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Abstract
We study the deformation theory of G2-instantons on nearly G2 manifolds. There is a one-
to-one correspondence between nearly parallel G2 structures and real Killing spinors; thus,
the deformation theory can be formulated in terms of spinors and Dirac operators. We prove
that the space of infinitesimal deformations of an instanton is isomorphic to the kernel of an
elliptic operator. Using this formulation we prove that abelian instantons are rigid. Then we
apply our results to describe the deformation space of the characteristic connection on the
four normal homogeneous nearly G2 manifolds.

Keywords G2-structures · Infinitesimal deformations · Gauge theory in higher dimensions

1 Introduction

Nearly parallel G2 structures on a 7-manifold M are defined by a so-called positive 3-form ϕ.
Such a 3-form induces a metric g, an orientation and a spin structure on M (see Sect. 2). We
denote by ∇g the Levi-Civita connection and its lift on the spinor bundle. The G2-structure
ϕ is nearly parallel if for some τ0 �= 0

dϕ = τ0 ∗ϕ ϕ,

or equivalently if there exists a real Killing spinor η such that

∇g
Xη = −τ0

8
X · η.

Nearly G2 manifolds were introduced as manifolds with weak holonomy G2 by Gray in
[30]. Some examples of such manifolds are the round and squashed 7-spheres, the Aloff–
Wallach spaces, and the Berger space SO(5)/SO(3). The inclusion of the exceptional Lie
group G2 as a possible holonomy group for Riemannian manifolds in Berger’s list [11]
led mathematicians to look for examples of manifolds with holonomy G2. In [45] Wang
established the first correspondence between parallel spinors and integrable geometries. Later
the classification of manifolds with real Killing spinors in [10, 25, 26, 31, 32] established a
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link between manifolds with weak holonomy and manifolds with real Killing spinors. These
manifolds are Einstein with positive scalar curvature. Except for the round 7-sphere, the
dimension of the space of Killing spinors on a nearly G2 manifold is 1,2 or 3 (see[27]) giving
rise to three types: proper, Sasaki–Einstein and 3-Sasakian, respectively. The cones over
these manifolds have holonomy contained in Spin(7) which makes these spaces particularly
important in the construction and understanding of manifolds with torsion-free Spin(7)-
structures.

The correspondence between nearly parallel G2 structures and Killing spinors has been
extensively used to produce many results on nearly G2 manifolds. The infinitesimal defor-
mation space of nearly G2-structures was explicitly described as an eigenspace of a Dirac
operator in [9]. In the homogeneous setting, non-trivial deformations were only found for
the Aloff–Wallach space which in [23] were proved to be obstructed.

The spinorial approach can also be used to study gauge theory on manifolds with weak
holonomy. A connection A on M is a G2-instanton if its curvature F satisfies the algebraic
condition

F ∧ ϕ = ∗ϕF,

or equivalently F · η = 0. In this article we describe the infinitesimal deformation space of
instantons on nearly G2 manifolds as the eigenspaces of the Dirac operators associated with
the one parameter family of connections with skew-symmetric torsion

∇ t
XY = ∇g

XY + t

3
ϕ(X , Y , ·),

described in [1–4, 7]. At t = −1, the connection∇−1 is the characteristic connectionwhich is
aG2-instanton.Weexplicitly describe the infinitesimal deformation space of the characteristic
connections for the normal homogeneous nearly G2 manifolds classified in [27]. In [17] an
analogous description for the infinitesimal deformation space of instantons on nearly Kähler
6-manifolds is given. On an oriented manifold with real Killing spinor η the volume form
vol defines a Killing spinor vol · η. On a nearly Kähler 6-manifold {η, vol · η} defines a
2-dimensional space of Killing spinors, whereas on a nearly G2 manifold η and vol · η are
linearly dependent. This prevents us from having a relation like in [[17], Proposition 4(iii)]
which makes the computation of the infinitesimal deformation space much more convenient
(See 4.3). In fact we show in Sect. 4 that such a relation does not exist in the nearly G2 case
by explicitly computing the kernel of the elliptic operator for the homogeneous nearly G2

manifolds. In [22] the author uses the spinorial approach to describe the deformation space
of instantons on asymptotically conical G2 manifolds.

As with parallel G2 structures (τ0 = 0), the instantons on nearly G2 manifolds also solve
the Yang–Mills equation d∗∇F = 0 ([33]). This makes the study of these instantons important
from the point of view of gauge theory in higher dimensions. However unlike G2-instantons
in the parallel case they are not necessarilyminimizers of theYang–Mills functional [14]. The
first examples of G2-instantons on parallel G2 manifolds were constructed in [19, 42, 43].
In [14] the authors proved the existence of nearly G2-instantons on certain Aloff–Wallach
spaces and classified invariant G2-instantons on these spaces with gauge group U(1) and
SO(3). Waldron [44] obtained a smooth, complete 15-dimensional family of G2-instantons
on S7 as the pullback of the ASD instantons on the 4-sphere via the quaternionic Hopf
fibration.
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In Sect. 2 we describe the 1-parameter family of connections on the spinor bundle /S over
nearly G2 manifolds and the associated Dirac operators.

In Sect. 3 we describe the deformation space of a nearly G2 instanton A as an eigenspace
of a Dirac operator associated with A and the characteristic connection (Theorem 3.2). Using
this description, we show that on a compact nearly G2 manifold the G2-instanton A is rigid if
the structure group is abelian (cf. Theorem 3.7(i)) or if all the eigenvalues of a linear operator
L A are greater than− 28

5 (Theorem 3.7(ii)) . The instanton A is also rigid if all the eigenvalues
of L A are less than 6, as shown in [[14], Proposition 8] where authors used a Weitzenböck
formula, while the proof of Theorem 3.7(ii) uses the Schrödinger–Lichnerowicz formula for
the family of Dirac operators associated with ∇ t and A.

In Sect. 4 we describe the infinitesimal deformation space of the characteristic connection
on all the homogeneous nearly G2 manifolds whose nearly G2 metric is normal. By consider-
ing the actions of the Lie groups H andG2 onG/H we can view the characteristic connection
as an H -connection or a G2-connection. We compute its infinitesimal deformation spaces in
both of these cases. The results are recorded in Theorem 4.6. The deformations are shown
to be genuine in all cases except that of the Aloff–Wallach space SU(3)×SU(2)

SU(2)×U(1) . In the latter
case the author is currently unaware of any known family of nearly G2-instantons for which
the infinitesimal deformations are the ones found in Theorem 4.6.
Disclaimer. No datasets were generated or analyzed during the current study.

2 Preliminaries

2.1 Nearly parallel G2 structures

Let M be a 7-dimensional Riemannian manifold. At each point p ∈ M we denote by
�3+(T ∗

p M) the GL(7, R) orbit of the standard G2-structure on R
7. The union �3+(T ∗M) :=

∪p∈M�3+(T ∗
p M) is a sub-bundle of �3(T ∗M). A 3-form on M is said to be positive if it

takes values in �3+(T ∗
p M) for all p ∈ M . We denote by �3+(M) the set of positive 3-forms.

Let ϕ ∈ �3
( M), then ϕ defines a G2 structure on M . It also induces an orientation and a

metric on M which together define a Hodge star operator ∗ϕ on the space of differential
forms (see [16]). The G2 structure ϕ is called a nearly parallel G2 structure on M if it satisfies
the following differential equation for some nonzero τ0 ∈ R,

dϕ = τ0 ∗ϕ ϕ. (2.1)

We denote the 4-form ∗ϕ ϕ by ψ in the remainder of this article. The condition dϕ = τ0ψ

implies dψ = 0; thus, the nearly parallel G2 structure ϕ is co-closed.
Every manifold with a G2 structure is orientable and spin, and thus admits a spinor bundle

/S. Let ∇g be the Levi-Civita connection of the induced metric on M . A spinor η ∈ �(/S) is
a real Killing spinor if for some nonzero δ ∈ R,

∇g
Xη = δX · η ∀ X ∈ �(T M). (2.2)

There is a one-to-one correspondence between nearly parallel G2 structures and real Killing
spinors onM described in [12, Chapter 4]. Given a nearly parallel G2 structure ϕ that satisfies
(2.1) there exists a real Killing spinor η that satisfies (2.2) with δ = − 1

8τ0 and vice-versa.
Switching − τ0

8 to τ0
8 corresponds to changing the orientation of the cone M ×r2 R

+. See
[12] and [10] for more details.
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The constant τ0 can be altered by rescaling the metric and readjusting the orientation. In
this article we use τ0 = 4. With this choice of τ0 our nearly G2 structure ϕ and Killing spinor
η satisfy the following equations, respectively

dϕ = 4ψ,

∇g
Xη = −1

2
X · η. (2.3)

Manifolds with nearly parallel G2 structures have several nice properties which can be
found in detail in [12]. In particular they are positive Einstein as shown by [30]. Let g be
the metric induced by ϕ, then the Ricci curvature Ricg = 3

8τ
2
0 g and the scalar curvature

Scalg = 7Ricg = 21
8 τ 20 . A G2 structure on M induces a splitting of the spaces of differential

forms on M into irreducible G2 representations. The space of 2-forms �2(M) decomposes
as

�2(M) = �2
7(M) ⊕ �2

14(M),

where �2
l has pointwise dimension l. More precisely, we have the following description of

the space of forms :

�2
7(M) = {X�ϕ | X ∈ �(T M)} = {β ∈ �2(M) | ∗(ϕ ∧ β) = −2β},

�2
14(M) = {β ∈ �2(M) | β ∧ ψ = 0} = {β ∈ �2(M) | ∗(ϕ ∧ β) = β}.

Note that we are using the convention of [36] which is opposite to that of [35] and [15].
The space �2

14 is isomorphic to the Lie algebra of G2 denoted by g2. Since the group G2

preserves the G2 structure ϕ, it preserves the real Killing spinor η induced by ϕ. The space
�2

14 can be equivalently defined as

�2
14 = {ω ∈ �2 | ω · η = 0}. (2.4)

We make use of this identification when defining the instanton condition on M in Sect. 3.

2.2 The spinor bundle

For a 7-dimensional Riemannian manifold M with a nearly parallel G2 structure ϕ, the
spinor bundle /S is a rank-8 real vector bundle over M and is isomorphic to the bundle
R ⊕ T M = �0 ⊕ �1 (see [27, 40]). If η is the real Killing spinor on M induced by ϕ, then
we have the isomorphism

/S = (�0T M · η) ⊕ (�1T M · η) ∼= �0T M ⊕ �1T M .

Under this isomorphism any spinor s = ( f · η, α · η) ∈ /S can be written as s = ( f , α) ∈
�0 ⊕ �1. Let × be the cross-product induced by the G2 structure ϕ then as shown in [37]
the Clifford multiplication of a 1-form Y and a spinor ( f , Z) is given by

Y · ( f , Z) = −(−〈Y , Z〉, f Y + Y × Z). (2.5)

Note that the product defined above differs from [37] by a negative sign due to our choice of
the representation of Cl7 on /S [[40], Chapter 1.8].

Throughout this article we denote by {ei , i = 1..7} a local orthonormal frame for both
tangent vectors and 1-forms, identified using the metric. For any p-form β = βi1...i p ei1 ∧
e2 ∧ · · · ∧ ei p the Clifford multiplication of β with a spinor is given by

β · ( f , X) = βi1...i p (ei1 · (ei2 · . . . · (ei p · ( f , X)) . . .)),
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and the following identity holds [[40], Proposition 3.8, Ch1]
∑

j

e j · β · e j = (−1)p+1(n − 2p) β. (2.6)

The vector bundle /S is a G2-representation, and since G2 is the isotropy group of the
3-form ϕ, the map μ 
→ ϕ · μ from the bundle of spinors /S to itself is an isomorphism. The
same argument holds for the 4-form ψ . The following formulae described in [2, 24] will
prove useful in later computations.

Lemma 2.1 Let η be the Killing spinor associated with the nearly G2-structure and X ∈
�(T M) then

ϕ · η = ψ · η = 7η, ϕ · X · η = ψ · X · η = −X · η.

For anorientedRiemannianmanifold (M, g), ametric connection∇cwith skewsymmetric
torsion T is known as the characteristic connection if it preserves the G-structure on M .
The Killing spinor η is parallel with respect to this connection and Hol(∇c) ⊂ G. In [[5],
Theorem 2.1] the authors showed that the characteristic connection (if existent) is unique if
G � SO(n) is connected and acts irreducibly on R

n other than the adjoint representation.
The above condition applies to many geometric situations for example, to almost hermitian
structures (SU(n) ⊂ SO(2n)), G2- structures and Spin(7) structures. If M is G-irreducible
such a connection exists if and only if M is locally isometric to a non-symmetric isotropy
irreducible homogeneous space or is a nearly Kähler 6-manifold or nearly G2 manifold (see
[[20], Theorem 6.3]).

For a Riemannian spin manifold (Mn, g) with a 3-form T we describe the one-parameter
family of linear metric connections with totally skew-symmetric torsion as given in [3],

∇ t
XY = ∇g

XY + tT (X , Y , ·).
By [[40], Theorem 4.14] the lift of the connection ∇ t on the spinor bundle which we also
denoted by ∇ t acts on μ ∈ �(/S) as

∇ t
Xμ = ∇g

Xμ + t

2
(iX T ) · μ.

When M has a G2-structure ϕ, setting T = ϕ
3 gives the family of connections on T M

∇ t
XY = ∇g

XY + t

3
ϕ(X , Y , ·), (2.7)

which lifts to /SM as

∇ t
Xμ = ∇g

Xμ + t

6
(iXϕ) · μ. (2.8)

If M is nearly G2 for a Killing spinor η and a vector field X since X · ϕ + ϕ · X = −2 iXϕ

it follows from (2.3) and Lemma 2.1 that

∇ t
Xη = − t + 1

2
X · η.

Therefore η is parallel with respect to the connection ∇−1 and the connection ∇−1 is the
characteristic connection ∇c.
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It is well known from [4, 18, 24] that the Ricci tensor Rict of the connection ∇ t is given
by

Rict = (6 − 2t2

3
)g. (2.9)

2.3 Instantons on nearly G2 manifolds

For a Lie group K let P → M be a principal K -bundle. We denote by AdP the adjoint
bundle associated with P. Let A be a connection 1-form on P and F = dA + 1

2 [A ∧ A] ∈
�(�2T ∗M ⊗ AdP) be the curvature 2-form associated with A.

