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Abstract

We define and study the regularity of distance maps on geodesically complete spaces with
curvature bounded above. We prove that such a regular map is locally a Hurewicz fibration.
This regularity can be regarded as a dual concept of Perelman’s regularity in the geometry of
Alexandrov spaces with curvature bounded below. As a corollary, we obtain a sphere theorem
for geodesically complete CAT(1) spaces.
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1 Introduction

The notions of lower and upper curvature bounds for metric spaces were introduced by
Alexandrov using triangle comparison. More specifically, a metric space has curvature > «
(resp. < k) if any small geodesic triangle is “thicker” (resp. “thinner”) than the geodesic
triangle with the same sidelengths on the plane of constant curvature . Metric spaces with
curvature bounded below and above are abbreviated as CBB spaces and CBA spaces, respec-
tively. The properties of both curvature bounds are completely different in general.

CBB spaces are usually called Alexandrov spaces and play an essential role in the con-
vergence theory of Riemannian manifolds with sectional curvature bounded below. The
fundamental theory of finite-dimensional CBB spaces was developed by Burago, Gromov,
and Perelman [1]. They showed that topological dimension and Hausdorff dimension coin-
cide for CBB spaces and that any CBB space contains an open dense Lipschitz manifold of
its dimension. To prove these, they defined a strainer (a collection of points around a point
satisfying an orthogonality condition) and studied the distance map from points of a strainer,
namely a strainer map. Perelman [2], [3] then developed the structure theory of CBB spaces
by introducing the regularity of distance maps more general than that of strainer maps, which
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extends the regularity of distance functions introduced by Grove and Shiohama [4] in the
Riemannian setting. In particular, he proved that such a regular map is locally a bundle map
and obtained a stratification of an arbitrary CBB space into topological manifolds.

On the other hand, the structure of CBA spaces is much more complicated ( [5]). For
example, the Hausdorff dimension may be bigger than the topological dimension. To obtain
some control, we assume the (local) geodesic completeness, that is, the extension property of
geodesics. A separable, locally compact, locally geodesically complete CBA space is called
a GCBA space. Lytchak and Nagano [6], [7] recently published the fundamental theory of
GCBA spaces (note also that there was an unpublished work of Otsu and Tanoue [8]). Their
results suggest that the geometry of GCBA spaces has many parallels with that of CBB
spaces. They showed the coincidence of topological and Hausdorff dimensions for GCBA
spaces and proved that any GCBA space can be stratified in a measure-theoretic sense so that
each stratum contains an open dense Lipschitz manifold of its dimension. They also obtained
a manifold recognition theorem for GCBA spaces. Their main technical tool is a strainer on
a GCBA space, which can be seen as a dual of a strainer on a CBB space. In particular, they
showed that any strainer map is locally a Hurewicz fibration (but not a bundle map; see [9,
2.7] for example).

In this paper, we define and study the regularity of distance maps on GCBA spaces more
general than that of strainer maps, which can be regarded as a dual concept of Perelman’s
regularity in CBB geometry. To define it, we introduce the following notation. Let ¥ be a
compact, geodesically complete CAT(1) space with diameter 7 (any space of directions of a
GCBA space satisfies these conditions). We define the antipodal distance | , | on X by

|En] := sup |Ex] + [nx| — 7
XeX

for £, n € X, where | , | denotes the distance on X. The antipodal distance is not a distance
in the usual sense. The reason for this name is the following equivalent definition. Let Ant(§)
denote the set of all antipodes £ of £, i.e. |£€| = 7. Then it easily follows from the geodesic
completeness that

lEnl = sup |Enl= sup |£7|
EcAnt(£) neAnt(n)

(see Lemma 4.1 for the detail). Thus the antipodal distance on spaces of directions reflects
the branching phenomena of shortest paths in GCBA spaces.

Let U be a tiny ball in a GCBA space X, that is, a small metric ball where triangle
comparison holds (see Sec. 3.1 for the precise definition). In this paper, we usually work
inside some tiny ball. For p,a € U, we denote by X, the space of directions at p and by
a;) € X, (or simply a’ if no confusion arises) the direction of the unique shortest path from
p to a. Using the above notation, the definition of a strainer by Lytchak-Nagano [6, 7.2] can
be expressed as follows: {a; }f.‘zl in U is a (k, §)-strainer at p € U if there exists {b; }Ll in
U such that

laib!| <8, |al{a}|, |al{b}|, |bl/~b}| <m/2+6

in X, for any i # j. Here the first inequality guarantees that there is an almost unique
extension of the shortest path @; p. On the other hand, a strainer in a CBB space is defined
by the inequalities |a/b}| > 7w — & and |a{a}|, |a{b}|, |b;b}| > /2 — § (for any choice of
directions), where the first inequality means that g; p is almost extendable as a shortest path.
Note that shortest paths in CBB spaces are neither unique nor extendable in general, but do
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not branch, whereas shortest paths in GCBA spaces are unique and extendable at least in tiny
balls, but may branch.

We now define the regularity of distance maps dealt with in this paper. Let ¢ and & be
small positive numbers such that § < e, where the choice of § depends only on the (local)
dimension and ¢ (more precisely, it will be determined by the proof of each statement; see
Sec.2).

Definition 1.1 Let U be a tiny ball in a GCBA space X and a; € U (1 <i < k). We say that
Ff=ar-|,....lax - ) : U — R¥is (e, 8)-noncritical at p € U (distinct from a;) if

(D Ia;a;.| <m/2+8inX,forany |l <i # j <k;
(2) there exists b € U (distinct from p) such that |a£b’| <m/2—¢einX,forany 1 <i <k.

We simply say f is noncritical at p if it is (g, §)-noncritical at p for some § < e.

Remark 1.2 The original definition [2, 3.1] of (&, §)-noncriticality in the CBB setting requires
|a£a}| > /2 — 8 and |ajb’| > /2 + & (for any choice of directions). In case X, is a unit
sphere and af, b’ are unique, both definitions coincide. Note that in this case a; are linearly
independent as vectors in Euclidean space.

Remark 1.3 One can also define the e-regularity by strengthening the condition (1) to |a] a; | <
/2 — ¢, as Perelman did in [3], and simplify some of the proofs. The error § is only used in
Lemma 5.10. In case k = 1 there is no difference.

