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Abstract
We show the existence of a natural Dirichlet-to-Neumann map on Riemannian manifolds
with boundary and bounded geometry, such that the bottom of the Dirichlet spectrum is
positive. This map regarded as a densely defined operator in the L2-space of the boundary
admits Friedrichs extension. We focus on the spectrum of this operator on covering spaces
and total spaces of Riemannian principal bundles over compact manifolds.
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1 Introduction

During the last years, the Steklov spectrum of compact Riemannian manifolds has been
extensively studied, and analogues of various results on the Dirichlet and the Neumann
spectrum have been established (cf. for instance the survey [13], or [11] and the references
therein). However, the Steklov spectrum of non-compact Riemannian manifolds has not
attracted that much attention yet. This is reasonable, since even the definition of Dirichlet-
to-Neumann maps is quite more complicated in this case. Indeed, there may exist compactly
supported smooth functions on the boundary of such a manifold which do not admit unique
harmonic extension even under constraints, such as square-integrability or boundedness, or
the normal derivative of the harmonic extension does not satisfy integrability conditions to
give rise to an operator in a Hilbert space. For instance, on the half-line, we have that nonzero,
constant functions on the boundary do not admit square-integrable harmonic extensions,
while on a half-open, bounded interval, a constant function on the boundary admits different
bounded and square-integrable harmonic extensions.

In this paper, we focus on a certain Dirichlet-to-Neumann map on Riemannian manifolds
with boundary and bounded geometry, in the sense of [15, 25]. For a Riemannian manifold
M with boundary, we denote by ν the outward pointing unit normal to the boundary, and
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by λD
0 (M) the bottom of the Dirichlet spectrum of M . The basis of our discussion is that if

λD
0 (M) > 0, then there exists a natural Dirichlet-to-Neumann map on M , as illustrated in

the following.

Theorem 1.1 Let M be a connected Riemannianmanifold with boundary and bounded geom-
etry with λD

0 (M) > 0. Then any f ∈ C∞
c (∂M) admits a unique square-integrable harmonic

extension H f ∈ C∞(M). Moreover, this extension satisfies ν(H f ) ∈ L2(∂M).

The main ingredient in the preceding theorem is that the square-integrable harmonic
extension actually belongs to H2(M). This relies on elliptic estimates on manifolds with
boundary and bounded geometry, which were recently proved in [15]. In view of Theorem
1.1, we may consider the Dirichlet-to-Neumann map

� : C∞
c (∂M) ⊂ L2(∂M) → L2(∂M), f �→ ν(H f ).

This linear operator admits a unique Friedrichs extension, being densely defined, symmetric
and nonnegative definite. The spectrum of this self-adjoint operator is called the Steklov
spectrum of M . It is worth to point out that if M is compact, then this definition coincides
with the standard one in the literature. The first part of this paper is devoted to the study of
some basic properties of this operator.

In the second part of the paper, we focus on the behavior of the Steklov spectrum under
Riemannian coverings. The philosophy of such results is that some properties of the funda-
mental group of a compact manifold are reflected in the geometry of its universal covering
space. A classic result in this direction is due to Brooks [5] asserting that the fundamental
group of a closed (that is, compact and without boundary) Riemannian manifold is amenable
if and only if the bottom of the spectrum of the Laplacian on its universal covering space
is zero. The analogous results for manifolds with boundary involving the Dirichlet and the
Neumann spectrum have been recently established in [20]. It is also worth to mention that
according to [21], if the fundamental group of the manifold is amenable then its spectrum is
contained in the spectrum of its universal covering space.

It is noteworthy that any covering space of a compactmanifoldwith boundary has bounded
geometry, and the bottom of its Dirichlet spectrum is positive. Hence, we may define the
Steklov spectrum of the covering space as above. In this setting, we prove the analogue of
Brooks’ result for manifolds with boundary involving the Steklov spectrum.

Theorem 1.2 Let M be a connected, compact Riemannian manifold with boundary and
denote by M̃ its universal covering space. Then the following are equivalent:

(i) π1(M) is amenable,
(ii) the Steklov spectra satisfy the inclusion σ(M) ⊂ σ(M̃),
(iii) the bottom of the Steklov spectrum of M̃ is zero.

It seems interesting that the topology of the boundary does not play any role in the preced-
ing theorem, taking into account that we consider operators acting on functions defined on the
boundary (which is a significant difference from the Dirichlet and the Neumann analogues
of Brooks’ result). For instance, the fundamental group of any boundary component may be
non-amenable, while the fundamental group of the manifold is amenable. Furthermore, the
fundamental group of any boundary component may be amenable (or even trivial), while the
fundamental group of the manifold is non-amenable.

In the third part of the paper, we consider the Steklov spectrum of total spaces of Rieman-
nian principal bundles over compact manifolds. The notion of Riemannian submersion has
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been introduced in 1960s as a tool to describe the geometry of a manifold in terms of simpler
components (the base space and the fibers). Hence, it is natural to express the spectrum of
the total space in terms of the geometry and the spectrum of the base space and the fibers.
There are various results in this direction involving compact (cf. for instance the survey [4])
or non-compact manifolds (see for example [3, 6, 22, 23]). Our discussion is motivated by
the recent paper [23], which focuses on non-compact total spaces of Riemannian principal
bundles (see also [7] for the compact case).

To set the stage, let G be a connected Lie group acting freely, smoothly and properly via
isometries on a Riemannian manifold M2. Then the quotient M1 = M2/G is a Riemannian
manifold and the projection p : M2 → M1 is a Riemannian submersion. We then say that p
arises from the action of G. Similarly to the case of Riemannian coverings, we are interested
in how properties ofG are reflected in the spectrum ofM2. As indicated in [23], it is natural to
compare the spectrum of the Laplacian on M2 with the spectrum of the Schrödinger operator

S = � + 1

4
‖p∗H‖2 − 1

2
div p∗H

on M1, where H is the mean curvature vector field of the fibers. More precisely, according
to [23, Theorem 1.3], if M1 is compact, then G is unimodular and amenable if and only if
λD
0 (M2) = λD

0 (S). It is noteworthy that if G is unimodular, then S is intertwined with the
symmetric diffusion operator

L = � + p∗H

regarded in L2√
V
(M1), where V is a function expressing the volume element of the fiber. If

M1 is compact, then we have that λD
0 (L) > 0, which yields that any f ∈ C∞(∂M1) has

a unique L-harmonic extension HL f ∈ C∞(M1) (that is, L(HL f ) = 0). Hence, we may
consider the Dirichlet-to-Neumann map

�L : C∞(∂M1) ⊂ L2√
V
(∂M1) → L2√

V
(∂M1), f �→ ν(HL f ).

We denote the spectrum of the Friedrichs extension of this operator by σL(M1).
Returning to our discussion on the Steklov spectrum, we begin by pointing out that if

p : M2 → M1 is a Riemannian submersion arising from the action of a connected Lie group
G, where M1 is compact, then M2 has bounded geometry and λD

0 (M2) > 0. (The latter
one is a consequence of the recent [23, Theorem 1.1].) Therefore, we may define the Steklov
spectrum ofM2 as above. In this setting, we establish the following analogue of [23, Theorem
1.3].

Theorem 1.3 Let p : M2 → M1 be a Riemannian submersion arising from the action of
a connected Lie group G, where M1 is connected and compact with boundary. Then the
following are equivalent:

(i) G is unimodular and amenable,
(ii) G is unimodular and the Steklov spectra satisfy the inclusion σL(M1) ⊂ σ(M2),
(iii) the bottom of the Steklov spectrum of M2 is zero.