There are many ways to define the instanton condition on A. An interested reader can read
further on these definitions and their relations in [33].

• If (M, g) is equipped with a G-structure such that G ⊂ O(n), the connection A is an
instanton if the 2-form part of F belongs to subbundle g(T ∗M) ⊂ �2T ∗M whose fiber
is isomorphic to g = Lie(G),

F ∈ �(g(T ∗M) ⊗ AdP) ⊂ �(�2T ∗M ⊗ AdP).

• When G is simple the quadratic Casimir is a G-invariant element of g ⊗ g ∼= �2 ⊗ �2

and hence can be identified to a G-invariant 4-form Q by taking a wedge product. Then
F is an instanton if for some ν ∈ R

∗(∗Q ∧ F) = νF .

• Furthermore if M is a spin manifold, and the spinor bundle admits one or more non-
vanishing spinors η, then A is an instanton if

F · η = 0,

where the Clifford multiplication is between the 2-form part of F and η.

If (M, g, ϕ) is a manifold with a G2 structure ϕ all the above definitions are equivalent.
They all imply that the curvature F associated with A lies in �(�2

14) and thus satisfies all of
these equivalent conditions:

F · η = 0, F ∧ ϕ = ∗F, F ∧ ψ = 0, F ⌟ ϕ = 0. (2.10)

From now on in this article we use these instanton conditions interchangeably according
to the context without further specification. Note that the above definitions are valid for any
general G2 structure and not only for nearly parallel ones.

On a manifold with real Killing spinors instantons solve the Yang–Mills equation [33].
For a nearly G2 manifold M we can prove this fact by direct computations using (2.10) and
the second Bianchi identity. Let K be a compact semisimple Lie group and P be a principal
K -bundle over M then for an instanton A on P
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(d A)∗F = ∗d A ∗ F = ∗d A(ϕ ∧ F) = 4 ∗ (ψ ∧ F) = 0.

One of the most natural examples of an instanton on the spinor bundle /SM over a nearly
G2 manifold is the lift of the characteristic connection to /SM . In [14] the authors construct
instantons on any complex line bundle and certain SO(3)-bundles over the Aloff–Wallach
spaces SU(3)/U(1)k,l.

3 Infinitesimal deformation of instantons

Let M7 be a nearly G2 manifold. We are interested in studying the infinitesimal deformations
of nearly G2-instantons on M . An infinitesimal deformation of a connection A represents an
infinitesimal change in A and, thus, is a section of T ∗M ⊗ AdP. If ε ∈ �(T ∗M ⊗ AdP) is an
infinitesimal deformation of A, the corresponding change in the curvature F up to first order is
given by dAε. A standard gauge fixing condition on this perturbation is given by (dA)∗ε = 0.
So in total the pair of equations whose solutions define an infinitesimal deformation of an
instanton A is given by

(dAε) · η = 0, (dA)∗ε = 0 (3.1)

where η is a Killing spinor.
The 1-parameter family of connections on the spinor bundle /S defined in (2.8) and the

connection A on P can be used to construct a 1-parameter family of connections on the
associated vector bundle /S ⊗ AdP. We denote by ∇ t,A, the connection induced by ∇ t and
A for all t ∈ R, respectively. We denote by Dt,A the Dirac operator associated to ∇ t,A. The
following proposition associates the solutions to (3.1) to a particular eigenspace of Dt,A for
each t . The proposition was proved in [28] for t = 0.

Proposition 3.1 Let ε be a section of T ∗M ⊗ AdP, and let Dt,A be the Dirac operator
constructed from the connections ∇ t,A for t ∈ R. Then ε solves (3.1) if and only if for any
Killing spinor η

Dt,A(ε · η) = − t + 5

2
ε · η. (3.2)

Proof It follows from (2.8) and the identity
∑

a ea · iaϕ = 3ϕ that

Dt,A = D0,A + t

2
ϕ · .

Let {ea, a = 1 . . . 7} be a local orthonormal frame for T ∗M . Using Clifford multiplication
identities we get

D0,A(ε · η) = (dAε + (dA)∗ε) · η + ea · ε · ∇0
aη.

Applying (2.6) to the 1-form part of ε we get ea · ε · ea · η = 5ε · η. So if η is a real Killing
spinor then (2.3) together with the above identity imply

D0,A(ε · η) = (dAε + (dA)∗ε) · η − 1

2
ea · ε · ea · η

= (dAε + (dA)∗ε − 5

2
ε) · η.
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Since ε · η ∈ �1 · η, by Lemma 2.1 we have

Dt,A(ε · η) =
(
dAε + (dA)∗ε + −t − 5

2
ε
)

· η.

The equation Dt,A(ε · η) = − t+5
2 ε · η is thus equivalent to (dAε + (dA)∗ε) · η = 0,

which in turn is equivalent to the pair of equations (dAε) · η = 0, (dA)∗ε = 0 since these
two components live in complementary subspaces.

Since η is parallel with respect to ∇−1 we can view D−1,A as an operator on �1 ⊗ AdP
defined by D−1,A(ε ·η) = (D−1,Aε)·η. The following theorem is an immediate consequence
of the above proposition.

Theorem 3.2 The space of infinitesimal deformations of a G2-instanton A on a principal
bundle P over a nearly G2 manifold M is isomorphic to the kernel of the operator

(
D−1,A + 2 Id

)
: �(�1 ⊗ AdP) → �(�1 ⊗ AdP). (3.3)

Remark 3.3 By Proposition 3.1, the − t+5
2 eigenspace of the operator Dt,A on �1 · η ⊗ AdP

is isomorphic to the infinitesimal deformation space of the instanton A for all t ∈ R and all
these eigenspaces are thus isomorphic to each other. In particular

ker(D−1/3,A + 7

3
id) ∼= ker(D−1,A + 2id). (3.4)

The deformation space found above can be further analyzed as an eigenspace of the square
of the Dirac operator. In [3] the authors obtained a Schrödinger–Lichnerowicz-type formula
relating the square of the Dirac operator with torsion T to the connection with torsion 3T .
Such a rescaling was earlier used in [29] for η-invariant homogeneous spaces and in [13] for
Hermitian manifolds.

Proposition 3.4 Let EM be a vector bundle associated with P and μ ∈ �(/S ⊗ EM). Let A
be any connection on P. Then for all t ∈ R,

(Dt/3,A)2μ = (∇ t,A)∗∇ t,Aμ + 1

4
Scalgμ + t

6
dϕ · μ − t2

18
‖ϕ‖2μ + F · μ. (3.5)

When the connection A is an instanton on a nearly G2 manifold the expression for
(Dt/3,A)2 can be simplified further. For the G2 structure ϕ, ‖ϕ‖2 = 7 and under our choice
of convention dϕ = 4ψ and Scalg = 42. Thus we can calculate the action of (Dt/3,A)2 on
spinors in �0η and �1 · η as follows.

Let η ∈ �(�0M ⊗ EM) be a real Killing spinor, then Lemma 2.1 implies ψ · η = 7η and
F · η = 0 by (2.10). Thus by above proposition we obtain,

(Dt/3,A)2η = (∇ t,A)∗∇ t,Aη − 7

18
(t2 − 12t − 27)η. (3.6)

Now suppose ε is an infinitesimal deformation of A. Then ε · η ∈ �(�1M ⊗ EM). From
Lemma 2.1 we know thatψ ·ε ·η = −ε ·η and since F ·η = 0, F ·ε ·η = (F ·ε +ε · F) ·η =
−2(ε�F) · η. Thus by above proposition

(Dt/3,A)2(ε · η) = (∇ t,A)∗∇ t,A(ε · η) − 1

18
(7t2 + 12t − 189)ε · η − 2(ε�F) · η. (3.7)

In the special case when the bundle EM is equal to AdP, the holonomy group H ⊂ K of
the connection A acts on the Lie algebra k of K . Let us denote by k0 ⊂ k the subspace on
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which H acts trivially. Let k1 be the orthogonal subspace of k0 with respect to the Killing
form of K . The corresponding splitting of the adjoint bundle is given by AdP = L0 ⊕ L1

and /S ⊗ AdP decomposes as follows

/S ⊗ AdP = (�1M ⊗ L0) ⊕ (�1M ⊗ L1) ⊕ (�0M ⊗ L0) ⊕ (�0M ⊗ L1).

By Proposition 3.4 the operator (D−1/3,A)2 is self-adjoint and hence respects the above
decomposition. We use the shorthand �i L j for �i M ⊗ L j where i, j = 0, 1. For compact
M we have the following proposition.

Proposition 3.5 Let A be a G2-instanton on a principal K -bundle P with holonomy group
H where AdP splits as above. Then

(i) ker((D−1/3,A)2 − 49
9 id) = ker((D−1/3,A)2 − 49

9 id) ∩ (�1L1 ⊕ �0L0).

(ii) ker((D−1/3,A)2− 49
9 id)∩�1L1 =

(
ker(D−1/3,A+ 7

3 id)⊕ker(D−1/3,A− 7
3 id)

)
∩�1L1.

Proof To prove (i) we need to show that ker((D−1/3,A)2 − ( 73 )
2id) ∩ (�0L1 ⊕ �1L0) is

trivial.

1. Let μ ∈ ker((D−1/3,A)2 − ( 73 )
2id) ∩ �0L1. Thus we have by (3.6) ,

0 =
∫

M
(μ, (D−1/3,A)2 − (

7

3
)2)μ)

=
∫

M
(μ, (∇−1,A)∗∇−1,Aμ + (

49

9
−
(7
3

)2
)μ)

=
∫

M
‖∇−1,Aμ‖2.

But since the action of the holonomy group of A fixes no non-trivial elements in k1 and
the holonomy group of ∇−1 acts trivially on �0 we get μ = 0.

2. Let ε · η ∈ ker((D−1/3,A)2 − ( 73 )
2id) ∩ �1L0. By the definition of L0 the curvature F

acts trivially on ε · η in (3.7) and we get,

0 =
∫

M
(ε · η, (D−1/3,A)2 − (

7

3
)2)ε · η)

=
∫

M
(ε · η, (∇−1)∗∇−1(ε · η) + (

97

9
−
(7
3

)2
)ε · η)

=
∫

M
‖∇−1(ε · η)‖2 + 48

9

∫

M
‖ε · η‖2

hence ε · η = 0.

For proving (ii) we already know that
(
ker((D−1/3,A) + 7

3 } ⊕ ker((D−1/3,A) + 7
3 }
) ∩

�1L1 ⊂ ker((D−1/3,A)2 − 49
9 id) ∩ �1L1. The reverse inclusion can be seen using the fact

that since D−1/3,A and (D−1/3,A)2 commute they have the same eigenvectors.Moreover since
D−1/3,A is self-adjoint, ε · μ ∈ ker((D−1/3,A)2 − 49

9 id) ∩ �1L1 implies ‖D−1/3,Aε · μ‖ =
7
3‖ε · μ‖; thus, the corresponding eigenvalues of D−1/3,A can only be ± 7

3 .

Remark 3.6 Note that part (i) for the above proposition holds only for D−1/3,A and not for
any other Dt,A where t �= −1/3 since the proof explicitly uses the fact that η is parallel
with respect to ∇−1. But since Dt,A is self-adjoint for all t ∈ R, for any λ ∈ R we have the
following decomposition

ker
{
(Dt,A)2 − λ2id

}
∩ �1AdP =

(
ker

{
Dt,A − λid

}
⊕ ker

{
Dt,A + λid

})
∩ �1AdP.
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The above proposition has the following important consequence. If the structure group
K is abelian H acts as identity on the whole of k which means k1 = 0 and L1 is trivial.
Thus by Remark 3.3 the space of infinitesimal deformations of the G2-instanton A which is
isomorphic to ker(D−1/3,A + 7

3 )∩�1AdP = ker(D−1/3,A + 7
3 )∩�1L1 is zero dimensional.

In [[14], Proposition 24] the authors prove that the G2-instanton A is rigid if all the
eigenvalues of the operator

L A : �1 ⊗ AdP → �1 ⊗ AdP
w 
→ −2w�F

are smaller than 6. We prove the lower bound for the eigenvalue as follows. Let λ be the
smallest eigenvalue of L A. If ε ∈ �(T ∗M ⊗ AdP) is an infinitesimal deformation of A, then
from (3.7) and Theorem 3.2 we know that

(∇ t,A)∗∇ t,Aε · η =
(5t2

12
+ 3t

2
− 17

4

)
ε · η − L A(ε) · η.

Taking the inner productwith ε·η on both sideswe get that ifλ > min
{
5t2+18t−51

12 | t ∈ R

}
=

− 28
5 then ε = 0 is the only solution. Thus we get the following result.

Theorem 3.7 Any G2-instanton A on a principal K -bundle over a compact nearly G2 man-
ifold M is rigid if

(i) the structure group G is abelian, or
(ii) the eigenvalues of the operator L A are either all greater than − 28

5 or all smaller than 6.

Some immediate consequences of Theorem 3.7 are that the flat instantons are rigid. Also
if all the eigenvalues of L A are equal, then A has to be rigid.

4 Instantons on homogeneous nearly G2 manifolds

4.1 Classification of homogeneous nearly G2 manifolds

By the classification result in [27] there are six compact, simply connected homogeneous
nearly G2 manifolds:

(S7, ground) = Spin(7)/G2, (S7, gsquashed) = Sp(2)×Sp(1)
Sp(1)×Sp(1) , SO(5)/SO(3),

M(3, 2) = SU(3)×SU(2)
U(1)×SU(2) , N (k, l) = SU(3)/S1k,l k, l ∈ Z, Q(1, 1, 1) = SU(2)3/U(1)2.

where S1k,l = {diag(eikθ , eilθ , e−i(k+l)θ ), θ ∈ R} denotes the embedding of U(1) into SU(3).
We describe the homogeneous structure on each of these spaces.

• In the round S7 the embedding of G2 in Spin(7) is obtained by lifting the standard
embedding of G2 into SO(7).

• For the squashed metric on S7 the two copies of Sp(1) in Sp(2) × Sp(1) denoted by
Sp(1)u and Sp(1)d [9] are

Sp(1)u :=
{((

a 0
0 1

)
, 1

)
: a ∈ Sp(1)

}
, Sp(1)d :=

{((
1 0
0 a

)
, a

)
: a ∈ Sp(1)

}
.