Note that being a noncritical point of f is an open condition by the upper semicontinuity
of angle and the local geodesic completeness. It is easy to see that if {a; };‘zl isa (k, §)-strainer
at p,then f = (lay - |, ..., |ax - |) is (c, 28)-noncritical at p for some constant ¢ > 0 (use
the c-openness of f to find &'; see [6, 8.2]).

Example 1.4 Let X be the Euclidean cone over the circle of length 27 + 6, which is a
geodesically complete CAT(0) space for 6 > 0. Then,

(1) if @ < 7 /4, there exists a noncritical map f : X — RZ at the vertex o;

(2) it m/4 < 6 < m, there exists a noncritical function f : X — R at o, but no noncritical
map f : X — R?ato;

(3) if 8 > m, there exists no noncritical function f : X — R at o.

Example 1.5 Let p be an isolated singularity of a GCBA space, that is, a non-manifold point
such that its punctured neighborhood is a manifold. Then |§n| = 7 forany £, € X),. In
particular, there exists no noncritical function at p. Indeed, if |§7n| < m, then X, is covered
by the two open balls of radius 7 centered at £ and n, both of which are contractible. Since
%, is ahomology manifold ([7, 3.3, 3.4]), the same argument as in [7, 8.2] shows that X, has
the homotopy type of a sphere. Therefore the theorem of Lytchak-Nagano [7, 1.1] implies
that p is a manifold point, which is a contradiction.

We prove the following two theorems generalizing the results of Lytchak-Nagano for
strainer maps. The first extends [6, 8.2, 11.2] and the second extends [7, 5.1]. As before,
U denotes a tiny ball in a GCBA space X. Let T}, denote the tangent cone at p € U. Note
that the local dimension dim 7}, may not be constant. We denote by c(¢) a positive constant
depending only on the (local) dimension and ¢.

Theorem 1.6 Let f : U — RF be an (g, 8)-noncritical map at p € U for § < ¢. Then
k < dim T, and f is c(¢)-open near p. Furthermore, if k = dim T),, then f is a bi-Lipschitz
open embedding near p.
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Theorem 1.7 Let f : U — R¥ be anoncritical map at p € U, where k < dim T,. Then there
exists an arbitrarily small contractible open neighborhood V of p such that f : V — f(V)
is a Hurewicz fibration with contractible fibers.

Remark 1.8 The above theorems hold for noncritical maps on CBB spaces (note that the
local dimension is constant for CBB spaces). Moreover, any (&, §)-noncritical map at p in a
CBB space is a bundle map near p with conical fibers, provided that § is sufficiently small
compared to the volume of X,,. See [2] for the details (cf. [3]).

As a corollary, we obtain the following sphere theorem. For other sphere theorems, see
[10] and the references therein. We may assume that the diameter of a geodesically complete
CAT(1) space is exactly 7 by considering the m-truncated metric if necessary (see also
Remark 5.12).

Corollary 1.9 Let ¥ be a compact, geodesically complete CAT(1) space of dimension n.

Assume that there exist {5,'};7:11 and 1 in ¥ such that

1§61 <m/24+8, |&inl <m/2—¢
foranyi # j and § K e. Then X is bi-Lipschitz homeomorphic to S".
Remark 1.10 The above estimate is optimal in the following sense. Let T be a tripod, that
is, a metric space consisting of three points with pairwise distance 7. Let X be the spherical
join between S"~! and T, which is not homeomorphic to S". We regard S"~! and T as

isometrically embedded in ¥. Choose {&; }?:11 c "~ ! such that |&i&jl <m/2andn € T.
Then we have |&;n| = /2 for all i.

Remark 1.11 Lytchak-Nagano [7, 1.5] also proved the following sphere theorem: if X is a
compact, geodesically complete CAT(1) space with no tripods, then it is homeomorphic to
a sphere. The author does not know whether the assumption of the above corollary implies
the absence of tripods.

Remark 1.12 There is the CBB counterpart of the above corollary: if ¥ is a CBB(1) space of
dimension n and if {§; }l'.':ll and 7 in X satisfy |£;&;| > n/2— 6 and |§;n| > 7w/2+ €, then X
is bi-Lipschitz homeomorphic to S". Moreover, if there exist {“;‘,'}fle and 7 in X satisfying
the same inequalities, where k < n, then X is homeomorphic to a k-fold suspension ([2, 4.5],
[11, Theorem C)).

This paper is organized as follows. In Sec. 2, we introduce some notation used in this paper.
In Sec. 3, we give preliminaries on GCBA spaces, e-open maps, and Hurewicz fibrations.
In Sec. 4, we study the properties of the differential of a noncritical map. In Sec. 5, we first
prove Theorem 1.6 by using the results of the previous section. We then construct a local
neighborhood retraction to the fiber of a noncritical map to prove Theorem 1.7. Finally, we
give the proof of Corollary 1.9.

2 Notation and conventions

We will use the following standard notation. For points p, g in a metric space, | pg| denotes
the distance between them. For r > 0, we denote by B(p,r) (resp. B(p, r)) the open
(resp. closed) metric ball of radius r centered at p. The boundary d B(p, r) is defined by the
difference B(p, r) \ B(p, r).
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We will also use the following notation from [2]. As in Introduction, € and § denote positive
numbers such that § < ¢. The choice of § depends only on the (local) dimension, the upper
curvature bound, and ¢ (the dependence on the upper curvature bound is not necessary if it is
taken to be nonnegative). Whenever € and § appear in a statement, it means that the statement
holds for a suitable choice of § depending on &, which will be determined by the proof. We
denote by c(¢) various positive constants such that c(¢) < &, and by () various positive
functions such that »¢(§) — 0 as § — 0. They also depend only on the (local) dimension, the
upper curvature bound, and ¢. In particular, we may assume »(8) < c(¢) by taking § < .
Whenever c(g) and »(§) appear in a statement, it means that the statement holds for some
c(¢) and »(8) determined by the proof.

3 Preliminaries
3.1 GCBA spaces

Here we recall basic notions and facts about GCBA spaces. We refer the reader to [6] and
[12] for more details. We assume all metric spaces are separable and locally compact unless
otherwise stated.

