

8.16 π
6 5.211 3.253 76 6 -51

8.16 π
6 3.253 5.211 76 24 3 1

3 -51

8.16 π
6 3.251 3.253 86 6 -51

8.16 π
6 3.253 3.251 86 4 3 1

3 -51

8.17 π
6 3.31 3.31 109 2 -48

8.18 π
6 3.31 3.31 109 8 -48

8.19 π
6 3.31 3.305 77 2 -48

8.20 π
6 3.31 3.295 77 4 -48

8.21 π
6 3.292 3.816 45 2 7 − 1

7 -48

† In Example 8.14, the greatest divisor of p(M) modulo torsion is 8

this example. π∗+c̄++ c̄− = (32 12)

(
1
2 0
1
2 1

)

+ (28 12) = (46 24), so Corollary 7.32 implies that

the greatest divisor of p(M) modulo torsion is 2. Again p(M) cannot have any interesting
torsion component.

Thus, this example is distinguished from Example 8.3 only by the torsion linking form.

Example 8.5 Match Examples 3.292 (from double cover of conic-fibred degree 2 del Pezzo
3-fold) and 3.142 (ordinary block from the conic-fibred degree 2 del Pezzo 3-fold itself)
using

W =

⎛

⎜
⎜
⎝

4 6 6 2
6 2 2 3
6 2 4 6
2 3 6 2

⎞

⎟
⎟
⎠ .
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b3 = 21+ 6+ 18 = 45. N+ + 2π+N− = N+, whose discriminant group� ∼= Z/14×Z/2.
Thus T H4(M) ∼= �/T2� ∼= Z/7, and the image of α := (1 0) ∈ � is a generator of
T H4(M). Now b�(α, α) = (1 0)

(
4 6
6 2

)−1 (
1
0

) = − 1
14 , so the image in T H4(M) has self-

linking − 1
7 .

π∗+c̄+ + c̄− = (28 18)
(
0 1

2
1 0

)
+ (20 18) = (38 32), so d = 2.

Finally, here is a rank 3 matching.

Example 8.6 Use involution block from Example 5.213 and ordinary block from Example
3.11. Match using

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 2 2 1 1 2
2 0 2 1 1 0
2 2 0 0 2 2
1 1 0 0 2 2
1 1 2 2 0 2
2 0 2 2 2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

b3(M) = 20+ 28+ 50 = 98. Since N+ is 2-elementary, H4(M) is torsion-free.

π∗+c̄+ + c̄− = ( 18 12 12 )

(
0 1 0
0 0 1
1
2 − 1

2 0

)

+ ( 12 12 12 ) = ( 18 24 24 ), so d = 6.

For any pure π
4 matching of rank 3 blocks, exactly 2 each of the configuration angles

α−1 , . . . , α−19 are
π
2 and −π

2 while the other 15 are 0. Thus Theorem 7.41 gives ν̄ = −33.

8.2 Other �
4 -matchings

We now consider 8 examples of π
4 -extra twisted connected sums where the configuration

does not have pure angle π
4 (including one that is not 2-connected). This involves carrying

out some extra work for each example. In addition to checking hypothesis (6.11) in Theorem
6.10, we also need to compute �± as in (6.9), and verify that the families are �±-generic
(most of the work for the last step has already been carried out in Sect. 4).

Moreover, we cannot use Corollary 7.32 to compute the topology, but instead have to apply
the more cumbersome Proposition 7.29. However, we can speed up the required calculation

of coker Ŵ a little with the following observation: if A+ ∈ N
π
4+ and A− = π−A+ ∈ N

π
4− , then

the image of Ŵ is contained in the kernel of the homomorphism (A+, A−) : N∗+⊕N∗− → Z.

Example 8.7 Match the involution block from Example 3.251 and the regular block from
Example 3.1010 at angle π

4 using the matrix

W =
⎛

⎝
2 3 1
3 8 4
1 4 0

⎞

⎠ .

π− maps the positive generator H+ ∈ N+ to 1
4 A−, for A− :=

(
1
1

) ∈ N−. This is in indeed
in the ample cone of the family of Example 3.1010, so (6.11) holds.