• In the Berger space SO(5)
SO(3) , the Lie group SO(3) is embedded into SO(5) via the 5-

dimensional irreducible representation of SO(3) on Sym2
0(R

3).
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• In SU(3)×SU(2)
U(1)×SU(2) the embedding of SU(2) (denoted by SU(2)d ) and U(1) in SU(2)×SU(2)

is defined as [9]

SU(2)d :=
{((

a 0
0 1

)
, a

)
: a ∈ SU(2)

}
, U(1) :=

⎧
⎨

⎩

⎛

⎝

⎛

⎝
eiθ 0 0
0 eiθ 0
0 0 e−2iθ

⎞

⎠ , 1

⎞

⎠ : θ ∈ R

⎫
⎬

⎭

• In the Aloff–Wallach spaces Nk,l where k, l are coprime positive integers the embedding
of S1k,l = U (1)k,l in SU(3) is described

S1k,l =
⎧
⎨

⎩

⎛

⎝
eikθ 0 0
0 eilθ 0
0 0 e−i(k+l)θ

⎞

⎠ , θ ∈ R

⎫
⎬

⎭

• In Q(1, 1, 1) we denote the two copies of U(1) inside SU(2)3 as U(1)u,U(1)d where
their respective embeddings are given by

U(1)u = Span

{((
eiθ 0
0 e−iθ

)
,

(
e−iθ 0
0 eiθ

)
, I2

)
, θ ∈ R

}
,

U(1)d = Span

{(
I2,

(
eiθ 0
0 e−iθ

)
,

(
e−iθ 0
0 eiθ

))
, θ ∈ R

}
.

Except Nk,l and Q(1, 1, 1) the remaining four homogeneous spaces are normal. If B
denotes the Killing form of G, then the nearly G2 metric g on G/H is given by g = − 3

40 B.
The choice of the scalar constant 3

40 is based on our convention τ0 = 4. The general formula
for the constant was derived in [[9], Lemma 7.1]. For a description of the nearly G2 metric
on the non-normal cases see [46].

All the six homogeneous nearlyG2 manifolds are naturally reductive. Letmbe the orthogo-
nal complement of theLie algebrah of H in gwith respect to g then [h,m] ⊂ m. The reductive
decomposition g = h ⊕ m equips the principal H -bundle G → G/H with a G-invariant
connection whose horizontal spaces are the left translates of m. This connection is known
as the characteristic homogeneous connection. On homogeneous nearly G2 manifolds the
characteristic homogeneous connection has holonomy contained in G2. If we denote by Zm

the projection of Z ∈ g on m, the torsion tensor T for any X , Y ∈ m is given by

T (X , Y ) = −[X , Y ]m,

and is totally skew-symmetric. Thus by the uniqueness result in [20] it is the characteristic
connectionwith respect to the nearlyG2 structure onG/H [33]. The characteristic connection
is a G2-instanton as proved in [[33], Proposition 3.1].

The adjoint representation ad : H → GL(m) gives rise to the associated vector bundle
G ×ad m on G/H . Similarly since G/H has a nearly G2 structure we have the adjoint action
of G2 on m which we again denote by ad and the isotropy homomorphism λ : H → G2

which we can use to construct the associated vector bundle G ×ad ◦λ m. The characteristic
connection is a connection on both G ×ad m and G ×ad ◦λ m with structure group H and
G2, respectively. Therefore it is natural to study the infinitesimal deformation space of the
characteristic connection in both these situations. Since H ⊂ G2, the deformation space as
an H -connection is a subset of the deformation space as a G2-connection.

We can completely describe the deformation space when the structure group is H , but
for structure group G2 we can only find the deformation space for the normal homogeneous
nearly G2 manifolds since our methods do not work for non-normal homogeneous metrics.
However since H is abelian in both of the non-normal cases, Theorem 3.7 tells us that the
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characteristic connection is rigid as an H -connection. But we cannot say anything about the
deformation space for the structure group G2 in those two cases.

The remainder of this article is devoted to computing the infinitesimal deformation space of
the characteristic connection with the structure group H and G2 for the normal homogeneous
spaces.

4.2 Infinitesimal deformations of the characteristic connection

Let M = G/H be a homogeneous manifold. Consider the principal H -bundle G → M . If
(V , ρ) is an H -representation then the space of smooth sections �(G×ρ V ) of the associated
vector bundle G ×ρ V is isomorphic to the space C∞(G, V )H of H -equivariant smooth
functions G → V . The space C∞(G, V )H carries the left regular G-representation ρL

defined by ρL(g)( f ) = g. f = f ◦ lg−1 which is also known as the induced G-representation

IndGHV .
For any connection A onG the covariant derivative associatedwith A on anybundle associated
with A is denoted by∇ A. Let s ∈ �(G×ρ V ) and fs : G → V be the G-equivariant function
given by s(gH) = [g, fs(g)]. If we denote by Xh the horizontal lift of X ∈ �(T M) via A,
then ∇ A acts on s as

(∇ A
X s)(gH) = (g, Xh( fs)(g)).

For the characteristic connection on G → M , Xh = X for every vector field. Thus the
covariant derivative ∇c is given by

(∇c
X s)(gH) = (g, X( fs)(g)).

By the Peter–Weyl theorem [[38], Theorem 1.12] the space of sections can also be
formulated as follows. If we denote by Girr the set of equivalence classes of irreducible
H -representations then

�(G ×ρ V ) =
⊕

W∈Girr

Hom(W , V )H ⊗ W .

The embedding Hom(W , V )H ⊗ W into C∞(G, V )H = �(G ×ρ V ) is given by sending
(φ,w) to the function f(φ,w) defined by f(φ,w)(g) = φ(τ(g−1)w). Thus (φ,w) defines a
section s(φ,w)(gH) = [g, f(φ,w)(g)] which we denote by (φ,w) as well.

We can compute the covariant derivative on s(φ,w) ∈ Hom(W , V )H ⊗ W ⊂ �(G ×ρ V )

by

∇c
X s(φ,w)(gH) = X( f(φ,w))(g) = d

dt

∣∣∣
t=0

f (et X g)

= d

dt

∣∣∣
t=0

( f(φ,w) ◦ let X )(g) = d

dt

∣∣∣
t=0

(e−t X . f )(g)

= d

dt

∣∣∣
t=0

f(φ,τ (e−t X )w) = − f(φ,τ∗(X)w)(gH).

The above can be written as

∇c
X (φ,w) = −(φ, τ∗(X)w). (4.1)

Thus we get that for the characteristic connection the covariant derivative of a section s ∈
�(G ×ρ V ) with respect to some X ∈ m translates into the derivative X( fs), which is minus
the differential of the left-regular representation (ρL )∗(X)( fs), see [41].
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Let {ai , i = 1 . . . n} be an orthonormal basis of g with respect to g = − 3
40 B, then the

Casimir element Casg ∈ Sym2(g) is defined by
∑dimG

i=1 ai ⊗ ai . On any g representation
(V , μ) we can define the Casimir invariant μ(Casg) ∈ gl(V ) by

μ(Casg) =
n∑

i=1

μ(ai )
2.

For the reductive homogeneous spaces G/H let {ai , i = 1 . . . dim(H)} and {ai , i =
dim(H) . . . dim(G)} be the basis of h andm, respectively. If we define Cash = ∑dim(H)

i=1 ai ⊗
ai and Casm = ∑dim(G)

dim(H) ai ⊗ ai we can decompose Casg as

Casg = Cash + Casm.

Note that Casm is just used for notational convenience as m may not be a Lie algebra. Also
in Cash the trace is taken over H .

Remark 4.1 If one uses the metric −cB instead of −B then the Casimir operator is divided
by the scalar c.

To study the deformation space of the characteristic connection ∇c on these homogeneous
spaces we rewrite Schrödinger–Lichnerowicz formula (3.7) in terms of the Casimir operator
of h and g and then use the Frobenius reciprocity formula to compute the deformation space
of the characteristic connection in each case. Let F be the curvature associated with ∇c, then
the operator −2ε�F can be reformulated in terms of Cash by doing similar calculations as
in [[17], Lemma 4] which gives

− 2ε�F = (ρm∗(Cash) ⊗ 1E + 1m∗ ⊗ ρE (Cash) − ρm∗⊗E (Cash))ε. (4.2)

Let (E, ρE ) be an H -representation.Wedenote the tensor product of representations onm∗
and E by ρm∗⊗E . For every t ∈ R, Dt,A denotes theDirac operator onG×ρm∗⊗E (m∗⊗E)⊗/S
associated to the connection ∇ A and ∇ t on G ×ρm∗⊗E (m∗ ⊗ E) and /S, respectively. From
now on we use the same symbol to denote the Lie group representation and the associated
Lie algebra representation wherever there is no confusion. On a naturally reductive space
Kostant’s formula for cubic Dirac operator relates the square of the Dirac operator to suitable
Casimir operators and scalar terms (see [6, 39, 41]). We now use Proposition 3.4 to prove a
similar result for (D−1/3,c)2.

Proposition 4.2 Let ∇c be the characteristic connection on a homogeneous nearly G2 man-
ifold M = G/H. Let (E, ρE ) be an H-representation and ε be a smooth section of
G ×ρm∗⊗E (m∗ ⊗ E). Then

(D−1/3,c)2ε · η = (−ρL(Casg) + ρE (Cash))ε + 49

9
ε) · η. (4.3)

Proof We begin by analyzing the rough Laplacian term in the Schrödinger– Lichnerowicz
formula for (D−1/3,c)2ε · η from (3.7) and then substitute the F-dependent term from (4.2)
in the same. We denote by ρL the left regular representation of G. From above calculations
we know that at the center of a normal orthonormal frame {ei , i = 1 . . . 7} of m with respect
to g = − 3

40 B,

(∇−1,c)∗∇−1,c = −∇−1,c
ei ∇−1,c

ei = −ρL(ei )
2 = −ρL(Casm).
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Since ResHG ρL = ResHG IndGH (m∗ ⊗ E) ∼= m∗ ⊗ E we have that ρm∗⊗E (Cash) = ρL(Cash).
Also ρm∗(ei )2 = ρm∗(Cash) acts as −Ric of the characteristic connection on 1-forms which
is equal to − 16

3 id from (2.9). Substituting all the terms in (3.7) for t = −1 we get

(D−1/3,c)2ε · η = (−ρL (Casm)ε + 97

9
ε + (ρm∗(Cash) ⊗ 1E

+ 1m∗ ⊗ ρE (Cash) − ρm∗⊗E (Cash))ε) · η

= (−(ρL (Casm) + ρL(Cash))ε + (
97

9
− 16

3
)ε + ρE (Cash)ε) · η

= ((−ρL (Casg)ε + ρE (Cash)ε + 49

9
ε) · η

which completes the proof.

Since all the homogeneous spaces considered are naturally reductive and H ⊂ G2, there is
an adjoint action of H onm, h and g2 and thus H -representations onm∗⊗h andm∗⊗gwhich
we denote by ρm∗⊗h, ρm∗⊗g2 . The corresponding Lie algebra representations are denoted
similarly. The infinitesimal deformation space of the instanton∇c is a subspace of�(m∗⊗E)

where E can be either h or g2.
From Propositions 3.1 and 4.2 it is clear that if ε is an infinitesimal deformation of ∇c on

the bundle m∗ ⊗ E over G/H then

ρE (Cash)ε = ρL(Casg)ε (4.4)

where the trace in both the Casimirs is taken over G.
Using (4.4) we can reformulate the infinitesimal deformation space of the characteristic

connection. Since the Casimir operator acts as scalar multiple of the identity on irreducible
representations we can solve (4.4) for irreducible subrepresentations of L . FromTheorem 3.2
the deformations of the characteristic connection are the−2 eigenfunctions ε ·η of D−1,c. To
explicitly compute the deformation space first we need to find the solutions for (4.4) which
by above proposition is identical to the space of 49

9 eigenfunctions ε · η of (D−1/3,c)2 . For
α ∈ �1AdP by Lemma 2.1 Dt,Aα · η = D0,Aα · η + t

2ϕ · α · η = D0,Aα · η − t
2α · η.

Therefore the ± 7
3 eigenfunctions ε · η of D−1/3,c correspond to the −2 and 8

3 eigenfunction
of D−1,A, respectively. By Proposition 3.5 we have the following decomposition

ker

(
(D−1/3,c)2 − 49

9
id

)
∩ �(m∗ ⊗ E) = ker(D−1,c + 2id) ∩ �(m∗ ⊗ E)

ker(D−1,c − 8

3
id) ∩ �(m∗ ⊗ E)

(4.5)

The first summand on the right-hand side is isomorphic to the space of infinitesimal defor-
mations of ∇c by Theorem 3.2. So in the second step we check which of the subspaces in
ker((D−1/3,c)2 − 49

9 id) ∩ (�(m∗ ⊗ E) · η) lie in the −2 eigenspace of D−1,c.
The Killing spinor η is parallel with respect to∇−1 therefore by the definition of the Dirac

operator and Proposition we can restrict D−1,c and (D−1/3,c)2 to operators from �(m∗ ⊗
E) → �(m∗ ⊗ E). On a homogeneous space we can explicitly compute the characteristic
connection as we describe below.
Step 1: Calculating ker((D−1/3,c)2 − 49

9 id) ∩ �(m∗ ⊗ E) :
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Let EC = ⊕n
i=1Vi be the decomposition of EC into complex irreducible H -

representations. For each Vi we find all the complex irreducible G-representationsWi, j , j =
1 . . . ni , that satisfy the equation

ρVi (Cash) = ρWi, j (Casg).

In order to see whether Wi, j ⊂ IndGH (m∗ ⊗ E)C we find the multiplicity mi, j of Wi, j in
IndGH (m∗

C
⊗Vi ). Because of Schur’s lemma thismultiplicity is given by dim(Hom(Wi, j ,m

∗
C
⊗

Vi )H ). Repeating this process for all the i, j’s and summing over all irreducible G-
representations Wi, j along with their multiplicity we get,

ker((D−1/3,c)2 − 49

9
id) ∩ �(m∗ ⊗ E)C ∼=

n⊕

i=1

( ni⊕

j=1

mi, jWi, j

)
. (4.6)

Step 2: Calculating ker(D−1,c + 2id) ∩ �(m∗ ⊗ E) :
To figure out which of the Wi, j ’s found in Step 1 are in the ker(D−1,c + 2id) we need to

calculate the covariant derivative ∇c on Hom(Wi, j ,m
∗
C

⊗ Vi )H ⊗ Wi, j ⊆ �(m∗ ⊗ E)C.
If (W , τ ) is an irreducible G-subrepresentation of IndGH (m∗ ⊗ E) then Hom(W ,m∗ ⊗

E)H is non-trivial. By Schur’s lemma the dimension of Hom(W ,m∗ ⊗ E)H is the number
of common irreducible H -subrepresentations in ResHGW and m∗ ⊗ E . Let Wα be such a
common irreducible H -representation. We denote by V |U the subspace of V isomorphic to
U then Hom(W |Wα , (m∗ ⊗ E)|Wα = Span{φα}. Let τ∗ be the Lie algebra g representation
associated with the G-representation (W , τ ) then for X ∈ �(T M) and (φ = ∑

cαφα,w) ∈
Hom(W ,m∗ ⊗ E)H ⊗ W , (4.1)

∇c
X (φ,w)(eH) = −φ(τ∗(X)w) ∈ m∗ ⊗ E .

