
Annals of Global Analysis and Geometry (2023) 63:5
https://doi.org/10.1007/s10455-022-09881-x

Complexes, residues and obstructions for log-symplectic
manifolds

Ziv Ran1

Received: 7 April 2021 / Accepted: 29 September 2022 / Published online: 7 November 2022
© The Author(s) 2022

Abstract
We consider compact Kählerian manifolds X of even dimension 4 or more, endowed with
a log-symplectic structure �, a generically nondegenerate closed 2-form with simple poles
on a divisor D with local normal crossings. A simple linear inequality involving the iterated
Poincaré residues of � at components of the double locus of D ensures that the pair (X ,�)

has unobstructed deformations and that D deforms locally trivially.
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Introduction

A log-symplectic manifold is a pair consisting of a complexmanifold X , usually compact and
Kählerian, togetherwith a log-symplectic structure.A log-symplectic structure can be defined
either as a generically nondegenerate meromorphic closed 2-form � with normal-crossing
(anticanonical) polar divisor D, or equivalently as a generically nondegenerate holomorphic
tangential 2-vector � such that [�,�] = 0 with normal-crossing degeneracy divisor D.
The two structures are related via � = �−1. See [3] or [11] or [2] or [12] for basic facts
on Poisson and log-symplectic manifolds and [4] (especially the appendix), [5, 7, 8] or [10],
and references therein, for deformations.

Understanding log-symplectic manifolds unavoidably involves understanding their defor-
mations. In the very special case of symplecticmanifolds, where D = 0, the classical theorem
of Bogomolov [1] shows that the pair (X ,�) has unobstructed deformations. In [13] we
obtained a generalization of this result which holds when � satisfied a certain ’very general
position’ condition with respect to D (the original statement is corrected in the subsequent
erratum/corrigendum). Namely, we showed in this case that (X ,�) has ’strongly unob-
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structed’ deformations, in the sense that it has unobstructed deformations and D deforms
locally trivially.

Further results on unobstructed deformations (in the sense of Hitchin’s generalized geom-
etry [6]) and Torelli theorems in the case where D has global normal crossings were obtained
by Matviichuk, Pym and Schedler [9], based on their notion of holonomicity.

Our purpose here is to prove a more precise strong unobstructedness result compared to
[13], nailing down the generality required: we will show in Theorem 6 that strong unob-
structedness can fail only when the log-symplectic structure �, more precisely its (iterated
Poincaré) residues at codimension-2 strata of the polar divisor D (which are essentially the
(locally constant) coefficients of � with respect to a suitable basis of the log forms adapted
to D) satisfy certain special linear relations with integer coefficients. Explicitly, at a triple
point of D with branches labeled 1,2,3 and associated residues c12, c23, c31, the condition is

c23 + c31 ∈ Nc12.

Essentially, if this never happens over the entire triple locus then (X ,�) has strongly unob-
structed deformations.

The strategy of the proof as in [13] is to study the inclusion of complexes

(T •
X 〈− log D〉, [ . ,�]) → (T •

X , [ . ,�]) ,

albeit from a more global viewpoint. In fact as in [13] it turns out to be more convenient to
transport the situation over to the De Rham side where it becomes an inclusion

(�•
X 〈log D〉, d) → (�•

X 〈log+D〉, d)

where the latter ’log-plus’ complex is a certain complex of meromorphic forms with poles
on D. We study a filtration, introduced in [13], interpolating between the two complexes,
especially its first two graded pieces. As we show, the first piece is automatically exact, while
0-acyclicity for the second piece leads to the above cocycle condition. See Sect. 3 for details.

We begin the paperwith a couple of auxiliary, independent sections. In Sect. 1we construct
a ’principal parts complex’ associated to an invertible sheaf L on a smooth variety, extending
the principal parts sheaf P(L) together with the universal derivation L → P(L). We show
this complex is always exact. In Sect. 2 we show that, for any normal-crossing divisor D ⊂ X
on any smooth variety, the log complex �•

X 〈log D〉—unlike �•
X itself—can be pulled back

to a complex of vector bundles on the normalization of D. These complexes play a role in
our analysis of the aforementioned inclusion map.