Letk € R. We denote by S,% the complete simply-connected surface of constant curvature
« and by Dy the diameter of S2. A complete metric space is called a CAT () space if any two
points with distance < D, can be joined by a shortest path and if any geodesic triangle with
perimeter < 2D, is not thicker than the comparison triangle on S,%. A metric space is called a
CBA(k) space if any point has a CAT(«x) neighborhood. For example, a complete Riemannian
manifold is CBA(k) if and only if its sectional curvature is bounded above by « and is CAT (k)
if in addition its injectivity radius is bounded below by D,.. One can also construct numerous
examples by Reshetnyak’s gluing theorem: a gluing of two CBA(k) (resp. CAT(x)) spaces
along their isometric convex subsets is again a CBA(x) (resp. CAT(k)) space.

Let X be a CBA(«x) space. A geodesic is a curve that is locally a shortest path. We say
that X is locally geodesically complete if any geodesic can be extended to a geodesic beyond
its endpoints, and that X is geodesically complete if the extension can be defined on R. For
example, if a small punctured ball at each point of X is noncontractible, then X is locally
geodesically complete. In particular, any homology manifold with a CBA metric is locally
geodesically complete. If X is complete, then the local geodesic completeness is equivalent
to the geodesic completeness. A separable, locally compact, locally geodesically complete
CBA space is called a GCBA space.

Let X be a GCBA(«x) space. The angle between two shortest paths is defined by the limit
of comparison angles. The space of directions at p, denoted by X, is the set of the direc-
tions of shortest paths emanating from p equipped with the angle metric. %, is a compact,
geodesically complete CAT(1) space with diameter 7. By the local geodesic completeness,
for any given direction, there exists a shortest path starting in that direction. Furthermore,
any direction has at least one opposite direction. The tangent cone T), at p is the Euclidean
cone over ¥,,. T), is isometric to the blow-up limit of X at p and is a geodesically complete
CAT(0) space.

The dimension of a GCBA space is defined by the Hausdorff dimension, which coincides
with the topological dimension. Note that the local dimension dim T), is finite and upper
semicontinuous, but not necessarily constant.
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We say that a metric ball U in X of radius r is tiny if the closed concentric ball of radius
10r is a compact CAT (k) space and r < min{D, /100, 1}. In this paper, we usually work
inside some tiny ball. Any two points in U are joined by a unique shortest path contained
in U and any shortest path in U can be extended to a shortest path of length 9r. The angle
is upper semicontinuous in U. For p,a € U, we denote by a}, € X, (or simply a’ if no
confusion arises) the direction of the unique shortest path from p to a. Let f = |a - |. Then
f is convex on U and the directional derivative f’ of f on X, is given by the first variation
formula ' = —cos|a’ - |.

The directional derivative is defined as follows. Let f be a (locally Lipschitz) function
defined on an open subset U of a GCBA space. For p € U and § € X, let y¢(¢) denote a
shortest path starting at p in the direction & and parametrized by arclength. The directional
derivative f'(&) of f in the direction & is defined by lim,_ ¢ i1 (fye@®) — f(p)), if the
limit exists and is independent of the choice of a shortest path y.

3.2 g£-open maps

Let f : X — Y be a continuous map between metric spaces and let € be a (small) positive
number. We say that f is e-open if for any x € X and any sufficiently small r > 0, we have
B(f(x),er) C f(B(x,r)).

We will use the following two lemmas from [2] regarding e-open maps. The proofs are
straightforward and do not rely on any curvature assumption. A map from an open subset
of a GCBA space to Euclidean space is called differentiable if each coordinate function has
directional derivative in any direction.

Lemma 3.1 ([2,2.1.2]) Let U be an open subset of a GCBA space X. Suppose that a differ-
entiable map f = (f1, ..., fr) : U — R satisfies the following property: for any p € U,

(1) there exists & € %), (1 <i < k) such that f/ (&) < —¢ and |f;(§i)| <S8 forany j #1,
where § K ¢;
(2) there exists n € ¥, such that & < fj’.(n) <& forany j.

Then f is c(¢)-open on U with respect to the Euclidean norm in RX. The choices of § and
c(e) depend only on k and e.

Proof We may use the 1-norm in R¥. It suffices to show that for any p € U and any v € R¥
sufficiently close to f(p), there exists ¢ € U arbitrarily close to p such that | f(g)v]| <
| f(p)v] — c(e)|pgql. Then one can find r € U such that f(r) = v and c(e)|pr| < | f(p)v]
by a standard argument, which completes the proof. Here and below c(g) denotes various
positive constants such that c(e) < ¢ and s(8) denotes various positive function such that
»#(8) — 0as § — O (see Sec. 2).

We may assume v = 0.If f; (p) > 0forsome i, then the claim follows from the assumption
(1). Similarly, if f;(p) < O for all i, then the claim follows from the assumption (2). Hence
we may assume f;(p) < 0 for all i and f;(p) = O for some i. For simplicity, we assume
f1(p) = f2(p) =0and fi(p) < Ofori =3.

First, by the assumption (2), we choose g; € U near p such that ¢|pqi| < fi(q1) <
e Ypqi| fori = 1,2 and f;(p) + €|lpqi| < fi(qg1) < —|pqi]| for i > 3. We consider a
closed subset

A= er‘ 0 < fitx) < filg1) — c(e)|xq1l
' |fi(x) = filqD)] < @) (filg) — fi(x) ( =2)| "
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By a standard argument using the assumption (1), one can find ¢o € A; such that
fi(g2) = 0. Then we have |g2g1] < c(&)”"' fi(q1) < c(¢)~'|pqi|. Similarly we have
[fi(g2) — fi(qD| = #() fi(q1) = 2(8)|pg1| for i = 2. In particular 0 < fa(g2) <
c®)paql.