The paper is organized as follows: In Sect. 2, we give some preliminaries involving func-
tional analysis, the spectrum of Laplace-type operators, Sobolev spaces on manifolds with
bounded geometry, amenable coverings, and Lie groups. Section3 is devoted to the proof of
Theorem 1.1 and the discussion of some properties of the Steklov spectrum. In Sect. 4, we
focus on Riemannian coverings and establish an extension of Theorem 1.2. In Sect. 5, we
study Riemannian submersions and give the proof of Theorem 1.3.
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2 Preliminaries

We begin by recalling some basic facts from functional analysis, which may be found for
instance in [16, 18]. Throughout this section, let H be a separable Hilbert space over R.

The spectrum of a self-adjoint operator T : D(T ) ⊂ H → H is defined as

σ(T ) = {λ ∈ R : T − λ : D(T ) ⊂ H → H is not bijective}.
In general, the spectrum of a self-adjoint operator does not consist only of eigenvalues, but
consists of approximate eigenvalues, as the following proposition indicates.

Proposition 2.1 Let T : D(T ) ⊂ H → H be a self-adjoint operator and consider λ ∈ R. Then
λ ∈ σ(T ) if and only if there exists (vn)n∈N ⊂ D(T ) such that ‖vn‖ = 1 and (T −λ)vn → 0
in H.

The infimum of σ(T ) is called the bottom of the spectrum of T and is denoted by λ0(T ).
A particularly useful expression for λ0(T ) is provided by Rayleigh’s theorem, which asserts
that

λ0(T ) = inf
v

〈T v, v〉
‖v‖2 ,

where the infimum is taken over all nonzero v ∈ D(T ).
Consider now a densely defined, symmetric linear operator T : D(T ) ⊂ H → H. We

say that T is bounded from below if there exists c ∈ R such that 〈T v, v〉 ≥ c‖v‖2 for any
v ∈ D(T ). Fix such a c and define the inner product

〈v,w〉T = 〈T v,w〉 + (1 − c)〈v,w〉
on D(T ). Denoting by HT the completion of D(T ) with respect to this inner product, it is
easy to see that the inclusion D(T ) ↪−→ H extends to an injective map HT → H. Using this
map, we regard HT as a subspace of H. The Friedrichs extension T F of T is the restriction
of the adjoint T ∗ to the space D(T F ) = HT ∩ D(T ∗). The Friedrichs extension T F is a
self-adjoint extension of T , and Rayleigh’s theorem implies the following expression for the
bottom of its spectrum.

Proposition 2.2 The bottom of the spectrum of T F is given by

λ0(T
F ) = inf

v

〈T v, v〉
‖v‖2 ,

where the infimum is taken over all nonzero v ∈ D(T ).

2.1 Laplace type operators

Throughout this paper manifolds are assumed to be connected. However, their boundaries
may be non-connected. Moreover, the term "manifold with boundary" refers to a manifold
with non-empty, smooth boundary.

Let M be a Riemannian manifold with possibly empty boundary. A symmetric Laplace
type operator L on M is an operator of the form L = � − 2 grad ln ϕ + V , where � is the
Laplacian, ϕ, V ∈ C∞(M) and ϕ > 0. This means that

L f = � f − 2〈 grad ln ϕ, grad f 〉 + V f
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for any f ∈ C∞(M). In the case where ϕ = 1, L is a Schrödinger operator, while L is called
a diffusion operator if V = 0. Denote by L2

ϕ(M) the L2-space of M with respect to the
measure ϕ2d vol, where d vol is the measure induced by the Riemannian metric. It is worth
to point out that the isometric isomorphism mϕ : L2

ϕ(M) → L2(M) defined by mϕ f = ϕ f ,
intertwines L with the Schrödinger operator

S = mϕ ◦ L ◦ m−1
ϕ = � + V − �ϕ

ϕ
.

Given a nonzero f ∈ C∞
c (M), set

RL( f ) =
∫
M (‖ grad f ‖2 + V f 2)ϕ2

∫
M f 2ϕ2

.

In the case of the Laplacian (that is, ϕ = 1 and V = 0), we denote this quantity by R( f ).
If M does not have boundary, then

L : C∞
c (M) ⊂ L2

ϕ(M) → L2
ϕ(M)

is densely defined and symmetric. This is the reason that L is called a symmetric Laplace
type operator, although it is not symmetric in L2(M) in general. If it is bounded from below,
we denote by λ0(L) the bottom of the spectrum of its Friedrichs extension. From Proposition
2.2 and the divergence formula, we obtain the following expression for λ0(L).

Proposition 2.3 The bottom of the spectrum of L is given by

λ0(L) = inf
f

〈L f , f 〉L2
ϕ(M)

‖ f ‖2
L2

ϕ(M)

= inf
f
RL( f ),

where the infimum is taken over all nonzero f ∈ C∞
c (M).

For the rest of this subsection, suppose that M has non-empty boundary. We begin our
discussion with the Dirichlet spectrum of L . The operator

L : { f ∈ C∞
c (M) : f = 0 on ∂M} ⊂ L2

ϕ(M) → L2
ϕ(M) (1)

is densely defined and symmetric. If it is bounded from below, we denote by LD its Friedrichs
extension. It is noteworthy that if M is complete, then this operator is essentially self-adjoint
(cf. for instance [2, Theorem A.24]); that is, LD is the closure of this operator and actually
coincides with the adjoint of this operator. The spectrum of LD is called the Dirichlet spec-
trum of L . The following expression for the bottom λD

0 (L) of the Dirichlet spectrum is an
immediate consequence of Proposition 2.2 and the divergence formula.

Proposition 2.4 The bottom of the Dirichlet spectrum of L is given by

λD
0 (L) = inf

f

〈L f , f 〉L2
ϕ(M)

‖ f ‖2
L2

ϕ(M)

= inf
f
RL( f ),

where the infimum is taken over all nonzero f ∈ C∞
c (M) with f = 0 on ∂M.

It is not difficult to verify that the bottom of the Dirichlet spectrum of L coincides with
the bottom of the spectrum of L considered on the interior of M .
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We are also interested in the Neumann spectrum of L , which is the spectrum of the
Friedrichs extension LN of the operator

L : { f ∈ C∞
c (M) : ν( f ) = 0 on ∂M} ⊂ L2

ϕ(M) → L2
ϕ(M),

in the casewhere this operator is bounded frombelow,where ν stands for the outward pointing
unit normal to ∂M . The following expression for the bottom λN

0 (L) of theNeumann spectrum
may be found for instance in [20, Proposition 3.2] in the case of Schrödinger operators.
This readily extends to symmetric Laplace type operators, by passing to the corresponding
Schrödinger operator as described in the beginning of this subsection.

Proposition 2.5 The bottom of the Neumann spectrum of L is given by

λN
0 (L) = inf

f
RL( f ),

where the infimum is taken over all nonzero f ∈ C∞
c (M).

It should be emphasized that the test functions in the preceding proposition are not required
to satisfy any boundary condition.

To simplify our notation, in the case of the Laplacian, we set λ0(M) = λ0(�), λD
0 (M) =

λD
0 (�) and λN

0 (M) = λN
0 (�).

2.2 Sobolev spaces onmanifolds with bounded geometry

Let M be a Riemannian manifold with boundary and ν the outward pointing unit normal to
∂M . Denote by R the curvature tensor of M and by α the second fundamental form of ∂M .
The following definition may be found in [15, 25].1

Definition 2.6 We say that M has bounded geometry if the following hold:

(i) there exists r > 0 such that

exp : ∂M × [0, r) → M, (x, t) �→ expx (−tν)

is a diffeomorphism onto its image,
(ii) the injectivity radius of ∂M (as a manifold endowed with the induced Riemannian

metric) is positive,
(iii) there is r0 > 0 such that for any x ∈ M � B(∂M, r0), the restriction of expx to

B(0, r0) ⊂ TxM is a diffeomorphism onto its image,
(iv) for any k ∈ N ∪ {0} there exists Ck > 0 such that ‖∇k R‖ ≤ Ck and ‖∇kα‖ ≤ Ck .

