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Abstract

Given smooth manifolds My, ..., M, (which may have a boundary or corners), a smooth

manifold N modeled on locally convex spaces and o € (Ng U {00})", we consider the set
C*(M; x -+ x My, N) of all mappings f: Mj x --- x M, — N which are C“ in the
sense of Alzaareer. Such mappings admit, simultaneously, continuous iterated directional
derivatives of orders < o in the jth variable for j € {1, ..., n}, in local charts. We show
that C¥(M| x --- x M,, N) admits a canonical smooth manifold structure whenever each
M is compact and N admits a local addition. The case of non-compact domains is also
considered.

Keywords Infinite-dimensional manifold - Infinite-dimensional Lie group - Compact-open
topology - Exponential law - Evaluation map - Mapping group - Regularity - Box product -
Non-compact manifold
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1 Introduction and statement of the results

As known from classical work by Eells [9], the set C¢(M, N) of all C¢-maps f: M — N
can be given a smooth Banach manifold structure for each £ € Ny, compact smooth mani-
fold M and o -compact finite-dimensional smooth manifold N. More generally, C*(M, N) is
asmooth manifold for each £ € NyU{oo}, locally compact, paracompact smooth manifold M
with rough boundary in the sense of [15] (this includes finite-dimensional manifolds with
boundary, and manifolds with corners as in [7,8,21]) and each smooth manifold N modeled
on locally convex spaces such that N admits a local addition (a concept recalled in Defini-
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tion 5.6); see [4,14,16,21,22,25] for discussions in different levels of generality, and [20] for
manifolds of smooth maps in the convenient setting of analysis. For compact M, the model-
ing space of C*(M, N) around f € C*(M, N) is the locally convex space Cee(f*(TN)) of
all C*-sections in the pullback bundle f*(TN) — M, which can be identified with

Ipi={teC'(M,TN): iry ot = f};

if M is not compact, the locally convex space of compactly supported C¢-sections of f*(T N)
is used. Let L be a smooth manifold modeled on locally convex spaces (possibly with rough
boundary), and £ € Ny U {oo}. For compact M, it is known from [4, Proposition 1.23 and
Definition 1.17] that a map

g:L— CY(M,N)
is C¥ if and only if the corresponding map of two variables,
g LxM— N, (x,y) > gx)()

is C*¢ in the sense of [3], i.e., a continuous map which in local charts admits up to ¢
directional derivatives in the second variable, followed by up to k directional derivatives in
the first variable, with continuous dependence on point and directions (see 2.11 and 2.12 for
details). We thus obtain a bijection

®: CX(L,C*(M,N)) - CH(L x M, N), g g".

As our firstresult, for compact L we construct a smooth manifold structure on C k.t (LxM,N)
which turns @ into a C*°-diffeomorphism. More generally, analogous to the n = 2 case of
C**-maps, we consider N-valued C®-maps on an n-fold product M| x - -- x M, of smooth
manifolds forany n € Nand o = (¢, ..., a,) € (NgU {oco})". With terminology explained
presently, we get:

Theorem 1.1 Given a = (ay,...,a,) € (Ng U {o0})"?, let M; for j € {1,...,n} be a
compact smooth manifold with rough boundary. Let N be a smooth manifold modeled on
locally convex spaces such that N can be covered by local additions. Then, the set C* (M7 x
-+« X My, N) admits a smooth manifold structure which is canonical. The following hold for
this canonical manifold structure:

(@) C*(My x --- x My, N) can be covered by local additions. If N admits a local addition,
then also C* (M x --- x M, N) admits a local addition.

(b) Givenm € Nand B = (B1,...,Bm) € (No U {oo})™, let L; be a compact smooth
manifold with rough boundary for j € {1, ..., m}. Then, canonical smooth manifold
structures turn the bijection

CP(Ly x -+ X Ly, C*(Mj X ---x My, N))
— CPOLy X oo X Ly x My X -+ X My, N)

taking g to g” into a C*°-diffeomorphism.

The following terminology was used: We say that a smooth manifold N can be covered
by local additions if N is the union of an upward directed family (NV;);cs of open sub-
manifolds N; which admit a local addition. For instance, any (not necessarily paracompact)
finite-dimensional smooth manifold has this property, e.g., the long line. We also used canon-
ical manifold structures.
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Note that if amap f: Ly X --- X L, Xx M} X --- Xx M, — N on a product of smooth
manifolds with rough boundary is CP2 with o € (Ny U {oo})" and B € (Ny U {oo})™, then
the map
V@) = fx,): My x---xM, - N

is C* foreach x € L{ x - -+ x L,, (see [1, Lemma 3.3]).

Definition 1.2 Let N be a smooth manifold modeled on a locally convex space, My, ..., M,
be finite-dimensional smooth manifolds with rough boundary and ¢ € Ny U {oo})". A
smooth manifold structure on C*(M x - - - x M,, N) is called pre-canonical if the following

condition is satisfied for each m € N and each 8 € (No U {oo})": If L; for j € {1, ..., m}
is a smooth manifold with rough boundary modeled on locally convex spaces, then a map

gLy x---xLy— C*(M; x---xM,,N)
is CP if and only if the map

g Ly XX LyxM x---xM,—> N
given by g (X1, .., X, Vs oo os V) 1= 8(X15 - s X)) V1, - .., Yu) is CP2. Thus,

C*(Ly X -+ X Ly, CP(My x -+ x My, N))
> CPYL X XLy x My x--x My, N), g—g" (1)

is a bijection. The manifold structure is called canonical if, moreover, its underlying topology
is the compact-open C“-topology (as in Definition 3.4).

Canonical manifold structures are essentially unique whenever they exist, and so are pre-
canonical ones (see Lemma 4.3 (b) for details).
We address two further topics for not necessarily compact domains:

(i) We formulate criteria ensuring that C*(M7 X --- X M,, G) admits a canonical smooth
manifold structure (making the latter a Lie group), for a Lie group G modeled on a locally
convex space;

(i) Manifold structures on C*(M; X - -- x M,, N) which are modeled on certain spaces of
compactly supported 7 N-valued functions, in the spirit of [21].

To discuss (i), we use a generalization of the regularity concept introduced by John Milnor
[22] (the case r = oo). If G is a Lie group modeled on a locally convex space, with neutral
element e, we write Ag: G — G, x +— gx for left translation with ¢ € G and consider the
smooth left action

GxTG—TG, (g,v)— gv:=Trg(v)

of G on its tangent bundle. We write g := T, G for the Lie algebra of G. Let r € Ny U {o0}.
The Lie group G is called C"-semiregular if, for each C”"-curve y : [0, 1] — g, the initial
value problem

N =n@).y@, n0) =e

has a (necessarily unique) solution 7: [0, 1] — G. Write Evol(y) := n. If, moreover, the
map

Evol: C'([0, 1], g) — C"t1([0, 1], G)

is smooth, then G is called C”-regular (cf. [12]). If s < r and G is C*-regular, then G is
C”-regular (see [12]). We show:
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Theorem 1.3 Let G be a C"-regular Lie group modeled on a locally convex space with
r € Ng U {oo}. For some n € N, let My, ..., My be locally compact smooth manifolds with
rough boundary and a € (NoU {o0})". For each j €{L,...,n}suchthat M; is not compact,
assume thataj > r + 1 and M is 1-dimensional with ﬁmtely many connecled components.
Then, we have:

(a) C*(M; X --- x My, G) admits a canonical smooth manifold structure;
(b) The canonical manifold structure from (a) makes C*(My X - -- X My, G) a C"-regular
Lie group.

The Lie algebra of C*(M; x - - - x M,,, G) can be identified with the topological Lie algebra
C*(My x --- x My, L(G)) in a standard way (Proposition 6.6). Of course, we are most
interested in the case that the non-compact 1-dimensional factors are o -compact and hence
intervals, or finite disjoint unions of such. But we did not need to assume o -compactness in
the theorem, and thus M; with &; > r + 1 might well be a long line, or a long ray.
Disregarding the issue of being canonical, the Lie group structure on
C®M x -+ xM,;,G) = C*(M; x---x M,,G) witha := -+ := a, = 00 was
first obtained in [24], for smooth manifolds M; without boundary which are compact or
diffeomorphic to R. The Lie group structure for n = 1 was first obtained in [2] for domains
diffeomorphic to intervals, together with a sketch for the case n = 2 (assuming additional
conditions, e.g., @1 > r +3and oy > r + 1 if M| = M, = R). Our approach differs: While
the studies in [24] and [2] assume regularity of G from the start to enforce exponential laws,
and build it into a notion of Lie group structures on mapping groups that are “compatible
with evaluations,” we take canonical and pre-canonical manifold structures as the starting
point (independent of regularity) and combine them with regularity or compatibility with
evaluations (adapted to C“-maps in Definition 6.2) only when needed.

As to topic (b), our constructions show:

Theorem 1.4 Given a = (ay,...,a,) € (Nog U {o0})"?, let M for j € {1,...,n} be a
paracompact, locally compact smooth manifold with rough boundary,; abbreviate M =
My x --- x M,. Let N be a smooth manifold modeled on locally convex spaces such that N
admits a local addition. Let wpy : TN — N be the canonical map. For f € C*(M, N) and
a compact subset K € M, the set

ik ={teC*M,TN): iy o1 = f&T(x) =0 € Tpx)N forallx € M\ K}

is a vector subspace of [ [.cys TN, and a locally convex space in the topology induced by
C*(M,TN).Givel'y = g Ty, k the locally convex direct limit topology. Then, C* (M, N)
admits a unique smooth manifold structure modeled on the set £ := {I'y: f € C*(M, N)}
of locally convex spaces such that, for each f € C*(M, N) and local addition ¥: TN 2
U — N of N, the map

ryNC*M,U) — C*(M,N), T+ Zort
is a C*®-diffeomorphism onto an open subset of C*(M, N).

In the case that n = 1, k = oo and M := M is a smooth manifold with corners, we recover
the smooth manifold structure on C*° (M, N) discussed by Michor [21].

Using manifold structures on infinite Cartesian products of manifolds making them “fine box
products” (a concept recalled in Sect. 7), Theorem 1.4 turns into a corollary to Theorem 1.1.
In the case n = 1, for compact M and £ € Ny U {oo}, canonical manifold structures on
ct (M, N) as in Theorem 1.1 have already been considered in [4], in a weaker sense (fixing
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m = 1 in Definition 1.2). Parts of our discussion adapt arguments from [4] to the more
difficult case of C*-maps.

2 Preliminaries and notation

We write N := {1,2,...} and Ny := NU {0}. If o, B € (Ng U {o0})" with n € N, we write
a<Bifa; < Bjforall j € {1,...,n}. Welet |a| :==aj +---+a, € NgU{co}. As usual,
00 + k := oo forall k € Ng U {oo}. For j € {1,...,n},lete; :=(0,...,0,1,0,...,0) €
(Np)" with 1 in the jth slot. We abbreviate “Hausdorff locally convex topological R-vector
space” as “locally convex space.” We work in the setting of differential calculus going back
to Andrée Bastiani [5] (see [10,15,16,21-23] for discussions in varying generality), also
known as Keller’s Cf-theory [19]. For C*-maps, see [1] (cf. [3] and [15] for the case of two
variables, & € (Ng U {o0})?). We now introduce concepts for later use and collect basic facts.
For proofs, see “Appendix”.