Next we consider

Ay {x v 0= f200) = f2(g2) = c(®)lxqal } |

Ifi () = fi(qD] = 2(8)(f2(q2) — f2(x)) (i #2)

Using the assumption (1), one can find ¢ € A; such that f(¢g) = 0. As above, we obtain
lgqa] < c(e)"'pgil and | fi(q) — fi(q2)] < (8)|pqi| for i # 2. In particular | fi(q)| <

#(8)|pqul-
Fori > 3, we have

fi(@) < filqy) + =) pq1l < —|pq1l + 5(8)|pg1] <0,
fi(@) = fi(q1) — »(8)|pqil

> fi(p) +elpq1l — »(8)|pq1l

> fi(p) +c(&)lpq1l.

We also have |pg| < c(¢)7'|pqi|. Hence, we obtain |f(q)| < |f(p)] — c(e)lpgi| <
| f(p)| — c(e)| pq|, which completes the proof. O

Lemma3.2 ([2,2.1.3]) Let f : U — R be a differentiable s-open map defined on an open
subset U of a GCBA space X. Let p € U, § € ¥, be such that f'(§) = 0. Then there exists
g € f~Y(f(p)) arbitrarily close to p such that q’ is arbitrarily close to &. In particular, if
{gi}i is a finite collection of differentiable, locally Lipschitz functions on U, then one can

choose q so that gi(q) > gi(p) if g/(§) > 0 and gi(q) < gi(p) if g/ (§) <O.

Proof Choose a point g; € U near p on a shortest path starting in the direction & so that
|f(p)fg1)| < 8|lpq1l, where § <« e. Using the e-openness of f, we can find ¢ € U such
that f(g) = f(p) and €lgq1| = |f(p)f(gD)|. In particular |gqi| < >(8)|pqi| and hence
Zgpq < »(8), which completes the proof of the first half.

Let us show the second half. If glf(é) > 0, we may assume g;(q1) > gi(p) +[|pq| for
some [ > 0. Since g; is locally Lipshitz, we have |g; (¢) — gi(q1)| < L|gqq1]| for some L > 0.
Together with |gg1| < |pqil, these imply g;(q) > gi(p). o

3.3 Hurewicz fibrations

We assume all maps are continuous. A map between topological spaces is called a Hurewicz
fibration if it satisfies the homotopy lifting property with respect to any space.

The following two theorems from geometric topology, used by Lytchak-Nagano [7] for
strainer maps, provide sufficient conditions for a map to be a Hurewicz fibration. Both are
due to Ungar [13] and based on Michael’s selection theorem.

Definition 3.3 Let f : X — Y be a map between metric spaces. We say that f has locally
uniformly contractible fibers if the following holds: for any x € X and every neighborhood
U of x, there exists a neighborhood V C U of x such that for any fiber IT of f intersecting
V, the intersection IT N V is contractible in [T N U.
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Theorem 3.4 ([13, Theorem 1]) Let X, Y be finite-dimensional, compact metric spaces and let
Y be an ANR. Let f : X — Y be an open, surjective map with locally uniformly contractible
fibers. Then f is a Hurewicz fibration.

Theorem 3.5 ([13, Theorem 2]) Let X, Y be finite-dimensional, locally compact metric
spaces. Let f : X — Y be an open, surjective map with locally uniformly contractible
fibers. Assume all fibers of f are contractible. Then f is a Hurewicz fibration.

4 Infinitesimal properties

In this section we study the infinitesimal properties of noncritical maps and prove some
lemmas which will be used in the next section. This section corresponds to [2, §2] (cf. [3,
§2]) in CBB geometry. We use the notation ¢, &, c(¢), and »¢(§) introduced in Sec. 2. The
choice of § in this section will be determined by the proof of Proposition 4.5.

Throughout this section, ¥ denotes a compact, geodesically complete CAT(1) space with
diameter 7. In case dim ¥ = 0, we assume X is a set of finite points with pairwise distance
7 and not a singleton (for the sake of induction). Note that any two points in X with distance
< 7 can be joined by a unique shortest path and that any shortest path in ¥ can be extended
to a shortest path of length 7. As in Introduction, we define

|§n| == sup [Ex| + [nx]| — 7

xex
Ant(§) :={§ € X | |§§| =}
for &, n € ¥. We call £ € Ant(£) an antipode of £ (not necessarily unique).

We first show the following fact mentioned in Introduction.

Lemma 4.1

|Enl = sup |&n]
EeAni(®)

Proof The inequality €] > SUpgcpy ) 7] is clear from the definition. For any x € %,
extend the shortest path £x beyond x to a shortest path £& of length 7. Then we have

|§x] + Inx| — 7 = |nx| — |5x| < [n&l,
which implies the opposite inequality (we may assume x # & and x ¢ Ant(§)). O
This section deals with the infinitesimal version of an (g, §)-noncritical map.

Definition 4.2 A collection {“;‘i}ﬁ.‘zl of points of ¥ is said to be (¢, §)-noncritical (or simply
noncritical) if the following hold:

(1) [&&j] <m/2+ 8 foranyi # j;
(2) there exists € X such that |§;n| < 7/2 — & for any i.

In this case we call n a regular direction for {&; }f.‘zl.
Remark 4.3 Lemma 4.1 and the triangle inequality immediately imply
|&i&jl > /2 =35, |&inl>m/2+e
forany i # j. Furthermore, if k > 2, these inequalities and Definition 4.2(2) imply |§;&;] <
m —2¢and |§n| < —e/2 (provided § < &/2).
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The next lemma enables us to use induction on the dimension of X.

Lemma 4.4 Suppose dim X > 1. Let {éi}le be an (e, 8)-noncritical collection in X with a
regular direction . For x € X, assume either

(1) &,n € B(x,m/2+6) foranyi; or
(2) &,n ¢ B(x,m/2 = 6) forany .

Then, {Si/}f.‘=1 in Xy is a (c(g), (8))-noncritical collection with a regular direction n’ (see
Sec. 2 for the notation).

Proof We assume (1). Note that this assumption together with |§;n| > 7/2 + ¢ implies
&,m ¢ B(x,e/2) (provided 8 < &/2). Let &/ be an arbitrary antipode of & in X,. Let & be
the point on the shortest path starting in the direction Si’ at distance 7 — |x&;| from x. Then
triangle comparison shows that &; is an antipode of &;. Thus we have |§;&;| < /2 + 6 by
the assumption of noncriticality. By triangle comparison again, we have

cos |&;& | — cos |x&;| cos |x&;|

cos [E/€]] = > — (),

sin |x&;]| sin |x&,]|
where 7/2 — § < |x&| < m —¢/2 and /2 §_|x5j| < m/2 + § by the assumption (1).
Similarly since |&;n| < /2 — &, we have cos |$i/n’| > c(e). The case (2) is similar (this
assumption together with |§;n| < w/2 — ¢ implies &, n € B(x, m — ¢/2)). O

The main result of this section is the following counterpart of [2, 2.2, 2.3] (cf. [3, 2.3]) in
CBB geometry.