Now �− = N−, so for the family of Example 3.1010 we do not need any genericity
result beyond Proposition 3.7. On the other hand,�+ is generated by N+ and the orthogonal
complement of A− in N−, so

� ∼=
(
2 0
0 −16

)

.
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In particular there are no (−2)-classes orthogonal to the degree 2 class H+. Therefore Propo-
sition 4.2 implies that the family of blocks from Example 3.251 is (�+, H+R+)-generic, so
we can apply Theorem 6.10 to find a matching with this configuration.

The resulting extra-twisted connected sum M is 2-connected, and (7.2) gives b3(M) =
23− 1− 2+ 46+ 24+ 1 = 91. Proposition 7.29 shows that the torsion is isomorphic to the
cotorsion of the image of the matrix

Ŵ =
⎛

⎝
1 3 1
3 8 4
1 4 0

⎞

⎠ .

Its image is exactly the kernel of ( 4 −1 −1 ), so the torsion is in fact trivial.
Since c̄+ = 26 while c̄− = (12 4), Proposition 7.29 further gives the greatest divisor

of p(M) in terms of the greatest divisor of ( 13 −12 −4) modulo Im Ŵ ; since ( 4 −1 −1 ) ·
( 13 −12 −4) = 68, we therefore find that the greatest divisor of p(M) is gcd(24, 68) = 4.

Only one of the configuration angles α−1 , . . . , α−19 is non-zero, and takes the value π .
Hence, Theorem 7.41 gives ν̄ = −36.

According to [12, Table 4], there are two rectangular twisted connected sums from Fanos
of rank 1 or 2, with the same diffeomorphism invariants.

Example 8.8 Match Examples 5.212 (fromK3with non-symplectic involution branched over
one-point blow-up of P2) and 3.1027 (from P3 blown up in a twisted cubic) using

W =

⎛

⎜
⎜
⎝

2 2 2 3
2 0 1 1
2 1 2 5
3 1 5 4

⎞

⎟
⎟
⎠ .

Let A+ :=
(
2
3

) ∈ N+, and A− =
(
1
1

) ∈ N−. Then A2+ = 32 and A2− = 16, andπ−A+ = A−
and π+A− = 1

2 A+. Thus, A± ∈ N
π
4± , so (6.11) is satisfied.

The orthogonal complements of A± in N± are spanned by B±, where B+ :=
(

2−5
)
and

B− :=
(

9−7
)
. �± is spanned by N± and B∓, so

�+ =
⎛

⎝
2 2 −3
2 0 2
−3 2 −272

⎞

⎠ , �− =
⎛

⎝
2 5 −1
5 4 1
−1 1 −32

⎞

⎠

Then Proposition 5.23 and Lemma 4.5 give the genericity results needed for Theorem 6.10
to yield a matching.

b3(M) = 23− 2− 2+ 32+ 40+ 1 = 92. By Proposition 7.29, T H4(M) is isomorphic
to the cotorsion of

Ŵ =

⎛

⎜
⎜
⎝

1 1 2 3
1 0 1 1
2 1 2 5
3 1 5 4

⎞

⎟
⎟
⎠ ,

which is trivial. Indeed, coker Ŵ is mapped isomorphically to Z by ( 2 3 −1 −1 ). This maps
( 12 c̄+,−c̄−) = ( 9 6 −18 −22 ) to 76, so d = 4.

To compute ν̄, we need to determine the configuration angles. Note that π+B− = 1
2 B+,

whose square is 1
34 of the square of B−. So B± is in the 1

34 -eigenspace of π±π∓. By (6.13),
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two of the configuration angles are±2ψ where (cosψ)2 = 1
34 , and the other 17 configuration

angles are 0. Because 2ψ is in the interval ( π2 , π), Theorem 7.41 gives ν̄ = −33.
The diffeomorphism classifying invariants coincide with those of the extra-twisted con-

nected sum of Examples 3.2512 and 3.8116 in line 11 of Table 4, but the ν̄-invariants differ.

The next two examples illustrate the dependence of ν̄ on the configuration angles.