2.1 Consider locally convex spaces E, FFand amap f: U — F onanopensubsetU C E.
Write

d
(D)) = | fla+iy)

for the directional derivative of f atx € U inthedirectiony € E,ifitexists. Letk € NoU{oo}.
If f is continuous, the iterated directional derivatives

d' f(x.y1,....y)) = (Dy, ... Dy f)(x)

exist for all j € No such that j < k,x € U and yy,...,y; € E, and the maps dlf: U x
E/ — F are continuous, then fiscalled C k1fu may not be open, but has dense interior U”
and is locally convex in the sense that each x € U has a convex neighborhood in U, following
[15] amap f: U — F is called Ck if it is continuous, flue is C* and dj(fluo) has a
continuous extension d’/ f: U x E/ — F forall j € Ng with j < k. The C*°-maps are also
called smooth.

Remark 2.2 1f E = R" and U is relatively open in [0, oo[", then f as above is C¥ if and only
f hasa C*-extension to an open set in R" (see [13], cf. [17]).

23 Let k € N U {oo}. A manifold with rough boundary modeled on a non-empty set
& of locally convex spaces is a Hausdorff topological space M, together with a set A of
homeomorphisms (“charts”) ¢: Uy — V, from an open subset Uy € M onto a locally
convex subset Vy C E, with dense interior for some Eg € &£, such that ¢ o 1//_1 is C* for all
¢, ¥ € A, the union U¢E 4 Up equals M, and A is maximal. If kK = 0, assume in addition
that ¢ (x) € 9V if and only if ¥ (x) € 9V, for all ¢, ¥ € A withx € Uy N Uy (Which is
automatic if k > 1). Let 0 M be the set of all x € M such that ¢ (x) € 3V, for some (and
hence any) chart ¢ around x. If £ is a singleton, M is called pure. If M is a C k_manifold
with rough boundary and 9 M = @, then M is called a C*-manifold or a C*-manifold without
boundary, for emphasis. (See [15] for all of this in the pure case; cf. [4] for modifications in
the general case).

2.4 All manifolds and Lie groups considered in the article are modeled on locally convex
spaces which may be infinite-dimensional, unless the contrary is stated. Finite-dimensional
manifolds need not be paracompact or o -compact, unless stated explicitly. As we are inter-
ested in manifolds of mappings, consideration of pure manifolds would not be sufficient.
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2.5 If U is an open subset of a locally convex space E (or a locally convex subset with dense
interior), we identify its tangent bundle 77U with U x E, as usual, with bundle projection
(x,y) = x.If M is a CK-manifold with rough boundary and f: M — U a C¥-map with
k > 1, we write df for the second component of Tf: TM — TU = U x E. Thus,
Tf = (f omrm,df), using the bundle projection 77y : TM — M.

2.6 If G is a Lie group with neutral element ¢, we write L(G) := T,G (or g) for its tangent
space at e, endowed with its natural topological Lie algebra structure. If : G — H is a
smooth homomorphism between Lie groups, we let L(v) := T,¢: L(G) — L(H) be the
associated continuous Lie algebra homomorphism.

2.7 If G is a Lie group with Lie algebra g and / a non-degenerate interval with 0 € I, we
define 8¢(n) for n € C' (I, G) via 8* () (¢) := n()~.7(), with 7(r) := Ty, 1).

Lemma2.8 Letk,r € NoU {oo} withk > r. If G is C"-semiregular and y € C¥(I, g), then
there exists a unique n € cla, @) such that n(0) = e and 8t (n) = y. Moreover, 1 is ck+l,

2.9 Let M be a smooth manifold (without boundary). A subset N C M is called a subman-
ifold if, for each x € N, there exist a chart ¢: Uy — V C Ey of M around x and a closed
vector subspace I' € Ey such that (Ugs "N N) = Vy N F.

2.10 Let M be a smooth manifold with rough boundary. A subset N € M is called a full
submanifold if, for each x € N, there exists achart ¢: Uy — Vy C Ey of M around x such
that ¢ (Ug N N) is a locally convex subset of Ey with dense interior.

211 Let F and Ey, ..., E, be locally convex spaces, U; C E; be an open subset for j €
{1,...,n}and f: U - FbeamaponU := U x---x Uy,. Identifying £ := E1 x--- X E,
with E1 @ - -- @ Ej, we can identify each E; with a vector subspace of E, and simply write
D, f (x) for a directional derivative with x € U, y € E; (rather than D,... 0,y,0,...,0) f (x)
with j—1 zeros on the left and n — j zeros on the right-hand side). Fory = (y1, ..., yx) € E’;,
abbreviate

Dy =Dy, ...D,,.

Let « € (Ng U {oo})". Following [1], we say that f is C“ if f is continuous, the iterated
directional derivatives

dPf(x, v, yn) 1= (Dy, - Dy, fH(x)

exist for all B € Nj with 8 < o, x € U and y; = Uyt 258 € (Ej)ﬂi for j €
{1,...,n},and

dﬁf:UxE{hx-anf"—)F

is continuous. If U; may not be open but is a locally convex subset of E; with dense interior,
we say that f: U — F is C* if f is continuous, f|ye is C* and dP (f|ye) has a continuous
extension d? f: U x E’f' x - x EP" — Fforall B € (Ng)" such that § < a.

212 Let My, ..., M, be C*-manifolds with rough boundary, @ € (Ny U {0c0})"” and N be
a CK-manifold with k > |a|. We say thatamap f: M| X --- x M, — N is C® if, for each
X = (x1,...,X;,) € M X --- x My, there are charts ¢;: U; — V; for M; around x; for
je{l,...,n}andacharty: Uy — Vy fornaround f(x)suchthat f(U; x---xU,) C Uy
and

1/fofo(¢1x~~~x¢n)_1:V1><~~~an—>V¢
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is C*. The latter then holds for any such charts, by the chain rule for C*-maps (as in [1,
Lemma 3.16]).

2.13 Let N and M, ..., M, be C°°-manifolds with rough boundary, o be a permutation of
{1,....,n},and o € (Ng U {oo})". If f: My(1y X -+ X My — N is C¥°9, then the map

My x---xM, — N, (xl;uwxn)'_)f(x(r(])w-o,xrf(n))

is C¥. This follows from Schwarz’ Theorem (in the form of [1, Proposition 3.5]).
We shall use simple facts:

Lemma2.14 Let E; for j € {1, ...,n} and F be locally convex spaces, and U; C E; be a
locally convex subset with dense interior. Let E == E1 X --- X E,, U := U; x --- x Uy,
a e NoU{ocoh)" and f: U — F be a map.

(a) If Y C F is a closed vector subspace and f(U) C Y, then f is C* if and only if its
co-restriction f|¥: U — Y is C°.

(b) If F is the projective limit of a projective system ((Fg)aca, (Aa,p)a<p) Of locally convex
spaces F, and continuous linear maps Aq p: Fp — Fy, with limit maps L,: F — Fy,
then f is C* ifand only if \y o f: U — F, is C* forall a € A.

Lemma2.15 Let M, N, and Ly, ..., L, be smooth manifolds with rough boundary, F be a
locally convex space, ¥ : M — F x N be a C*°-diffeomorphism,and f: L1 X---XL, - M
be a map. Assume that F is the projective limit of a projective system ((Fg)aca, (Aa.b)a<b) Of
locally convex spaces F, and continuous linear mappings ,q p: Fp — F4, with limit maps
Mot F — F,. Fora € A, let M, be a smooth manifold and p,: M — M, be a C*°-map.
Assume that there exist C°-maps Vo : M, — F, x N making the diagram
ML FxN
Pa 4 A X idy

M, % F x N

commute. Then, f is C* if and only if p, o f is C¥ forall a € A.

216 If @ = (ay,...,ay) € (NgU {oo})" and B = (B1, ..., Bm) € (Ng U {oo}™, we
shall write («, B) as a shorthand for (a1, . .., &, Bi, - . ., Bm) and abbreviate C @A) ag C*%B.
Likewise for higher numbers of multiindices.

Letr € No U {o0}, Ey, ..., E, and F be locally convex spaces and U; be a locally convex
subset of E; with dense interior, for j € {1, ..., n}. We mention thatamap f: U; x --- x
U, — F is C" if and only if it is C# for all B € (Ng U {oo})" such that || < r. More
generally, the following is known (as first formulated and proved in the unpublished work
[18]):

Lemma2.17 Fori € {1,...,n}, let E; be a locally convex space of the form E; = E; 1 x
<+ X Ej y; for somem; € N and locally convex spaces E; 1, ..., E; ;. Let U; ; be alocally
convex subset of E; j with dense interior foralli € {1,...,n}and j € {1, ..., m;}; define

Ui =Uj1 x - xUm.Lata € NogU{oco))". Then,amap f: Uy x ---x U, — FisC%

such that |B;| < «; foralli € {1, ..., n}.
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3 The compact-open C?-topology

As a further preliminary, we introduce a topology on C* (M X - - - x M,, N) which parallels
the familiar compact-open C*-topology on C¥(M, N). Basic properties are recorded, with
proofs in “Appendix A”.

Asusual, TOM := M, T'M := TM and T*M = T(Tk_lM) for a smooth manifold M
with rough boundary and integers k > 2 (see [15]).

3.1 In 3.2-3.10, My, ..., M, will be smooth manifolds with rough boundary, and M :=
My x --- x M,. In 3.3-3.9, we let N be a smooth manifold with rough boundary and
a € (Ng U {oo])".

3.2 We define the B-tangent bundle of M as TPM := TPiM| x --- x TP M, for g =
(B, ---» Bn) € No)".

33 Let f: M — N beaC%map.For 8= (f1,..., B, € (Ng)" with 8 < «, we define
TP f:1PM — TPIN
recursively, as follows: We first note that, by Lemma A.1,
TO0P) oMy - x My—y x TP M, — TPiN,

(X1, ey X1, 0p) > Thn (fx1y vy xp—1, ) (vy) is a c@i- O‘"*l’o)—map. If a
Cc@iss Otkfl,O,...-O)_map g = 70,0, B ,Bn)f: 7O, 08B pp — THA+Bi N has
already been constructed for k € {2, ..., n}, then the map

PO 0Bitobr) o OO ficto) gy, Thict bbby

taking (X1, ..., Xk—2, Vk—1, ---» V) to0 TP (g(xr, .oy Xk, - Uk, oo, Up)) (Uk—1) s @
Cc@- "‘k*Z'O""’O)-map (see Lemmas 2.13 and A.1).

Definition 3.4 The compact-open C%-topology on C*(M, N) is the initial topology with
respect to the mappings

TP c*M,N) - C(T?M, TPIN), s TPf
for B € (Np)" with 8 < «, using the compact-open topology on C(T# M, TIFIN).
Pushforwards and pullbacks are continuous.

Lemma 3.5 Using compact-open C*-topologies, we have:

(a) If L is a smooth manifold with rough boundary and g: N — L a smooth map, then the
following map is continuous:

g« =C*(M,g): C*(M,N) - C*(M, L), fr>gof.

(b) Let L be a smooth manifold with rough boundary for j € {1, ...,n}andg;: L; — M;
be a smooth map. Abbreviate L := L| X --+- X L, and g := g1 X --- X gn. Then, the
following map is continuous:

g"=C%g,N): C*(M,N) - C*(L,N), fr fog.
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Remark 3.6 1f L; is a full submanifold of M; for j € {1, ..., m}, then the inclusion map
gj: Lj — M;j, x — x is smooth. By Lemma 3.5 (b), the map

p:=C%g1 X xguN): C*(M,N) — C*(L, N)
is continuous, which is the restriction map C*(M, N) — C*(L, N), f — f]r-

Lemma3.7 Let (K;)ics be a family of subsets K; C M whose interiors K? cover M, such
that K; = K; 1 x --- x K; , for certain full submanifolds K; j € M; for j € {1,...,n}.
Then, the compact-open C*-topology on C* (M, N) is initial with respect to the restriction
maps C*(M, N) — C*(K;, N) fori € I.