We begin our discussion on such manifolds with the following observation.

Lemma 2.7 Let M be a Riemannian manifold with boundary and bounded geometry. Then
the outward pointing unit normal ν to ∂M can be extended to a bounded smooth vector field
N on M with ∇N bounded.

Proof Denoting by d∂M the distance to ∂M , using the diffeomorphism from (i), extend ν to
the vector field

V = exp∗
(

− ∂

∂t

)

= − grad d∂M

1 The definition in [15] is equivalent to the one in [25], as pointed out in [15, p. 12].
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defined in B(∂M, r). It follows from standard comparison theorems (cf. for instance [8]) that
there exists δ > 0 such that ∇V is bounded in B(∂M, δ), keeping in mind that the sectional
curvature of M is bounded and so are the principal curvatures of ∂M . Consider now a smooth
χ : [0,∞) → R with χ(x) = 1 for x ≤ δ/4 and χ(x) = 0 for x ≥ δ/2. It is immediate
to verify that N = (χ ◦ d∂M )V is a bounded smooth vector field on M with ∇N bounded,
which coincides with ν on ∂M . ��

The next theorem is essentially a special version of [15, Theorem 1.1], where we point out
a difference in the form of the elliptic estimates, in the case where the bottom of the Dirichlet
spectrum of the Laplacian is positive.

Theorem 2.8 Let M be a Riemannian manifold with boundary and bounded geometry, such
that λD

0 (M) > 0. Then D(�D) = H1
0 (M) ∩ H2(M) and there exists C > 0 such that

‖ f ‖H2(M) ≤ C‖�D f ‖L2(M)

for any f ∈ D(�D).

Proof From the definition of the Friedrichs extension, it is straightforward to verify that
H1
0 (M) ∩ H2(M) ⊂ D(�D). Bearing in mind that the Laplacian on M regarded as in (1)

is essentially self-adjoint, we readily see that for any f ∈ D(�D) there exists ( fn)n∈N ⊂
C∞
c (M) with fn = 0 on ∂M such that fn → f and � fn → �D f in L2(M). Therefore,

it suffices to establish the asserted estimate for f ∈ C∞
c (M) with f = 0 on ∂M . Indeed,

this gives that ( fn)n∈N is Cauchy in H2(M), and thus, converges to f in H2(M), which also
gives that H1

0 (M) ∩ H2(M) = D(�D).
It follows from [15, Theorem 1.1] that there exists C > 0 such that

‖ f ‖H2(M) ≤ C(‖� f ‖L2(M) + ‖ f ‖H1(M))

for any f ∈ C∞
c (M) with f = 0 on ∂M . If, in addition, f is not identically zero, we readily

see from Proposition 2.4 that

‖� f ‖L2(M) ≥ 〈� f , f 〉L2(M)

‖ f ‖L2(M)

= R�( f )‖ f ‖L2(M) ≥ λD
0 (M)‖ f ‖L2(M).

Since λD
0 (M) > 0, this yields that

∫

M
‖ grad f ‖2 = 〈� f , f 〉L2(M) ≤ ‖� f ‖L2(M)‖ f ‖L2(M) ≤ λD

0 (M)−1‖� f ‖2L2(M)
.

The proof is completed by combining the above inequalities. ��
Wewill also exploit the following trace theorem,which is a special version of [15, Theorem

3.15].

Theorem 2.9 Let M be a Riemannian manifold with boundary and bounded geometry.
Then the restriction to the boundary res : C∞

c (M) → C∞
c (∂M) extends to a continuous

res : H1(M) → L2(∂M).

2.3 Amenable coverings

Consider a right action of a finitely generated discrete group � on a countable set X . We
say that this action is amenable if there exists an invariant mean on �∞(X); that is, a linear
functional μ : �∞(X) → R such that:
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(i) inf f ≤ μ( f ) ≤ sup f ,
(ii) μ( f ◦ rg) = μ( f ), where rg(x) = xg for any x ∈ X ,

for any f ∈ �∞(X) and g ∈ �.
The group � is called amenable if the right action of � on itself is amenable. Standard

examples of amenable groups are solvable groups and groups of subexponential growth. It
is not difficult to verify that if � is amenable, then any right action of � is amenable. A
particularly useful characterization of amenability is the following proposition due to Følner
in the case of groups [10, Main Theorem and Remark], extended to actions by Rosenblatt
[24, Theorems 4.4 and 4.9].

Proposition 2.10 Let � be a finitely generated group and fix a finite, symmetric generating
set G. Then the right action of � on a countable set X is amenable if and only if for any
ε > 0 there exists a non-empty finite subset P of X such that

|Pg � P| < ε|P|
for any g ∈ G.

Let p : M2 → M1 be a Riemannian covering and choose x ∈ M1 as a base point for
π1(M1). Given y ∈ p−1(x) and g ∈ π1(M1), consider a representative loop γ of g based
at x . Lift γ to a path γ̃ starting at y and denote its endpoint by yg. In this way, we obtain
a right action of π1(M1) to p−1(x), which is called the monodromy action. We say that
the covering is amenable if the monodromy action is amenable. It is worth to mention that
a normal Riemannian covering is amenable if and only if its deck transformation group is
amenable. In particular, the universal covering of a manifold is amenable if and only if its
fundamental group is amenable.

If M1 is compact with boundary, then π1(M1) is finitely generated. More specifically, the
finite and symmetric set

Sr = {g ∈ π1(M1) : g has a representative loop of length less than r}
generatesπ1(M1) for r > 0 sufficiently large. The next elementary lemma provides a descrip-
tion of the monodromy action in terms of this set.

Lemma 2.11 Given y1, y2 ∈ p−1(x), there exists g ∈ Sr such that y2 = y1g if and only if
d(y1, y2) < r .

Proof Suppose that y2 = y1g for some g ∈ Sr . Then there exists a representative loop γ of
g based at x of length less than r . Since the endpoint of its lift starting at y1 is y2, it is clear
that d(y1, y2) < r . Conversely, if d(y1, y2) < r , consider a curve c from y1 to y2 of length
less than r . Denoting by g the class of p ◦ c in π1(M1), we readily see that y2 = y1g and
g ∈ Sr , p ◦ c having length less than r . ��

Amenability of a covering is intertwined with the preservation of the bottom of the spec-
trum, as Brooks’ result illustrates. In the sequel, we will exploit the corresponding result
involving the bottom of the Neumann spectrum.

Theorem 2.12 ( [20, Theorem 1.1]) Let p : M2 → M1 be a Riemannian covering, where M1

is compact with boundary. Then p is amenable if and only if λN
0 (M2) = 0.
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2.4 Lie groups

A connected Lie group G is called amenable if there exists a left-invariant mean on L∞(G);
that is a linear functional μ : L∞(G) → R such that

(i) ess inf f ≤ μ( f ) ≤ ess sup f ,
(ii) μ( f ◦ Lx ) = μ( f ),

for any f ∈ L∞(G) and x ∈ G, where Lx : G → G stands for multiplication from the left
with x ∈ G. Here, we consider L∞(G) with respect to the Haar measure of G, which is just
a constant multiple of the volume element of G induced by a left-invariant metric. For more
details, see [14]. It is well known that a connected Lie group G is amenable if and only if it
is a compact extension of a solvable group (cf. for example [19, Lemma 2.2]).

A Lie group G is called unimodular if its Haar measure is right-invariant. It is noteworthy
that a connected Lie group G is unimodular if and only if tr(ad X) = 0 for any X in the Lie
algebra of G (cf. for instance [17, Proposition 1.2]). Standard examples of unimodular and
amenable Lie groups are connected, nilpotent Lie groups.