Example 8.9 Matching of Examples 3.303 (from double cover of a quadric-fibred degree 3
semi del Pezzo, or equivalently a double cover of a small resolution of cubic 3-fold containing
a plane) and 3.1017 (from the blow-up of a quadric 3-fold in an elliptic curve of degree 5),
using

W =

⎛

⎜
⎜
⎝

6 4 4 5
4 0 2 2
4 2 4 7
5 2 7 6

⎞

⎟
⎟
⎠ .

The ample class A+ = (
4
3

) ∈ N+ (with square 192) is mapped by π− to A− =
(
2
2

) ∈ N−
(with square 96), while π+A− = 1

2 A+. Therefore A± ∈ N
π
4± , so (6.11) is satisfied.

The orthogonal complement of A± in N± is spanned by B± for B+ = (
4−9

)
and B− =

(
13−11

)
, of square −192 and −600, respectively.

�+ =
⎛

⎝
6 4 3
4 0 −4
3 −4 −600

⎞

⎠ , �− =
⎛

⎝
4 7 4
7 6 −2
4 −2 −192

⎞

⎠

Proposition 4.7 and Lemma 4.8 provide the genericity results needed for Theorem 6.10 to
yield matchings.

b3(M) = 23− 2− 2+ 12+ 28+ 1 = 60. The cokernel of

Ŵ =

⎛

⎜
⎜
⎝

3 2 4 5
2 0 2 2
4 2 4 7
5 2 7 6

⎞

⎟
⎟
⎠ .

is mapped isomorphically to Z by ( 4 3 −2 −2 ), so H4(M) is torsion-free. ( 12 c̄+, c̄−) =
( 15 6 −22 −26 ) is mapped to 174, so d = gcd(174, 24) = 6.

π+B− = 1
4 B+, whose square is −12. Therefore B± are π∓π∓-eigenvectors with eigen-

value 1
50 . Then the non-zero configuration angles are ±2ψ for (cosψ)2 = 1

50 . Because
ψ ∈ ( π2 , π), Theorem 7.41 gives ν̄ = −33.
Example 8.10 Match Examples 3.284 (from double cover of one-point blow-up of a complete
intersection of two quadrics, or equivalently a flop of the small resolution of a cubic 3-fold
containing a plane that was used in the previous example) and 3.1017, using

W =

⎛

⎜
⎜
⎝

8 8 4 6
8 6 5 4
4 5 4 7
6 4 7 6

⎞

⎟
⎟
⎠ .

The ample class A+ = (
3
2

) ∈ N+ (with square 192) is mapped by π− to A− =
(
2
2

) ∈ N−
(with square 96), while A− is mapped by π+ to 1

2 A+. So A± ∈ N
π
4± . The orthogonal com-

plements are spanned by B+ = (−9
10

) ∈ N+ and B− = (
13−11

) ∈ N−, of square −192 and
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−600, respectively.

�+ =
⎛

⎝
8 8 14
8 6 −21
14 −21 −600

⎞

⎠ , �− =
⎛

⎝
4 7 14
7 6 −14
14 −14 −192

⎞

⎠

Proposition 4.7 and Lemma 4.8 provide the genericity results needed for Theorem 6.10 to
yield matchings.

b3(M) = 60 just as in the previous example. Also, we find again that H4(M) is torsion-
free, and that d = 6, so the classifying diffeomorphism invariants all agree.

However, π+B− = 7
4 B+, whose square is −588. Therefore the non-trivial configuration

angles ±2ψ are in this case given by (cosψ)2 = 49
50 . Since 2ψ < π

2 , Theorem 7.41 yields
ν̄ = −39.

The next two examples of π
4 -twisted connected sums are related by an orientation-

reversing diffeomorphism. As the underlying manifold has T H4 = Z/3, it does not admit
an orientation reversing self-diffeomorphism, and components of its G2 moduli space can
be distinguished by the sign of ν̄.

Example 8.11 MatchExample 3.253 (fromdouble cover of cubic hypersurface)withExample
3.266 (from double cover of (1,1)-divisor). The polarising lattices are N+ = (6) and N− =(
2 4
4 2

)
, and we use the configuration defined by

W =
⎛

⎝
6 3 3
3 2 4
3 4 2

⎞

⎠ .

If H+ is the generator of N+ and A− :=
(
1
1

) ∈ N− then π+A− = H+ and π−H+ = 1
2 A−,

so N+ = N
π
4+ and A− ∈ N

π
4− . Thus, condition (6.11) holds.