Lemma3.8 For j € {1,...,n}, let S; be a full submanifold of M. Abbreviate S := S x
-+ X S,. Then, TS is a full submanifold of TP M forall B € (Np)", and the smooth manifold
structure on TP S as the B-tangent bundle of S coincides with the smooth manifold structure
as a full submanifold of TP M. Analogous conclusions (with submanifolds in place of full
submanifolds) hold if M ; = () forall j € {1,...,n}and S; C M; is a submanifold.

Lemma 3.9 IfS is a full submanifold of N or 9N = hand S C N is a submanifold, then the
compact-open C*-topology on C*(M, S) coincides with the topology on C*(M, S) induced
by C*(M, N).

Lemma 3.10 If F is a locally convex space, then C*(M, F) is a vector subspace of F™ . The
compact-open C*-topology makes C*(M, F) a locally convex space.

Lemma 3.11 Let My, ..., M,, be smooth manifolds with rough boundary, M := M| X - - - X
M, and a € (Noy U {oo})".

(a) If F is a locally convex space whose topology is initial with respect to a family (A;)ier
of linear mappings Aj: F — F; to locally convex spaces F;, then the compact-open
C%-topology on C*(M, F) is initial with respect to the (A;)s: C*(M, F) — C*(M, F;)
foriel.i.

(b) If F is a locally convex space and F = [];c; Fi for a family (F})icr of locally
convex spaces, let pr;: F — [F; be the projection onto the ith component and
(pry)s: C*(M, F) — C*(M, F;). Then,

© = ((pr)wdics: C*(M, F) — [ [ C*(M, Fy)
iel
is an isomorphism of topological vector spaces.

(c) Assume that all of My, ..., M, are locally compact. Let N; be a smooth manifold with
rough boundary for i € {1,2} and pr;: N1 x Ny — N; be the projection onto the
ith component. Using the compact-open C*-topology on sets of C*-maps, we get a
homeomorphism

W= ((pry)x, (pry)«): C*(M, N1 x N) — C*(M, Ny) x C*(M, N»).
Using the multiplication R x TN — TN, (¢, v) > tv with scalars, we have:

Lemma3.12 Let My, ..., M, be locally compact smooth manifolds with rough boundary,
M :=M; x---xXM,, a € (NgU{oco})", and N be a smooth manifold with rough boundary.
Then, the map

w: C*M,Ry x C*(M, TN) — C*(M, TN)
determined by u(f, g)(x) := f(x)g(x) is continuous.
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In [1], exponential laws were provided for function spaces on products of pure manifolds.
The one we need remains valid for manifolds which need not be pure:

Lemma3.13 Let Ny, ..., Ny, and My, ..., M, be smooth manifolds with rough boundary
(none of which needs to be pure). Let « € (Ng U {oo})™, B € (Ng U {co})" and E be a
locally convex space. Abbreviate N :== Ny X --- X Ny, and M := My x --- x M,. For
f € C*A(N x M, E), we then have f, := f(x,-) € CB(M, E) for each x € N and the
map f¥: N — CB(M, E), x — fy is C*. The map

®: C*F(N x M, E) - C*(N,CP(M,E)), frs fY

is linear and a homeomorphism onto its image. If M j is locally compact forall j € {1, ..., n},
then ® is a homeomorphism. The inverse map ®~" sends g € C*(N, CP(M, E)) to the map
g" defined via g (x, y) 1= g(x)(y).

The next lemma describes the C“-topology on C* (U, F) more explicitly. It will not be
used here. The proof, which parallels the C k_case in [15, Lemma 4.1.12], can be found in
the preprint version of this article, arXiv:2109.01804.

Lemma 3.14 Let E; be a locally convex space for j € {1, ... ,n}and U; C E; be a locally
convex subset with dense interior. Let F be a locally convex space, « € (Ng U {oo})", and
U := Uy x --- x Uy. Then, the compact-open C*-topology on C*(U, F) is initial with
respect to the maps

dP: C(U,F) - C(U x E' x ... x EPr F), fisdPf

for B € (No)" with B < «, using the compact-open topology on the ranges.

4 (Pre-)Canonical manifold structures

In this section, we establish basic properties of canonical manifolds of mappings, and pre-
canonical ones. We begin with examples.

Example 4.1 Letn € Nand @ € (Ng U {oco})".

(a) Let My, ..., M, be locally compact smooth manifolds with rough boundary and E a
locally convex space. Then, C*(M; x --- x My, E) is a canonical manifold due to
Lemma 3.13. The same holds for C¥(M; x --- x M,, N) if N is a smooth manifold
diffeomorphic to £, endowed with the C°°-manifold structure making ¢, : C*(M, N) —
C*(M, E) a diffeomorphism, where ¢: E — N is a C*°-diffeomorphism.

(b) Familiar examples of mapping groups turn out to be canonical, notably loop groups
C*(S', G) for G a Lie group, and certain Lie groups of the form CK(R, G) discussed in
[2,24]. We extend these constructions in Sect. 6.

We will now establish general properties of canonical manifolds.

4.2 Conventions We denote by «, § multiindices in (Ng U {oc})” for some n € N. Likewise
we will usually adopt the shorthand M:=M; x M, x --- x M, where the M, are locally
compact manifolds (possibly with rough boundary). If M is the domain of definition of the
function space C*(M, N) we will assume that the number of entries of the multiindex «
coincides with the number of factors in the product M.
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Lemma4.3 IfC“(M, N) is endowed with a pre-canonical manifold structure, then the fol-
lowing holds:

(a) The evaluation map ev: C*(M,N) x M — N, ev(y, x) := y(x) is C>“,

(b) Pre-canonical manifold structures are unique in the following sense: If we write C%
(M,N) for C¥*(M,N) with another pre-canonical manifold structure, then id:
C*(M,N) - C*(M,N), y — y is a C*®-diffeomorphism.

(c) Let S € N be a submanifold such that the set C*(M, S) is a submanifold of C*(M, N).
Then, the submanifold structure on C*(M, S) is pre-canonical.

Proof (a) Since id: C¥(M,N) — C*(M,N) is C* and C*(M, N) is endowed with a
pre-canonical manifold structure, it follows that id": C*(M, N) x M — N, (y, x) —
d(y)(x) =y (x) =ev(y,x)is C*7

(b) Themap f :=id: C¥*(M, N) — C*(M, N) satisfies f" = evwhereev: C¥(M, N) x
M — N is C°%, by (a). Since C*(M.N)’ is endowed with a pre-canonical manifold
structure, it follows that f is C*. By the same reasoning, f~' = id: C*(M, N)' —
C*(M,N)is C*.

(¢) As C*(M, S) is a submanifold of C*(M, N), the inclusion¢: C*(M, S) — C*(M, N)
is C*. Likewise, the inclusion map j: § - NisC®. Let L = L; x --- x Ly be a
product of smooth manifolds (possibly with rough boundary) modeled on locally convex
spaces and f: L — C%(M, S) be a map. If f is C#, then ¢ o f is CP, entailing that
(Lo YN LxM — N, (x,y) = f(x)(y)is CPe Asthe image of this map is contained
in S, which is a submanifold of N, we deduce that f* = (1o f)*|S is CP*. For the
converse, assume that f: Lx M — Sis C#% Thenalso, (to )" = jo(f): LxM —
NisCP® Hence,iof: L — C%(M, N)is C# (the manifold structure on the range being
pre-canonical). As ¢ o f is a C#-map with image in C*(M, S) which is a submanifold
of C*(M, N), we deduce that f is Ch. m]

Remark 4.4 Note that due to Lemma 4.3 (a), the evaluation on a canonical manifold is a
C*®_map whence it is at least continuous. For a C¥-manifold M which is C*-regular' and
a locally convex space E # {0}, it is well known that for the compact-open C*-topology the
evaluation ev: C¥(M, E) x M — E is continuous if and only if M is locally compact. A
similar statement holds for the compact-open C%-topology. Using a chart for N and cutoff
functions, we deduce that the evaluation of C* (M, N) is discontinuous if M fails to be locally
compact, provided N is not discrete and M is C!*|-regular; then C%(M, N) cannot admit a
canonical manifold structure.

We now turn to smoothness properties of the composition map.

Lemma4.5 Assume that C'*IS(N, L), C*(M, N), and C*(M, L) are endowed with pre-
canonical manifold structures. Then, the composition map

comp: CI*S(N, L) x C*(M,N) — C*(M, L), (f,g)+> fog
is a C°%-map, for every s € Ny U {oo}.
Proof Since C*(M, L) is pre-canonical, comp is C°* if and only if

CompA: C|Dé|+S(N7L) S Ca(M! N) xM— L, (fv g’x) e f(g(x))

1 Meaning that the topology on M is initial with respect to C k(M R). This holds if M is a regular topological
space and all modeling spaces are C k -regular, see [15].
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isa C°*%-map. The formula shows that comp” (f, g, x) = ev(f, ev(g, x)), where the outer
evaluation map is C°1*!* and the inner one C°>%, by Lemma 4.3 (a), as C!*I*S(N, L) and
C*(M, N) are pre-canonical manifolds. Using the chain rule [1, Lemma 3.16], we deduce
that comp” is C°*¢, O

Corollary 4.6 If C*(M, N) and C*(M, L) are endowed with pre-canonical manifold struc-
tures, then the pushforward fy.: C*(M, N) — C*(M, L), g — fogisa C*-map for every
fects(N, L.

Corollary 4.7 Let C'“*S(N, L) and C*(M, L) be endowed with pre-canonical manifold
structures. For a C*-map g: M — N the pullback g*: C'*!*S(N, L) — C*(M, L), f >
f o g is smooth for every s € Ny.

The chain rule also allows the following result to be deduced.

Lemma 4.8 Let C*(M, N) and C*(L, N) be endowed with pre-canonical manifold struc-
tures where o = (a1, ...,0,), M = M| X --- X My, and L = L{ X --- X L,. Assume that
git Li > M;isa C%-map fori € {1, ...,n}. Then, the pullback

g C*"(M,N) — C*(L,N), fr> folgrx--Xgn)
with g := g1 X - -+ X gy is smooth.

Proof Due to the chain rule, the pullback g* makes sense. Since C*(L, N) is pre-canonical,
g* will be smooth if (g*)": (f, £) — ev(f,ev((g] X -+ X gn), £)) is a C>*-map. Again,
this is a consequence of Lemma 4.3 (a). O

The key point was the differentiability of the evaluation map together with a suitable chain
rule. Thus, by essentially the same proof, one obtains from the chain rule [1, Lemma 3.16]
the following statement whose proof we omit.

Proposition 4.9 Assume that all the manifolds of mappings occurring in the following are

endowed with pre-canonical manifold structures. Further, we let f = (B1, ..., Bn) € (No U
{oo})™ such that for multiindices o' € (No U {oo})™i, i € {1, .. . n} we have i = |oz"| +o;
for some o; € No U {oc}. Let now N = [[;,., Ni and M' := M| x --- x M, for
certain locally compact manifolds M j with rou(;h_boundary (with j € {1,...,m;}). Then,
foro = (o1,...,0p) and a = (al, ..., a), the composition map

CP(N.L)x [] €M Np)— Co*M" x - x M", L),

1<i<n
(f,81s---,8n) > fol(g1 xX---Xgn)
is a C*? -map.
The above discussion shows that composition, pushforward, and pullback maps inherit dif-

ferentiability and continuity properties. The following variant will be used in the construction
process of canonical manifold structures.

Proposition 4.10 Let K be a compact smooth manifold such that C* (K, M) and C*(K, N)
admit canonical manifold structures. If Q € K x M is an open subset and f: Q2 — N isa
Cl** _map, then

Q' :={y € C*(K, M): graph(y) € 2}
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is an open subset of C* (K, M) and
fe: Q2 —> C*(K,N), y+— fol(dg,y)
is a C*-map.