I am grateful to Brent Pym for helpful communications, in particular for communicating
Example 8.

1 Principal parts complex

In this section X denotes an arbitrary n-dimensional smooth complex variety and L denotes
an invertible sheaf on X .

1.1 Principal parts

TheGrothendieck principal parts sheaf P(L) (see EGA) is a rank-(n+1) bundle on X defined
as

P(L) = p1∗(p∗
2L ⊗ (OX×X/I2

�))
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where � ⊂ X × X is the diagonal and p1, p2 : X × X → X are the projections. We have a
short exact sequence

0 → �1
X ⊗ L → P(L) → L → 0

whose corresponding extension class in Ext1(L,�1
X ⊗ L) = H1(X ,�1

X ) coincides with
c1(L). The sheaf

P0(L) = P(L) ⊗ L−1,

which likewise has extension class c1(L), is called the normalized principal parts sheaf. The
map P(L) → L admits a splitting dL : L → P(L) that is a derivation, i.e.,

dL( f u) = f dLu + d f ⊗ u.

In fact, dL the universal derivation on L . Moreover, P(L) is generated overOX by the image
of dL . Likewise, P0(L) is generated by elements of the form dlog(u) := dLu ⊗ u−1 where
u is a local generator of L .

1.2 Complex

It is well known that P(Lm+1) 
 P(L) ⊗ Lm,m ≥ 0 which in particular yields a derivation
Ln+1 → P(L) ⊗ Ln, n ≥ 0. In fact, this map extends to a complex that we denote by
P•
n+1(L) or just P•(L) and call the ( (n + 1)st) principal parts complex of L:

P•(L) : Ln+1 → P(L)Ln → ∧2P(L)Ln−1 → . . . ∧n+1 P(L) = �n
X ⊗ Ln+1. (1)

The differential is given, in terms of local OX -generators u1, . . . , uk, v1, . . . , v� of L, by

d(u1 . . . ukdL(v1) ∧ ...dL(v�) =
∑

u1...ûi . . . ukdL(ui ) ∧ dL(v1) ∧ . . . ∧ dL(v�)

and extending using additivity and the derivation property. There are also similar shorter
complexes

Lm → P(L)Lm−1 → . . . → ∧m P(L).

Note the exact sequences

0 → �m
X L

m → ∧m P(L) → �m−1
X Lm → 0.

These sequences splits locally and also split globally whenever L is a flat line bundle. In such
cases, we get a short exact sequence

0 → �•
X L

n+1[−1] → P•(L) → �•
X L

n+1 → 0 (2)

The principal parts complex P•(L) may be tensored with L j−n−1, for any j > 0, yielding
the j-th principal parts complex:

P•
j (L) : L j → P0(L)L j → ∧2P0(L)L j → . . . → ∧n+1P0(L)L j (3)

The differential is defined by setting

d(dlog(u1) ∧ ... ∧ dlog(ui )v
j ) = j dlog(u1) ∧ ... ∧ dlog(ui ) dlog(v)v j

where u1, ..., ui , v are local generators for L , and extending by additivity and the derivation
property. Thus, P•(L) = P•

n+1(L).
An important property of principal parts complexes is the following:
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Proposition 1 For any local system S, the complexes P•
j (L) ⊗ S are null-homotopic and

exact for all j > 0.

Proof The assertion being local, we may assume L is trivial and S = C, so the i-th term of

P•
j (L) ⊗ S is just �i−1

X ⊕ �i
X and the differential is

(
d id
0 d

)
. Then, a homotopy is given by

(
0 id
0 0

)
. Thus, P•

j (L) is null-homotopic, hence exact. ��

1.3 Log version

The above constructions have an obvious extension to the log situation. Thus, let D be a
divisor with normal crossings on X . We define P(L)〈log D〉 as the image of P(L) under
the inclusion �X → �X 〈log D〉, and likewise for P0(L)〈log D〉. Then, as above we get
complexes

P•
j (L)〈log D〉 : L j → P0(L)〈log D〉L j → ... → ∧n+1P0(L)〈log D〉L j . (4)