Proposition 4.5 Ler {&; }{?:1 be an (g, §)-noncritical collection in X with a regular direction
n, where § < &. Then

(1) k<dimX +1;
(2) there exists v € X such that

Wil < /2 —c(e), &l =m/2, |vnl >m/2+c(e)
foranyi > 2.

Proof We first prove (1) by induction on dim X. If dim X = 0, then clearly k < 1 andk = 1
is possible only when X consists of two points (see the beginning of this section for the
assumption on X). Now suppose dim £ > 1 and k > 2. By Remark 4.3 and Lemma 4.4(2),
{éi/}i.‘=2 in Z¢, is a (c(g), »(8))-noncritical collection with a regular direction n’. Thus the
induction completes the proof, provided § < ¢.

Next we prove (2) by induction on dim X. We may assume k > 2 by Remark 4.3. For
1<j<k,set

[x&il =7/2 2 <i <)),
Xj={xeX| x&l=n/2( <i<h),
[xn| > /2 + c(e)
We will show X ; # @ inductively.
Let us first show X| # (. By Remark 4.3 we have |§1n| > n/2+ ¢ and |§1&;| > w/2 -6
for any i > 2. In other words, & almost satisfies the inequalities in the definition of X;.

We slightly move it to obtain a point of X|. As we have seen above, {Si’ }i';z is (c(e), #(8))-
noncritical in X¢, and 7’ is a regular direction. In particular |&/n’| > /2 + ¢(¢) by Remark
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4.3, which means that moving & toward 7 along the shortest path increases the distance to
& with velocity at least c¢(e). This estimate holds until the distance to &; exceeds 7 /2 within
time »¢(8). Thus the resulting point lies in X.

Next we show X ; # () by assuming X ;| # #. Let x; be a closest point to &; in X;_;.
We show x; € X, ie. [x;&;| = m/2. As before, {E[}ﬁ.‘zz is (c(&), »(8))-noncritical in Zy;
and 1’ is a regular direction. This holds in a small neighborhood of x ;. Thus by Lemma 3.1,
Remark 4.3, and the inductive hypothesis, the map f = (|2 -1, ..., |& - |) is c(¢)-open near
xj, provided § < ¢. Furthermore, by the inductive hypothesis, there exists v € Zy; such
that

WEj| < m/2—cle), |vEll=7/2. |vn| > 7/2+ c(e)
forany i # j (> 2). Hence by Lemma 3.2, there exists x € X near x; such that

|x&;| < |xj&;l,  Ix&il = |xj&l, lxnl > |x;n]

forany i # j (= 2). This contradicts the choice of x; if |x;&;| > /2.

Therefore X; # (. Let v be a closest point to & in Xi. It suffices to show |[v€)| <
/2 — c(e). Suppose the contrary: [v(| > /2 — §, where § = c(¢) will be determined
by the following argument. By Lemma 4.4(2), {Si/}f.‘:] in X, is a (c(¢), »(8))-noncritical
collection with a regular direction n’. If k = dim ¥ + 1, this contradicts (1), provided § < ¢.
If k < dim X + 1, the same argument as above shows that there exists w € ¥ such that

lwéi| < [vé1l,  |wé&l = vl |wn| > |vn]

for any i > 2, provided § < ¢. This contradicts the choice of v. O

5 Local properties

In this section, we study the local properties of noncritical maps and prove Theorems 1.6 and
1.7. As before, we use the notation ¢, §, c(¢), and s(3).

Throughout this section, U denotes a tiny ball in a GCBA space X. Note that for any
a,x,y € U,wehave Zaxy—i—Zayx < 7, where Z denotes the comparison angle. In particular
if |ax| > |ay|, we obtain Zaxy < Zaxy < m/2. We will often use this observation.

Let f = (lai-], ..., |ak-|) bean (g, §)-noncritical map at p € U in the sense of Definition
1.1andletb € U be as in the condition (2). In the terminology of the previous section, {alf }f.‘zl
is an (e, §)-noncritical collection in X, with a regular direction »’. We also call b a regular
direction of f at p (note that this notation specifies not only the direction b’ but also the point
b). By the upper semicontinuity of angle and the local geodesic completeness, there exists
a neighborhood V C U of p such that f is an (g, §)-noncritical map on V with a regular
direction b’. We call V a regular neighborhood of f at p with respect to b.

If we want to estimate the size of a regular neighborhood, we use the following alternative
definition. Let p be a positive number less than the radius of U.

Definition 5.1 Leta; € U (1 <i < k). Wesay that f = (la; - |, ..., lax - |) is an (¢, 8, p)-
noncritical map at p € U if the following hold:

(1) laip| > p and
Zaipx+2ajpx <3mw/2+46
forany x € B(p, p) \ {pland 1 <i # j <k;
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(2) there exists b € U such that |bp| > p and
Zaipx + prx <3r/2 —¢
forany x € B(p,p) \{p}and 1 <i <k.

In this case as well, we call b’ a regular direction of f at p.

Remark 5.2 By the local geodesic completeness and the monotonicity of comparison angle,
it suffices to consider the case x € B(p, p)\B(p, o) in the above inequalities, where 0 <
o <p.

The above definition is equivalent to Definition 1.1 in the following sense:

Lemma5.3 Amap f = (la1-|,...,|ak - |) is (¢, 8)-noncritical at p € U if and only if it is
(g, 8, p)-noncritical at p for some p > 0.