The orthogonal complement of A− in N− is generated by B− =
(

1−1
)
, and

�+ = N+ ⊕ B−Z ∼=
(
6 0
0 −12

)

.

The family of blocks from Example 3.82 is (�+, H+R+)-generic by Proposition 4.6, so
Theorem 6.10 yields matchings with the given configuration.

b3(M) = 23 − 1 − 2 + 18 + 32 + 1 = 71. By Proposition 7.29, δ(H3(T 2 × �)) is
isomorphic to the cokernel of

Ŵ =
⎛

⎝
3 3 3
3 2 4
3 4 2

⎞

⎠ .

The image of Ŵ is an index 3 sublattice of the kernel of ( 2 −1 −1 ) : Z3 → Z, so T H4(M) ∼=
Z/3. The cotorsion of Ŵ is generated by

(
1
1
1

)
. Its preimage under Ŵ is 1

3

(
1
0
0

)
, so by

Proposition 7.29 the corresponding generator of T H4(M) has self-linking 1
3 .

The image of ( 12 c̄+, c̄−) = ( 15 −18 −18 ) inZ is 56, so the greatest divisor of p(M)modulo
torsion is gcd(66, 24) = 6. Since this is not coprime to the order of the torsion subgroup, we
also need to check the divisibility of p(M) itself to determine the isomorphism class of the
pair (H4(M), p(M)). But the image of ( 15 −18 −18 ) in coker Ŵ is divisible by 6 too, so we
can choose an isomorphism H4(M) ∼= Z71 × Z/3 such that the image of p(M) has no Z/3
component.
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We find ν̄ = −36 like in Example 8.7.

Example 8.12 Match Example 3.266 (from double cover of (1,1)-divisor) with Example 3.823
(from cubic 3-fold in P4). The polarising lattices are the same as in the previous example,
except that the roles of N+ and N− have been swapped, so we can use essentially the same
W as above to define the configuration. The justification for existence of matching is then
just the same, and ν̄ = −36 by the same calculation as before.

However, the topological computations are different from the previous example, even
though most of the final values turn out to be the same. This time b3(M) is computed by
23− 1− 2+ 14+ 36+ 1 = 71, while T H4(M), etc., is controlled by

Ŵ =
⎛

⎝
1 2 3
2 1 3
3 3 6

⎞

⎠ .

The image of Ŵ is an index 3 sublattice of the kernel of ( 1 1 −1 ) : Z3 → Z, so T H4(M) ∼=
Z/3. The cotorsion of Ŵ is generated by

(
1
1
2

)
. Its preimage under Ŵ is 1

3 ( 0 0 1 ), so by

Proposition 7.29 the corresponding generator of T H4(M) has self-linking 2
3 .

( 12 c̄+,−c̄−) = ( 9 9 −24 ), which is divisible by 6 modulo the image of Ŵ . Thus, p(M) is
divisible by 6. The image in the free part of the cokernel is 9+ 9+ 24 = 42, so the greatest
divisor of p(M) modulo torsion is 6 too.

Since the torsion-linking form is different from Example 8.11, there is no orientation-
preserving diffeomorphism between these π

4 -twisted connected sums. However, if we reverse
the orientation of one, then the sign of the torsion linking form changes (as does ν̄) while the
other invariants stay the same, so there does exist an orientation-reversing diffeomorphism.

Remark 8.13 Recalling from Sect. 1.3 that changing the sign of the gluing angle corresponds
to reversing orientation, we could rephrase this as: If we use the configuration in this example
to construct a (−π

4 )-twisted connected sum, then that is oriented-diffeomorphic to the π
4 -

twisted connected sum from Example 8.11. However, the (−π
4 )-twisted connected sum has

ν̄ = 36, so the two components of the G2 moduli space are distinguished. To emphasise this
point, the entry in Table 5 for Example 8.12 lists the (−π

4 )-twisted connected sum.

Example 8.14 Match Example 3.266 with 3.33 using

W =

⎛

⎜
⎜
⎝

2 4 4 2
4 2 4 2
4 4 8 8
2 2 8 0

⎞

⎟
⎟
⎠ .