1.4 Foliated version

Let F ⊂ �X 〈log D〉 be an integrable subbundle of rank m. Then, F gives rise to a foli-
ated De Rham complex ∧•(�X 〈log D〉/F), we well as a foliated principal parts sheaf
P1
F (L)〈log D〉 = P1(L)〈log D〉/F ⊗ L . Putting these together, we obtain the foliated prin-

cipal parts complexes (where P0,F (L)〈log D〉 := P0(L)〈log D〉/F):
P•
j,F (L)〈log D〉 : L j → P0,F (L)〈log D〉L j → ... → ∧n−m+1P0,F (L)〈log D〉 (5)

Note that the proof of Proposition 1 made no use of the acyclicity of the De Rham complex.
Hence, the same proof applies verbatim to yield

Proposition 2 For any local system S, the complexes P•
j,F (L)〈log D〉⊗S are null-homotopic

and exact for all j > 0.

2 Calculus on normal crossing divisors

In this section X denotes a smooth variety or complex manifold and D denotes a locally
normal-crossing divisor on X . Our aim is to show that the log complex on X , unlike its De
Rham analogue, can be pulled back to the normalization of D.

2.1 Branch normal

Let fi : Xi → X be the normalization of the i-fold locus of D. A point on Xi consists
of a point on D together with a choice of i distinct local branches of D at it. There is a
canonical induced normal-crossing divisor Di on Xi : at a point where x1...xm is an equation
for D and x1, . . . , xi are the chosen branches, the equation of Di is xi+1 . . . xm . Note the
exact sequence

0 → TX 〈− log D〉 → TX → f1∗N f1 → 0 (6)
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where N f1 is the normal bundle to f1 which fits in an exact sequence

0 → TX1 → f ∗
1 TX → N f1 → 0.

Locally, N f1 coincides with x−1
1 OX/OX where x1 is a ’branch equation’: to be precise,

if K denotes the kernel of the natural surjection f −1
1 OX → OX1 , then J = K/K 2 =

K ⊗ f −1OX
OX1 is an invertible OX1 -module locally generated by x1 and N f1 = J−1. Note

that

N f1 ⊗ OX1(D1) = f ∗
1 (OX (D)).

2.2 Pulling back log complexes

Interestingly, even though the differential on the pullback De Rham complex f −1
1 �•

X does
not extend to f −1�•

X ⊗ OX1 , the analogous assertion for the log complex does hold: the
differential on f −1

1 �•
X 〈log D〉 extends to what might be called the restricted log complex:

f ∗
1 �•

X 〈log D〉 = f −1
1 �•

X 〈log D〉 ⊗ OX1 .

This is due to the identity (where x1 denotes a branch equation)

dx1 = x1 dlog(x1).

Note that the residue map yields an exact sequence

0 → �1
X1

〈log D1〉 j→ f ∗
1 �1

X 〈log D〉 Res→ OX1 → 0. (7)

Note that the residuemap commuteswith exterior derivative. Therefore, this sequence induces
a short exact sequence of complexes

0 → �•
X1

〈log D1〉 → f ∗
1 �•

X 〈log D〉 → �•
X1

〈log D1〉[−1] → 0. (8)

Furthermore, a twisted form of the restricted log complex, called the normal log complex,
also exists:

N f1 ⊗ f ∗
1 �•

X 〈log D〉 : N f1 → N f1 ⊗ f ∗
1 �1

X 〈log D〉 → . . . (9)

this is thanks to the identity, where ω is any log form,

d(ω/x1) = (dω)/x1 − dlog(x1) ∧ ω/x1.