Proof The “if” part follows from the local geodesic completeness and the monotonicity of
angle. We show the “only if” part. By definition, we have |a£“;‘| + |a;.§| < 3m/2 + § for

any ¢ € X,,. Then the first variation formula implies that Za; px + Za jpx < 3m/2+ 6 for
any x sufficiently near p. Hence the first condition of Definition 5.1 holds for some p > 0.
Similarly, the second condition holds. O

The size of a regular neighborhood can be estimated as follows:

Lemma5.4 Let f = (lay - |,...,lak - |) be an (g, §, p)-noncritical map at p. Then it is
(e/2, %(8), p/2)-noncritical on B(p, pé).

Proof By definition, we have Za; px + Za;px < 3m/2 4§ for any x € B(p, p) \ {p},
where Ia,pl lajp| > p. Hence if ¢ € B(p, pd) and x € B(q, p/2)\B(q, p/3), we have
Za qx+ Za jgx < 3m/2+5(8). By Remark 5.2, this implies the first condition of Definition
5.1 for g. Similarly, one can show the second condition. O

Now we will investigate the local properties of noncritical maps. First we prove Theorem
1.6.

Proof of Theorem 1.6 Let f = (la; - |,..., |ax - |) be an (e, §)-noncritical map at p with a
regular direction 5’ and let V be a regular neighborhood. Then k < dim T, by Proposition
4.5(1). Furthermore, f is c(¢)-openon V by Lemma 3.1, Remark 4.3, and Proposition 4.5(2).

Now assume k = dim 7),. We show f is injective near p. Suppose the contrary and let
x,y € V be distinct points sufficiently close to p such that f(x) = f(y). In particular, we
have Za;xy < m/2 for any i as observed at the beginning of this section. We may assume
|bx| > |by|, which implies /bxy < 7 /2 as well. Hence y’ € X, satisfies the assumption (1)
of Lemma 4.4 for a noncritical collection {a; }" | and its regular direction b’ (in particular we
may assume k > 2). Thus {(a )}k i—1 in Xy is a noncritical collection with a regular direction
(b')'. Therefore by Proposition 4.5(1) we have k < dim ¥y + 1 < dim Z,. On the other
hand, if x is sufficiently close to p, we have dim 7, < k by the upper semicontinuity of local
dimension. This is a contradiction. O

From now on, we assume k < dim 7),. We first observe that the fiber of f through p is
not a singleton.
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Lemma5.5 Let f = (lay - |,..., |ax - |) be an (&, 8)-noncritical map at p € U, where
k < dim T),. Then there exists a point of =Y (p)) arbitrarily close to p.

Proof Let b’ be aregular direction of f at p and V a regular neighborhood. We may assume
that there exist x; # y; € V converging to p such that f(x;) = f(y;); otherwise f is
a bi-Lipschitz open embedding near p, which contradicts k < dim T),. In particular, we
have Za;x;y; < m/2 for any i as before. We may further assume |bx;| > |by;| and hence
bej' yj = /2.

Extend the shortest path y;x; beyond x; to a shortest path y;z; of fixed length. The above
estimates imply Za;x;z; > w/2and Zbx jz; > m /2. We may assume z; converges to z # p.
By the upper semicontinuity of angle, we have Za; pz > /2 and Lbpz > 7 /2.

For0 < j <k,set

Ixaj| =m/2 (1 <i < j),
Xj=43x€X,| |xda|>=n/2(j <i=<k),
|xb'| = 7/2

We have now shown 7' € Xy. Furthermore, an inductive argument similar to the proof of
Proposition 4.5(2) shows X ; # @ forany j > 1.Inparticular for & € Xy, wehave f'(£) = 0.
Thus the claim follows from Lemma 3.2. O

Next we construct a local neighborhood retraction to the fiber of a noncritical map. Such
a retraction for a strainer map (with much nicer properties) was constructed in [6, 9.1]. Our
construction is inspired by a similar argument in CBB geometry [14, 6.15]. Here we use
Definition 5.1 to specify the size of a regular neighborhood (Lemma 5.4).

Proposition 5.6 Let f = (la1 - |, ..., |ak -|) be (g, 8, p)-noncritical at p € U. Then, for any
0 < r < pé, there exists a continuous map

R:B(p,r) = B(p,Lr)N f~'(f(p)
that is the identity on B(p,r) 0 f~1(f(p)), where L = c(e)~\.

Proof Letb’ be aregulardirection of f at p. To simplify the notation, we set f; = |a;-|—|a; p|
for any i. Let s = c(¢), which will be determined later as well as L. Define

I, :={x eU| fi(x) = sfj(x) forany i # j},
M_:={x eU| fi(x) <0foranyi},
M:=1NI_ = f'(f(p)nU.

Note that IT_ is convex since f; is convex. If k = 1, we consider [T :={x e U | f1(x) > 0}
instead of IT%, .

First we constructamap Ry : B(p,r) — B(p, Lr)NIT% asfollows: forany x € B(p, r),
let Ry (x) be the closest point to x on the intersection of the shortest path xb and TT% . Let us
check this definition works. By Lemmas 5.3 and 5.4, f isa (c(¢), »(§))-noncritical map with
a regular direction 5’ on B(p, c(¢)~'r). In particular la/b’| > 7 /24 c(e) on B(p, ce)"r)
for any i by Remark 4.3. This means if one moves x toward b along the shortest path, the
value of f; increases with velocity > c(¢). We show it reaches IT% within time 2r /c(¢) (the
case k = 1 is obvious). Let y (¢) be the shortest path xb with arclength parameter ¢. Then
—r +c(e)t < fi(y(t)) <r +t. Inparticular if t = 2r/c(e), we have

fity@) _r+2re@)”!
i)y =

=1+ 2c(e)" "
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Hence R; can be defined for s = (1 4+ 2¢(e) ") "land L = 2¢(e)~! + 1.
Furthermore, any y € B(p, Lr) on the shortest path xb beyond R;(x) lies in the interior
of I'[ﬁr (the case k = 1 is obvious). Indeed,

Ji(y) > fi(R1(x)) + c(e)|Ri(x)y]
> sfj(R1(x)) + c(e)|Ri(x)y]
= sfj(y) + (c(&) = )R (x)y| > sfj(y),

where we take s smaller if necessary. Together with the uniqueness of shortest paths, this
shows that R is continuous. Clearly R is the identity on IT, .