Even though the above properties are group theoretic, they are reflected in the spectrum of
the Laplacian. The following characterization has been established for simply connected Lie
groups in [17, Theorem 3.8] and extended to connected Lie groups in [21, Theorem 2.10].

Theorem 2.13 Aconnected Lie groupG is unimodular and amenable if and only ifλ0(G) = 0
for some/any left-invariant metric on G.

3 The Steklov spectrum ofmanifolds with bounded geometry

In this section, we define the Steklov spectrum of manifolds satisfying the assumptions of
Theorem 1.1, and discuss some basic properties of it. Throughout this section, we consider a
Riemannian manifold M with boundary and bounded geometry such that λD

0 (M) > 0, and
we denote by ν the outward pointing unit normal to ∂M . It is worth to mention that compact
manifolds are not excluded from our discussion.

Proposition 3.1 Any f ∈ C∞
c (∂M) has a unique square-integrable harmonic extension

H f ∈ C∞(M). In addition, this extension belongs to H2(M) and is written asH f = F+h,
where F ∈ C∞

c (M) is an extension of f and h ∈ D(�D).

Proof Let f ∈ C∞
c (∂M) and consider an extension F ∈ C∞

c (M) of it. We readily see from
the definition of the spectrum that the assumption that λD

0 (M) > 0 means that

�D : D(�D) ⊂ L2(M) → L2(M)

is bijective. In particular, there exists h ∈ D(�D) such that �Dh = −�F . Bearing in mind
that F ∈ C∞(M), we derive from elliptic regularity that h ∈ C∞(M) with h = 0 on ∂M ,
and �h = −�F . It is evident that h + F is a square-integrable harmonic extension of f .

Let F1, F2 ∈ C∞(M) be square-integrable harmonic extensions of a given f ∈ C∞
c (∂M).

Then h = F1−F2 ∈ C∞(M)∩L2(M) is harmonic and vanishes on ∂M . Given g ∈ C∞
c (M)

with g = 0 on ∂M , we compute

〈h,�g〉L2(M) =
∫

M
〈 grad h, grad g〉 −

∫

∂M
hν(g) =

∫

∂M
ν(h)g = 0,
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where we used that h is harmonic. This shows that h ∈ D(�∗) with �∗h = 0. Since
M is complete, the Laplacian � regarded as in (1) is essentially self-adjoint, and hence,
�∗ = �D . We deduce that h belongs to the kernel of �D and thus, h = 0, due to the fact
that λD

0 (M) > 0. ��
Proof of Theorem1.1 We know from Proposition 3.1 that any f ∈ C∞

c (∂M) admits a unique
square-integrable harmonic extensionH f ∈ H2(M). In view of Lemma 2.7, we may extend
ν to a bounded smooth vector field N on M with ∇N bounded. Then we have that N (H f ) ∈
H1(M), and its restriction ν(H f ) to the boundary is square-integrable, by virtue of Theorem
2.9. ��

It is now clear that the Dirichlet-to-Neumann map

� : C∞
c (∂M) ⊂ L2(∂M) → L2(∂M), f �→ ν(H f )

is well-defined. It is also evident that this linear operator is densely defined.

Lemma 3.2 For any f , h ∈ C∞
c (∂M), we have that

〈� f , h〉L2(∂M) = 〈 f ,�h〉L2(∂M) =
∫

M
〈 grad(H f ), grad(Hh)〉.

Proof We know from Proposition 3.1 that H f = F + h1 and Hh = H + h2, where
F ∈ C∞

c (M) is an extension of f , H ∈ C∞
c (M) is an extension of h, and h1, h2 ∈ D(�D).

Since D(�D) = H1
0 (M) ∩ H2(M), we derive from the divergence formula that

∫

M
〈 grad h1, grad(Hh)〉 =

∫

M
h1�H +

∫

M
h1�

Dh2 = 0,

and therefore,
∫

M
〈 grad(H f ), grad(Hh)〉 =

∫

M
〈 grad F, grad(Hh)〉 =

∫

∂M
f ν(Hh),

as we wished. ��
Hence, the aforementionedDirichlet-to-Neumannmap admits Friedrichs extension, being

symmetric and bounded from below by zero. The spectrum σ(M) of its Friedrichs extension
is called the Steklov spectrum of M , and its bottom is denoted by σ0(M).

Proposition 3.3 The bottom of the Steklov spectrum of M is given by

σ0(M) = inf
f

∫
M ‖ grad f ‖2

∫
∂M f 2

,

where the infimum is taken over all f ∈ C∞
c (M) which are not identically zero on ∂M.

Before proceeding to the proof of this proposition, we need the following remark.

Lemma 3.4 For any extension F ∈ C∞
c (M) of a function f ∈ C∞

c (∂M), we have that
∫

M
‖ grad(H f )‖2 ≤

∫

M
‖ grad F‖2.

123



Annals of Global Analysis and Geometry (2023) 63 :10 Page 11 of 22 10

Proof Keeping in mind that h = H f − F ∈ H1
0 (M), it is immediate to verify that

∫

M
‖ grad F‖2 =

∫

M
‖ grad(H f )‖2 +

∫

M
‖ grad h‖2 − 2

∫

M
〈 grad(H f ), grad h〉,

while
∫

M
〈 grad(H f ), grad h〉 =

∫

∂M
ν(H f )h = 0.

This establishes the asserted inequality. ��

From the proof, it is clear that the equality in the preceding lemma holds if and only if M
is compact and F = H f .

Proof of Proposition 3.3 We know from Proposition 2.2 and Lemma 3.2 that

σ0(M) = inf
f

〈� f , f 〉L2(∂M)

‖ f ‖2
L2(∂M)

= inf
f

∫
M ‖ grad(H f )‖2

∫
∂M f 2

,

where the infimum is taken over all nonzero f ∈ C∞
c (∂M). This is clearly greater or equal

to the asserted infimum, and the equality follows by virtue of Lemma 3.4. ��

A straightforward consequence of Proposition 3.3 is the following relation between the
bottom of the Steklov and the Neumann spectrum.

Theorem 3.5 If σ0(M) = 0, then λN
0 (M) = 0.

Proof We readily see from Proposition 3.3 that there exists ( fn)n∈N ⊂ C∞
c (M) such that

‖ fn‖L2(∂M) = 1 and
∫

M
‖ grad fn‖2 → 0.

Assume to the contrary that λN
0 (M) > 0. Then Proposition 2.5 implies that

‖ fn‖2L2(M)
≤ λN

0 (M)−1
∫

M
‖ grad fn‖2 → 0.

This means that fn → 0 in H1(M) and thus, fn → 0 in L2(∂M), by virtue of Theorem 2.9,
which is a contradiction. ��

Recall that according to Proposition 2.1, the spectrum of a self-adjoint operator consists
of the approximate eigenvalues of the operator. In general, given f ∈ C∞

c (∂M) and λ ∈ R,
it may be quite complicated to estimate the quantity ‖� f − λ f ‖L2(∂M). The next observa-
tion allows us to substitute the harmonic extension with any compactly supported smooth
extension, and the error term is controlled in terms of the Laplacian of the chosen extension.

Proposition 3.6 There exists C > 0 such that

‖� f − λ f ‖L2(∂M) ≤ ‖ν(F) − λ f ‖L2(∂M) + C‖�F‖L2(M)

for any extension F ∈ C∞
c (M) of any f ∈ C∞

c (∂M).
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Proof Let F ∈ C∞
c (M) be an extension of a given f ∈ C∞

c (∂M). Extending ν to a bounded
smooth vector field N on M with ∇N bounded (as in Lemma 2.7), we obtain from Theorem
2.9 that there exists C1 > 0 such that

‖ν(F) − ν(H f )‖L2(∂M) ≤ C1‖N (F) − N (H f )‖H1(M) ≤ C1C2‖F − H f ‖H2(M),

where C2 is a constant depending on N . In view of Proposition 3.1, it is apparent that
F − H f ∈ D(�D). Therefore, we derive from Theorem 2.8 that there exists C3 > 0 such
that

‖F − H f ‖H2(M) ≤ C3‖�(F − H f )‖L2(M) = C3‖�F‖L2(M).