Now recall the exact sequence coming from the residue map

0 → �X1〈log D1〉 → f ∗
1 �X 〈log D〉 → OX1 → 0

In fact, it is easy to check that this exact sequence has extension class c1(N f1) hence identifies
f ∗
1 �X 〈log D〉 with P0(N f1) so that the normal log complex (9) may be identified with the

principal parts complex P•(N f1):

Lemma 3 The normal log complex N f1 ⊗ f ∗
1 �X 〈log D〉 is isomorphic to P•(N f1), hence is

exact.
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Similarly, a pull back log complex f ∗
k �•

X 〈log D〉 = f −1
k �•

X 〈log D〉 ⊗ OXk exists for all
k ≥ 1. A similar twisted log complex also exists the determinant of the normal bundle N fk :

det N fk ⊗ f ∗
k �•

X 〈log D〉 : det N fk → det N fk ⊗ �1
X 〈log D〉 → . . . (10)

This comes from (where x1, . . . , xk are the branch equations at a given point of Xk):

d(ω/x1 . . . xk) = dω/x1 . . . xk − dlog(x1 . . . xk)ω/x1 . . . xk).

2.3 Iterated residue

We have a short exact sequence of vector bundles on Xk :

0 → �Xk 〈log Dk〉 → f ∗
k �X 〈log D〉 → νk ⊗ OXk → 0 (11)

where νk is the local system of branches of D along Xk and the right map is multiple residue.
Taking exterior powers, we get various exact Eagon–Northcott complexes. In particular, we
get surjections, called iterated Poincaré residue:

f ∗
k �i

X 〈log D〉 → �i−k
Xk

〈log Dk〉 ⊗ detC(νk), i ≥ k, (12)

f ∗
k �i

X 〈log D〉 → ∧i
C
νk ⊗ OXk , i ≤ k. (13)

detC(νk) is a rank-1 local system on Xk which may be called the ’normal orientation sheaf.’
The maps for i ≥ k together yield a surjection

f ∗
k �•

X 〈log D〉 → �•
Xk

〈log Dk〉[−k] ⊗ det(νk). (14)

3 Comparing log and log plus complexes

In this section X denotes a log-symplectic smooth variety with log-symplectic form � and
corresponding Poisson vector � = �−1, and D denotes the degeneracy divisor of � or
polar divisor of �. Our aim is to prove Theorem 6 which shows that deformations of (X ,�)

coincide with locally trivial deformations of (X ,�, D) and are unobstructed.

3.1 Setting up

We will use �+•
X to denote

⊕
i>0

�i
X and similarly for the log versions. This is to match with

the Lichnerowicz–Poisson complex T •
X and T •

X 〈− log D〉. Thus, interior multiplication by �

induces and isomorphism T •
X 〈− log D〉 → �•

X 〈log D〉. Equivalently, � itself is a form in
�2

X 〈log D〉 inducing a nondegenerate pairing on TX 〈− log D〉. In terms of local coordinates,
at a point of multiplicity m on D, we have a basis for �X 〈log D〉 of the form

η1 = dlog(x1), . . . , ηm = dlog(xm), ηm+1 = dlog(xm+1), . . .

and then

� =
∑

bi jηi ∧ η j .

We have an inclusion of complexes

T •
X 〈− log D〉 → T •

X
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where, for X compact Kähler, the first complex controls ’locally trivial’ deformations of
(X ,�), i.e., deformations of (X ,�) inducing a locally trivial deformation of D = [�n],
and the second complex controls all deformations of (X ,�). It is known (see, e.g., [13])
that locally trivial deformations of (X ,�) are always unobstructed and have an essentially
Hodge-theoretic (hence topological) character, so one is interested in conditions to ensure
that the above inclusion induces an isomorphism on deformation spaces; as is well known,
the latter would follow if one can show that the cokernel of this inclusion has vanishing H1.

Our approach to this question starts with the above ’multiplication by �’ isomorphism

(T •
X 〈− log D〉, [ . ,�]) → (�+•

X 〈log D〉, d).

This isomorphism extends to an isomorphism to T •
X with a certain subcomplex of �+•

X (∗D),
the meromorphic forms regular off D, that we call the log plus complex and denote by
�+•

X 〈log+D〉.
Our goal then becomes that of comparing the log and log-plus complexes. To this end we

introduce a filtration on�+•
X 〈log+D〉, essentially the filtration induced by the exact sequence

0 → TX 〈− log D〉 → TX → f1∗N f1 → 0

and its isomorphic copy

0 → �X 〈log D〉 → �X 〈log+D〉 → f∗N f1 → 0

where f1 : X1 → D ⊂ X is the normalization of D and N f1 is the associated normal bundle
(’branch normal bundle’).Wewill show that the first graded piece is always an exact complex.
The second graded piece is muchmore subtle.Wewill show that it is locally exact in degree 0
unless the log-symplectic form �, i.e., the matrix (bi j ) above satisfies some special relations
with integer coefficients.