Using this we can calculate the Dirac operator at eH by

D−1,c(φα,w)(eH) = −
7∑

i=1

ei · ∇−1,c
ei (φα,w)(eH) = −

7∑

i=1

ei · φα(τ∗(ei )w). (4.7)

The above method can be extended by linearity to compute the Dirac operator on�(m∗ ⊗E).
Note that we have omitted the Killing spinor η since it is parallel with respect to η so does
not effect the eigenspace.

In the following sections we implement the above procedure on each of the four homo-
geneous spaces.

Remark 4.3 In a nearly Kähler 6-manifold whose structure is defined by a real Killing spinor
η, the spinor vol · η is another independent real Killing spinor. Any Dirac operator anti-
commutes with the Clifford multiplication by vol that is , hence for all λ ∈
R we have . Therefore and one can
compute the λ eigenspace of /D by computing the λ2 eigenspace of /D2 as done in [[17],
Proposition 4]. In the case of nearly G2 manifolds and the 7-dimensional vol commute and
thus we do not have such an isomorphism between the±λ eigenspaces of the Dirac operator.

In fact there is no such automatic relation between and as Sect.
4.4 reveals.

Remark 4.4 The Dirac operator is always self-adjoint; therefore, the above method of finding
a particular eigenspace of a Dirac operator D can be used more generally in any bundle
associated with the spinor bundle over a homogeneous spin manifold. We will first compute
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the λ2-eigenspace the square of the Dirac operator as it can be easily described algebraically
(see Proposition 4.2). Once we know the λ2-eigenspace of D2 we can apply D on them to
see which of them lie in the λ or −λ-eigenspace of D.

4.3 Eigenspaces of the square of the Dirac operator

In this section we follow Step 1 of the above procedure. To see which of the irreducible
representations of G satisfy (4.4), we need to compute the Casimir operator on complex
irreducible representations. Given any irreducible representation ρλ with highest weight λwe
use the Freudenthal formula to compute ρλ(Casg). We drop the constant 40

3 in our definition
of Casimir operator for this section as it does not play any role in comparing the Casimir
operators. Letμ = 1

2 (sum of the positive roots of g) then the Freudenthal formula states that

ρλ(Casg) = B(λ, λ) + 2B(μ, λ). (4.8)

We compute the deformation space of the characteristic connection for E = h and E = g2
as described earlier. In all the examples listed below, Case 1 is for E = h and Case 2 is for
E = g2.

4.3.1 Spin(7)/G2

For this space, H = G2 so there is only one case to consider.
The adjoint representation g2 is the unique 14-dimensional irreducible representation

of G2. The complex irreducible representations of G2 are identified with respect to their
highest weights of the form (p, q) ∈ Z

2≥0 and are denoted by V(p,q). Here V(1,0) is the
7-dimensional standard G2-representation and V(0,1) is the 14-dimensional adjoint represen-
tation. The reductive splitting of the Lie algebra is given by

spin(7) = g2 ⊕ m.

We have the following isomorphisms of G2 representations,

hC = (g2)C ∼= V(0,1)

mC
∼= V(1,0).

The isomorphism spin(7) ∼= so(7) implies that the eigenvalues of their Casimir operators
on irreducible representations are equal. For so(7), let Ei j be the 7×7 skew-symmetricmatrix
with 1 at the (i, j)th entry and 0 elsewhere. We define H1 = E45 − E23, H2 = E67 − E45
and H3 = E45. A Cartan subalgebra for so(7) is given by Span{Hi , i = 1, 2, 3}. A set of
simple roots {αi , i = 1, 2, 3} is given by

α1 =
⎡

⎣
i

−2i
i

⎤

⎦ , α2 =
⎡

⎣
0
i

−i

⎤

⎦ , α3 =
⎡

⎣
0
i
0

⎤

⎦ .

The Cartan matrix C of so(7) which is given by

C =
⎡

⎣
2 −1 −1

−1 2 0
−2 0 2

⎤

⎦ .

Then one can compute the simple co-roots Fi s by αi (Fj ) = Ci j which give F1 = i H2, F2 =
−i H1 + 2i H3 and F3 = −2i H2 − 2i H3. The set of fundamental weights is dual to the set of
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the simple co-roots. We denote the fundamental weights in decreasing order by λ1, λ2 and
λ3 which are dual to F3, F1, F2, respectively. We can compute easily that

⎡

⎣
B(H1, H1) B(H1, H2) B(H1, H2)

B(H2, H1) B(H2, H2) B(H2, H3)

B(H3, H1) B(H3, H2) B(H3, H3)

⎤

⎦ =
⎡

⎣
−20 10 −10
10 −20 10

−10 10 −10

⎤

⎦

which implies,
⎡

⎣
B(λ1, λ1) B(λ1, λ2) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)

B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

⎤

⎦ =
⎡

⎣
3/40 1/10 1/20
1/10 1/5 1/10
1/20 1/10 1/10

⎤

⎦ .

Since half the sum of positive roots is given by λ1 +λ2 +λ3 in [[34], Section 13.3] therefore
by (4.8) on an irreducible SO(7)-representation V(m1,m2,m3) with highest weight m1λ1 +
m2λ2 + m3λ3, m1,m2,m3 ≥ 0 we have

ρλ(Casso(7))= 1

40
(3m2

1+8m2
2+4m2

3+8m1m2+4m1m3 + 8m2m3+18m1 + 32m2+20m3).

Now we compute the eigenvalues of the Casimir operator for the irreducible representa-
tions of g2 ⊂ so(7). A Cartan subalgebra of g2 is given by Span{H1, H2}. Here a pair of
simple roots β1, β2 is given by

β1 =
[

i
−2i

]
, β2 =

[
0
i

]

and the Cartan matrix C̃ for g2 is given by

C̃ =
[
2 −1

−3 2

]

. Let μ1, μ2 be the fundamental weights in decreasing order then their duals with respect to
B are −i H1 − 2i H2, i H2, respectively, and one can compute

[
B(μ1, μ1) B(μ1, μ2)

B(μ2, μ1) B(μ2, μ2)

]
=
[
1/15 1/10
1/10 1/5

]
.

Again half the sum of the positive roots is given by μ1 + μ2. Using these values in the
Freudenthal formula for an irreducible G2-representation V(p,q) with highest weight pμ1 +
qμ2 we have

ρ(p,q)(Casg2) = 1

15
(p2 + 3q2 + 3pq + 5p + 9q).

Case 1: E = g2
The adjoint representation (g2)C ∼= V(0,1). From above

ρ(0,1)(Casg2) = 4

5
.

Substituting the above-found values into (4.4) we get that V(m1,m2,m3) can be an infinitesimal
deformation space for the characteristic connection if

1

40
(3m2

1 + 8m2
2 + 4m2

3 + 8m1m2 + 4m1m3 + 8m2m3 + 18m1 + 32m2 + 20m3) = 4

5
.

But since there are no positive integral solutions of this equation there are no deformations
of the characteristic connection on Spin(7)/G2.
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4.3.2 SO(5)/SO(3)

The complex irreducible SO(5)-representations are characterized by highest weights
(m1,m2) ∈ Z≥0. The complex irreducible representations of SO(3) are given by SkC2 which
is a

(2+k−1
k

) = k + 1-dimensional space. The 3-dimensional adjoint representation so(3)C
and the 7-dimensional representation mC are irreducible SO(3)-representations therefore

mC
∼= S6C2,

so(3)C ∼= S2C2.

ACartan subalgebra of so(5) is givenbySpan{H1, H2}where H1 = E12, H2 = E34 where
Ei j is the 5× 5 skew-symmetric matrix with 1 at the (i, j)th position and 0 elsewhere. With
respect to the Killing form B on so(5), H1 is orthogonal to H2 with B(Hi , Hi ) = −6 for i =
1, 2. Let λ1, λ2 be the fundamental weights whose duals are i(H1 − H2), 2i H2, respectively,
then half the sum of positive roots is given by λ1 + λ2. Doing similar computations as above
we get

[
B(λ1, λ1) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2)

]
=
[
1/6 1/12
1/12 1/12

]
.

Using (4.8) for the eigenvalues of the Casimir operator for irreducible representation V(m1,m2)

of SO(5) with highest weight m1λ1 + m2λ2 for m1,m2 ≥ 0 we get,

ρ(m1,m2)(Casso(5)) = 1

12
(2m2

1 + m2
2 + 2m1m2 + 6m1 + 4m2).

Under the embedding of so(3) in so(5) the Cartan subalgebra of so(3) is given
by Span{2H1 + H2}. Here the Cartan subalgebra is 1-dimensional and the fundamen-
tal weight μ1 is dual to 4i H1 + 2i H2. Using B(Hi , Hi ) = −6 one can compute that
B(4H1 + 2H2, 4H1 + 2H2) = −120 the eigenvalue of the Casimir operator on the irre-
ducible representation SqC

2 of so(3) is given by

ρq(Casso(3)) = 1

120
(q2 + 2q).

Case 1: E = so(3)
The adjoint representation of so(3)C is an irreducible so(3) representationwith highestweight
2. Thus

ρE (Casso(3)) = ρ2(Casso(3)) = 1

15
.

We need to find irreducible representations V(m1,m2) of so(5) that satisfy (4.4) which requires

1

12
(2m2

1 + m2
2 + 2m1m2 + 6m1 + 4m2) = 1

15
.

But since there are no integral solutions for the equation, the deformation space is trivial in
this case.
Case 2: E = g2
The adjoint representation of (g2)C splits as an so(3) representation into S2C2 ⊕ S10C2.
The first component in the splitting has already been studied in case 1 and hence has no
contribution to the deformation space. For the second component

ρ10(Casso(3)) = 1.
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Thus we need to find so(5) representations V(m1,m2) such that

1

12
(2m2

1 + m2
2 + 2m1m2 + 6m1 + 4m2) = 1,

which has one integral solution, namely m1 = 0,m2 = 2. Thus V(0,2) ∼= so(5)C is the only
SO(5)-representation for which Casg has eigenvalue 1. As so(3) representations

V(0,2) ∼= S2C2 ⊕ S6C2,

m∗
C

⊗ S10C2 ∼=
8⊕

k=2

S2kC2.

Thus V(0,2) and m∗
C

⊗ S10C2 have 1 common irreducible so(3) representation, namely
S6C2. Thus V(0,2) occurs in IndGH (m∗

C
⊗ S10C2) with multiplicity 1. Therefore in this case

(ker((D−1/3,c)2 − 49
9 id) ∩ �(m∗ ⊗ g2))C ∼= V(0,2).

4.3.3 Sp(2)×Sp(1)
Sp(1)×Sp(1)

The Lie algebra sp(2) ⊕ sp(1) decomposes as

sp(2) ⊕ sp(1) = sp(1)u ⊕ sp(1)d ⊕ m

and the embeddings sp(1)u, sp(1)d are given by

sp(1)u =
{((a 0

0 0

)
, 0
)

: a ∈ sp(1)
}
, sp(1)d =

{((0 0
0 a

)
, a
)

: a ∈ sp(1)
}

wherewe follow the notations used in [9]. Let H1 = (E1, 0), H2 = (E2, 0) and H3 = (0, E3)

then a Cartan subalgebra of sp(2) ⊕ sp(1) is given by Span{H1, H2, H3} where

E1 =

⎛

⎜⎜⎝

i 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 0

⎞

⎟⎟⎠ , E2 =

⎛

⎜⎜⎝

0 0 0 0
0 i 0 0
0 0 0 0
0 0 0 −i

⎞

⎟⎟⎠ , E3 =
(
i 0
0 −i

)
.

If B denotes the Killing form of Sp(2)×Sp(1), we can compute that Hi s are orthogonal with
respect to B and B(Hi , Hi ) = −12 for i = 1, 2 and B(H3, H3) = −8. The fundamental
weights λ1, λ2, λ3 are dual to i(H1−H2), i H1, i H3, respectively, and half the sum of positive
roots is given by λ1 + λ2 + λ3. By identical calculations as in other cases we get

⎡

⎣
B(λ1, λ1) B(λ1, λ2) B(λ1, λ3)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)

B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

⎤

⎦ =
⎡

⎣
1/12 1/12 0
1/12 1/6 0
0 0 1/8

⎤

⎦ .

Applying Freudenthal formula (4.8) we get that the Casimir operator of sp(2)⊕sp(1) acts on
the irreducible representationsV(m1,m2,l) with highestweightm1λ1+m2λ2+lλ3,m1,m2, l ≥
0 with the eigenvalue

ρ(m1,m2,l)(Cassp(2)⊕sp(1)) = 1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) + 1

8
(l2 + 2l).

Under the embedding given above a Cartan subalgebra of sp(1)u, sp(1)d is given by
Span{H1} and Span{(E2, E3)}, respectively. Let P, Q be the standard 2-dimensional repre-
sentation of sp(1)u, sp(1)d , respectively. Then the unique (n + 1)−dimensional irreducible
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sp(1)u (respectively, sp(1)d ) representation is given by Sn P (respectively, SnQ). From pre-
vious calculations we have B(H1, H1) = −12; thus, the eigenvalue of Cassp(1)u on Sn P is
given by

ρn(Cassp(1)u ) = 1

12
(n2 + 2n).

Similarly with the help of previous work one can calculate B((E2, E3), (E2, E3)) = −20.
Thus Cassp(1)d acts on S pQ as the scalar multiple of

ρn(Cassp(1)d ) = 1

20
(n2 + 2n).