We conclude that

‖� f − λ f ‖L2(∂M) ≤ ‖ν(F) − λ f ‖L2(∂M) + ‖ν(F) − ν(H f )‖L2(∂M)

≤ ‖ν(F) − λ f ‖L2(∂M) + C1C2C3‖�F‖L2(M),

as we wished. ��

4 Steklov spectrum under Riemannian coverings

Throughout this section, we consider a Riemannian covering p : M2 → M1 where M1 is
compact with boundary. It is not difficult to verify that M2 has bounded geometry. Indeed,
it is easily checked that properties (ii)-(iv) of Definition 2.6 are satisfied, after noticing that
B(∂M2, r) = p−1(B(∂M1, r)) for any r > 0, while the validity of (i) is explained for
instance in [20, Lemma 4.2]. It is also important for our discussion that λD

0 (M2) > 0. This
follows from [1, Theorem 1.3], keeping in mind that λD

0 (M2) coincides with the bottom
of the spectrum of the Laplacian on the interior of M2. Hence, we may define the Steklov
spectrum of M2 as in the previous section. The aim of this section is to establish the following
extension of Theorem 1.2.

Theorem 4.1 Let p : M2 → M1 be a Riemannian covering, where M1 is compact with
boundary. Then the following are equivalent:

(i) p is amenable,
(ii) the Steklov spectra satisfy the inclusion σ(M1) ⊂ σ(M2),
(iii) the bottom of the Steklov spectrum is preserved; that is, σ0(M2) = 0.

Let M̃ be the universal covering space of M1, consider the Riemannian coverings
pi : M̃ → Mi , and denote by �i the deck transformation group of pi , i = 1, 2. It should be
noticed that p ◦ p2 = p1.

We begin by introducing the fundamental domains that will be used in the sequel. For their
definition we will exploit the deck transformations group of the universal covering. In the
case where p is normal, an analogous construction is possible using the deck transformations
of p, without having to pass to the universal covering space. It is worth to point out that the
Dirichlet fundamental domains used in [1, 21] do not seem appropriate for our purposes,
since we have to deal with integrals over the boundary.

Fix a finite, smooth triangulation of M1 that induces a triangulation of ∂M1, and for each
full-dimensional simplex choose a lift on M̃ , so that the union F of their images is connected.
The set F is called a finite sided fundamental domain of the covering p1. We readily see that
Vol(∂F) = Area(∂ M̃ ∩ ∂F) = 0 and the translates gF of F with g ∈ �1 cover M̃ . Here,
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∂F stands for the boundary of F as a subset of M̃ , and similarly below. It is also immediate
to verify that

∫

F
( f ◦ p1) =

∫

M1

f and
∫

∂ M̃∩F
( f ◦ p1) =

∫

∂M1

f

for any f ∈ C∞(M1).
Choose x̃ ∈ F◦ and set x = p1(x̃). Given y ∈ p−1(x), there exists g ∈ �1 such that

gx̃ ∈ p−1
2 (y). Set Fy = p2(gF) and observe that it does not depend on the choice of g,

since if g′ x̃ ∈ p−1
2 (y) for some g′ ∈ �1, then g′g−1 ∈ �2. It is evident that the domains Fy

with y ∈ p−1(x) cover M2 and diam(Fy) ≤ diam(F) for any y ∈ p−1(x). It is not hard to
check that ∂Fy ⊂ p2(g∂F), which implies that Vol(∂Fy) = Area(∂M2 ∩ ∂Fy) = 0. From
the fact that p1 : gF → M1 and p1 : ∂ M̃ ∩ F → ∂M1 are isometries up to sets of measure
zero, we readily see that so are the restrictions p : Fy → M1 and p : ∂M2 ∩ Fy → ∂M1 for
any y ∈ p−1(x). This yields that

∫

Fy
( f ◦ p) =

∫

M1

f and
∫

∂M2∩Fy
( f ◦ p) =

∫

∂M1

f (2)

for any f ∈ C∞(M1) and y ∈ p−1(x). For any y, z ∈ p−1(x) with y �= z, using that
Fy ∩ Fz ⊂ ∂Fy , we derive that

Vol(Fy ∩ Fz) = Area(∂M2 ∩ Fy ∩ Fz) = 0. (3)

We now construct a partition of unity onM2, whichwill be used to obtain cut-off functions.
To this end, we will exploit the following.

Lemma 4.2 Given r > 0, there exists k(r) ∈ N such that for any z ∈ M2 the open ball
B(z, 1) intersects at most k(r) of the closed balls C(y, r) with y ∈ p−1(x).

Proof Suppose that B(z, 1) intersects the closed balls C(yi , r) with yi ∈ p−1(x) pairwise
different and let γi be a minimizing geodesic from z to yi , i = 1, . . . , k. Then the concate-
nations (p ◦ γi ) ∗ (p ◦ γ −1

1 ) are pairwise non-homotopic loops based at x of length less than
2r + 2. We conclude that k ≤ |S2r+2|. ��

Consider r > 0 such that F ⊂ B(x̃, r) and Sr generates π1(M1). Fix a nonnegative
ψ ∈ C∞

c (M̃) with ψ = 1 in B(x̃, r) and suppψ ⊂ B(x̃, r + 1). Given y ∈ p−1(x), choose
g ∈ �1 such that gx̃ ∈ p−1

2 (y) and set

ψy(z) =
∑

w∈p−1
2 (z)

(ψ ◦ g−1)(w) =
∑

g′∈�2

(ψ ◦ g−1 ◦ g′)(w0), (4)

for some fixed w0 ∈ p−1
2 (z). Since ψ is compactly supported, we readily see that ψy is

well-defined, smooth, nonnegative,ψy ≥ 1 in B(y, r) and suppψy ⊂ B(y, r +1). It follows
from Lemma 4.2 (applied to the universal covering p1) that there exists k̃ ∈ N such that
locally at most k̃ terms in the right-hand side of (4) are nonzero. Thus, we deduce that there
exists C1 > 0 such that

‖ gradψy‖ ≤ C1 and |�ψy | ≤ C1

for any y ∈ p−1(x).
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According to Lemma 4.2, there exists k ∈ N such that at most k of the supports of ψy

with y ∈ p−1(x) intersect any ball of radius one in M2. Therefore, the function

ψ =
∑

y∈p−1(x)

ψy

is well-defined, smooth, and greater or equal to one. Moreover, we obtain that ψ , gradψ and
�ψ are bounded.

Consider now the smooth partition of unity on M2 consisting of the functions

ϕy = ψy

ψ
,

with y ∈ p−1(x). It is clear that suppϕy ⊂ B(y, r + 1), ϕy > 0 in B(y, r), while grad ϕy

and �ϕy are uniformly bounded for all y ∈ p−1(x). Given a non-empty, finite subset P of
p−1(x), define the function χP ∈ C∞

c (M2) by

χP =
∑

y∈P

ϕy

and the sets

Q+ = {y ∈ p−1(x) : χ = 1 in Fy},
Q− = {y ∈ p−1(x) : 0 < χ(z) < 1 for some z ∈ Fy}.