The computations of this section are all local in character, though the applications are
global.

3.2 Residues and duality

Let fi : Xi → X be the normalization of the i-fold locus of D, Di the induced normal-
crossing divisor on Xi . Thus, a point of Xi consists of a point p of D together with a choice
of an unordered set S of i branches of D through p and Di is the union of the branches of D
not in S. We consider first the codimension-1 situation. As above, we have a residue exact
sequence

0 → �1
X1

〈log D1〉 j→ f ∗
1 �1

X 〈log D〉 Res→ OX1 → 0 (15)

(the right-hand map given by residue is locally evaluation on x1 @x1 where x1 is a local
equation for the branch of D through the given point of X1 ). Note that if η comes from a
closed form on X near D, then Res(η) is a constant.

Dualizing (15), we get

0 → OX1

Ř1→ f ∗
1 TX 〈− log D〉 ǰ→ TX1〈− log D1〉 → 0, (16)

where the left-hand map, the ’co-residue,’ is locally multiplication by x1 @x1 where x1 is a
branch equation). Set

v1 = x1 @x1 .

123



5 Page 8 of 13 Annals of Global Analysis and Geometry (2023) 63 :5

Then, v1 is canonical as section of f ∗
1 TX 〈− log D〉 , independent of the choice of local

equation x1. By contrast, @x1 as section of f ∗
1 TX is canonical only up to a tangential field

to X1, and generates f ∗
1 TX modulo TX1〈− log D〉.

Now f ∗
1 �1

X 〈log D〉 and f ∗
1 TX 〈− log D〉 admit mutually inverse isomorphisms

iX1� := 〈�, .〉X1 = f ∗
1 〈�, .〉, iX1� := 〈�, .〉X1 = f ∗

1 〈�, .〉.
The composite

ǰ ◦ iX1� ◦ j : �1
X1

〈log D1〉 → TX1〈− log D1〉
has a rank-1 kernel that is the kernel of the Poisson vector on X1 induced by �, aka the
conormal to the symplectic foliation on X1. Now set

ψ1 = iX1(�)(v1) = 〈�, v1〉X1 .

Then,ψ1 is locally the form in�X1〈log D1〉 denoted by x1φ1 in [13]. Againψ1 is canonically
defined, independent of choices and corresponds to the first column of the B = (bi j ) matrix
for a local coordinate system x1, x2, . . . compatible with the normal-crossing divisor D. By
contrast, φ1, which depends on the choice of local equation x1, is canonical up to a log form
in �X1〈log D1〉 and generates �X1〈log+D1〉 modulo the latter.

In X1 \ D1, � is locally of the form dlog(x1) ∧ dx2+(symplectic), so there ψ1 = dx2.
Note that by skew-symmetry we have

Res ◦ iX1(�) ◦ Ř1 = 0.

Thus, locally ψ1 ∈ �X1〈log D1〉. In terms of the matrix B above, ψ1 = ∑
j>1

b1 j dlog(x j ).

Note that ψ1 which corresponds to the Hamiltonian vector field v1, is a closed form. Conse-
quently, ψ1 defines a foliation on X1. Let Q•

1 = ψ1�
•
X1

be the associated foliated De Rham
complex ψ1�

•
X1
:

Q0
1 = OX1φ1 → Q1

1 = ψ1�
1
X1


 �1
X1

/OX1ψ1 → . . . → Qi
1 = ∧i Q1

1 → . . .

endowed with the foliated differential.
Note that the residue exact sequence (15) induces the Poincaré residue sequence

0 → �•
X1

〈log D1〉 → f ∗
1 �•

X 〈log D〉 → �•
X1

〈log D1〉[−1] → 0.