Proof By compactness of K, the compact-open topology on C (K, M) coincides with the
graph topology (see, e.g., [15, Proposition A.6.25]). Thus, {y € C(K, M): graph(y) C @}
is open in C(K, M). As a consequence, €' is open in C%(K, M). By Lemma 4.3 (a), the
evaluation ev: CY(K, M) x K — M is C°>* and hence Cke whence also C*(K, M) x
K — K xM, (y,x) = (x,y(x)) is C&*. Since f is C!*** the chain rule [1, Lemma
3.16] shows that

(fO" Q2 x K= N, (y,0) = fuly)(x) = fx,y(x)

is C*% . So f, is C*, as the manifold structure on C*(K, N) is canonical. m}

For later use, we record several observations on stability of (pre-)canonical structures
under pushforward by diffeomorphisms.

Lemma4.11 Let N| and Ny be smooth manifolds and a € (Ng U {oo})", B € (Ng U {co})™.

(a) If C*(M, Ny) and C*(M, N») are endowed with (pre-)canonical manifold structures,
then the smooth manifold structure on C*(M, N1 x Nj) which turns the bijection
C*(M, N1 x N») > C*(M, Ni) x C*(M, N>) sending a mapping to the pair of com-
ponent functions into a C°°-diffeomorphism, is (pre-)canonical.

(b) Ify: Ny — Ny isa C®-diffeomorphism and C*(M, Ny) is a (pre-)canonical manifold,
then the smooth manifold structure on C* (M, Ny) turning the bijection

Y C*(M, N1) = C*(M,N2), f>1Yof

into a diffeomorphism is (pre-)canonical.
(c) Let C¥(M, N) be endowed with a pre-canonical manifold structure and assume that both
CP(L,C*(M, N)) and CP*(L x M, N) are smooth manifolds making the bijection

®: CPYL x M,N) — CP(L,C*(M,N)), fr> f"

a C®-diffeomorphism. Then, CB(L, C*(M, N)) is pre-canonical if and only if the
manifold CB*(L x M, N) is pre-canonical.

Proof Let L = Li x --- X Ly, be a product of manifolds.

(@ Amap f = (f1, o): L — C*(M,N;) x C*(M, N>) is CP if and only if f; and
f> are CP. As the manifold structures are (pre-)canonical, this holds if and only if
oL x M — M is CPe for i e {1,2}. However, this holds if and only if /" =
(P fyis che.

(b) Amap f: L — C%(M, Ny) is C# if and only if ¥, o f is CP. Since C*(M, N;) is
pre-canonical, this is the case if and only if (40 )" = Yo f/is CP. As 1 is a smooth
diffeomorphism we deduce from the chain rule that this is the case if and only if f” is of
class C#® Thus, C*(M, N;) is pre-canonical. If C* (M, N3) is even canonical, the C*-
topology is transported by the diffeomorphism . to the C*-topology on C*(M, Ny).
Hence, the manifold C*(M, Ny) is also canonical in this case.
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(c) Byconstruction,amap f: K — CP(Lx M, N)isofclass C¥ (for some multiindex y)
ifand only if ® o f = (f(-))Y is C? as a mapping to CP(L,C*(M, N)). As C*(M, N)
is pre-canonical, we observe that (® o f)": K x L — C*(M, N) is C""# if and only
if ((Po YN = f": K xLxM— NisaC?VP%map. Hence, CP*(L x M, N) is
pre-canonical (i.e., f is C? if and only if 7 is C?-#®)if and only if C# (L, C*(M, N))
is pre-canonical. O

Lemma4.12 Fix o € (No U {oo})" and a permutation o of {1, ..., n}. Denote by ¢, : M| X
X My — Q=M (1) X -+ X My ) the diffeomorphism taking (x;))?_, to (x5i))}_.

(a) IfC*°°(Q, N) and C*(M, N) are smooth manifolds such that the bijection
¢5: C*°(Q,N) = C*(M,N), [+ fods

from 2.13 becomes a diffeomorphism, then C*(M, N) is (pre-)canonical if and only if
C*°9(Q, N) is (pre-)canonical.

(b) IfC*(M, N) and C*°° (Q, N) are endowed with pre-canonical manifold structures, then
@ is a C*-diffeomorphism.

() If Yi: Li — M; is a smooth diffeomorphism for everyi € {1,...,n} and C*(M, N) is
(pre-)canonical, then the smooth manifold structure on C*(L, N) turning the bijection

(Y1 x - X P)*: C*(M, N) — C*(L, N)
into a diffeomorphism is (pre-)canonical.

Proof (a) Assume that C*(M, N) is (pre-)canonical. Then, f: K — C%?(Q, N) is ch
if and only if ¢} o f is so. Now we deduce from C%(M, N) being pre-canonical that
this is equivalent to (¢} o f)" = f" o (idk X¢o): K x M — N being a C#%-map.
Exploiting the Theorem of Schwarz [1, Proposition 3.5], this is equivalent to f” being
CP-e°o Thus, C*°(Q, N) is pre-canonical. The converse assertion for C“°° (M, N)
follows verbatim by replacing ¢, with its inverse. Note that if one of the manifolds is
even canonical, it follows directly from the definition of the C*-topology, Definition 3.4,
that reordering the factors induces a homeomorphism of the C¥- and C*°? -topology.
Hence, we see that one of the manifolds is canonical if and only if the other is so.

(b) Note that the inverse of ¢ is (¢, 1y* whence the situation is symmetric and it suffices to
prove that ¢ (and by an analogous argument also its inverse) is smooth. As C*(M, N)
is pre-canonical, smoothness of ¢} is equivalent to (¢2)": C**°(Q,N) x M —
N, (f,m) — ev(f, ¢s(m)) being a C°*-mapping. This follows from Lemma 4.3 (a),
the chain rule, and Lemma 2.17.

(¢) Replacing ¢, with ¥y X - - - X 1, the argument is analogous to (b). If C* (M, N) is canon-
ical, then the C*-topology pulls back to the C“-topology under the diffeomorphism, by
Lemma 3.5. O

An exponential law is available for pre-canonical smooth manifold structures.

Proposition4.13 Let Liy,...,L,, and N be smooth manifolds with rough boundary,
and My, ..., M, be locally compact smooth manifolds with rough boundary. Assume
that C*(M, N) is endowed with a pre-canonical smooth manifold structure and also
CP(L,C*(M, N) and CP*(L x M, N) are endowed with pre-canonical smooth manifold
structures. Then, the bijection

@: CP*(L x M, N) — CP(L,C*(M, N))
from (1) is a C*-diffeomorphism.
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Proof 1If we give CP(L,C*(M, N)) the smooth manifold structure making ® a C°-
diffeomorphism, then this structure is pre-canonical by Lemma4.11 (c). It therefore coincides
with the given pre-canonical smooth manifold structure thereon, up to the choice of modeling
spaces (Lemma 4.3 (b)). ]

There is a natural identification of tangent vectors for pre-canonical manifolds, in good cases.
If C*(M, N) is pre-canonical, an element v € TyC%(M, N) corresponds to an equivalence
class of curves y,,: I — C%(M, N) on some open interval / around O such that y,(0) =
f and y,(0) = v. As C*(M, N) is pre-canonical, the map y,': I x M — N is cle,
Hence, Te;, (v) = Tepn(y,(0)) € TN is C* inm € M, where we use the point evaluation
em: C*(M,N) — N, f+— f(m) at m. We thus obtain a map

W: TCYM,N) — C*(M,TN), vi> (mt> Tep(v)). 2)

Under additional assumptions, one can show that W is a diffeomorphism, allowing tangent
vectors v € TC*(M, N) to be identified with W (v). We will encounter a setting in which
this statement becomes true in the next section (see Theorem 5.14).

5 Constructions for compact domains

We now construct and study manifolds of C*-mappings on compact domains. The results of
this section subsume Theorem 1.1. They generalize constructions for CX¢~functions in [4,
Appendix A].

5.1 Let N be a smooth manifold, « € (Ng U {0c0})" and M = M| x --- x M, be a locally
compact smooth manifold with rough boundary. If 7 : E — N is a smooth vector bundle
over N and f: M — N is a C*-map, then we define

Tp={t e C*(M,E):mot = f}

with the topology induced by C*(M, E). Pointwise operations turn I' ; into a vector space.
Let us prove that I'  is a locally convex space. To this end, we cover N with open sets (U;);es
on which the restriction E|y, = U; x E; (with E; a suitable locally convex space) is trivial.
Combining continuity of f and local compactness of M we can find families K; of full
compact submanifolds of M; with the following properties: The interiors of the sets in C;
cover M;. There is a set K C l_[lijiﬂ KC; such that for every K = Ky x -+ x K, € K
we have f(K) C Uj, for some ix € I and the interiors of the submanifolds in IC cover M.
Hence, we deduce from Lemma 3.7 that the map

W CUM,E) > [[ C*(K,E), 0~ (olx)kex
KeK

is a topological embedding. Now by construction I'; is contained in the open subset
{GeC¥M,E)| G(K) < n_l(UiK), VK € K}. Restricting W to this subset we obtain a
topological embedding

e:Ty— [] K. a7 " W) = [] CUK, Uip) x C*(K, Eiy), ©)
KeK KeK

where the identification exploits Lemma 3.11 and the fact that pushforwards with smooth
diffeomorphisms induce homeomorphisms of the C*-topology (see Lemma 3.5). The image
of e are precisely the mappings which coincide on the intersections of the compact sets K (see
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(10) and the explanations there). Hence, we can exploit that point evaluations are continuous
on C“(K, E;;) by [2, Proposition 3.17] to see that the image of e is a closed vector subspace
of [Tgexc{flk} x C*(K, Eiy). As the space on the right-hand side is locally convex, we
deduce that the co-restriction of e onto its image is an isomorphism of locally convex spaces.
Thus, I 7 is a locally convex topological vector space.

We will sometimes write I ¢ (E) instead of I' y to emphasize the dependence on the vector
bundle E.

The previous setup allows an essential exponential law to be deduced.

Lemma 5.2 In the situation of 5.1, let B € (Nog U {oo})" and g: L — Ty be a map, where
Ly, ..., L, are smooth manifolds with rough boundary and L := L| X --- X L,,. Then, g
is CP if and only if

g LxM—E, (x,y) g(x)»)

is a CB*-map.

Proof With the notation as in 5.1 we identify I"  via e with a closed subspace of the locally
convex space [] xex C¥(K, Ejy) (the identification will be suppressed in the notation).
Thus, Lemma 2.14 (a) implies that the map g is C# if and only if the components g : L —
C“(K,Ej)are C B -maps. By the exponential law [1, Theorem 4.4], the latter holds if and
only if the mappings

(€x)": L xK = Ej, (x,y) = g(x)(y)
are of class C#®. Since the interiors of sets K € K cover M, we deduce that this is the case

if and only if g” is of class C#*. O

Remark 5.3 1If all fibers of E are Fréchet spaces and K is o-compact and locally compact,
then I' ¢ is a Fréchet space; if all fibers of E are Banach spaces, K is compact, and || < oo,
then I'  is a Banach space. To see this, note that we can choose the family K in 5.1 countable
(resp., finite). Suppressing again the identification,

YTy — [[C¥K). Fp). t (tlk))jes
jeJ
is linear and a topological embedding with closed image. If all F; are Fréchet spaces, so is

each C¥(K;, F}) (cf.,, e.g., [15]) and hence also I'y. If all F; are Banach spaces and |«| as
well as J is finite, then each C*(K;, F;) is a Banach space (cf. loc. cit.) and hence also I .