Since at most k of the supports of ϕy interest any ball of radius one in M2, it is easy to see
that exists C2 > 0 such that

‖ grad χP‖ ≤ C2 and |�χP | ≤ C2 (5)

for any finite subset P of p−1(x). Furthermore, the sets Q+ and Q− are finite, χP being
compactly supported

The following proposition illustrates how amenability of the covering is related to our
construction.

Proposition 4.3 If p : M2 → M1 is amenable, then for any ε > 0 there exists a non-empty,
finite subset P of p−1(x) such that |Q−| < ε|Q+|.
Proof Set d = 2(r +1+diam(F)). We know from Proposition 2.10 that for any ε > 0 there
exists a non-empty, finite subset P of p−1(x) such that

|Pg � P| < ε|P|
for any g ∈ Sd . Consider the corresponding function χP and let y ∈ P such that yg ∈ P for
any g ∈ Sd . Let z ∈ Fy and y′ ∈ p−1(x) such that z ∈ suppϕy′ . Then d(z, y′) < r + 1 and
thus, d(y, y′) < d/2, because diam(Fy) ≤ diam(F). Lemma 2.11 shows that there exists
g ∈ Sd such that y′ = yg ∈ P . Since {ϕy′ }y′∈p−1(x) is a partition of unity on M2, we deduce
that y ∈ Q+. This yields that

|P ∩ (∩g∈Sd Pg)| ≤ |Q+|,
and thus,

|Q+| ≥ |P| − | ∪g∈Sd (P � Pg)| ≥ (1 − ε|Sd |)|P|,
where we used that Sd is symmetric.
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Consider now y ∈ Q− and z ∈ Fy such that 0 < χP (z) < 1. Then there exist y1 ∈ P
and y2 ∈ p−1(x) � P such that ϕi (z) > 0, i = 1, 2. This implies that d(z, yi ) < r + 1, and
hence, d(y, yi ) < d/2, i = 1, 2. In particular, we obtain that d(y1, y2) < d and there exists
g ∈ Sd such that y1 = y2g ∈ P � Pg, in view of Lemma 2.11. Since d(y, y1) < d/2, we
derive from Lemma 2.11 that for such a y1 there exists at most |Sd/2| such y. This gives the
estimate

|Q−| ≤
∑

g∈Sd
|Sd/2||P � Pg| < ε|Sd/2||Sd ||P|.

Combining the above, for ε > 0 sufficiently small, we conclude that

|Q−|
|Q+| <

ε|Sd/2||Sd |
1 − ε|Sd | ,

which completes the proof. ��

Proof of Theorem 4.1 Suppose first that the covering p : M2 → M1 is amenable. Since M1

is compact, its Steklov spectrum is discrete. Therefore, for any λ ∈ σ(M1), there exists a
harmonic f ∈ C∞(M1) with ‖ f ‖L2(∂M1)

= 1 such that ν1( f ) = λ f on ∂M1, where ν1 is

the outward pointing unit normal to ∂M1. Denote by f̃ = f ◦ p the lift of f on M2 and,
given a non-empty, finite subset P of p−1(x), consider the function fP = χP f̃ ∈ C∞

c (M2).

For y ∈ Q+, keeping in mind (2) and that fP = f̃ in Fy , we readily see that

∫

Fy
(� fP )2 = 0,

∫

∂M2∩Fy
(ν2( fP ) − λ fP )2 = 0 and

∫

∂M2∩Fy
f 2P = 1,

where ν2 is the outward pointing unit normal to ∂M2. Fix now y ∈ Q−. Using (2) and that
f̃ is harmonic, we compute

∫

Fy
(� fP )2 =

∫

Fy
( f̃ �χP − 2〈 grad f̃ , grad χP 〉)2

≤ 2
∫

Fy
f̃ 2(�χP )2 + 8

∫

Fy
‖ grad f̃ ‖2‖ grad χP‖2

≤ 2C2
2‖ f ‖2L2(M1)

+ 8C2
2

∫

M1

‖ grad f ‖2,

where C2 is the constant from (5). Moreover, we deduce that

∫

∂M2∩Fy
(ν2( fP ) − λ f p)

2 =
∫

∂M2∩Fy
(ν2(χP ) f̃ )2 ≤ C2

2

where we used that ν2( f̃ ) = λ f̃ on ∂M2, ‖ f ‖L2(∂M1)
= 1 and (2).

Furthermore, we derive from (2) and (3) that

‖ fP‖2L2(∂M2)
≥

∑

y∈Q+

∫

∂M2∩Fy
f 2P = |Q+|.
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Combining the above estimates, together with (3) and Proposition 3.6, yields that

‖ν(H fP ) − λ fP‖2L2(∂M2)
≤ 2‖ν( f p) − λ f p‖2L2(∂M2)

+ 2C2‖� f p‖2L2(M2)

= 2
∑

y∈Q−

( ∫

∂M2∩Fy
(ν( fP ) − λ fP )2 + C2

∫

Fy
(� fP )2

)

≤ 2C2
2 |Q−|(1 + 2C2‖ f ‖2L2(M1)

+ 8C2
∫

M1

‖ grad f ‖2).

Since the constants involved in these estimates are independent from P , it follows from
Proposition 4.3 that for any ε > 0 there exists a finite subset P of p−1(x) such that

‖ν(H fP ) − λ fP‖2L2(∂M2)
< ε‖ fP‖2L2(∂M2)

.

We conclude from Proposition 2.1 that λ ∈ σ(M2), ε > 0 being arbitrary.
It is clear from Proposition 3.3 that σ0(M2) ≥ 0. Therefore, if σ(M1) ⊂ σ(M2), then

σ0(M2) = 0, because σ0(M1) = 0. Suppose now that σ0(M2) = 0. Then Theorem 3.5 states
that λN

0 (M2) = 0, and thus, the covering is amenable, in view of Theorem 2.12. ��

5 Steklov spectrum under Riemannian submersions

The aim of this section is to establish Theorem 1.3. Throughout, we consider a Riemannian
submersion p : M2 → M1 arising from the action of a connected Lie group G, where M1 is
compact with boundary, and denote by νi the outward pointing unit normal to ∂Mi , i = 1, 2.
For more details on Riemannian submersions, see [9, 12]. We begin by showing that M2 has
bounded geometry and λD

0 (M2) > 0.

Proposition 5.1 In the aforementioned setting, M2 has bounded geometry.

Proof Bearing in mind thatG acts on M2 via isometries, it is easy to verify properties (ii)-(iv)
of Definition 2.6, after noticing that B(∂M2, r) = p−1(B(∂M1, r)) for any r > 0. To check
the validity of (i), observe that there exists r > 0 such that the map

exp : ∂M1 × [0, r) → M1, (y, t) �→ expy(−tν1)

is a diffeomorphismonto its image,M1 being compact. Choose a precompact, openU ⊂ ∂M2

such that GU = ∂M2, and consider r ′ ≤ r such that

exp : U × [0, r ′) → M2, (z, t) �→ expz(−tν2)

is a diffeomorphism onto its image. Since G acts on M2 via isometries, we derive that

exp : ∂M2 × [0, r ′) → M2, (z, t) �→ expz(−tν2)

is a local diffeomorphism onto its image. Hence, it remains to show that this map is injective.
To this end, let z1, z2 ∈ ∂M2 and t1, t2 ∈ [0, r ′) with expz1(−t1ν2) = expz2(−t2ν2) =

z. From the fact that γi (t) = expzi (−tν2) is a horizontal geodesic, we readily see that
(p ◦ γi )(t) = expp(zi )(−tν1), i = 1, 2. Since r ′ ≤ r , this yields that p(z1) = p(z2) and
t1 = t2. In particular, the geodesics p ◦ γi coincide, and hence, so do their horizontal lifts γi
with endpoint z. We conclude that z1 = z2 and t1 = t2, as we wished. ��
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Consider the Schrödinger operator

S = � + 1

4
‖p∗H‖2 − 1

2
div p∗H (6)

on M1. We know from [23, Theorem 1.1] that λD
0 (M2) ≥ λD

0 (S). It is worth to mention that
[23, Theorem 1.1] is formulated for manifolds without boundary, which however do not have
to be complete. Hence, the assertion is readily extended to manifolds with boundary.