If we set A+ =
(
1
1

) ∈ N+ and A− =
(
1
1

) ∈ N−, then π+A− = A+ and π−A+ = 1
2 A−. So

A± ∈ N
π
4± , and condition (6.11) is satisfied. The orthogonal complements are generated by

B+ =
(

1−1
) ∈ N+ and B− =

(
1−2

)
, respectively. In fact B± is also orthogonal to N∓, and

�+ =
⎛

⎝
2 4 0
4 2 0
0 0 −32

⎞

⎠ , �− =
⎛

⎝
8 8 0
8 0 0
0 0 −12

⎞

⎠ .

Proposition 4.11 and Lemma 4.10 provide the genericity results needed for Theorem 6.10 to
produce matchings with the given configuration.
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b3(M) = 23− 2− 2+ 14+ 8+ 1 = 42. The cokernel of

Ŵ =

⎛

⎜
⎜
⎝

1 2 4 2
2 1 4 2
4 4 8 8
2 2 8 0

⎞

⎟
⎟
⎠

is isomorphic to Z ⊕ Z/8. The first component is multiplication by ( 2 2 −1 −1 ), while the
second component can be taken to be multiplication by ( 0 0 1 2 ). In particular T H4(M) =
Z/8. We can take

( 0
0
1−1

)

as a generator for the cotorsion. It has 1
8

( 0
0−1
2

)

as a preimage under

Ŵ , so the self-linking of the corresponding generator of T H4(M) is 5
8 .

The image ( 12 c̄+,−c̄−) = ( 9 9 −28 −24 ) in the free part of coker Ŵ is 88, so the greatest
divisor of p(M) modulo torsion is 8. On the other hand, the image in Z/8 is 28 + 24 = 4
mod 8.

The parameter max{do : sp(M) is divisible by s2do for some s ∈ N} is identified by
Wilkens [9, Conjecture p. 548] as key to computing the inertia group of a 2-connected 7-
manifold. In this example, we have do = 4, so Wilkens’ conjecture predicts that the inertia
group of M is the full group of homotopy 7-spheres "7 ∼= Z/28; equivalently that the
topological manifold underlying M has a unique class of smooth structure. However, it
turns out that this isomorphism class (H4(M), p(M)) is an exceptional case where Wilkens’
prediction is incorrect. There are in fact two inequivalent smooth structures on this manifold,
see [11, Theorem 1.10 & Example 5.2].

Of the 19 configuration angles α−1 , . . . , α−19, two take the value π while the other 17 are
0. Thus, ν̄ = −33.

Finally, here is a π
4 -matching using a configurationwhere there is a non-trivial intersection

between the polarising lattices.

Example 8.15 The involution blocks in Example 3.108 (from double cover of one-point blow-
up of P3) have polarising lattice N+ =

(
4 4
4 2

)
, while Example 3.12 (from blow-up of P3 in an

elliptic curve of degree 7) has N− =
(
4 9
9 8

)
. Let A+ :=

(
1
8

) ∈ N+ and A− :=
(
3
1

) ∈ N−. The
respective orthogonal complements are spanned by B+ := (

5−9
) ∈ N+ and B− := (−5

3

)
.

We have A2+ = 196, A2− = 98 and B2+ = B2− = −98. We can thus view N+ as the
overlattice extending

(
196 0
0 −98

)
by adjoining 1

49 (9A++8B+), and N− as extending
(
98 0
0 −98

)

by 1
14 (5A− + 3B−). Now extending

⎛

⎝
196 0 98
0 −98 0
98 0 98

⎞

⎠

by 1
49

(
9
8
0

)
and 1

14

(
0
3
5

)
defines an integral lattice W that contains N+ and N−, and can be

used to define a configuration where A± ∈ N
π
4± . Alternatively, W can be described as the

quotient of the degenerate lattice
⎛

⎜
⎜
⎝

4 4 5 3
4 2 2 4
5 2 4 9
3 4 9 8

⎞

⎟
⎟
⎠
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by its kernel. In any case, although this configuration does not have pure angle π
4 , because

N± is spanned by N
π
4± and N+ ∩ N− it is still the case that N± = �±. Therefore we do not

need any genericity results beyond Proposition 3.7 in order to produce matchings with this
configuration from Theorem 6.10.