The adjoint representation sp(1) is an irreducible 3-dimensional sp(1) representation, and
hence, we have the following decompositions into Sp(1)u × Sp(1)d representations

(sp(1)u)C ∼= S2P, (sp(1)d)C ∼= S2Q, mC
∼= S2Q ⊕ PQ

where PQ denotes the tensor product of P and Q and we omitted the tensor product sign
for clarity and will continue to do so.
Case 1: E = sp(1)u ⊕ sp(1)d
We need to find the irreducible sp(2) ⊕ sp(1) representations V(m1,m2,l) that satisfy (4.4) for
each irreducible component of hC that is (sp(1)u)C and (sp(1)d)C . For sp(1)u this equation
takes the form

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) + 1

8
(l2 + 2l) = 8

12
.

The integral solution (m1,m2, l) for this equation is (0, 1, 0). Thus the only irreducible
sp(2)⊕sp(1) representations for whichCasg has eigenvalue 2

3 is V(0,1,0). As sp(1)u⊕sp(1)d -
representations we have the following decomposition

V(0,1,0) ∼= PQ ⊕ C,

(sp(1)u ⊗ m)C ∼= S2PS2Q ⊕ S3PQ ⊕ PQ.

The irreducible Sp(1)×Sp(1) representation in (sp(1)u ⊗m)C common with V(0,1,0) is PQ
withmultiplicity 1. Thus V(0,1,0) occurs in IndGH (m∗⊗sp(1)u)Cwithmultiplicity 1. Therefore
the solutions to (4.4) in �(m∗ ⊗ sp(1)u)C are the 5-dimensional complex Sp(2) × Sp(1)
representation V(0,1,0).

For the next irreducible hC component (sp(1)d)C (4.4) for V(m1,m2,l) becomes

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) + 1

8
(l2 + 2l) = 8

20
,

which has no integral solutions and thus it has no contribution to the deformation space.
Thus from Proposition 4.2 we conclude that (ker((D−1/3.c)2 − 49

9 id)∩�(m∗ ⊗ sp(1)u ⊕
sp(1)d)C ∼= (V(0,1,0)) when the structure group is Sp(1)u × Sp(1)d .
Case 2: E = (g2)C
The adjoint representation of g2 decomposes into irreducible sp(1)u ⊕ sp(1)d as follows:

(g2)C = S2P ⊕ S2Q ⊕ PS3Q.

We have already seen the contribution of the first two irreducible components in the summa-
tion. For the third component

ρ1,3(Cassp(1)u⊕sp(1)d ) = 1,
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so here we need to find the sp(2) ⊕ sp(1) representations V(m1,m2,l) such that

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) + 1

8
(l2 + 2l) = 1.

The sp(2)⊕sp(1)-representations that satisfy (4.4) are V(2,0,0) and V(0,0,2), which decompose
into sp(1)u ⊕ sp(1)d representations as

V(2,0,0) ∼= sp(2)C ∼= S2P ⊕ S2Q ⊕ PQ, V(0,0,2) ∼= (sp(1)d)C ∼= S2Q.

Moreover

PS3Q ⊗ m∗
C

∼= S2PS4Q ⊕ S2PS2Q ⊕ P(S5Q ⊕ S3Q ⊕ Q) ⊕ S4Q ⊕ S2Q.

Thus V(2,0,0) and PS3Q ⊗m∗
C
have two common irreducible representations PQ, S2Q and

V(0,0,2) and PS3Q⊗m∗
C
have one common irreducible representation S2Q. So by Frobenius

reciprocity V(2,0,0) and V(0,0,2) lie in IndGH (m∗
C

⊗ PS3Q) with multiplicity 2, 1, respectively.
Thus the solution of (4.4) in �(m∗ ⊗ g2)C is the 28-dimensional Sp(2) × Sp(1) complex
representation 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2). So again by Proposition 4.2 we conclude that
ker((D−1/3.c)2 − 49

9 id) ∩ �(m∗ ⊗ g2)C ∼= 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2) when the structure
group is G2.

4.3.4 SU(3)×SU(2)
SU(2)×U(1)

The embeddings of su(2) and u(1) in su(3) × su(2) which we denote by su(2)d and u(1)
following [9] in su(3) ⊕ su(2) are given by

su(2)d =
{((a 0

0 0

)
, a
)

: a ∈ su(2)
}
, u(1) = span

{(
⎛

⎝
i 0 0
0 i 0
0 0 −2i

⎞

⎠ , 0
)}

.

A Cartan subalgebra of su(3) ⊕ su(2) is given by span{H1 = (E1, 0), H2 = (E2, 0), H3 =
(0, E3)} where

E1 =
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ , E2 =
⎛

⎝
i 0 0
0 i 0
0 0 −2i

⎞

⎠ , E3 =
(

0 1
−1 0

)
.

Wecan check that the Hi s are orthogonalwith respect to theKilling form B onSU(3)×SU(2).
As earlier we denote by λ1, λ2, λ3 the fundamental weights which are dual to i

2 (H1 −
H2),

i
2 (H1 + H2), i H3, respectively. By direct computations we get

⎡

⎣
B(H1, H1) B(H1, H2) B(H1, H3)

B(H2, H1) B(H2, H2) B(H2, H3)

B(H3, H1) B(H3, H2) B(H3, H3)

⎤

⎦ =
⎡

⎣
−12 0 0
0 −36 0
0 0 −8

⎤

⎦ ,

therefore
⎡

⎣
B(λ1, λ1) B(λ1, λ2) B(λ1, λ3)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)

B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

⎤

⎦ =
⎡

⎣
1/9 1/18 0
1/18 1/9 0
0 0 1/8

⎤

⎦ .
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Half the sum of the positive roots is λ1 + λ2 + λ3 and thus by Freudenthal formula (4.8)
for a su(3) ⊕ su(2) representation V(m1,m2,l) with highest weight m1λ1 +m2λ2 + lλ3 where
m1,m2, l ≥ 0

ρm1,m2,l(Cassu(3)⊕su(2)) = 1

9
(m2

1 + m2
2 + m1m2 + 3m1 + 3m2) + 1

8
(l2 + 2l).

Using the embeddings of su(2) and u(1) given above we see that Cartan subalgebras of
su(2) and u(1) in su(3) ⊕ su(2) are given by span{(E1, E3)} and span{H2}, respectively.
By calculations completely analogous to the previous case we then get that if we represent
the irreducible (n+ 1)-dimensional su(2)d representations by SnW whereW is the standard
su(2)d representation and the 1-dimensional u(1) representation with highest weight k by
F(k) we get by Freudenthal formula (4.8)

ρn(Cassu(2)d ) = 1

20
(n2 + 2n),

ρk(Casu(1)) = 1

36
k2.

As su(2)d ⊕ u(1) representations the 7-dimensional space mC decomposes as

mC
∼= S2W ⊕ WF(3) ⊕ WF(−3),

whereas the 3-dimensional adjoint representation of (su(2)d)C is irreducible and hence is
isomorphic to S2W .
Case 1: E = su(2)d ⊕ u(1)
The adjoint representation su(2)d ⊕ u(1) splits as irreducible su(2)d ⊕ u(1) representations
as follows:

(su(2)d ⊕ u(1))C ∼= S2W ⊕ C.

Since U (1) is abelian we know by Theorem 3.7 that the component u(1) is abelian and thus
gives rise to no deformations of the characteristic connection. Therefore we only need to
check for deformations corresponding to S2W . For that we need to look for representations
V(m1,m2,l) such that

1

9
(m2

1 + m2
2 + m1m2 + 3m1 + 3m2) + 1

8
(l2 + 2l) = 8

20
,

which as seen before has no integral solutions.
Hence the characteristic connection admits no deformations in this case.

Case 2: E = g2
The adjoint representation (g2)C splits as su(2)d ⊕ u(1) representation as follows:

(g2)C = S3WF(3) ⊕ S3WF(−3) ⊕ S2W ⊕ F(6) ⊕ F(−6) ⊕ C.

We need to follow the same procedure as above for each of the components. For each com-
ponent we need to find the su(3) ⊕ su(2) representation V(m1,m2,l) that satisfies (4.4). We
have already solved this for S2W ⊕ C, so we just need to compute it for the rest.
From above calculations ρS3WF(3)(Cash) = 1 therefore V(m1,m2,l) should satisfy

1

9
(m2

1 + m2
2 + m1m2 + 3m1 + 3m2) + 1

8
(l2 + 2l) = 1.
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Table 1 ker((D−1/3,c)2 −
49
9 id) ∩ �(m∗ ⊗ E)

Homogeneous space h g2

Spin(7)/G2 0 0

SO(5)/SO(3) 0 so(5)
Sp(2)×Sp(1)
Sp(1)×Sp(1) V (0,1)

R
2sp(2) ⊕ sp(1) ⊕ V (0,1)

R

SU(3)×SU(2)
SU(2)× U(1) 0 2su(2) ⊕ 6su(3)

Nk,l 0 Unknown

SU(2)3/U(1)2 0 Unknown

The only possible solutions are V(0,0,2), V(1,1,0). As su(2) ⊗ u(1) representations V(0,0,2) ∼=
S2W and V(1,1,0) ∼= su(3)C. Further one can compute

V(0,0,2) ∼= su(2)C ∼= S2W ,

V(1,1,0) ∼= su(3)C ∼= S2W ⊕ WF(3) ⊕ WF(−3) ⊕ C,

S3WF(3) ⊗ m∗
C

∼= (S5W ⊕ S3W ⊕ W )F(3) ⊕ (S4W ⊕ S2W )F(6) ⊕ S4W ⊕ S2W .

Thus V(0,0,2) and S3WF(3) ⊗ m∗
C
has one common component S2W with multiplicity 1

and V(1,1,0) and S3WF(3) ⊗ m∗
C
has two common components S2W ,WF(3) both with

multiplicity 1 each. So by Frobenius reciprocity IndGH (m∗
C

⊗ S3WF(3)) contains a copy of
V(0,0,2) ⊕ 2V(1,1,0).

The representation S3WF(−3) is the dual of the representation S3WF(3), and since
SU(2) ⊗ U(1) representations are isomorphic to their duals, the result for this case is same
as the above and IndGH (m∗

C
⊗ S3WF(−3)) also contains a copy of V(0,0,2) ⊕ 2V(1,1,0).

For the u(1) representation F(6), ρ6(Casu(1)) = 1. Thus again the only solutions are
V(0,0,2), V(1,1,0) by the previous case. The su(2) ⊕ u(1) representation F(6) ⊗ m∗

C
has the

following decomposition

F(6) ⊗ m∗
C

∼= S2WF(6) ⊕ WF(9) ⊕ WF(3),

thus V(0,0,2) is not contained in IndGH (m∗
C

⊗ F(6)), but V(1,1,0) is with multiplicity 1. Since
F(−6) ∼= F(6)∗ this case is similar to the above case.
Summing up all the parts together we get that ker((D−1/3,c)2 − 49

9 } ∩ �(m∗ ⊗ g2)C ∼=
2(V(0,0,2) ⊕ 3V(1,1,0)) when the structure group is G2.

Table 1 lists the ker((D−1/3,c)2 − 49
9 id) ∩ �(m∗ ⊗ E) when E = h and E = g2 for

all the normal homogeneous spaces. Note that for the remaining two homogeneous spaces
Nk,l , k �= l and SU(2)3/U(1)2 our methods does not apply when E = g2 although since
H is abelian for both of them, there are no deformations for the E = h case. The space
V (0,1) listed in Table 1 denotes the unique irreducible 5-dimensional complex representation
of sp(2).

4.4 Eigenspaces of the Dirac operator

All the G-representations listed in Table 1 lie in ker((D−1/3,c)2 − 49
9 id)∩�(m∗ ⊗ E) which

by (4.5) is equal to (ker(D−1,c + 2id) ⊕ ker(D−1,c − 8
3 id)) ∩ ∩�(m∗ ⊗ E). Since the

characteristic connection is translation invariant, it takes an irreducible G-representation to
itself.
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Hence the irreducible subspaces found in Table 1 lie in either ker(D−1,c − 8
3 id) or

ker(D−1,c + 2id) where the subspaces in the latter space constitute the infinitesimal defor-
mations of the characteristic connection by Theorem 3.2. Thus now it remains to identify
which of the subspaces in Table 1 lies in ker(D−1,c + 2id) for each of the homogeneous
spaces. For all the normal homogeneous spaces G/H the metric corresponding to the nearly
G2 structure ϕ is given by − 3

40 B where B is the Killing form of G. For 1-forms X , Y the
Clifford product between X and Y · η is given by

X · Y · η = 〈X , Y 〉η − ϕ(X , Y , .) · η. (4.9)

Thus we have all the ingredients in (4.7) to calculate the action of the Dirac operator D−1,c

on each irreducible subspace in Table 1.

4.4.1 SO(5)/SO(3)

From the previous section we know that there is no deformation of the characteristic con-
nection when the structure group is SO(3). For the structure group G2 we calculated that the
smooth sections of G ×ρm∗⊗g2

(m∗ ⊗ g2) in ker((D−1/3.c)2 − 49
9 id)

∼= V(0,2) ∼= so(5)C. If
we denote by Ei j the skew-symmetric matrix with 1 at (i, j), −1 at ( j, i) and 0 elsewhere
and define

e1 := 2

3
(E12 − 2E34), e2 := 2

3
(
√
2E45 −

√
3√
2
(E23 − E14)),

e3 := 2
√
5

3
E25, e4 := 2

3
(
√
2E35 −

√
3√
2
(E13 + E24)),

e5 :=
√
10

3
(E24 − E13), e6 := −

√
10

3
(E23 + E14), e7 := 2

√
5

3
E15,

then {ei , i = 1 . . . 7} defines a basis of m∗ which is orthonormal with respect to the metric
− 3

40 B. With respect to this basis the nearly G2 structure ϕ is given by

ϕ = e124 + e137 + e156 + e235 + e267 + e346 + e457.