Proposition 5.2 In the aforementioned setting, we have that λD
0 (S) > 0.

Proof Given a nonzero f ∈ C∞
c (M1) with f = 0 on ∂M1, we compute

〈S f , f 〉L2(M1)
=

∫

M1

(‖ grad f ‖2 + 1

4
‖p∗H‖ f 2 − 1

2
f 2 div p∗H)

=
∫

M1

(‖ grad f ‖2 + 1

4
‖p∗H‖ f 2 + 1

2
〈 grad f 2, p∗H〉)

=
∫

M1

‖ grad f + f

2
p∗H‖2,

where we used the divergence formula. In particular, we deduce thatRS( f ) ≥ 0 for any such
f , which means that λD

0 (S) ≥ 0, in view of Proposition 2.4.
Assume to the contrary that λD

0 (S) = 0. Since M1 is compact, the Dirichlet spectrum of
S is discrete. This yields that there exists f ∈ C∞(M1) positive in M◦

1 and vanishing on
∂M1 such that S f = 0, which implies thatRS( f ) = 0. From the preceding computation, we
conclude that

p∗H = −2 grad ln f

in M◦
1 . This is a contradiction, since p∗H is smooth on M1, while f vanishes on ∂M1. ��

From the above, it follows that M2 has bounded geometry and λD
0 (M2) > 0. Therefore,

we may define the Steklov spectrum of M2 as in Sect. 3.
The proof of Theorem 1.3 relies on the methods of [23]. For convenience of the reader,

we briefly discuss what will be used in the sequel. Given a section s : U ⊂ M1 → M2, the
map � : G × U → p−1(U ) defined by �(x, y) = xs(y) is a diffeomorphism. We denote
by gs(y) the pullback of the Riemannian metric of the fiber Fy = p−1(y) via �(·, y). Then
gs(y) is a left-invariant metric depending smoothly on y ∈ U , according to [23, Proposition
4.1]. The behavior of the volume elements of these metrics is illustrated in the following.

Proposition 5.3 ( [23, Corollaries 4.2 and 4.3]) Let g be a fixed left-invariant metric on G.
Given a section s : U ⊂ M1 → M2, there exists Vs ∈ C∞(U ) such that the volume elements
are related by

dvolgs(y) = Vs(y)dvolg.

If, in addition, G is unimodular, then there exists V ∈ C∞(M) such that

dvolgs(y) = V (y)dvolg

for any section s : U ⊂ M1 → M2 and y ∈ U. Moreover, the gradient of V is given by
grad V = −V p∗H.
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In the case where G is unimodular, it follows that the Schrödinger operator defined in (6)
is written as

S = � − �
√
V√
V

,

and, therefore, corresponds to the symmetric diffusion operator

L = m−1
ϕ ◦ S ◦ mϕ = � − 2 grad ln

√
V = � + p∗H .

It is noteworthy that

�( f ◦ p) = (L f ) ◦ p (7)

for any f ∈ C∞(M1) (cf. for instance [23, Lemma2.6]).Moreover, since theDirichlet spectra
of S and L coincide (mϕ being an isometric isomorphism), we derive from Proposition
5.2 that λD

0 (L) > 0. Hence, any f ∈ C∞(M1) admits a unique L-harmonic extension
HL f ∈ C∞(M1). This gives rise to the Dirichlet-to-Neumann map

�L : C∞(∂M1) ⊂ L2√
V
(∂M1) → L2√

V
(∂M1), f �→ ν(HL f ).

It is standard that the spectrum σL(M1) of the Friedrichs extension of this map is discrete
and the corresponding eigenfunctions are smooth.

Given a section s : U ⊂ M1 → M2 and f : G → R, we denote by fs : p−1(U ) → R the
function satisfying

fs(�(x, y)) = f (x)

for any x ∈ G and y ∈ U .

Proposition 5.4 ( [23, Lemma 4.6 and Proposition 4.7]) Fix a left-invariant metric on G.
Then for any r > 0 and any bounded, open W ⊂ G, there exists χ ∈ C∞

c (G) with χ = 1
in W � B(∂W , r), suppχ ⊂ B(W , r/2), such that for any extensible section s : U → M2,
there exists C > 0 independent from W, satisfying

|�(χs)(z)| ≤ C and ‖ grad(χs)(z)‖ ≤ C

for any z ∈ p−1(U ).

The point of this proposition is that the constant depends only on the section, and not
on the corresponding W . These functions are obtained from a partition of unity which is
constructed by translates of a fixed function (conceptually related to the partition of unity
of the previous section). The importance of this construction becomes more clear in the
following consequence of Theorem 2.13, together with the Cheeger and Buser inequalities
(more precisely, the main ingredient in the proof of the latter one).

Proposition 5.5 ( [23, Corollary 2.11]) Suppose that G is non-compact, unimodular and
amenable, and choose a left-invariant metric on it. Then for any ε > 0 and r > 0, there
exists a bounded, open W ⊂ G such that

|B(∂W , r)| < ε|W � B(∂W , r)|.
The most technical part of the proof of Theorem 1.3 is contained in the following.

Proposition 5.6 If G is unimodular and amenable, then for any λ ∈ σL(M1) and ε > 0,
there exists h ∈ C∞

c (M2) such that ‖(� − λ)h‖L2(∂M2)
< ε‖h‖L2(∂M2)

.
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Proof Since M1 is compact, for any λ ∈ σL(M1), there exists f ∈ C∞(M1) with
‖ f ‖|L2√

V
(∂M1)

= 1, L f = 0 in M1 and ν1( f ) = λ f on ∂M1. If G is compact, it is immediate

to verify that its lift f̃ = f ◦ p is harmonic and satisfies ν2( f̃ ) = λ f̃ on ∂M2, by virtue of
(7). Hence, it remains to prove the assertion in the case where G is non-compact.

To this end, cover M1 with finitely many open domains Ui that admit extensible sections
si : Ui ⊂ M1 → M2, i = 1, . . . , k, and consider a smooth partition of unity {ϕi }1≤i≤k

subordinate to {Ui }1≤i≤k . Denote by xi j : Ui ∩ Uj → G the transition maps, which are
defined by s j (y) = xi j (y)si (y) for all y ∈ Ui ∩ Uj , and by �i : G × Ui → p−1(Ui ) the
diffeomorphisms defined by �i (x, y) = xsi (y), i, j = 1, . . . , k.