The resulting π
4 -twisted connected sums have

π2M ∼= H2(M) ∼= N+ ∩ N− ∼= Z,

so are not 2-connected. (7.2) gives b3(M) = 23− 2− 2+ 1+ 16+ 12+ 1 = 49. The
cokernel of

Ŵ =

⎛

⎜
⎜
⎝

2 2 5 3
2 1 2 4
5 2 4 9
3 4 9 8

⎞

⎟
⎟
⎠

is mapped isomorphically to Z by ( 1 8 −3 −1 ), so H4(M) is torsion-free. The image of
( 12 c̄+,−c̄−) = ( 10 9 −22 −32 ) is 186, so the greatest divisor of p(M) is d = gcd(186, 24) =
6.

All 19 of the configuration angles α−1 = · · · = α−19 = 0, so ν̄ = −39 by Theorem 7.41.

8.3 �
6 -matchings

Finally we give 11 examples of π
6 -matchings (all but one with pure angle π

6 ).

Example 8.16 Wecan search for π
4 -matchings of rank 1 involution blocks similarly to howwe

found the π
4 -matchings of rank 1 blocks in Table 4. If the generators of the polarising lattices

square to n+ and n−, respectively, then there is a π
6 -configuration if and only if 3n+n− is a

square integer. Among the 7 rank 1 involution blocks in Table 3, there are 6 such (ordered)
pairs.

For instance, we can match the involution blocks from Examples 3.251 and 3.253 at pure
angle π

6 using the matrix

W =
(
2 3
3 6

)

.

Then

b3(M) = 23− 1− 1+ 18+ 46+ 1 = 86.

Since N+ is 2-elementary, H4(M) is torsion-free. Further we have that 23π−N+∩N− = N−,
so π∗+c̄+ + 1

2 c̄− ∈ ( 23π−N+ ∩ N−)∗ = N∗− ∼= Z corresponds to 26 · 32 + 1
230 = 54. Hence,

the greatest divisor of p(M) is 6.
If we swap the roles of those two blocks, then we instead define the configuration by

W =
(
6 3
3 2

)

.

π+maps the generator of N− to half the generator of N+, so in particular N++2π+N− = N+.
Its discriminant group is� = Z/6Z, soCorollary 7.39 givesTor H4(M) ∼= �/T2� ∼= Z/3Z,
and that a generator has self-linking 1

3 .
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Westill have 2
3π−N+∩N− = N−. In terms of the generator for N∗−wehaveπ∗+c̄++ 1

2 c̄− =
1
326 · 32 + 1

230 = 28, so the greatest divisor of p(M) is 4.
Similarly, we get two examples bymatching Example 3.253 to Example 3.254 and another

two by matching it to Example 5.211, with invariants as listed in Table 5.

Example 8.17 Match the involution block from Example 3.31 with itself at pure angle ϑ = π
6

using the matrix

W =

⎛

⎜
⎜
⎝

2 2 2 1
2 0 1 2
2 1 2 2
1 2 2 0

⎞

⎟
⎟
⎠ .

b3(M) = 23− 2.2+ 2.44+ 2 = 109.

Since N+ has 2-elementary discriminant, H4(M) is torsion-free, and to determine the greatest
divisor of p(M) we just have to consider π∗+c̄+ + 1

2 c̄− ∈ N∗+. We compute

π∗+c̄+ + 1
2 c̄− = (26 24)

(
1
2 1
1
2

1
2

)

+ (13 12) = (38 50)

so the greatest divisor of p(M) is 2.
According to row labelled 86 in [2, Table 3], there are 3 rectangular TCS of rank 1 Fanos

with the same classifying invariants.

Example 8.18 Example 3.31with itself at pure angle π
6 again, but this timewith configuration

W =

⎛

⎜
⎜
⎝

2 2 2 1
2 0 3 0
2 3 2 2
1 0 2 0

⎞

⎟
⎟
⎠ .

The topological calculations are the same as in the previous example, except that p(M) is
determined from

π∗+c̄+ + 1
2 c̄− = (26 24)

(
3
2 0

− 1
2

1
2

)

+ (13 12) = (40 24)

leading to d = 8 instead. So different pure angle matchings of the same pair of blocks can
lead to non-diffeomorphic extra-twisted connected sums.