Observe that the exponential law for Iy gives this space the defining property of a pre-
canonical manifold (and the only reason we do not call it pre-canonical is that it is only a
subset of C*(M, E)). In particular, the proof of Lemma 4.3 (a) carries over and yields:

Lemma 5.4 In the situation of 5.1, the evaluation map
ev:I'y xM— E, (1,x) 1t(x)
is C%%,

Lemmab5.5 Let wy: E1 — N and my: Ey — N be smooth vector bundles over a smooth
manifold N. Let « € (Ng U {oo})" and f: M — N be a C*-map on a product M =
M x -+ - x M, of smooth manifolds with rough boundary. Then, the following holds:
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(a) If ¥ : Ey — E3 is a mapping of smooth vector bundles over idy, then ot € T r(E2)
foreacht € ' f(Ey) and

Cr): Tp(E1) »> Tp(E2), T Yot

is a continuous linear map.
(b) T'y(E1 @ E») is canonically isomorphic to T y(E1) x T p(E2).

Proof (a) If t € I'y(E7), then ¢y o7: M — Ej is C* by the chainrule and my oy o 7 =
w0t = f,whence ¢ ot € I' (E2). Evaluating at points we see that the map I" (/) is
linear; being a restriction of the continuous map C*(M, ¥): C*(M, E|) — C*“(M, E»)
(see Lemma 3.5), it is continuous.

(b) If pj: E1 @ E; — Ej is the map taking (vi, v2) € Ey x E> to v; for j € {1,2} and
tj: Ej — E; ® E; is the map taking v; € E; to (vy, 0) and (0, vy), respectively, then

T (e, Tr(p2)): Tf(E1 @ Ez) — Tp(Ey) x T'p(E2)
is a continuous linear map which is a homeomorphism as it has the continuous map

(0,7) = I'r(t1)(0) + T'f(12)(7) as its inverse. O

Construction of the canonical manifold structure

Having constructed spaces of C%-sections as model spaces, we are now in a position to
construct the canonical manifold structure on C*(K, M), assuming that M is covered by
local additions and K is compact.

Definition 5.6 Let M be a smooth manifold. A local addition is a smooth map
2:U—-> M,

defined on an open neighborhood U € T M of the zero-section Oy := {0, € T,M: p € M}
such that 3(0,) = p forall p € M,

U= {(rrm ), T(): v € U}
isopenin M x M (where wry : TM — M is the bundle projection) and the map
0 =@y, 2):U—U
is a C*°-diffeomorphism. If
To,(2|1,m) = id7,m forall p e M, “)
we say that the local addition X is normalized.

Until Lemma 5.9, we fix the following setting, which allows a canonical manifold structure
on C*(K, M) to be constructed.

5.7 We consider a product K = K; x Ky X --- x K, of compact smooth manifolds with

rough boundary, a smooth manifold M which admits a local addition £: TM 2 U — M,
and @ € (Ng U {oo})".
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5.8 Manifold structure on C“(K, M) if M admits a local addition
For f € C*(K, M),letT ;:={t € C*(K,TM): mry ot = f} be the locally convex space
constructed in 5.1. Then,

O;:=TyNC%(K,U) isanopensubsetof Iy,

O’f:={g € C*(K,M): (f,g)(K) C U’} isanopen subsetof C*(K, M), and

¢r: 0f — O0f, TH>Xor )
is a homeomorphism with inverse g — 6~ 'o(f, g). By the preceding, ifalso h € C*(K, M),

then 1//::(]5;1 o ¢ has an open (possibly empty) domain D C I'y and is a smooth map
D — T'ybyLemmas52,asy”: Dx K - TM,

(T, x) > (¢, 0P (@)(x) =07 (h(x), T(x(x)) = 07" (h(x), T(e(r, X))

is a C°%-map (exploiting that the evaluation map ¢: 'y x K — TM is C>%, by
Lemma 5.4). Hence, C“(K, M) endowed with the C“-topology has a smooth manifold
structure for which each of the maps ¢>;] is a local chart.

We now prove that the manifold structure on C*(K, M) is canonical. Together with
Lemma 4.3 (b), this implies that the smooth manifold structure on C* (K, M) constructed in
5.8 is independent of the choice of local addition.

Lemma 5.9 The manifold structure on C* (K, M) constructed in 5.8 is canonical.

Proof We first show that the evaluation map ev: C‘]’é (K, M) x K — M is C°“ It suffices
to show that ev(¢ ¢ (1), x) is C°% in (1, x) € Oy x K forall f € C*(K, M). This follows
from

ev(gy (1), x) = X(r(x)) = X(e(z, x)),

wheree: 'y x K — TM, (7, x) = t(x)is C°“ by Lemma 5.4. Nowlet 8 € (NoU{oo})"
andh: N — C%(K, M)beamap, where N = Njx---Xx N, is aproduct of smooth manifolds
with rough boundary. If 4 is CB, then h = evo(h x idg) is CP2. Conversely, let A" be
a CP%_map, then % is continuous as a map to C(K, M) with the compact-open topology
(see [15, Proposition A.6.17]) and h(x) = h”™(x,-) € C*(K, M) for each x € N. Given
x € N, let f := h(x). Then, y: C(K,M) — C(K,M) x C(K,M) = C(K,M x M),
g+ (f, g) is a continuous map. Since ¥ r(g) is C* if and only if g is C%, we see that

W=h"'(0p) ='W (CUK.UN) = (o )" (C*(K. U")
= (Yroh)~H(CK,U")

is an open x-neighborhood in N. As the map (¢>;1 ohlw)*: WxK—>TM,

0. (@) o hlw) (3,2 = 0 o (F, hO(@) =07 (f(2), K" (3, 2))

is C#* by [1, Lemma 3.16], the map ¢;1 ohlw: W — T'y (and hence also h|yw) is C¥, by
Lemma 5.2. O

Proposition 5.10 Let K = K| x --- X K, be a product of compact smooth manifolds with
rough boundary and M be a manifold covered by local additions. For every o € (NoU{oo})",
the set C* (K, M) can be endowed with a canonical manifold structure.
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Proof Let (M;, ;) ;e be an upward directed family of open submanifolds M; with local
additions ¥; whose union coincides with M. As K is compact, we observe that the sets
CYK,Mj):={f € C*(K,M) | f(K) € M;} are open in the C*-topology. Following
Lemma 5.9, we can endow every C*(K, M;) with a canonical manifold structure. Now if
M; € M¢,Lemma4.3(c) implies that also the submanifold structure induced by the inclusion
CY(K,Mj) € C¥(K, My) is canonical. Thus, uniqueness of canonical structures, Lemma
4.3 (b), shows that the submanifold structure must coincide with the canonical structure
constructed on C*(K, M) via 5.8. As C*(K, M) = Uje] C*(K, M) and each step of the
ascending union is canonical, the same holds for the union. O

The tangent bundle of the manifold of mappings

In the rest of this section, we identify the tangent bundle of C*(K, M) as the manifold
C*(K, T M) (under the assumption that K is compact and M covered by local additions).
To explain the idea, let us have a look at C*(K, T M).

5.11 Consider a smooth manifold M covered by local additions. Then also, TM is cov-
ered by local additions, cf. [4, A.11] for the construction. Thus, for K a compact manifold
C*(K, M) and C¥(K, T M) are canonical manifolds. If we denote by 7: TM — M the
bundle projection, Corollary 4.6 shows that the pushforward ,.: C*(K,TM) — C*(K, M)
is smooth. The fibers of 7, are the locally convex spaces ItpH=r r from 5.1. We deduce
that 7.: CY(K,TM) — C*(K, M) is a vector bundle (see Theorem 5.14 for a detailed
proof).
We will first identify the fibers of the tangent bundle.

5.12 The tangent space TyC%(K, M) is given by equivalence classes [t +> c(t)] of cl-
curvesc: |—e, e[ - C*(K, M) withc(0) = f, where the equivalence relation ¢; ~ ¢, holds
for two such curves if and only if ¢{(0) = ¢,(0). Since the manifold structure is canonical
(Lemma 5.10) we see that ¢ is C! if and only if the adjoint map ¢”: ]—¢, e[ xK — N is

a C'%-map. The exponential law shows that the derivative of ¢ corresponds to the (partial)
derivative of ¢”, i.e., the mapping W from (2) restricts to a bijection

W T,CYK,M)—>Ty={heCyK,TM) |moh=f}, (6)
[c]l = (k— [t — ", k)]).

We wish to glue the bijections on the fibers to identify the tangent manifold as the bundle
from 5.11. To this end, we recall a fact from [4, Lemma A.14]:

5.13 If a manifold M admits a local addition, it also admits a normalized local addition.

Hence, we may assume without loss of generality that the local additions in the following
are normalized. Moreover, we will write &,: C¥(K, M) — M for the point evaluation in
x € K. Then, the tangent bundle of C*(K, M) can be described as follows.

Theorem 5.14 Let K = K| X - - - X K, be a product of compact smooth manifolds with rough
boundary and M be covered by local additions. Then,

(mrm)s«: CHK, TM) — CHK, M)

is a smooth vector bundle with fiber Iy over f € CYK,M). For eachv € T(CY(K, M)),
we have W (v) := (Tex (v))xex € C*(K, T M) and the map (2),
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V: TC*(K,M)— C*(K, TM), v ¥(v)
is an isomorphism of smooth vector bundles (over the identity).
If we wish to emphasize the dependence on M, we write Wy, instead of W.

Proof Since M is covered by local additions, there is a family of open submanifolds (ordered
by inclusion) (M) je; which admit local additions X ;. Now by compactness of K the image
of f € C¥(K, M) is always contained in some M; and similarly for r € I'y we then
have t(K) C ! (M;) = TM;j, where m:=mr ) is the bundle projection of 7M. As the
family (M;); of open manifolds exhausts M, we have C*(K, M) = Uje] CY(K,Mj)
and all of these subsets are open. Hence, it suffices to prove that W restricts to a bundle
isomorphism for every M ;. In other words we may assume without loss of generality that
M admits a local addition X. Given f € C*(K, M), themap ¢s: Oy — 0} CCY%K, M)
is a C*°-diffeomorphism with ¢ 7 (0) = f, whence T¢7(0,-): I'y — T¢(C*(K, M)) is an
isomorphism of topological vector spaces. For T € I' s, we have for x € K

TeyTpp(0,7) =Tex([t = Zo(t7)]) = [t = Z(tt(x))]
= [t = Slr,,u ()] = TS|7,,m(T(x) = T(x),

as X is assumed normalized. Thus, ¥(T¢,(0,7)) = v € I'y € C*(K,TM), whence
V() € 'y € C¥K,TM) for each v € Ty(C*(K,M)) and ¥ takes T (C*(K, M))
bijectively and linearly onto I" 7. As the manifolds 7 (C*(K, M)) and C*(K, T M) are the
disjoint union of the sets 7y (C*(K, M)) and I' y = n;l ({ f}), respectively, we see that W is
abijection. If we can show that W is a C*°-diffeomorphism, 7, : C*(K,TM) — C*(K, M)
will be a smooth vector bundle over C*(K, M) (like T(C*(K, M))). Finally, ¥ will then be
an isomorphism of smooth vector bundles over id ;.

For the proof, we recall some results from the Appendix of [4]: Denote by 0: M — T M the
zero-section and by 0y7:=0(M) its image. Letnow A, : T, M — T M be the canonical inclu-
sionandk: T>M — T?M the canonical flip (given in charts by (x, y, u, v) — (x, u, y, v)).
Then [4, Lemma A.20(b)] yields a natural isomorphism ®: TM & TM — nT_le On) S
T2M, O (v, w) = K (T Az @v) (v, w)). On the level of function spaces2 ® induces a diffeomor-
phism (cf. [4, Lemma A.20 (e)])

Of: O = Opoy, yr>0Bo(0of,y).