Choose a left-invariant metric g onG. Using thatUi is precompact and si is extensible, we
readily see that there exists r > 0 such that xi j (Ui ∩Uj ) ⊂ Bg(e, r) for any i, j = 1, . . . , k,
where e is the neutral element of G. Given a bounded, open W ⊂ G, denote by χ the
corresponding function, according to Proposition 5.4, for r as above, where we regard G
endowed with the fixed Riemannian metric g. Consider the compactly supported, smooth
function

hi := χsi ϕ̃i f̃

in p−1(Ui ), i = 1, . . . , k, where ϕ̃i = ϕi ◦ p and f̃ = f ◦ p. For h = ∑k
i=1 hi , we obtain

from Proposition 5.4, that there exists C f > 0 independent from W , such that |h(z)| ≤ C f ,
‖ grad h(z)‖ ≤ C f and |�h(z)| ≤ C f for any z ∈ M2. It follows from Proposition 5.5 that
there exists a bounded, open W ⊂ G such that

|W ′
0|g

|W0|g < min

{
ε2

8(λ2 + 1)C2
f

∫
∂M1

V
,

ε2

4C2C2
f

∫
M1

V

}

, (8)

whereW ′
0 = B(∂W , 3r),W0 = W �W ′

0, and C is the constant from Proposition 3.6 on M2.
To simplify the notation, set D0 = W � C(∂W , 2r), D′

0 = C(W , 2r), and given y ∈ Ui ,
let Wi (y) = �i (W0, y), W ′

i (y) = �i (W ′
0, y), Di (y) = �i (D0, y) and D′

i (y) = �i (D′
0, y),

i = 1, . . . , k. Here, B(·, ·) and C(·, ·) stand for open and closed tubular neighborhoods with
respect to the fixed Riemannian metric g, respectively. Using that

�i (x, y) = � j (xx ji (y), y)

for any y ∈ Ui ∩ Uj and x ∈ G, it is immediate to verify that h(z) = f̃ (z) for any
z ∈ Di (y) ⊃ Wi (y) and that supp h ∩ Fy ⊂ Di (y) ∪ D′

i (y) ⊂ Wi (y) ∪ W ′
i (y) for any

y ∈ Ui , i = 1, . . . , k.
By virtue of Proposition 5.3, we compute

‖h‖2L2(∂M2)
=

k∑

i=1

∫

∂M2

ϕ̃i h
2 ≥

k∑

i=1

∫

∂M1∩Ui

∫

Wi (y)
ϕ̃i h

2 dy

=
k∑

i=1

∫

∂M1∩Ui

ϕi (y) f
2(y)|W0|gsi (y) dy

= |W0|g
k∑

i=1

∫

∂M1∩Ui

ϕi f
2V = |W0|g,
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where we used that ‖ f ‖L2√
V

(∂M1)
= 1. Moreover, it is evident that

‖ν2(h) − λh‖2L2(∂M2)
=

k∑

i=1

∫

∂M2

ϕ̃i (ν2(h) − λh)2 = Q1 + Q2,

where

Q1 =
k∑

i=1

∫

∂M1∩Ui

∫

Wi (y)
ϕ̃i (ν2(h) − λh)2 dy, Q2 =

k∑

i=1

∫

∂M1∩Ui

∫

W ′
i (y)

ϕ̃i (ν2(h) − λh)2 dy .

To estimate these quantities, keeping inmind that D0 is an open subset ofG, it is immediate to
verify that so is�i (D0×Ui ) ⊂ M2, which is a neighborhood ofWi (y) for any y ∈ Ui ∩∂M1,
i = 1, . . . , k. Since h = f̃ in �i (D0 ×Ui ), in Wi (y) we have that

ν2(h) = ν2( f̃ ) = 〈ν2, grad f̃ 〉 = 〈ν1, grad f 〉 ◦ p = λ f̃ = λh,

and thus, Q1 = 0. In W ′
i (y), using Proposition 5.3 and that (ν2(h) − λh)2 ≤ 2C2

f (λ
2 + 1),

we readily see that

Q2 ≤ 2C2
f (λ

2 + 1)
k∑

i=1

∫

∂M1∩Ui

ϕi (y)|W ′
0|gsi (y) dy = 2C2

f (λ
2 + 1)|W ′

0|g
∫

∂M1

V .

Furthermore, it is apparent that

‖�h‖2L2(M2)
=

k∑

i=1

∫

M2

ϕ̃i (�h)2 = Q3 + Q4,

where

Q3 =
k∑

i=1

∫

Ui

∫

Wi (y)
ϕ̃i (�h)2 dy, Q4 =

k∑

i=1

∫

Ui

∫

W ′
i (y)

ϕ̃i (�h)2 dy .

Using again that h = f̃ in �i (D0 ×Ui ) ⊃ Wi (y), we obtain from (7) that �h = 0 inWi (y),
and hence, Q3 = 0. Finally, Proposition 5.3 implies that

Q4 ≤ C2
f

k∑

i=1

∫

Ui

ϕi (y)|W ′
0|gsi (y)dy = C2

f |W ′
0|g

∫

M1

V .

From the above estimates and Proposition 3.6, we conclude that

‖(� − λ)h‖2
L2(∂M2)

‖h‖2
L2(∂M2)

≤ 2
‖ν(h) − λh‖2

L2(∂M2)

‖h‖2
L2(∂M2)

+ 2C2
‖�h‖2

L2(M2)

‖h‖2
L2(∂M2)

< ε2,

by virtue of (8). ��
Another important ingredient in the proof of Theorem 1.3 involves the behavior of the

Neumann spectrum under Riemannian submersions. One can establish the following by
arguing as in [23]. However, in our setting, where the base manifold is compact, we can
prove it in a simpler way (which also establishes the analogous assertion if the base manifold
is closed).

Theorem 5.7 If λN
0 (M2) = 0, then G is unimodular and amenable.
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Proof Cover M1 with finitely many open domainsUi admitting extensible sections si : Ui ⊂
M1 → M2, and denote by �i,y : G → Fy the diffeomorphism �i,y(x) = xsi (y) with
y ∈ Ui , i = 1, . . . , k. Let {ϕi }1≤i≤k be a smooth partition of unity subordinate to {Ui }1≤i≤k .
Fix a left-invariant Riemannian metric g on G and consider the functions Vsi ∈ C∞(Ui )

from Proposition 5.3. Since si is extensible, it follows that there exists c > 0 such that

‖gradgsi (y) f ‖gsi (y) ≥ c‖gradg f ‖g
for any f ∈ C∞(G) and y ∈ Ui , i = 1, . . . , k.

Since λN
0 (M2) = 0, we obtain from Proposition 2.5 that for any ε > 0 there exists a

nonzero f ∈ C∞
c (M2) such that

ε >

∫
M2

‖ grad f ‖2
∫
M2

f 2
≥

∫
M2

‖(grad f )v‖2
∫
M2

f 2
=

∫
M1

∫
Fy

‖ grad( f |Fy )‖2 dy
∫
M1

∫
Fy

f 2 dy

=
∑k

i=1

∫
Ui

ϕi (y)
∫
Fy

‖ grad( f |Fy )‖2 dy
∑k

i=1

∫
Ui

ϕi (y)
∫
Fy

f 2 dy

=
∑k

i=1

∫
Ui

ϕi (y)
∫
G ‖ gradgsi (y) ( f ◦ �i,y)‖2gsi (y)Vsi (y) dy∑k

i=1

∫
Ui

ϕi (y)
∫
G( f ◦ �i,y)2Vsi (y) dy

where (grad f )v stands for the vertical component of grad f , and the integrals over G are
with respect to the fixed Riemannian metric g. It is now clear that there exists 1 ≤ i ≤ k and
y ∈ Ui such that ϕi (y) > 0, f is not identically zero on Fy , and we have that

ε >
ϕi (y)

∫
G ‖ gradgsi (y) ( f ◦ �i,y)‖2gsi (y)Vsi (y)
ϕi (y)

∫
G( f ◦ �i,y)2Vsi (y)

≥ c2
∫
G ‖ gradg( f ◦ �i,y)‖2g∫

G( f ◦ �i,y)2

= Rg( f ◦ �i,y).

Since ε > 0 is arbitrary, we conclude from Proposition 2.3 that λ0(G, g) = 0, and therefore,
G is unimodular and amenable, by Theorem 2.13. ��

Proof of Theorem 1.3 If G is unimodular and amenable, then σL(M1) ⊂ σ(M2) by virtue of
Propositions 5.6 and 2.1. Taking into account that 0 ∈ σL(M1), it evident that the second
statement implies the third. Finally, if σ0(M2) = 0, then we derive from Theorem 3.5 that
λN
0 (M2) = 0, and hence G is unimodular and amenable, in view of Theorem 5.7. ��
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