Again the Poincaré residue of a closed form is closed. Now the exact sequence

0 → TX 〈− log D〉 → TX → f1∗N f1 → 0

yields

0 → �X 〈log D〉 → �X 〈log+D〉 → f1∗N f1 → 0. (17)

and this sequence induces the F• filtration on the log-plus complex �•
X 〈log+D〉.

3.3 First graded piece

Now consider first the first graded G•
1 = (F•

1 /F•
0 )[1] which is supported in codimension 1.

(the shift is so that G• starts in degree 0). Then, G•
1 is a (finite) direct image of a complex of

X1 modules:

E1 : N f1 → N f1 ⊗ Q1 → N f1 ⊗ Q2
1 → . . .
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Using Lemma 3, we can easily show:

Proposition 4 E1 is isomorphic to P•
R′
1
(N f1), hence is null-homotopic and exact, hence G•

1 is
exact.

3.4 Second graded piece

Next we study G2, which is supported on X2. We consider a connected, nonempty open
subsetW ⊂ X2, for example an entire component, over which the ’normal orientation sheaf’
ν2 : X2,1 → X2, i.e., the local Z2-system of branches of X1 along X2, is trivial (we can
take W = X2 if, e.g., D has global normal crossings). Such a subset W of X2 is said to be
a normally split subset of X2, and a normal splitting of W is an ordering of the branches is
specified. Obviously X2 is covered by such subsets W . Likewise, for a subset Z ⊂ Xk .

3.4.1 Iterated residue

Over a normally split subset W , we have a diagram

0 → 2OW
Ř2→ f ∗

2 TX 〈− log D〉|W → TX2〈− log D2〉|W → 0
↓

0 → �W 〈log D2〉 → f ∗
2 �X 〈log D〉|W R2→ 2OW → 0

(18)

where Ř2 is the map induced by Ř1. The composite map R2 Ř2 : 2OW → 2OW is just the
alternating form induced by � and has the form cW H2 where H2 is the hyperbolic plane(

0 1
−1 0

)
. In terms of a local frame for �X 〈log D〉 containing dlog(x1), dlog(x2), cW is the

coefficient of dlog(x1) ∧ dlog(x2) in �. Note cW must be constant because � is closed. In
fact, we have

cW = Res1Res2(�)

where Resi denotes the (Poincaré) residues along the branches of X1 over X2. Set

ResW (�) := cW .

This is essentially what is called the biresidue by Matviichuk et al., see [9]. Thus, when
cW �= 0, we have a basis for the log forms

η1 = dlog(x1), . . . , ηm = dlog(xm), ηm+1 = dxm+1, . . . , η2n = dx2n

m = multiplicity of D, m ≥ 2, and then

� =
∑

bi jηi ∧ η j

where

b12 = −b21 = cW .

IfW may be not be normally orientable (e.g., an entire component of X2), then cW is defined
only up to sign; if cW = 0, we say that W is nonresidual; otherwise, it is residual.
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3.4.2 Nonresidual case

Here we consider the case cW = 0.
Note that in that case we may express � along W in the form

� = dlog(x1)γ3 + dlog(x2)γ4 + γ5

where the gammas are closed log forms in the coordinates onW , i.e., x3, . . . , x2n . Moreover,
γ3 ∧ γ4 �= 0 because �n is divisible by dlog(x1) dlog(x2). Also, unless γ3, γ4 are both holo-
morphic (pole-free), there is another component W ′ of X2 such that cW ′ �= 0 (in particular,
W ∩ D2 �= ∅). Hence, if no such W ′ exists, we may by suitably modifying coordinates,
assume locally that γ3 = dx3, γ4 = dx4. A similar argument, or induction, applies to γ5.
This means we are essentially in the P-normal case considered in [14]. This we conclude:

Lemma 5 Unless � is P-normal, there exists a nonempty residual open subset W of X2.