Next we constructamap Ry : B(p, Lr)NIT%. — I1_ as follows: forany x € B(p, Lr)N
Hi, let R>(x) be the closest point to x on I[1_. Since I1_ is convex, triangle comparison
shows that the closest point is uniquely determined.

The map R, does not increase the distance to p. In particular Ry(x) € B(p, Lr). Let
y = Ry(x). Since y is closest to x on the convex set [1_, the first variation formula implies
Zpyx > 7/2. Thus, we have /pyx > /2 and / pxy < /2, which mean |py| < |px]|.

We show that Ry(x) € I (the case k = 1 is obvious). Suppose y = Rp(x) ¢ I1. We
may assume f;i(y) < O for some i. We first observe that Za,-xy < m/2 — c(¢e). By the
c(g)-openness of f, there exists z € IT such that c(e)|xz| < | f(x)|, where f(p) = 0. Since
x € IT% , we have | f(x)| < c(e)’lf,- (x). Thus

Jix) = c(e)lxzl = fi(y) + c(e)lxyl,

where the second inequality follows from the definition of y. This implies Za;xy < 7/2 —
c(e).

Therefore Zajxy < m/2 — c(¢). Extend the shortest path a;x beyond x to a shortest
path a;a; with |ajx| = p/2. Then, we have Zéixy > Zajxy > 1w/2 + c(¢) and hence
Zajyx < Zéiyx < 1/2 — c(¢). This means that moving y toward a; decreases the distance
to x with velocity at least c(e).

On the other hand, since |xy| < p we have Za,-y[zi > 7 — #(§). By Definition 5.1(1),
we have Zajya; < Zaj va; < mw/2+ »x(8) for any j # i. This means that moving y toward
a; increases the value of f; with velocity at most s(5).

Let y; be a point on the shortest path ya; sufficiently close to y. Then the assumption on
y and the above observations yield

Jin) <0, fi) < =@ lyyil,  xyil < [xyl —c(e)lyyil

for any j # i. By the c(¢)-openness of f, we can find y, € TI_ such that c(e)|yy1| <
2#(8)|yy1]. Since »#(8) K c(¢), wehave [xyz| < |xy1|4|y1y2| < |xy|. This is a contradiction
to the choice of y. Therefore y = Ry(x) € II.

The desired retraction R is now obtained as the composition of Ry and Rj. ]

Remark 5.7 One can also construct R, by using the gradient flows of semiconcave functions
as in the CBB case [14, 6.15]. The existence and uniqueness of such flows on GCBA spaces
were shown in [15] (cf. [16]).

We briefly recall the definition of the gradient (see [15] or [16] for more details). Let f
be a semiconcave function defined on an open subset U of a GCBA space. Note that the
directional derivative f’ is well defined in any direction and extended to the tangent cone
by positive homogeneity. The gradient V,, f € T, of f at p € U is characterized by the
following two properties:

(1) f'(w) <(Vpf,v)foranyv € Tp;
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Q) f'(Vpf) =1V, fI

Here the absolute value denotes the distance from the vertex o of T}, and the scalar product
is defined by (u, v) := |u||v| cos Z(u, v) for u, v € T),. More specifically, if max f’|);p >0
then V), f = f'(§max)émax, Where &max € X, is the unique maximum point of f'[s;
otherwise V), f = o. The gradient flow of f is the flow along the gradient of f.

The alternative construction of R is as follows. Set a concave function F' := min{— f;, 0}
and consider the gradient flow ®; of F' on B(p, c(e)~1r), where t > 0. We will define
Ry := @7 for some sufficiently large 7 > O.

Clearly ®; fixes I1_. Suppose x ¢ I1_. Let I (x) be the set of indices 1 < i < k such that
F(x) = — fi(x). Then it follows from the noncriticality of f that

(1) ifi € I(x) then f/(ViF) < —c(e);
(2) ifi ¢ I(x) then fi/(VxF) > —(5).

Indeed, let &’ (resp. @) be an antipode of &’ (resp. a/) in X,. By the noncriticality of f we
have fi’(l;/) < —c(e) forany i. Fix 1 <i < k.If i € I(x), this implies f/(VF) < —c(e).
Ifi ¢ I(x), then we have

F{(ViF) = —(a;, Vi F) 2 {a}, Vi F) > Fy(a;) > —5(8),

where the first inequality follows from |a/a]| = m, the second one follows from the property
of the gradient, and the last one follows from the noncriticality of f.

We show that ®; pushes B(p, Lr) N ITY_ to IT inside T, within time T = Lr/c(¢). Let
x € B(p, Lr) N IT%.. It suffices to show that y = &, (x) lies in IT% for sufficiently small
t > 0. We may assume x is on the boundary of IT% , that is, f; (x) = sf;(x) for some i # j.
This implies i ¢ I(x) and j € I(x). By the observation above, we have

Ji(y) > fi(x) — ()t
=sfj(x) — 2(8)t
> s(fj(y) +c(@)n) — »#(8)t > sfi(y),
which means y e IT%,..
Hence we can define Ry := ®7 on B(p, Lr) N IT% (the image of R, is contained in

B(p, Lr + Lr/c(e)), so we need to replace the constant L with L 4+ L /c(¢) in the statement
of Proposition 5.6).

Since any metric ball contained in a tiny ball is contractible, we have:

Corollary 5.8 (cf. [6, 1.11]) Let f : U — R* be (e, 8, p)-noncritical at p € U. Then for
any 0 < r < pd, B(p,r)N f_](f(p)) is contractible inside B(p, Lr) N f_](f(p)),
where L = c(¢)~ . In particular, { has locally uniformly contractible fiber on B(p, r) (see
Definition 3.3).

The following theorem is a direct consequence of Theorem 3.4, Theorem 1.6, and Corol-
lary 5.8.

Theorem 5.9 Let f : U — R¥ be a distance map defined on a tiny ball U that is noncritical
onanopen subsetV C U.Let K C f(V) be a compact set such that f~'(K)NV is compact.
Then f : f~Y(K) NV — K is a Hurewicz fibration.

To prove Theorem 1.7, we need to control the boundary of a ball in the fiber.
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Lemma5.10 Let f = (la; - |,..., |lak - |) be an (&, §)-noncritical map at p € U, where
k < dimT),. Then for any sufficiently small r > 0, the map (f,|p - |) is (c(e), »(5))-
noncritical on 9B(p,r) N f_l(f(p)).