Example 8.19 Match the involution blocks from Examples 3.31 and 3.305 at pure angle
ϑ = π

6 using the configuration defined by

W =

⎛

⎜
⎜
⎝

2 2 4 2
2 0 3 0
4 3 10 4
2 0 4 0

⎞

⎟
⎟
⎠ .

b3(M) = 21+ 44+ 12 = 77. N+ is 2-elementary, so H4(M) is torsion-free π∗+c̄+ + 1
2 c̄− =

(26 24)

( 3
2 0
1
2 1

)

+ (17 6) = (68 30), with greatest divisor 2.
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Example 8.20 We can match the involution blocks from Examples 3.31 and 3.295 with a
configuration defined by

W =

⎛

⎜
⎜
⎝

2 2 4 2
2 0 3 3
4 3 10 6
2 3 6 2

⎞

⎟
⎟
⎠ .

In fact, instead of applying Theorem 6.10 directly, we can obtain the matchings with this
prescribed configuration from the matchings in Example 8.19. This relies on the fact that
Example 3.295 is a flop of Example 3.305, and the lattice W defining the configuration here
is isometric to the configuration lattice from Example 8.19. Therefore, for any π

6 -matching
r : �+ → �− of blocks Z+ from Example 3.31 and Z− from Example 3.305 as in Example
8.19, flopping Z− yields a building block Ẑ− in the family of Example 3.295 with the same
anticanonical divisor �−, so that r is a π

6 -matching of Z+ and Ẑ−. Thus, the π
6 -twisted

connected sums from this example and Example 8.19 can be regarded as being related by a
“G2 conifold transition” of the kind discussed in [2, Section 8].

Flopping does not change the cohomology groups, so just like in the previous example
we find that b3(M) = 21 + 44 + 12 = 77, and H4(M) is torsion-free. On the other hand

π∗+c̄+ + 1
2 c̄− = (26 24)

( 3
2

3
2

1
2 − 1

2

)

+ (17 9) = (68 36), so the greatest divisor of p(M) is 4 in

this example.

Finally we consider a matching that is not at pure angle π
6 .

Example 8.21 Match Examples 3.292 and 3.816 using

W =
⎛

⎝
4 6 5
6 2 4
5 4 6

⎞

⎠

Letting A+ = (
1
1

) ∈ N+ and H− be the generator of N−, we find π−A+ = 3
2 H− and

π+H− = 1
2 A+, so A+ ∈ N

π
6+ and N− = N

π
6− . Thus, (6.11) holds.�− is spanned by N− and

B+ :=
(

4−5
)
, so

�− ∼=
(
6 0
0 −126

)

.

The family of blocks from Example 3.816 is (�−, H−R+)-generic by Proposition 4.6, so
Theorem 6.10 yields a matching with the prescribed configuration.

b3(M) = 23− 1− 2+ 6+ 18+ 1 = 45. The image of

Ŵ =
⎛

⎝
2 3 5
3 1 4
5 4 9

⎞

⎠

is an index 7 sublattice of the kernel of ( 1 1 −1 ) : Z3 → Z, so T H4(M) ∼= Z/7. The image
of ( 12 c̄+,− 1

2 c̄−) = (14, 9,−15) in Z is 38, so the greatest divisor of p(M) modulo torsion
d = gcd(38, 24) = 2. As this is coprime to the order of the torsion, p(M) can have no
interesting torsion component.

The data we have computed so far are enough to show that this π
6 -twisted connected sum

is diffeomorphic to Example 8.5, but to determine the orientedness of the diffeomorphism
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we also need to determine the torsion-linking form. The cotorsion of Ŵ is generated by
(
1
1
2

)
.

That has 1
7

(
1
0
1

)
as a preimage under Ŵ , so the corresponding generator of T H4(M) has

torsion self-linking 3
7 . As 3 is not a quadratic residue mod 7, another choice of generator has

self-linking −1
7 . Thus, the diffeomorphism between this π

6 -twisted connected sum and the
one from Example 8.5 is orientation-preserving.
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