3.4.3 Residual case: identifyingG2

Next we analyze a residual normally oriented open subset W ⊂ X2. As above, we get a
composite map of R′

2 : 2OW → f ∗
2 �X 〈log D〉|W , whose image we denote by M2W . It has a

local basis (ψ11 = x1φ1, ψ12 = x2φ2) corresponding to the basis (e1, e2) of 2OW . In terms
of the B-matrix, we have

ψ11 =
∑

b1 jη j = −
∑

b j1η j , ψ12 = −
∑

b2 jη j =
∑

b j2η j .

As ψ11, ψ12 are closed, M2 is integrable. Let �̄ denote the quotient f ∗
2 �X 〈log D〉|W /M2W .

Then, we have an isomorphism

�̄ → �W 〈log D2〉 (19)

given explicitly by

ω̄ �→ ω − Res1(ω)ψ12/cW − Res2(ω)ψ11/cW

(because Res2(ψ11) = Res1(ψ12) = cW , residues with respect to the two branches of D).
Now set N2 = det N f2 , an invertible sheaf on X2. Then, G•

2 = (F•
2 /F•

1 )[2] is the direct
image of a complex on X2:

E•
2 : N2 → N2 ⊗ �̄ → N2 ⊗ ∧2�̄ → . . . (20)

where a local generator of N2 has the form 1/x1x2 and the differential has the form

ω̄/x1x2 �→ dω̄/x1x1 ± (ω̄/x1x2) dlog(x1x2).

3.4.4 Zeroth differential

Using the identification (19), the zeroth differential has the form

d̃(g/x1x2) = 1

x1x2
(dg + g(dlog(x1x2) − (ψ11 + ψ12)/cW )), g ∈ OX2 . (21)

The form ψ2 = − dlog(x1x2) + (ψ11 + ψ12)/cW has zero residues with respect to x1, x2,
hence yields a form in�X2〈log D2〉. Changing the local equations x1, x2 changesψ by adding
a holomorphic (pole-free) form on X2.

123



Annals of Global Analysis and Geometry (2023) 63 :5 Page 11 of 13 5

For g nonzero (21) can be rewritten

d̃(g/x1x2) = g

x2x2
(dlog(g) − ψ2) (22)

When does this operator have a nontrivial kernel? First, if g is constant, then ψ2 = 0 on W
which is impossible ifW meets D2. Next, locally at a point x ∈ W \ D2 ∩W , clearly g/x1x2
holomorphic and nonzero in the kernel exists locally since ψ2 is closed and holomorphic so
ψ2 = dh for a holomorphic function h and we can take g = eh . Moreover, nonzero solutions
to d(g/x1x2) = 0 differ by a multiplicative constant. The condition that the local solutions
patch is clearly that 1

2π i

∫
γ

ψ2 be an integer for any loop γ inW \D2∩W . Nowψ2 is defined
only modulo a holomorphic form on X2 while H1(W \D2 ∩W ) is generated modulo H1(W )

by small loops normal to components of D2, so the relevant condition is just integrality over
such loops γ .

At a simple point of D2 ∩W , the condition that g exist locally as a holomorphic function
with no pole on D2 is clearly that for γ as above, oriented positively, the integer 1

2π i

∫
γ

ψ2 is
nonnegative, so that g has no pole on D2. In other words, that the sum of the first 2 columns
of the B matrix, normalized so that b12 = −b21 = 1, should be a nonnegative integer
vector. Finally by Hartogs, if g is holomorphic off the singular locus of D2 ∩ W , it extends
holomorphically to W .

3.4.5 Special components

Now let Z be a component of D2 ∩ W and assume W and Z are both normally split so that
the branches of D along W may be labeled 12, while those along Z may be labeled 123.
Thus, branches of X2 over Z are labeled 12, 23, 31 and the preceding discussion shows that
the zeroth differential has nontrivial kernel along Z only if the iterated residues of � along
these branches, denoted c21, c23, c31, assuming c12 �= 0, satisfy

c23 + c31 = kc21, k ∈ N. (23)

We call such a component Z special; then, W is said to be special if every (normally split)
component of D2 ∩ W is special.