We have seen that for SO(5)/SO(3) the characteristic connection has no deformation as an
SO(3) connection. Now we need to check whether the SO(5)-representation V(0,2) lies in the
ker(D−1,c − 8

3 id) ∩ �(m∗ ⊗ g2)C or ker(D−1,c + 2id) ∩ �(m∗ ⊗ g2)C. As seen before the
common irreducible so(3) representation in V(0,2)|so(3) and (m∗ ⊗ g2)C is S6C2 ∼= m∗

C
. We

denote the 1-dimensional space Hom(V(0,2), (m
∗ ⊗ g2)C) = Span(α). Let μi , i = 1 . . . 11

be a basis of the 11-dimensional subspace of (g2)C isomorphic to the so(3) representation
S10C2. Then the subspace of m∗

C
⊗ S10C2 ⊂ (m∗ ⊗ g2)C isomorphic to S6C2 is given by

Span{vi , i = 1 . . . 7} where
v1 = − e2

14
⊗ (5(μ1−μ7)+3

√
15μ9)+e3 ⊗ (μ5 + μ11) − e4

14
⊗ (5μ2 + 3

√
15(μ3 + μ4))

+ e5 ⊗ (μ3 − μ4) + e6 ⊗ μ9 + e7 ⊗ (μ6 − μ10),

v2 =e1 ⊗ μ9 + e2 ⊗ (−2μ5 + μ4) − e3
28

⊗ (47μ1 + 37μ7 + 3
√
5μ9) − e4 ⊗ (μ6 + 2μ10)

− e5
14

⊗ μ8 + e7
28

⊗ (−37μ2 + 3
√
15(μ3 + μ4)),

v3 = − e1
2

⊗ (μ3 − μ4) + e2
2

⊗ (2μ6 + μ10) + e3
56

⊗ (47μ2 + 3
√
5(μ3 + μ4))
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− e4
2

⊗ (μ5 − 2μ11) − e6
28

⊗ μ8 + e7
56

(−37μ1 + 6
√
15μ9),

v4 = − e1
28

⊗ (5μ2 + 3
√
15(μ3 + μ4)) + 5e2

28
⊗ μ8 − e3

56
⊗ (3

√
15μ2 + 41μ3 + 13μ4)

− e5
2

⊗ (μ5 − 2μ11) + e6
2

⊗ (μ6 + 2μ10) + e7
56

⊗ (3
√
15(μ1 − μ7) + 41μ9),

v5 =e1 ⊗ (μ5 + μ11)− e2
28

⊗ (3
√
15(μ1−μ7)+13μ9)+ e4

28
⊗ (3

√
15μ2+41μ3 + 13μ4)

+ e5
28

⊗ (47μ2 + 3
√
15(μ3 + μ4)) + e6

28
⊗ (47μ1 + 37μ7 + 3

√
15μ9) + 2e7

28
⊗ μ8,

v6 =e1 ⊗ (−μ6 + μ10) + e2
28

⊗ (3
√
15μ2 + 13μ3 + 41μ4) + 2e3

7
⊗ μ8

+ e4
28

⊗ (3
√
15(μ1 − μ7) + 41μ9) + e5

28
⊗ (37μ1 + 47μ7 − 3

√
15μ9)

+ e6
28

⊗ (−37μ2 + 3
√
15(μ3 + μ4)),

v7 = e1
14

⊗ (5(μ1 − μ7) + 3
√
15μ9) − e3

28
⊗ (3

√
15(μ1 − μ7) + 13μ9)

+ 5e4
14

⊗ μ8 − 2e5 ⊗ (μ6 + μ10)

+ e6 ⊗ (−2μ5 + μ11) − e7
28

⊗ (3
√
15μ2 + 13μ3 + 41μ4).

The subspace of V(0,2) isomorphic to S6C2 is SpanC{ei , i = 1 . . . 7}, and the SO(3) equiv-
ariant homomorphism α between V(0,2) and (m∗ ⊗ g2)C is given by

α(e1) = v1, α(e2) = v7, α(e3) = −v5,

α(e4) = −2v4, α(e5) = 2v3, α(e6) = −v2, α(e7) = v6.

Any sectionof the bundle associatedwithm∗⊗g2 in ker((D−1/3.c)2− 49
9 id) canbe represented

by (α, v) for some v ∈ V(0,2)|S6C2 ∼= m∗
C
. The action of the characteristic connection on such

a section is then given by ∇−1,c
X (α, v)(eH) = −α([X , v]) where the Lie bracket is in so(5).

We can now calculate the action of the Dirac operator, D−1,c on (α, e1) ·η at the point eH as
follows. We omit the ·η from the computations to reduce notational clutter and will continue
to do so in every case.

D−1,c(α, e1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (α, e1)(eH)

= −2

3
(e2 · α(e4) + e3 · α(e7) + e4 · α(−e2) + e5 · α(e6)

+ e6 · α(−e5) + e7 · α(−e3))

= 2

3
(2e2 · v4 − e3 · v6 + e4 · v7 + e5 · v2 + 2e6 · v3 − e7 · v5)

= 2

3
(−3v1) · η = −2α(e1).

Thus by the translation invariance of the characteristic connection V(0,2) ⊆ ker(D−1,c +
2id) ∩ �(m∗ ⊗ g2)C.
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4.4.2 Sp(2)×Sp(1)
Sp(1)×Sp(1)

From the previous section we know that for E = sp(1)⊕ sp(1) the ker((D−1/3.c)2 − 49
9 id)∩

�(m∗ ⊗ E)C ∼= V(0,1,0). Let {ei , i = 1 . . . 7} be an orthonormal basis of m∗ with respect to
the metric − 3

40 B given by

e1 := 1

3

((
0 0
0 2i

)
,−3i

)
, e2 := 1

3

((
0 0
0 2 j

)
,−3 j

)
, e3 := 1

3

((
0 0
0 2k

)
,−3k

)
,

e4 :=
√
5

3

((
0 1

−1 0

)
, 0

)
, e5 :=

√
5

3

((
0 i
i 0

)
, 0

)
, e6 :=

√
5

3

((
0 j
j 0

)
, 0

)
,

e7 :=
√
5

3

((
0 k
k 0

)
, 0

)
.

With respect to this basis the nearly G2 form is given by

ϕ = e123 − e145 − e167 − e246 + e257 − e347 − e356,

From Table 1 we know that as an Sp(1) × Sp(1) connection the deformation space of the
characteristic connection is an irreducible subrepresentation of V(0,1,0) and is thus trivial or
(V(0,1,0))R . We need to check whether this space lies in the −2 eigenspace of D−1,A

The Sp(2) × Sp(1)-representation V(0,1,0) is 5 dimensional. We need to find the space
Hom(V(0,1,0), (m

∗⊗(sp(1)u⊕sp(1)d))C)Sp(1)×Sp(1). The common irreducible Sp(1)×Sp(1)
representations in V(0,1,0) and (m∗ ⊗ sp(1)u)C is PQ. Let S2P = Span{I , J , K } then the
subspace of (m∗ ⊗ sp(1)u)C isomorphic to the space PQ is given by SpanC{v1, v2, v3, v4}
where

v1 = e5 ⊗ I + e6 ⊗ J + e7 ⊗ K , v2 = −e4 ⊗ I + e7 ⊗ J − e6 ⊗ K ,

v3 = −e7 ⊗ I − e4 ⊗ J + e5 ⊗ K , v4 = e6 ⊗ I − e5 ⊗ J − e4 ⊗ K .

Let the subspace of V(0,1,0) isomorphic to PQ be given by Span{w1, w2, w3, w4} and the
homomorphism space Hom(V(0,1,0), (m

∗ ⊗ sp(1)u)C) = Span(β) where β is defined by

w1 
→ v3 + iv4, w2 
→ v1 − iv2,

w3 
→ v1 + iv2, w4 
→ v3 − iv4.

Using this isomorphism one can compute that the only non-trivial gl(V(0,1,0)|PQ) elements
with respect to the basis {w1, w2, w3, w4} are

τ∗(e1) = 2

3

⎡

⎢⎢⎣

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

⎤

⎥⎥⎦ , τ∗(e2) = 2

3

⎡

⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎥⎥⎦ , τ∗(e3) = 2

3

⎡

⎢⎢⎣

0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

⎤

⎥⎥⎦ .

Also by the definition of the characteristic connection, ∇−1,c
X (β,w)(eH) = −β(τ∗(X)w).

Thus we can calculate

(D−1,c(β,w1))(eH) =
7∑

i=1

ei · ∇−1,c
ei (β,w1)(eH) = −

7∑

i=1

ei · β((τ∗(ei )w1)|PQ)

= −(e1 · β(
2

3
iw1) + e2 · β(

2

3
w2) + e3 · β(

2

3
iw2))
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= −2

3
(ie1 · (v3 + iv4) + e2 · (v1 − iv2) + ie3 · (v1 − iv2))

= −2

3
(3(v3 + iv4)) = −2β(w1).

Thus we have shown that V(0,1,0) lies in the ker(D−1,c + 2id).
For E = g2 the subspace of �(m∗ ⊗ g2) in ker((D−1/3.c)2 − 49

9 id) is isomorphic to the
Sp(1) × Sp(1) representation 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2). We have already dealt with the
space V(0,1,0). The remaining spaces are 2V(2,0,0) ∼= 2sp(2) and V(0,0,2) ∼= sp(1). The two
copies of V(2,0,0) arise from Hom(V(2,0,0),m

∗
C

⊗ PS3Q)Sp(1)×Sp(1), and the one copy of
V(0,0,2) arises from Hom(V(0,0,2),m

∗
C

⊗ PS3Q)Sp(1)×Sp(1). Thus we have two cases:
Case: 1-Hom(V(0,0,2),m

∗
C

⊗ PS3Q)Sp(1)×Sp(1) ⊗ V(0,0,2)
Let {w1, w2, w3} be the standard basis of V(0,0,2) ∼= sp(1)C then the non-trivial actions ofm
on sp(1)C are given by

[e1, .] =
⎡

⎣
0 0 0
0 0 −2
0 2 0

⎤

⎦ , [e2, .] =
⎡

⎣
0 0 2
0 0 0

−2 0 0

⎤

⎦ , [e3, .] =
⎡

⎣
0 2 0
2 0 0
0 0 0

⎤

⎦ .

Let {μi , i = 1 . . . 8} be a basis of the Sp(1)u ×Sp(1)d subrepresentation of (g2)C isomorphic
to PS3Q. The 1-dimensional space Hom(V(0,0,2), (m

∗ ⊗ g2)C) = Span{φ} where φ maps

w1 
→ e4 ⊗ (μ5 − μ2) + e5 ⊗ (μ1 + μ6) + e6 ⊗ (μ4 − μ7) − e7 ⊗ (μ3 + μ8),

w2 
→ e4 ⊗ (μ3 − 2μ8) − e5 ⊗ (μ4 + 2μ7) + e6 ⊗ (μ1 − 2μ6) − e7 ⊗ (μ2 + 2μ5),

w3 
→ −e4 ⊗ (2μ4 + μ7) + e5 ⊗ (μ8 − 2μ3) − e6 ⊗ (2μ2 + μ5) + e7 ⊗ (μ6 − 2μ1).

The connection ∇−1,c
X (φ,w) = −φ([X , w]) for w ∈ sp(1) where the Lie bracket is in the

Lie algebra sp(2) ⊕ sp(1). Thus we can calculate

D−1,c(φ,w1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (φ,w1)(eH) = −

7∑

i=1

ei · φ([ei , w1])

= −(e2 · φ(−2w3) + e3 · φ(2w2))

= −2(e4 ⊗ (μ5−μ2)+e5 ⊗ (μ1+μ6)+e6 ⊗ (μ4−μ7)−e7⊗(μ3+μ8))

= −2φ(w1).

Hence again by translation invariance of∇−1,c, V(0,0,2) ⊆ ker(D−1,c +2id)∩�(m∗ ⊗g2)C.

Case: 2-Hom(V(2,0,0),m
∗
C

⊗ PS3Q)Sp(1)×Sp(1) ⊗ V(2,0,0)
The Sp(2) × Sp(1)-representation V(2,0,0) ∼= sp(2)C ∼= S2P ⊕ S2Q ⊕ PQ. The subspace
of (sp(2))C isomorphic to S2Q, PQ is given by SpanC{e1, e2, e3},SpanC{e4, e5, e6, e7},
respectively. As before the basis of PS3Q ⊂ (g2)C is denoted by {μ1, μ2, . . . , μ8} and the
subspace of (m∗ ⊗g2)C isomorphic to S2Q is given by Span{φ(w1), φ(w2), φ(w3)} defined
above. The subspace of (m∗ ⊗g2)C isomorphic to PQ is given by Span{v1, v2, v3, v4}where

v1 = e1 ⊗ (μ1 + μ6) − e2 ⊗ (μ4 + 2μ7) − e3 ⊗ (2μ3 − μ8),

v2 = e1 ⊗ (μ2 − μ5) − e2 ⊗ (μ3 − 2μ8) + e3 ⊗ (2μ4 + μ7),

v3 = −e1 ⊗ (μ3 + μ8) − e2 ⊗ (μ2 + 2μ5) − e3 ⊗ (2μ1 − μ6),

v4 = −e1 ⊗ (μ4 − μ7) − e2 ⊗ (μ1 − 2μ6) + e3 ⊗ (2μ2 + μ5).
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Let {A1, A2} be a basis of the 2-dimensional space Hom(V(2,0,0), (m
∗ ⊗ g2)C)Sp(1)u×Sp(1)d ,

and let A = c1A1 + c2A2 for some real constants c1, c2, then we have that

A(e1) = c1w1, A(e2) = c1w2, A(e3) = c1w3

A(e4) = −c2v2, A(e5) = c2v1, A(e6) = −c2v4, A(e7) = c2v3

and A1, A2 acts trivially on S2P .
Let s(A,w) ∈ �(m∗ ⊗g2)C be the section corresponding to (A, w) ∈ Hom(V(2,0,0), (m

∗ ⊗
g2)C)Sp(1)×Sp(1) ⊗ sp(2) then ∇−1,c

X (A, w) = −A(ad(X)w) = A([X , w]|) where the Lie
bracket is in the Lie algebra sp(2). Using this action of ∇−1,c we can calculate

(D−1,c(A, e1))(eH) =
7∑

i=1

ei · ∇−1,c
ei (A, e1)(eH) = −

7∑

i=1

ei · A([ei , e1]|)

= −2

3
(−e2 · A(e3) + e3 · A(e2) + e4 · A(e5) − e5 · A(e4)

+ e6 · A(e7) − e7 · A(6))

= −2

3
(c1(−e2 · w3 + e3 · w2) + c2(e4 · v1 − e5 · (−v2)

+ e6 · v3 − e7 · (−v4)))

= 4c1 − 6c2
3

w1 = 4c1 − 6c2
3

A1(e1).

By doing similar computations we get that

(D−1,c(A, fi ))(eH) = 0, i = 1, 2, 3,

(D−1,c(A, ei ))(eH) = 4c1 − 6c2
3

A1(ei ), i = 1, 2, 3,

(D−1,c(A, ei ))(eH) = −20c1 + 6c2
9

A2(ei ), i = 4, 5, 6, 7.