Remark 5.11 By Lemma 5.5 and Corollary 5.8, dB(p,r) N f~'(f(p)) # @ for any suffi-
ciently small r.

Proof Let x € dB(p.r) N f~1(f(p)). In particular Za; px < /2. Let p’ be an arbitrary
antipode of p’ in X,. By the upper semicontinuity of angle and the local geodesic complete-
ness, we have |a] p’| < /2 4 8 if r is small enough. In other words |a]p’| < /2 + 8.

It remains to show that there exists n € X, such that

lainl < /2 —c(e), |p'nl <m/2—c(e).

We may assume that f is (&, §)-noncritical on B(p, r). In particular there exists § € X, such
that |a/€| < /2 — &. We move & toward p’ to get 7 as above.

Fix an antipode p’ of p’ in T,. Recall that p is a (1, §)-strainer at x if r is small enough
(see [6, 7.3]). In particular |p’p’| < 2§ (see [6, 6.3]). Let Ezlf be an arbitrary antipode of
al in X,. Since x € f~1(f(p)), we have la;p'| < m/2 and thus |a;p’| > /2. Together
with [p’p’| < 28, this implies |a/p'| < 7/2 + 28 (conversely |a,p'| > 7/2 — & since
laip'| < /2 +3).

Now we move & toward p’ in Z,. By triangle comparison, we have

cos |p'aj| — cos |&p'| cos |&a|

sin & p'| sin €]

cosZp'Ea. >

Since |£a]| < w/2 — ¢ and |p'a;| < m/2 4 28, we have Zp'Ea; < m/2 as long as |£p'| >
7/2 + c(¢e). Hence we can find 1, € X such that |nia}| < |£a]| < /2 — ¢ and | p'| <
/2 + c(e) (f |Ep'| < /2 + c(¢), we can take n; := &). Moving n; further toward
P’ by distance 2¢(¢) if necessary, we obtain n € X, such that [np’| < 7/2 — c(e) and
In&lfl < /2 — c(¢). Since | p’p’| < 28, this completes the proof. ]

We are now in a position to prove Theorem 1.7. For 0 < r| < r, we set
Aplri,rl = B(p.r2) \ B(p,r1).  Aplri,r2) := B(p.r2) \ B(p, ).

Proof of Theorem 1.7 Let L be the constant of Corollary 5.8. By Lemma 5.10, (f, |p - |) is
noncritical on A, [r/2, Lr]N f —L(f(p)) for sufficiently small r > 0. Let B be a sufficiently
small closed ball around f (p). By the openness of (f, |p-|) (Theorem 1.6) and Remark 5.11,
B x [r/2, Lr] is contained in the image of (f, |p - |). Therefore by Theorem 5.9, (f, |p - |)
is a Hurewicz fibration over B x [r/2, Lr].

Let B denote the interior of B. We will apply Theorem 3.5 to the map f : f _1(1§) n
B(p,Lr) — B. It suffices to show that any fiber of f is contractible. Set g = |p - |. By
the previous paragraph, g : ' n Aplr/2,Lr] — [r/2, Lr]is a Hurewicz fibration for
any b € B.Leth, (0 <t <1)bea homotopy crushing [r/2, Lr) to {r/2} linearly. Let
H; : f_l(b) NAplr/2,Lr) — f_l(b) N Aplr/2, Lr) be alift of h, o g, where the lift of
ho o g is given by the identity. We define

) H, on A,lr,Lr)N f=Lb)
H; :={ Hopp -1y on Aplr/2,r) N f=1(b)
id on B(p,r/2)N f~L(b).
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Then H, pushes £~ (b)NB(p, Lr)into £~ (b)NB(p, r). Composing this with the retraction
of Corollary 5.8, we obtain a homotopy crushing Ff~Yb) N B(p, Lr) to p inside f~1(b) N
B(p, Lr). This completes the proof. O

Finally we prove Corollary 1.9. The proof is an easy application of the second half of
Theorem 1.6. Strictly speaking, we need its global version for CAT(0) spaces, which easily
can be verified.

Remark 5.12 Under the assumption of Corollary 1.9, the diameter of X (with respect to the
original metric) is less than 27r; in particular the original metric is uniformly bi-Lipschitz
equivalent to the z-truncation. This is observed as follows. Let {S,}”J“l and n be as in the
assumption. Then Lemma 4.4(2) and Proposition 4.5(1) imply that they are 7 /2-dense in X,
whereas Remark 4.3 shows that they are r-close to each other.

Proof of Corollary 1.9 Consider the Euclidean cone K over X and let y; be the ray starting at
the vertex o in the direction &;. Let f; : K — R be the Busemann function with respect to

Vi
fi) = lim |y; (), v| —t = —|v[cos Z(§;, v),
—00

where v € K and the absolute value denotes the distance from o. Set f := (f1, ..., fut+1) :
K — R"*! Observe that f is a (normalized) limit of (g, §)-noncritical maps to R"*! defined
on arbitrarily large neighborhoods of 0, which are ¢ (g)-open embeddings by the global version
of Theorem 1.6 for CAT(0) spaces. Therefore f is a bi-Lipschitz homeomorphism. Identify
¥ with the unit sphere in K centered at 0 and S with the unit sphere in R"*! centered at
0. We may use the extrinsic metrics of ¥ and S”, that is, the restrictions of the metrics of K
and R"t! | respectively. Define f : & — S by f(x) := f(x)/| f(x)].

Let us prove that f is a bi-Lipschitz homeomorphism. Note that f maps a ray emanating
from o to a ray emanating from 0. Since f is surjective, this implies that f is also surjective.
The Lipschitz continuity of f follows from that of f by the following calculation:

2o\ 7 f» f»
[f)f] < ‘f( )|f( 1 |f( )|f( )‘
_ sl ;L 1‘ _ 2If()c)f(y)l
[f ()] [f ()] T f™

where x, y € X. Since f maps a ray to a ray, we have f ) = f_l(x)/|f L(x)| for
any x € S". Hence the Lipschitz continuity of f F=1 follows from that of £~ by the same
calculation as above. O
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