Here for f € C*(K, M) we have considered the composition 0 o f € C*(K, T M). Then,
the sets Sy := T¢ (O x I'y) form an open cover of T(C*(K, M)) for f € C*(K, M),
whence the sets W(Sy) form a cover of C¥(K, T M) by sets which are open as W(Sy) =
(900 0 f)(Of x T'f) = oo r(Opo r). Hence, it suffices to prove that the bijective map W
restricts to a C°°-diffeomorphism on these open sets. In other words it suffices to show that

CDOT¢f:¢)()Ofo®f

foreach f € C¢(K, M) (as all other mappings in the formula are smooth diffeomorphisms).
Now

Tér(o,t) =[t > To(o+11)]

2 While the results in [4] were only established for the case of ck *E—mappings, they carry over (together with
their proofs) without any change to the more general case of the C%-mappings considered here.
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forall (o, ) € Of x Iy, and thus we can rewrite ¥ (T'¢ ¢ (o, 7)) as

([t = Z(o(x) +tt(x)Dxex = ([t = (B oApu)(o(x) +1T(xX)Drek
=T (Zorfru))(0(x), T(x))xek = (Zrm((k o TAyy)(0(x), T(X))))xek
=((Zrm 0 Of)(0, T)(X))xek = (oof 0 Of)(0, T).

Thus, the desired formula holds and shows that W is a C°°-diffeomorphism. This concludes
the proof. O

Remark 5.15 Assume that the local additions ¥: U; — M; covering M are normalized.
Then, the proof of Theorem 5.14 shows that

WoThs(0,): Ty — CUK, TM)

is the inclusion map 7 +— t, for each f € C*(K, M) (where ¢ is as in (5)).

Using canonical manifold structures, we have:

Corollary 5.16 Let K = K X - - - x K, be a product of compact smooth manifolds with rough
boundary, @ € (NgU {oo})" and g: M — N be a C\“-map between smooth manifolds M
and N covered by local additions. Then, the tangent map of the C'-map

g«: C*(K,M) — C*(K,N), fr>gof

is given by T(gy) = lIJ];l o (Tg)x o Yy. For each f € C*(K,M), we have
Wy (Tr(CHK, M) =T f(TM), YN (Tgor (C¥(K, N))) = Tygop(T'N) and (T g) restricts
to the map

LCp(TM) — Tgop(TN), T+ Tgort 7
which is continuous linear and corresponds to Ty (gx).

Moreover, the identification of the tangent bundle allows us to lift local additions (cf. [4,
Remark A.17]).

Lemma5.17 Let K = K| x --- x K,, be a product of compact smooth manifolds with
rough boundary, « € (No U {oo})"" and M a manifold covered by local additions. Then, the
canonical manifold C*(K, M) is covered by local additions.

Proof Consider first the case that M admits a local addition X: U — M with § =
(trm, 2): U — U’ € M x M the associated diffeomorphism. Since also 7'M admits a
local addition, we have canonical manifold structures on C*(K, TM)and C*(K, M x M) =
C*(K,M) x C*(K,M). Now K is compact, whence C*(K,U) € C*(K,TM) is an
open submanifold, whence canonical by Lemma 4.3 (c). In particular, £,: C*(K,U) —
CY(K,M) and 0,: C*(K,U) — C*(K,U’) C C¥(K,M x M) are smooth by Corol-
lary 4.6. As also the inverse of 6 is smooth, we deduce that 6, is again a diffeomorphism
mapping C*(K, U) to C¥(K, U’) and we can identify the latter manifold with an open
subset of C*(K, M) x C*(K, M) containing the diagonal. Hence, we only need to ver-
ify that Oy € T;C*(K,TM) is mapped to f. However, using the point evaluation
ex(Zx(07)) = Z(0(f(x))) = f(x) (where 0 is again the zero-section of 7'M, we obtain the
desired equality pointwise and thus also on the level of functions. This proves that C* (K, M)
admits a local addition if M admits a local addition.
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If now M is covered by open submanifolds (M) je; each admitting a local addition, it
suffices to see that C*(K, M) is an open submanifold of C%(K, M) which admits a local
addition by the above considerations. Thus, C*(K, M) is covered by the open submanifolds
(C¥*(K, Mj))jecy and as each of those admits a local addition, C* (K, M) is covered by local
additions. O

Proposition5.18 Let K = K| x -+ X K,y and L = Ly x --- X Ly, be products of
compact manifolds with rough boundary and M be a manifold covered by local addi-
tions. Fix a € (No U {oo])", B € (Ny U {oo})™. Then, CPY(L x K, M), C*(K, M)
and CP(L,C*(K,M)) admit canonical manifold structures. Using these, the bijection
CPUL x K, M) — CP(L,C¥K, M)) is a C®-diffeomorphism.

Proof We apply Proposition 5.10 to obtain canonical manifold structures on C*(K, M) and
CPY(L x K, M). By Lemma 5.17, C*(K, M) is covered by local additions. Hence, we may
apply Proposition 5.10 again to obtain a canonical manifold structure on C#(L, C*(K, M)).
By Proposition 4.13, the bijection C#%(L x K, M) — CP(L, C*(K, M)) is a diffeomor-
phism. O

6 Lie groups of Lie group-valued mappings

We now prove Theorem 1.3, starting with observations.

Lemma 6.1 Let My, ..., M, be locally compact smooth manifolds with rough boundary, G

be a Lie group, and a € (Nog U {oo})". Setting M := My X - -- X My, the following holds:

(a) C*(M, G) is a group.

(b) If a pre-canonical smooth manifold structure exists on C*(M, G), then it makes
C*(M, G) a Lie group. Moreover, it turns the point evaluation &, : C*(M, G) — G,
f = f(x) into a smooth group homomorphism for each x € M.

Proof (a) The group inversion ¢:: G — G is smooth, whence ¢ o f is C* for all f €
C*(M, G) (by the chain rule [1, Lemma 3.16], applied in local charts). Let u: G x G —
G be the smooth group multiplicationand f, g € C*(M, G).Then, (f, g): M - GxG
is C% by [1, Lemma 3.8]. By the chain rule, fg = no (f, g) is C*.

(b) The group inversion in C*(M, G) is the map C* (M, ¢) and hence smooth, by Corol-
lary 4.6. Identifying C*(M, G) x C*(M, G) with C*(M, G x G) as a smooth manifold
(asin Lemma 4.11 (a)), the group multiplication of C*(M, G) is the map C*(M, w) and
hence smooth. The group multiplication in C*(M, G) being pointwise, &y is a homo-
morphism of groups for each x € M. By Lemma 4.3(a), ev: C*(M,G) x M — G is
C°% Thus, &x = ev(-, x) is smooth. O

Another concept is useful, with notation as in 2.6.

Definition 6.2 Let My, ..., M, be locally compact smooth manifolds with rough boundary,
G bealLie group,ando € (NgU{oo})".Forx € M := M| x---xX My, lete,: C*(M, G) —
G be the point evaluation. A smooth manifold structure on the set C*(M; x - -- X My, G)
making it a Lie group is said to be compatible with evaluations if ¢, is smooth for each
x € M, we have ¢ (v) := (L(gx)(v))xem € C*(M, L(G)) for each v € L(C¥*(M, G)), and
the Lie algebra homomorphism

¢: L(C*(M, G)) —> C*(M, L(G)), vi> ¢(v)

so obtained is an isomorphism of topological vector spaces.
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Remark 6.3 Inthe casethatn = 1 and @ = oo, compatibility with evaluations was introduced
in [24, Proposition 1.9 and page 19] (in different words), assuming that G is regular. Likewise,
G is assumed regular in [16, Proposition 3.1], where the case n = 1, « € Ny U {oo} is
considered.

Lemma 6.4 Let My, ..., M, and Ny, ..., Ny be locally compact smooth manifolds with
rough boundary, o € (Ng U {co})”, B € (Ng U {oco})’, M := My X --- x M,, N :=
Ny XX Ny, and G be a Lie group. Assume that CB(M, G) is endowed with a pre-canonical
smooth manifold structure which is compatible with evaluations and that C*(N, CP (M, G)),
whose definition uses the latter structure, is endowed with a pre-canonical smooth manifold
structure which is compatible with evaluations. Endow C “B(N x M, G) with the smooth
manifold structure turning the bijection

®: CP(N x M,G) — C*(N,CP(M, G)), f+r> fY

into a C®-diffeomorphism. Then, the preceding smooth manifold structure on C*P (N x
M, G) is pre-canonical and compatible with evaluations.

Proof By Lemma 4.11 (c), the C*°-manifold structure on C @B(N x M, G)is pre-canonical,
whence the latter is a Lie group. The C*°-diffeomorphism ® is a homomorphism of groups.
Hence,

L(®): L(C*P(N x M, G)) — L(C*(N, CP(M, G)))

is an isomorphism of topological Lie algebras. Consider the point evaluations &y :
C*(N,CP(M,G)) — CP(M,G),e¢,y): C*P(NxM,G) — Gande,: CP(M,G) —> G
for x € N, y € M. By hypothesis, we have isomorphisms of topological Lie algebras

W L(CP (M, G)) — CP(M, L(G)), wi> (L(ey)(w))yem
and ©: L(C*(N, C#(M, G))) = C*(N, L(C#(M, G))), v (L(gx)(v))xen- Then also,
v, : C*(N, L(Cﬂ(M, G))) — C¥(N, Cﬁ(M, L(G))), f—> Vof
is an isomorphism of topological Lie algebras and so is
E: C*(N, CP(M, L(G)) — C¥P(N x M, L(G)), f+> f",
by the exponential law (Lemma 3.13). Hence,
$:=E0W,000L(®): LIC*P(N x M, G)) > C*P(M x N, L(G))

is an isomorphism of topological Lie algebras. Regard v € L(C*#(N x M, G)) as a geo-
metric tangent vector [y ] for a smooth curve y : ]—¢, e[— C*P(N x M, G) with y(0) =e.
Then, L(®)(v) =[P o y] and O(L(D)(v)) = ([ex 0o D o ¥])xen =: g. Thus,

dW)(x,y) = V(@) (X)) = (Yo g)(x)(y) = ¥Y([ex 0o Poy(y)
= L(ey)([exoPoy]) =[ex0ey0DPoy] =t > ex(ey(P(y(1))))]
=t y®)(x, )] = Leqy)[y]D = Llgx,y) (V).

We deduce that (L(g(x,y)) (V) (x,yyenxm = d(v) € C*B(N x M, L(G)). Since ¢ is an
isomorphism of topological Lie algebras, the Lie group structure on C*#(N x M, G) is
compatible with evaluations. O
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Lemma 6.5 Let My, ..., M, be locally compact smooth manifolds with rough boundary,
M = My x -+ x My, « € (Ng U {oco})", and G be a Lie group. Assume that C*(M, G)
is endowed with a pre-canonical smooth manifold structure which is compatible with eval-
uations. If the Lie group G is C"-regular for some r € Ny U {00}, then also the Lie group
CYM, G) is C"-regular.