Therefore the subspace of Hom(V(2,0,0), (m
∗ ⊗ g2)C)Sp(1)×Sp(1) in the ker(D−1,c + 2id)

is given by the condition c2 = 5
3c1 and is thus 1-dimensional. Therefore V(2,0,0) occurs in

the ker(D−1,c + 2id) ∩ �(m∗ ⊗ g2)C with multiplicity 1.

Remark 4.5 We can immediately see from above that the only other possible eigenvalue for
which sp(2) is an eigenspace of D−1,c is − 8

3 for c2 = − 2
3c1. This shows that not all spaces

in ker((D−1/3,c)2 − 49
9 id) are in ker(D−1,c + 2id).

4.4.3 SU(3)×SU(2)
SU(2)×U(1)

As before let {ei , i = 1 . . . 7} be an orthonormal basis of m∗ with respect to g. If we define

I =
(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 i
i 0

)
, we have

e1 := 1

3

((
2I 0
0 0

)
,−3I

)
, e2 := 1

3

((
2J 0
0 0

)
,−3J

)
, e3 := 1

3

((
2K 0
0 0

)
,−3K

)
,

e4 :=
√
5

3

⎛

⎝

⎛

⎝
0 0

√
2

0 0 0
−√

2 0 0

⎞

⎠ , 0

⎞

⎠ , e5 :=
√
5

3

⎛

⎝

⎛

⎝
0 0

√
2i

0 0 0√
2i 0 0

⎞

⎠ , 0

⎞

⎠ ,
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e6 :=
√
5

3

⎛

⎝

⎛

⎝
0 0 0
0 0

√
2

0 −√
2 0

⎞

⎠ , 0

⎞

⎠ , e7 :=
√
5

3

⎛

⎝

⎛

⎝
0 0 0
0 0

√
2i

0
√
2i 0

⎞

⎠ , 0

⎞

⎠ .

With respect to this basis the nearly G2 structure ϕ is given by

ϕ = e123 + e145 − e167 + e246 + e257 + e347 − e356.

As an SU(2) × U(1) representation, m∗
C

∼= S2W ⊕ WF(3) ⊕ WF(−3) where

S2W = Span{e1, e2, e3}, WF(3) = Span{e4 − ie5, e6 − ie7},
WF(−3) = Span{e4 + ie5, e6 + ie7}.

From our previous work we know that the characteristic connection has no deformations as
an SU(2) × U(1) connection, so we only have to consider the case E = g2.

As anSU(2)×U(1) representation, (g2)C ∼= S3W (F(3)⊕F(−3))⊕S2W⊕F(6)⊕F(−6).
We have already seen that S2W gives rise to no deformations. From previous calculations
we know that ker((D−1/3,c)2 − 49

9 id) ∩ �(m∗
C

⊗ S3WF(±3)) ∼= V(0,0,2) ⊕ 2V(1,1,0) ∼=
(su(2))C⊕2(su(3))C and�(m∗

C
⊗F(±6))∩ker((D−1/3,c)2− 49

9 id)
∼= V(1,1,0), respectively.

Therefore there are 6 subspaces of �(m∗ ⊗ g2) to consider here.
Case: 1-Hom(V(0,0,2),m

∗
C

⊗ S3WF(3))SU(2)×U(1) ⊗ V(0,0,2)
We denote by {μi , i = 1 . . . 4} a basis of S3WF(3). Let fi , i = 1 . . . 3 be the standard basis
of su(2) such that [ f1, f2] = −2 f3, [ f1, f3] = 2 f2, [ f2, f3] = −2 f1. Then the subspace of
WF(−3) ⊗ S3WF(3) ⊂ (m∗ ⊗ g2)C isomorphic to (su(2))C is given by Span{v1, v2, v3}
where

v1 = 3i

4
(e4 + ie5) ⊗ μ1 + (e6 + ie7) ⊗ (

5i

4
μ2 + μ4),

v2 = (e4 + ie5) ⊗ (−iμ2 + μ4) + (e6 + ie7) ⊗ (−iμ1 − μ3),

v3 = (e4 + ie5) ⊗ (−5i

4
μ1 + μ3) − 3i

4
(e6 + ie7) ⊗ μ2

and the space Hom(V(0,0,2), (m
∗ ⊗ g2)C) = Span{γ A} where γ A is defined by

γ A( f1) = v2, γ A( f2) = i(v1 − v3), γ A( f3) = −2(v1 + v3).

For i = 1, 2, 3, since ei = ( 23 fi ,− fi ) we have [ei , v] = −[ fi , v] for all v ∈ su(2). The
action is trivial for i = 4 . . . 7 since [ei , f j ] /∈ Span{ f1, f2, f3}. We can thus calculate

D−1,c(γ A, f1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (γ A, f1)(eH)

= e2 · γ A(2 f3) − e3 · γ A(2 f2)

= −(4e2 · (v1 + v3) + 2ie3 · (v1 − v3))

= −2v2 = −2 γ A( f1).

Hence Hom(V(0,0,2),m
∗
C

⊗ S3WF(3))|Sp(1)×Sp(1) ⊗ V(0,0,2) ⊆ ker(D−1,c + 2id).
Case: 2-Hom(V(1,1,0),m

∗
C

⊗ S3WF(3))SU(2)×U(1) ⊗ V(1,1,0)
Let a basis of the subspace of V(1,1,0) ∼= (su(3))C isomorphic to S2W ∼= (su(2))C be given
by

p1 :=
(
I 0
0 0

)
, p2 :=

(
J 0
0 0

)
, p3 :=

(
K 0
0 0

)
.

123



358 Annals of Global Analysis and Geometry (2022) 62:329–366

where I , J , K are defined previously. Then [p1, p2] = −2p3, [p1, p3] = 2p2, [p2, p3] =
−2p1. The basis of m∗

C
⊗ S3WF(3) ⊂ m∗

C
⊗ g2 isomorphic to S2W is given by

Span{w1, w2, w3} where

w1 = (e4 + ie5) ⊗ μ2 + iμ3

2
+ (e6 + ie7) ⊗ μ1 − iμ4

2
,

w2 = (e4 + ie5) ⊗ μ4 − 2iμ1

2
+ (e6 + ie7) ⊗ μ3 − 2iμ2

2
,

w3 = −(e4 + ie5) ⊗ μ1 + 2iμ4

2
+ (e6 + ie7) ⊗ μ2 − 2iμ3

2
.

Since (su(3))C = mC ⊕ C, the subspace of (su(3))C isomorphic to WF(3) is given by
SpanC{e4 − ie5, e6 − ie7}. The subspace of S2W ⊗ S3WF(3) ⊂ (m∗ ⊗ g2)C isomorphic to
WF(3) is given by Span{u1, u2} where

u1 = ie1 ⊗ μ2 + iμ3

2
+ e2 ⊗ 2μ1 + iμ4

2
− ie3 ⊗ μ1 + 2iμ4

2
,

u2 = ie1 ⊗ μ1 − iμ4

2
+ e2 ⊗ 2μ2 − iμ3

2
+ ie3 ⊗ μ2 − 2iμ3

2

If we denote the space Hom(V (1,1,0),m∗
C

⊗ S3WF(3)) and Hom(V (1,1,0),m∗
C

⊗ S3WF(3))
by Span{A1}, Span{A2}, respectively, then

A1(pi ) = wi , i = 1, 2, 3,

A2(e4 − ie5) = u1, A2(e6 − ie7) = u2.

Define A = c1A1 + c2A2 for some constants c1, c2. We need to find the conditions on
c1, c2 such that (A, w) ∈ �(m∗ ⊗ S3WF(3)) ∩ ker(D−1,c + 2id) for all w ∈ su(3).

Let s(A,w) be the section corresponding to (A, w). Then for any vector field X ,
∇−1,c
X (A, w) = −A(ad(X)w) = A([X , w]|) where the Lie bracket is in the Lie algebra

su(3). Using this action of ∇−1,c we can calculate

D−1,c(A, p1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (A, p1)(eH)

= −(
2

3
(−e2 · A(2p3) + e3 · A(2p2))e4 · A(−e5) + e5 · A(e4)

+ e6 · A(e7) + e7 · A(e6))

= −2c1
3

(−e2 · w1 + e3 · w2) − c2(−e4 · i u1
2

+ e5 · u1
2

+ e6 · i u2
2

− e7 · u2
2

)

= 4c1 + 3ic2
3

w1 = 4c1 + 3ic2
3

A1(e1).

The operator D−1,c acts trivially on the subspaces of (su(3))C isomorphic to C and
WF(−3). On the remaining subspaces we can compute the action of the Dirac operator as

D−1,c(A, p1)(eH) = 4c1 + 3ic2
3

A1(ei ), i = 1, 2, 3,

D−1,c(A, e4 − ie5)(eH) = 20c1 − 3ic2
9

A2(e4 − ie5),
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D−1,c(A, e6 − ie7)(eH) = 20c1 − 3ic2
9

A2(e6 − ie7).

Thus for any w ∈ (su(3))C, (A, w) ∈ ker(D−1,c + 2id) if and only if c2 = 10i
3 c1. Thus only

one copy of su(3) lies in ker(D−1,c + 2id).
Note that similarly to Remark 4.5 here also for c2 = − 4i

3 c1, (A, w) ∈ ker(D−1,c − 8
3 id).

Case: 3-Hom(V(0,0,2),m
∗
C

⊗ S3WF(−3))Sp(1)×Sp(1) ⊗ V(0,0,2)
Let fi , i = 1 . . . 3 be as before and denote by {νi , i = 1 . . . 4} a basis of S3WF(−3). Then
the subspace of WF(3) ⊗ S3WF(−3) isomorphic to S2W is given by Span{w1, w2, w3}
where

w1 = (e4 − ie5) ⊗ (
−3i

4
ν1) + (e6 − ie7) ⊗ (

−5i

4
ν2 + ν4),

w2 = (e4 − ie5) ⊗ (iν2 + ν4) + (e6 − ie7) ⊗ (iν1 − ν3),

w3 = (e4 − ie5) ⊗ (
5i

4
ν1 + ν3) + (e6 − ie7) ⊗ (

3i

4
ν2)

and the space Hom(V(0,0,2), (m
∗
C ⊗ S3WF(−3))) = Span{γ B} where γ B is defined by

γ B( f1) = i

2
w2, γ B( f2) = 1

2
(w1 − w3), γ B( f3) = −i(w1 + w3).

The action of ei , i = 1 . . . 7 on f j , j = 1 . . . 3 is the same as Case 1, and thus, we can
calculate D−1,c(γ B , f1) as

D−1,c(γ B , f1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (γ B , f1)(eH)

= e2 · γ B(2 f3) − e3 · γ B(2 f2)

= −2ie2 · (w1 + w3) − e3 · (w1 − w3)

= −iw2 = −2 γ B( f1).

This implies V(0,0,2) ⊆ ker(D−1,c + 2id) ∩ �(m∗ ⊗ g2)C.
Case: 4-Hom(V(1,1,0),m

∗
C

⊗ S3WF(−3))SU(2)×U(1) ⊗ V(1,1,0)
As above in Case 2, let a basis of the subspace of (su(3))C isomorphic to S2W ∼= su(2) be
given by Span{p1, p2, p3}. The basis of m∗

C
⊗ S3WF(−3) ⊂ (m∗ ⊗ g2)C isomorphic to

S2W is given by Span{w1, w2, w3} where

w1 = (e4 − ie5) ⊗ ν2 − iν3
2

+ (e6 − ie7) ⊗ ν1 + iν4
2

,

w2 = (e4 − ie5) ⊗ ν4 + 2iν1
2

+ (e6 − ie7) ⊗ ν3 + 2iν2
2

,

w3 = −(e4 − ie5) ⊗ ν1 − 2iν4
2

+ (e6 − ie7) ⊗ ν2 + 2iν3
2

.

The subspace of (su(3))C isomorphic to WF(−3) is given by Span{e4 + ie5, e6 + ie7}.
The subspace of S2W ⊗ S3WF(−3) ⊂ (m∗ ⊗ g2)C isomorphic to WF(−3) is given by
SpanC{u1, u2} where

u1 = −ie1 ⊗ ν2 − iν3
2

+ e2 ⊗ 2ν1 − iν4
2

+ ie3 ⊗ ν1 − 2iν4
2

,

u2 = −ie1 ⊗ ν1 + iν4
2

+ e2 ⊗ 2ν2 + iν3
2

− ie3 ⊗ ν2 + 2iν3
2

.
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Again if we denote the spaces Hom(V (1, 1, 0),m∗
C

⊗ S3WF(−3)) and Hom(V (1,1,0),m∗
C

⊗
S3WF(−3)) by Span{B1}, Span{B2}, respectively, then

B1(pi ) = wi , i = 1, 2, 3,

B2(e4 + ie5) = u1, B2(e6 + ie7) = u2.

Again as before we need to find the conditions on c1, c2 such that (B = c1B1 + c2B2, w) ∈
ker(D−1,c +2id) for all w ∈ (su(3))C. By similar computations as Case 2, we can calculate,

D−1,c(B, p1)(eH) =
7∑

i=1

ei · ∇−1,c
ei (B, p1)(eH)

= −(
2

3
(−e2 · B(2p3) + e3 · B(2p2)) + e4 · B(−e5) + e5 · B(e4)

+ e6 · B(e7) + e7 · B(e6))

= −2c1
3

(−e2 · w1 + e3 · w2) − c2(−e4 · i u1
2

+ e5 · u1
2

+ e6 · i u2
2

− e7 · u2
2

)

= 4c1 − 3ic2
3

w1 = 4c1 − 3ic2
3

B1(e1).

Once can check that D−1,c acts trivially on the subspaces of (su(3))C isomorphic to
C,WF(3) and

D−1,c(A, p1)(eH) = 4c1 − 3ic2
3

B1(ei ), i = 1, 2, 3,

D−1,c(A, e4 + ie5)(eH) = 20c1 + 3ic2
9

B2(e4 + ie5),

D−1,c(A, e6 + ie7)(eH) = 20c1 + 3ic2
9

B2(e6 + ie7).

Thus for all w ∈ (su(3))C, (B, w) ∈ ker(D−1,c + 2id) if and only if c2 = − 10i
3 c1 which

proves that only one copy of su(3) lies in ker(D−1,c+2id) in this case as well. It immediately
follows from the given action that for c2 = 4i

3 c1, (B, w) ∈ ker(D−1,c − 8
3 id).