What about the normally split hypothesis? Suppose first W is contained in a connected
open set W ′ which is not normally split. Then, as c12 is locally constant in W ′, it follows
that c12 = 0, i.e., W is not residual. Now suppose Z is contained in Z ′ open connected and
not normally split. Then, monodromy acts on the branches of X2 along Z ′ cyclically and
consequently the ci j above are all equal. Then, (23) holds automatically with k = 2, so Z is
special.

3.4.6 Conclusion

What we have so far proven is the following: ifW is a normally oriented residual open subset
of X2, then the stalk of the zeroth cohomology H0(G•

2) vanishes somewhere on W unless
either

(i) W ∩ D2 = ∅, or
(ii) W is special.
Note that if the stalk of H0(G•

2) vanishes somewhere in W , then because G0
2 is coherent

and torsion-free, it follows that H0(G•
2)|W = 0, hence a similar vanishing holds for the entire

component of X2 containing W . Now recall that, minding the index shift, if H0(G•
2) = 0,
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then the cokernel of the inclusion �+•
X 〈log D〉 → �+•

X 〈log+D〉 has vanishingH1 (andH0).
On the other hand, it is well known (see, e.g., [13]) that�+•

X 〈log D〉 
 T •
X 〈− log D〉 controls

deformations of (X ,�) or (X ,�)where D deforms locally trivially, and those deformations
are unobstructed thanks to Hodge theory.

Summarizing this discussion, we conclude:

Theorem 6 Let (X ,�) be a log-symplectic manifold with polar divisor D. With notations as
above, let

�+•
X 〈log D〉 =

⊕

i>0

�i
X 〈log D〉,�+•

X 〈log+D〉 =
⊕

i>0

�i
X 〈log+D〉.

Then, the inclusions

�+•
X 〈log D〉 → �+•

X 〈log+D〉,
T •
X 〈− log D〉 → T •

X

induce isomorphisms onH2 and injections onH3; hence, isomorphisms onH1 and injections
on H

2, unless either
(i) X2 has a nonresidual component; or
(ii) X2 has a special component.

As noted above, any component of X2 that is disjoint from D2, i.e., contains no triple points
of D, is automatically nonresidual.

Corollary 7 Notations as above, if X is compact and Kählerian and conditions (i), (ii) both
fail, then the pair (X ,�) has unobstructed deformations and the polar divisor of � deforms
locally trivially.

In the case where D has global normal crossings, i.e., is a union of smooth divisors, this result
also follows from results in [9],which also states a partial converse:when T •

X 〈− log D〉 → T •
X

is not a quasi-isomorphism, (X ,�) has obstructed deformations and admits deformations
where D either smooths or deforms locally trivially.

Example 8 (Due to M. Matviichuk, B. Pym, T. Schedler, see [9], communicated by B. Pym)
Consider the matrix

B = (bi j ) =

⎛

⎜⎜⎝

0 1 2 4
−1 0 3 5
−2 −3 0 6
−4 −5 1 0

⎞

⎟⎟⎠ (24)

and the corresponding log-symplectic form on C
4, � = ∑

i< j
bi j

dzi
zi

∧ dz j
z j

and corre-

sponding Poisson structure � = �−1, both of which extend to P
4 with Pfaffian divisor

D = (z0z1z2z3z4), z0 = hyperplane at infinity. Then � admits the 1st order Poisson defor-
mationwith bivector z3z4 @z1 @z2 , which in fact extends to a Poisson deformation of (P4,�)

over the affine line C, and the Pfaffian divisor deforms as (z3z4z0(z1z2 − t z3z4)), hence non
locally-trivially. Correspondingly, the log-plus form z3z4φ1φ2 is closed ( and not exact). That
d(z3z4φ1φ2) = 0 corresponds to the integral column relation

k1 − k2 + (e1 + e2) − (e3 + e4) = 0

where the ki and e j are the columns of the B matrix and the identity, respectively, showing
that (z1z2z3) and (z1z2z4) are residual triples of type II and (12), i.e., (x1) ∩ (x2) is a special
component of X2.
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Remark 9 As we saw above, the presence of monodromy on the branches of D is related
to nonresidual or special components. This suggests that log-symplectic manifolds with
irreducible polar divisormay often be obstructed. However, we do not have specific examples.
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