Proof Consider the smooth evolution map Evol: C" ([0, 1], g) — C"H([O, 1], G), where
g = L(G). Forx € M,letg,: C*(M,G) — G, f — f(x) be evaluation at x. By
hypothesis, ¢: L(C*(M, G)) — C*(M, g), v — (L(ex)(v))xem is an isomorphism of
topological Lie algebras. Then also,

¢«: C"([0, 1], L(C*(M, G))) — C"([0,1],C*(M, 9)), fr>¢of

is an isomorphism of topological Lie algebras. By Example 4.1, the smooth manifold struc-
tures on all of the locally convex spaces C” ([0, 1], C*(M, g)),

C™*([0,11 x M,g), C*"(M x[0,1],9), and C*(M,C"([0, 1], 9))
are canonical. By Lemma 3.13, the Lie algebra homomorphism
¥ C7([0,1],C*(M, g)) — C"*([0,1] x M, ), f+> f"

is an isomorphism of topological Lie algebras. Flipping the factors [0, 1] and M (with
Lemma 4.12 (b)) and using the exponential law again, we obtain an isomorphism of topolog-
ical Lie algebras

0:C"*(0,11 x M, g) > C*(M,C"([0, 11, @)

determined by 0 ( f)(x)(t) = f(t, x). By Theorem 1.1, ([0, 11, C*(M, G)) has a canon-
ical smooth manifold structure. Using Lemmas 4.11 (c), 4.12 (a), and 4.11 (c) in turn, we can
give C“(M, c(0, 1], G)) a pre-canonical smooth manifold structure making the map

B: C*M, C" (0,11, G)) — C"([0, 1], C*(M, G))

determined by B(f)(t)(x) = f(x)(t) a C*°-diffeomorphism. The structures being pre-
canonical,

Evol,: C*(M, C"([0, 1], 9)) — C*(M, C"*'([0,1], G)), f +> Evolof
is smooth. Hence also, £ := o Evol, 00 o ¢ o ¢, is smooth as a map
C"([0, 11, L(C*(M, G))) — C" L ([0, 11, C*(M, G)).

It remains to show that £ is the evolution map of C*(M, G). As the L(e,) separate points on
h:= L(C¥(M, G)) for x € M, it suffices to show that &, o £(y) = Evol(L(ey) o y) for all
y € C"([0, 1], h) and x € M (see[12,Lemma 10.1]). Note that (poy)(?)(x) = L(ex)(y(2)),
whence

(Y 00)(@oy))(x)() = Lex)(y (1)

and (Evol.((/ 0 8)(¢ o ¥)))(x) = Evol((¥ 0 6)(¢ o ¥))(x)) = Evol(L(ex) o y). So
(6x 0 E(¥))(1) = (Evoly 06 o 9 0 ¢)(y)(x) (1) = Evol(L(ex) o ¥)(1). o

We establish Theorem 1.3 in parallel with the first conclusion of the following proposition,
starting with two basic cases:

Case 1: The manifolds My, ..., M, are compact;

Case 2: M is 1-dimensional with finitely many connected components.
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Proposition 6.6 In Theorem 1.3, the Lie group structure on C*(M, G) is compatible with
evaluations, writing M := My X --- X M,. Moreover, there is a unique canonical pure
smooth manifold structure on C*(M, G) which is modeled on C* (M, L(G)).

The final assertion is clear: Starting with any canonical structure on C* (M, G) and a chart
¢: Uy — Vy — E4 around the constant map e, using left translations (which are C°-
diffeomorphisms) we can create charts around every f € C%(M, G) which are modeled on
the given E,. We can therefore select a subatlas making C* (M, G) a pure smooth manifold.
Since Ey is isomorphic to L(C*(M, G)), which is isomorphic to £ := C*(M, L(G)) as a
locally convex space (by compatibility with evaluations), we can replace Ey with E. The
pure canonical structure modeled on E is unique, since idce(y,6) is a C*°-diffeomorphism
for any two canonical structures (cf. Lemma 4.3 (b)).

Lemma 6.7 Let My, ..., M, be compact smooth manifolds with rough boundary, G be a Lie
group and o € (No U {oo})". Abbreviate M := My X --- X M,,. Then, C*(M, G) admits a
canonical smooth manifold structure which is compatible with evaluations. If G is C” -regular
forr € Nog U {00}, then so is C*(M, G).

Proof By Theorem 1.1, C*(M, G) admits a canonical smooth manifold structure. Let
0: M — G be the constant map x +> e. By Theorem 5.14, the diffeomorphism (7' &) xem
maps L(C*(M, G)) = To(C*(M, G)) onto

[g={teC* (M, TG): nrgot =0} = C“M, L(G)).

ByLemma3.9,C*(M, T G)induceson C* (M, L(G)) the compact-open C*-topology. Thus,
the Lie group structure on C* (M, G) is compatible with evaluations. For the last assertion,
see Lemma 6.5. O

Lemma 6.8 Let M be a 1-dimensional smooth manifold with rough boundary, such that M has
only finitely many connected components (which need not be o -compact). Let r € Ny U {00},
G be a C"-regular Lie group, and k € N U {oo} such that k > r + 1. Then, Ck(M, G)
admits a canonical smooth manifold structure which makes it a C" -regular Lie group and is
compatible with evaluations.

Proof We first assume that M is connected. Let g := L(G) be the Lie algebra of G. If N is a
full submanifold of M, we write 2 1ck71 (N, g) € C*¥ (TN, g) for the locally convex space

of g-valued 1-forms on N, of class C¥~!. Using the Maurer—Cartan form
k: TG —>g, v nTg(v)_l.v,

a g-valued 1-form
SN(f)=koTfeQu (N, g

can be associated to each f € C K(N, G), called its left logarithmic derivative. Fix xo € M.
For every o -compact, connected, full submanifold N € M such that xg € N, there exists a
C*°-diffeomorphism vy : I — N for some non-degenerate interval I C R, such that 0 € [
and ¥ (0) = xgo. Then, the diagram

)
Ck(N,G) = QL. (N, 9)
(/A {0
¥
ck1,6) 2 -, g),
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is commutative, where ¥*: CX(N, G) — C*(I, G), f +— f o and the vertical map 6 on
the right-hand side, which takes w to w o ¥/, are bijections. For each » € Q! ci-1 (N, g), there
isaunique f € C*(N, G) such that f(x0) =eand Sy (f) = w: In fact, Lemma 2.8 yields a
unique 7 € C*(1, G) with 17(0) = e and 8¢ () = O(w); then f := (Y*)~' () is as required.
We set Evoly (w) := f.

Ifwe Qlck,, (M, g), we have Evoly (w|71) = Evoly (w|rn)|L for all o-compact, connected
open submanifolds N, L of M such that L € N. As such submanifolds N form a cover
of M which is directed under inclusion, we can define f: M — G piecewise via f(x) :=
Evoly (w|7y)(x)if x € N and obtain a well-defined Ck—map f: M — Gsuchthatdy (f) =
w. Thus,

S (CH(M, G)) = Qp_i (M, g),

which is a submanifold of €2 lckfl (M, g). Let K be the set of all connected, compact full
submanifolds K C M such that xo € K. By the preceding, 8x (CK(K, G)) = Q]qu (K, 9),

which is a submanifold of Qlck (K, g). Since
M= U K°, 8)
KeK

[16, Theorem 3.5] provides a smooth manifold structure on C km, g) which makes it a
C”-regular Lie group, is compatible with evaluations, and turns

¥: CNM, G) — Qi (M, 9) x G, f = Gu(f), f(x0))

into a C*°-diffeomorphism. It remains to show that the smooth manifold structure is canoni-
cal. To prove the latter, we first note that C is directed under inclusion. In fact, if K1, K> € K,
then K| U K3 is contained in a o-compact, connected open submanifold N of M (a union
of chart domains diffeomorphic to convex subsets of R, around finitely many points in the
compact set K| U K»). Pick a C®-diffeomorphism : I — N as above. Then, ¥~ (K1)
and w_l (K») are compact intervals containing 0, whence so is their union. Thus, K1 U K>
is a connected, compact full submanifold of N and hence of M.

For K,L e Kwith K C L,letrg r: QL (L g) = @, (K, g) be the restriction map.
As a consequence of Lemma 3.7 and (8),

Qi (M. g)=lim Q. (K, g)
<—Kek

Cck—1 Cck—1

holds as alocally convex space, using the restriction maps r : Qlck_l (M, g) — Qlck_l (K, g9)
as the limit maps. For K € K, let pk : Ck(M,G) - CK(K, G) be the restriction map;
endow C¥(K, G) with its canonical smooth manifold structure (as in Lemma 6.7), which is
compatible with evaluations (the “ordinary” Lie group structure in [16]). Then,

Yk CX(K,G) — QL (K. 9) x G, f > Bk (f). f(x0))

is a C*°-diffeomorphism (see [16, proof of Theorem 3.5]). Note that px = 1//,;1 o (rg X
idg) o ¥ is smooth on CX(M, G), using the above Lie group structure making ¢ a C°°-
diffeomorphism. Let « € (No U {oo})", Lq,...,L,, be smooth manifolds with rough
boundary, L :== L X -+ x L, and f: L — CK(M, G) be a map. If f is C®, then also
pk o fis C*. Since Ck(K, G) is canonical, the map

fMixk =(jo )" :LxK—G
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is C®*. Using (8), we deduce that " is C%*_If, conversely, f” is C*¥, then (px o f)" =
fMixk is C @k The smooth manifold structure on C¥(K, G) being canonical, we deduce
that pg o f is C%. The hypotheses of Lemma 2.15 being satisfied with A := K, CK(M, G)
in place of M, Mg := CK(K, G), F := Ql,_ (M, 9), Fx := Ql_(K,g),and N := G,
we see that f is C%. The smooth manifold structure on CK(M, G) is therefore pre-canonical.
The topology on the projective limit Qlck,l (M, g) is initial with respect to the limit maps
rk, whence the topology on QIC,M (M, g) x G is initial with respect to the maps rx X idg.

Since v is a homeomorphism, we deduce that the topology O on the Lie group C¥(M, G) is
initial with respect to the maps (rg x idg) o ¥ = ¥k o pk. Since Yk is a homeomorphism,
O is initial just as well with respect to the family (px)gexc. But also the compact-open
C*-topology T on CK(M, G) is initial with respect to this family of maps (see Lemma 3.7),
whence © = 7 and C¥(M, G) is canonical.

If M has finitely many components My, ..., M,, we give C k(M, G) the smooth manifold
structure turning the bijection

n
p: CkM. G) - []chm;. G). e (flu)y
j=1
into a C*°-diffeomorphism. Let p; be its jth component. Since p is a homeomorphism
for the compact-open C*-topologies (cf. Lemma 3.7) and an isomorphism of groups, the
preceding smooth manifold structure makes CX(M, G) a Lie group and is compatible with
the compact-open C¥-topology. As each of the Lie groups Ck(M.,', G) is C"-regular, also
their direct product (and thus CK(M, G))is C7-regular. Since p = (,oj);’.:1 is an isomorphism
of Lie groups,

(L(p1), ... L(pa)): L(CK(M, G)) — L(C*(My, G)) x -+ x L(CX(M,, G))

is an isomorphism of topological Lie algebras. For x € M;, the point evaluation
ec: CK(M,G) — G is smooth, as the point evaluation & : Ck(M_,-, G) — G is smooth
and &y = & o pj. We know that ¢;(v) = (L(ex)(V))xem; € Ck(Mj,g) for all
v e L(CK(M;, G)) and that ¢, : L(CK(M;, G)) — C*¥(M;, g) is an isomorphism of topo-
logical Lie algebras. For each v € L(C k(M, G)), we have

(L) @)rem; = (LENL()W)xem; = ¢j(L(pj) ) € CX (M}, g)

for j € {1,...,n}, whence ¢(v) := (L(x)(V))rem € CK(M, g). Let us show that the Lie
algebra homomorphism ¢ : L(CY(M, G)) — Ckm, @) is a homeomorphism. Lemma 3.7
entails that the map

n
r=0r)io CYML9) — [[CEMj, 9, f > (Flm)iz
j=1
is a homeomorphism. By the preceding, r o ¢ = (¢p1 X --- X ¢,,) © (L(,oj))’;.:1 is a homeo-
morphism, whence so is ¢. Thus, the Lie group structure on C*¥(M, G) is compatible with
evaluations. If ¢, L = Ly X --- X L, and f: L — Ck(M, G) are as above and f is CY,
then f” is C®* by the above argument. If, conversely, f” is C%*, then F M Lxm; is cok,
whence (f’\ILxM].)V =pjo fisC*forall j € {1,...,n}. As a consequence, p o f is C*
and thus also f. We have shown that the smooth manifold structure on C*(M, G) is pre-
canonical and hence canonical, as compatibility with the compact-open C*-topology was
already established. O
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Another lemma is useful.