Case: 5-Hom(V(1,1,0),m
∗
C

⊗ F(6))SU(2)×U(1) ⊗ V(1,1,0)
From before we know that the subspace of (su(3))C isomorphic to WF(3) is given by
Span{e4−ie5, e6−ie7}. if we denote byμ a basis vector for the 1-dimensional representation
F(6), the subspace of m∗

C
⊗ F(6) isomorphic to WF(3) is given by SpanC{(e4 + ie5) ⊗

μ, (e6 + ie7) ⊗ μ}. Let Hom(V(1,1,0),m
∗
C

⊗ F(6)) = Span{α}. We can define α as follows,

α(e4 − ie5) = (e6 + ie7) ⊗ μ, α(e6 − ie7) = −(e4 + ie5) ⊗ μ.

Since V(1,1,0) is isomorphic to the adjoint representation (su(3))C, ∇−1,c
X (α, v)(eH) =

−α([X , v]) where X ∈ m, v ∈ WF(3) ⊂ su(3). Thus we can compute

D−1,c(α, e4 − ie5)(eH) =
7∑

i=1

ei · ∇−1,c
ei (α, e4 − ie5)(eH)

= −(e1 · α(
2i

3
(e4 − ie5)) + e2 · α(

2

3
(e6 − ie7))
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Table 2 . G/H Structure group
H G2

Spin(7)/G2 0 0

SO(5)/SO(3) 0 so(5)

Sp(2) × Sp(1)

Sp(1) × Sp(1)
V (0,1)
R

sp(2) ⊕ sp(1) ⊕ V (0,1)
R

SU(3) × SU(2)

SU(2) × U(1)
0 2su(2) ⊕ 4su(3)

+ e3 · α(
2i

3
(e6 − ie7)))

= −2

3
(ie1 · (e6+ie7) ⊗ μ−e2 ·(e4+ie5)⊗μ−ie3 · (e4+ie5) ⊗ μ)

= −2(e6 + ie7) ⊗ μ = −2α(e4 − ie5).

Therefore Hom(V(1,1,0),m
∗
C

⊗ F(6))SU(2)×U(1) ⊗ V(1,1,0) ⊂ ker(D−1,c + 2id) and thus lies
in the deformation space.
Case: 6-Hom(V(1,1,0),m

∗
C

⊗ F(−6))SU(2)×U(1) ⊗ V(1,1,0)
The subspace of (su(3))C isomorphic to WF(−3) is given by SpanC{e4 + ie5, e6 + ie7}.
We denote F(−6) = Span{ν}. Then m∗

C
⊗ F(−6) isomorphic to WF(−3) is given by

Span{(e4 − ie5) ⊗ ν, (e6 − ie7) ⊗ ν}. Let Hom(V(1,1,0),m
∗
C

⊗ F(−6)) = Span{β} then
β(e4 + ie5) = −(e6 − ie7) ⊗ ν, β(e6 + ie7) = (e4 − ie5) ⊗ ν.

Since V(1,1,0) ∼= (su(3))C, ∇−1,c
X (β, v)(eH) = −β([X , v]) where X ∈ m, v ∈ WF(−3) ⊂

(su(3))C. Thus we can compute

D−1,c(β, e4 + ie5)(eH) =
7∑

i=1

ei · ∇−1,c
ei (β, e4 + ie5)(eH)

= −(e1 · β(
−2i

3
(e4 + ie5)) + e2 · β(

2

3
(e6 + ie7))

+ e3 · β(
−2i

3
(e6 + ie7)))

= −2

3
(ie1 · (e6−ie7) ⊗ ν+e2 · (e4−ie5) ⊗ ν−ie3 · (e4−ie5) ⊗ ν)

= 2(e6 − ie7) ⊗ ν = −2β(e4 + ie5),

which by translation invariance of D−1,c shows that Hom(V(1,1,0),m
∗
C
⊗F(−6))SU(2)×U(1)⊗

V(1,1,0) ⊂ ker(D−1,c + 2id).
As an H -connection the characteristic connection is rigid for three out of the four con-

sidered normal homogeneous spaces. As a G2-connection the deformation space is always
non-trivial infinitesimal except for the round S7. Summing up all the results found above we
get the following theorem.

Theorem 4.6 The infinitesimal deformation space for the characteristic connection on the
four normal homogeneous nearly G2 spaces G/H when the structure group is H or G2 is
isomorphic to

where V (0,1) is the unique 5-dimensional complex irreducible Sp(2)-representation.
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4.5 Integrability of the deformation spaces

We now describe the deformation spaces obtained in Theorem 4.6.
Let M be a nearly G2 manifold. We first observe that for the structure group G2 the

space of non-trivial deformations in Theorem 4.6 is either isomorphic to or contains as a
subrepresentation one or multiple copies of the Lie algebra g of the automorphism group
G. A vector field X on M preserves the G2-structure ϕ if LXϕ = 0. We denote by X the
space of vector fields on M preserving the G2-structure. Since the G2-structure on G/H is
G invariant, the space g is contained in X. Note that if X ∈ X then LXψ = LX g = 0.

The next proposition asserts that if we fix a section ξ ∈ �(g2(T ∗M) ⊗ AdP) ⊂
�(�2T ∗M ⊗ AdP), then for any vector field X ∈ X on M the AdP valued 1-form
εX = iX ξ ∈ �(T ∗M ⊗AdP) defines an infinitesimal deformation of the nearly G2 instanton
A in the sense of (3.1). The proof of the proposition follows verbatim from the proof of [17,
Proposition 9] and is hence omitted.

Proposition 4.7 Let A be an instanton on a principal G-bundle P over a nearlyG2 manifold
M. Let ξ ∈ �(g2(T ∗M)⊗AdP) ⊂ �(�2T ∗M ⊗AdP) such that ∇−1,Aξ = 0. Then for any
X ∈ X, εX = iX ξ ∈ �(T ∗M ⊗ AdP) satisfies the linearized instanton condition

d AεX · η = 0.

The above proposition implies that for each ξ ∈ �(g2(T ∗M)⊗AdP) such that∇−1,Aξ =
0, there is a copy of g in the deformation space of A. Thus the multiplicity of g in the
deformation space is the number of parallel sections of g2(T ∗M) ⊗ AdP. On G/H , when
we see P as a G2-bundle, every parallel section of g2(T ∗M) ⊗ AdP corresponds to an H -
invariant element of the H -representation g2 ⊗ g2 (since AdP ∼= g2) and vice-versa. The
number of linearly independent H -invariant elements of g2 ⊗ g2 is equal to the multiplicity
of the trivial H -representation in g2 ⊗ g2.

For the characteristic connection ∇c on G/H , the curvature F satisfies ∇−1,cF = 0
since Hol(∇c) ⊆ G2 and F ∈ �(g2(T ∗M) ⊗ AdP) since ∇c is a G2 instanton. Hence by
Proposition 4.7 for every X ∈ X, εX = iX F defines an infinitesimal deformation of ∇c.
Using the Bianchi identity and the definition of εX we have that

d AεX = dεX + [A, εX ]
= LX F − iXdF + [A, εX ]
= LX F + iX [A, F] + [A, εX ]
= LX F + [iX A, F].

Since under the action of a gauge transformationφ, the curvature F transforms byφFφ−1,
for all X ∈ X there exists an infinitesimal gauge transformation φX such that

LX F = [φX , F].
Also iX A defines an infinitesimal gauge transformation; hence, [φX + iX A, F] is an action
of an infinitesimal gauge transformation on F . Thus for all X ∈ X the deformations iX F
arise from gauge transformations and hence do not descend to the moduli space.

Thus the multiplicity of g in the deformation space (modulo gauge transformations) of
the characteristic connection on G/H is the number of trivial sub-representations of H in
g2 ⊗ g2 apart from the one that corresponds to F . In all the cases we consider, the trivial
H -representation occurs with multiplicity one in the subrepresentation g2 ⊗ h of g2 ⊗ g2.
The trivial representation coming from g2 ⊗h corresponds to the H -invariant element F . We
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deal with the four normal homogeneous spaces one by one. The notation for the irreducible
H -representations in all the cases is the same as used in Sect. 4.3.

• Spin(7)/G2

Since H = G2, in this case g2 is the irreducible adjoint representation. There is only one
trivial g2-subrepresentation of g2 ⊗ g2 which corresponds to F . Hence g = spin(7) does
not occur in the deformation space as proved in Theorem 4.6.

• SO(5)/SO(3)
In this case, as an so(3) representation, g2 decomposes into two irreducible so(3)-
representations, the adjoint representation S2C2, and the 11-dimensional representation
S10C2. Thus as so(3)-representation

g2 ⊗ g2 = (S2C2 ⊗ S2C2) ⊕ 2(S2C2 ⊗ S10C2) ⊕ (S10C2 ⊗ S10C2).

There are two trivial components occurring in the above decomposition from S2C2 ⊗
S2C2 and S10C2 ⊗ S10C2, respectively, but since the component coming from S2C2 ⊗
S2C2 corresponds to F , up to gauge transformations the deformation space of the char-
acteristic connection on SO(5)/SO(3) contains only one copy of g = so(5) as shown in
Theorem 4.6.

• Sp(2) × Sp(1)/Sp(1) × Sp(1)
As an sp(1) ⊕ sp(1)-representation,

g2 = S2P ⊕ S2Q ⊕ PS3Q.

The trivial sp(1)⊕sp(1) components of g2⊗g2 coming from S2P⊗S2P and S2Q⊗S2Q
correspond to F and thus can be ignored. The only trivial component that corresponds to
an infinitesimal deformationmodulo gauge transformations comes from PS3Q⊗PS3Q;
hence, again g = sp(2) ⊕ sp(1) appears with multiplicity 1 as in Theorem 4.6.

• SU(3) × SU(2)/SU(2) × U(1)
The decomposition of g2 as an su(2) ⊕ u(1)-representation is given by

g2 = S2W ⊕ C ⊕ S3WF(3) ⊕ S3WF(−3) ⊕ F(6) ⊕ F(−6).

The first two components in the above decomposition correspond to h; hence, the only
trivial su(2) ⊕ u(1)-subrepresentations of g2 ⊗ g2 that correspond to non-trivial defor-
mations come from the spaces S2WF(3) ⊗ S2WF(−3) and F(6) ⊗ F(−6). Hence as
proved in Theorem 4.6 the space g = su(3) ⊕ su(2) occurs in the deformation space
with multiplicity 2.
The only deformation spaces left to be considered in Table 2 are the Sp(2)-representation
VR

(0,1) for the squashed 7-sphere and 2 copies of the SU(3)-representation su(3) on the
Aloff–Wallach space SU(3) × SU(2)/SU(2) × U(1).

On the squashed 7-sphere the characteristic connection splits into two connections with
Hol = Sp(1)u and Sp(1)d, respectively. From Sect. 4.3 the deformations only come from
the Sp(1)u part which is the pullback of the standard instanton on S4. If we view S4 as
the symmetric homogeneous space Sp(2)×Sp(1)

Sp(1)a×Sp(1)b×Sp(1)c
and denote by P, Q, R ∼= C

2 the
irreducible representation of the three Sp(1) factors, respectively, we have the orthogonal
decomposition

sp(2) ⊕ sp(1) = sp(1)a ⊕ sp(1)b ⊕ sp(1)c ⊕ n.

As an sp(1)a ⊕ sp(1)b ⊕ sp(1)c-representation

n ∼= PQ.
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The squashed sphere becomes a bundle over S4 by reducing to the subgroup Sp(1)2 corre-
sponding to the identification Q = R, so the factor Sp(1)d acts diagonally. The complexified
tangent space of Sp(2)×Sp(1)

Sp(1)u×Sp(1)d
is then

m ∼= S2Q + PQ.

The standard instanton on S4 is the unique Sp(2)-invariant ASD connection on S4 with charge
1. As a bundle over S4, the Levi-Civita connection induces the standard instanton on P . It
is also the homogeneous connection on the Spin(4) = Sp(1)2 bundle over S4 obtained by
left-translating the subspace n in sp(2) ⊕ sp(1) = 3sp(1) ⊕ n by Sp(2) × Sp(1). Thus the
horizontal distribution corresponding to the standard instanton is n.

On the other hand the characteristic connection on the squashed 7-sphere is the character-
istic homogeneous connection defined by the horizontal distributionm in the decomposition
sp(2) ⊕ sp(1) = 2sp(1) ⊕ m = 2sp(1) ⊕ (S2Q ⊕ n). The characteristic connection on
squashed 7-sphere reduces to Sp(1)2 and preserves the horizontal distribution D defined by
n which is stable under both Ad(Sp(1)3) and Ad(Sp(1)2).

If we consider the map

p : S7 = Sp(2) × Sp(1)

Sp(1)u × Sp(1)d
→ S4 = Sp(2) × Sp(1)

Sp(1)a × Sp(1)b × Sp(1)c

then the connection induced on D is the pullback of the homogeneous connection defined
by n on T

(
S4
)
via p.

Let M be the moduli space of charge-1 instantons on S4 with structure group SU(2).
Then, there is a diffeomorphism from M to B5 ⊂ R

5 which to an instanton associates
its center. The standard instanton on S4 is the charge-1 instanton that corresponds to the
center of the ball, that is to 0 ∈ B5, and is the unique homogeneous charge-1 instanton.
As the name suggests, the homogeneous charge-1 instanton is invariant with respect to the
Sp(2)-action. The pullback of the homogeneous charge-1 instanton to the squashed S7 is a
G2-instanton (see [14, 19]). As shown in [8] the moduli space of the standard instanton on
S4 can be identified as a topological space and as a differentiable manifold with R

+ × H

(see [21, sec 4.1]). As shown above the Sp(1) part of the characteristic connection on the
squashed 7-sphere is the pullback of the standard instanton; hence, the deformation space of
the characteristic connection on the squashed 7-sphere must contain the deformation space of
the standard ASD instanton on S4 and thus be at least 5-dimensional. From Table 2, we know
that the moduli space of the deformations of the characteristic connection on the squashed
7-sphere is exactly 5-dimensional and hence we get the following Corollary.

Theorem 4.8 The deformations of the characteristic connection on the squashed 7-sphere
are lifts of the deformations of the standard ASD connection on S4 and are thus integrable.

As of the deformation subspace isomorphic to 2su(3) of the characteristic connection on
SU(3) × SU(2)/SU(2) × U(1) with structure group G2, the author is unaware of any such
explicit description. It would be interesting to see whether these deformations are genuine.
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