Lemma 6.9 Let Ny, ..., N, and My, ..., M, be locally compact smooth manifolds with
rough boundary, o € (Ng U {oo})™, B € (Ng U {oo})™, and G be a Lie group. Abbreviate
N:=N;x---xXNyand M := M x - - - x M,,. Assume that C® (M, G) has a pre-canonical
smooth manifold structure, using which C* (N, CB(M, G)) has a canonical smooth manifold
structure. Endow C*P (N x M, G) with the pre-canonical smooth manifold structure turning

®: C*F(N x M,G) — C*(N,CP(M,G)), f+> fY

into a C*®°-diffeomorphism. Assume that there exists a family (K;);icy of compact full sub-
manifolds K; of N whose interiors cover N, with the following properties:

(a) Foreachi € I, we have K; = K; 1 x --- x K; j, with certain compact full submanifolds
Ki ¢ € Ng;and

(b) CB(M, C(K;, G)) admits a canonical smooth manifold structure for each i € I, using
the canonical smooth manifold structure on C*(K;, G) provided by Theorem 1.1.

Then, the pre-canonical manifold structure on C*B(N x M, G) is canonical.

Proof Let O be the topology on C*# (N x M, G), equipped with its pre-canonical smooth
manifold structure. Using Theorem 1.1, fori € I weendow C*(K;, C B(M, G)) withacanon-
ical smooth manifold structure; the underlying topology is the compact-open C“-topology.
The given smooth manifold structure on C*(N, C#(M, G)) being canonical, its underlying
topology is the compact-open C“-topology, which is initial with respect to the restriction
maps

pi: C*(N,CP(M, G)) — C*(K;, CP(M, G))
for i € I. We have bijections
C*(Ki, CP(M, G)) = C*P(K; x M, G) = CP*(M x K;, G) = CP(M, C*(K;, G))

using in turn the exponential law (in the form (1)), a flip in the factors (cf. Lemma 4.12 (a)),
and again the exponential law. If, step by step, we transport the smooth manifold structure
from the left to the right, we obtain a pre-canonical smooth manifold structure in each step
(see Lemmas 4.11 (c) and 4.12 (a)). As pre-canonical structures are unique, the pre-canonical
structure obtained on C#(M, C%(K;, G)) must coincide with the canonical structure which
exists by hypothesis. Hence, using this canonical structure, the map

v;: CUK;, CPM, G)) - cPM, C*(K;, G))

determined by W (f)(y)(x) = f(x)(y)isa C*°-diffeomorphism. Let £ be the set of compact
full submanifolds of My for k € {1,...,n}. Write £; x --- x £, =: J. If j € J, then
j=(Lj1,...,Lj,) with certain compact full submanifolds Ly C My; we define L; :=
Ljix---xLj, ByLemma 3.7, the topology on CP(M, C*(K;, G)) is initial with respect
to the restriction maps

rij: CP(M, C¥(K;, G)) — CP(L;j, C*(K;, G)),

using the compact-open C*-topology on the range which underlies the canonical smooth
manifold structure given by Theorem 1.1. Let ®; ; be the composition of the bijections

CP(L;, C*(Ki, G)) — CPL; x K;, G) — C*P(K; x Lj, G);
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thus ®; ;(f)(x,y) = f(y)(x). As each of the domains and ranges admits a canonical
smooth manifold structure (by Theorem 1.1), all of the maps have to be homeomorphisms
(see Proposition 4.13 and Lemma 4.12 (b)). Thus, ©; ; is a homeomorphism. By transitivity
of initial topologies, O is initial with respect to the mappings

Pi,j = @,"j orjjo \IJ,' el o} e ® foriel andj e J,

which are the restriction maps CHB(N x M, G) - C*P(K; x Lj, G). Also the compact-
open C%P-topology on C*#(N x M, G) is initial with respect to the maps pi,j» and hence
coincides with . The given pre-canonical smooth manifold structure on C*#(N x M, G)
therefore is canonical. O

Lemma6.10 Let My, ..., M, be locally compact, smooth manifold with rough boundary,
M := M x -+ x M, « € (NgU {oo})", and G be a Lie group. Assume that the group
C*(M, G) is endowed with a smooth manifold structure which makes it a Lie group and is
compatible with evaluations. Let o be a permutation of {1, ..., n}and Q := My1) X --- X
My ). Consider ¢o: M — Q, x +— x o 0. Then, the smooth manifold (and Lie group)
structure on the group C*°° (Q, G) making the bijective group homomorphism

($5)": C*7(Q,G) — C*(M,G), fr> fods
a C®-diffeomorphism is compatible with evaluations.

Proof The map ¢: C*°°(Q, L(G)) — C*(M, L(G)), f — f o ¢¢ is an isomorphism of
topological vector spaces, by Example 4.1 and Lemma 4.12 (b). Write g, : C*°?(Q, G) — G
for the point evaluation at y € Q and ¢,: C¥(M, G) — G for the point evaluation at
x € M.Forv e L(C*(M, G)),let (v) := (L(ex(v))xem- Then, &x o (¢pg)* = &4, (x). As a
consequence,

$) = (LE)W))yeo = ¥~ 0¢ 0 L(($)*) () € C*(Q, L(G))

for all v € L(C*?(Q, G)). Moreover, ¢ = (¥ "1)* 0 ¢ o L((¢5)*) is an isomorphism of
topological vector spaces, being a composition of such. O

Proof of Theorem 1.3 and Proposition 6.6. Step 1. We first assume that M; is 1-dimensional
with finitely many components for all j € {1, ..., n}, and prove the assertions by induction
on n. The case n = 1 was treated in Lemma 6.8. We may therefore assume that n > 2 and
assume that the conclusions hold for n — 1 factors. We abbreviate k := a1, 8 := (a2, ..., ®y),
and L := M» x - - - X M,,. By the inductive hypothesis, C B(L, G) admits a canonical smooth
manifold structure which makes it a C” -regular Lie group and is compatible with evaluations.
By the induction base, ck(M;, CP(L, G)) admits a canonical smooth manifold structure
making it a C"-regular Lie group. Since C#(L, G) is canonical, the group homomorphism

@: P (M) x L, G) — C*(My, CB(L, G)), frs fY
is a bijection (see (4.13)). We endow
C*M,G)=C*FM, x L, G)

with the smooth manifold structure turning & into a C *°-diffeomorphism. By Lemma 6.4, this
structure is pre-canonical, makes C* (M, G) Lie group, and is compatible with evaluations.
The Lie group C*(M, G) is C"-regular, as ® is an isomorphism of Lie groups. Let Cy, ..., Cy
be the connected components of M. Let IC be the set of compact, full submanifolds K of M.
Then, the interiors K¢ cover M (as the interiors of connected, compact full submanifolds
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cover each connected component of M1, by the proof of Lemma 6.8). Now CK(K, G) admits
a canonical smooth manifold structure making it a C"-regular Lie group, by Lemma 6.7.
Thus, C ﬂ(L, ck (K, G)) admits a canonical smooth manifold structure, by the inductive
hypothesis. By Lemma 6.9, the pre-canonical smooth manifold structure on C*(M, G) is
canonical.

Step 2 (the general case). Let My, ..., M, be arbitrary. Using Lemma 4.12 (a), we may re-

order the factors and assume that there exists anm € {0, ..., n} such that M; is compact for
all j € {I,...,n}with j < m, while M; is 1-dimensional with finitely many components for
all j € {1,...,n}suchthat j > m.If m = 0, we have the special case just settled. If m = n,

then all conclusions hold by Lemma 6.7. We may therefore assume that 1 < m < n. We
abbreviate K := M| X --- X My and N := My, 41 X -+ X M. Lety = («q, ..., a,) and
B = (¥m+1, ..., 0p). By Step 1, CP(N, G) admits a canonical smooth manifold structure
which makes it a C"-regular Lie group and is compatible with evaluations. By Lemma 6.7,
CY (K, CP(N, G)) admits a canonical smooth manifold structure which makesita C” -regular
Lie group and is compatible with evaluations. We give C*(M, G) = CV"#(K x N, G) the
smooth manifold structure making the bijection

d: C"P(K x N,G) = C"(K,CP(N,G)), fr fY

a C*-diffeomorphism. By Lemma 6.4, this smooth manifold structure is pre-canonical,
makes C%(M, G) a Lie group, and is compatible with evaluations. The Lie group C*(M, G)
is C"-regular as @ is an isomorphism of Lie groups. Now C? (K, G) admits a canonical
smooth manifold structure, which makes it a C”-regular Lie group (Lemma 6.7). By Step 1,
CP(N, C (K, G)) admits a canonical smooth manifold structure. The pre-canonical smooth
manifold structure on C*(M, G) is therefore canonical, by Lemma 6.9. O

The following result complements Theorem 1.3. Under a restrictive hypothesis, it provides
a Lie group structure without recourse to regularity.

Proposition 6.11 Let My, ..., M, be locally compact smooth manifolds with rough bound-
ary, @ € (No U {oo)¥ and G be a Lie group that is C*®-diffeomorphic to a locally convex
space E. Abbreviate M := My X - - - X M,,. Then, C* (M, G) admits a canonical C*°-manifold
structure, which is compatible with evaluations. If G is C”-regular for some r € Ny U {oo},
then also C*(M, G) is C”-regular.

Proof By Example 4.1, H := C%(M, G) admits a canonical smooth manifold structure and
this structure makes it a Lie group (see Lemma6.1). Let ¢ : G — E be a C*°-diffeomorphism
such that yr(e) = 0. Abbreviating g := L(G) and b := L(H),themap o :=d{r|g: g > E
is an isomorphism of topological vector spaces. Then also, ¢ := e ' o: G — Eisa
C*-diffeomorphism such that ¢ (¢) = 0; moreover, d¢|y = idy. Now

¢4: C*(M,G) - C*(M.g), fr>dof

is a C*°-diffeomorphism, and thus g := d(¢«)|p: b — C%(M, g) is an isomorphism of
topological vector spaces. For x € M, lete,: H — G and e,: C*(M,g) — g be the
respective point evaluation at x. We show that S(v) = (L(ex)(v))xem for each v € b,
whence the Lie group structure on H is compatible with evaluations. Regard v = [y] as a
geometric tangent vector. As L(e,)(v) € g, we have

d
L(ex)(v) = dp(L(ex)(v)) = d(¢p o ex)(v) = 5’t20(¢ o0&y oy)()

d d
= 2| _eodon®=es| @ on®=d@rm@.
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since (@ o ex 0 y)(1) = ¢(y () (x)) = (P oy (1))(x) = ex(@«(y (1)) = (ex 0 ¢ 0 y)(¢) and

e, is continuous and linear. For the final assertion, see Lemma 6.5. O

7 Manifolds of maps with finer topologies

We now turn to manifold structures on C* (M, N) for non-compact M, which are modeled
on suitable spaces of compactly supported C*-functions. Notably, a proof for Theorem 1.4
will be provided. Such manifold structures need not be compatible with the compact-open
C*-topology, and need not be pre-canonical. But we can essentially reduce their structure to
the case of canonical structures for compact domains, using box products of manifolds as a
tool. We recall pertinent concepts from [14].

7.1 If I is a non-empty set and (M;);c; a family of C°°-manifolds modeled on locally
convex spaces, then the fine box topology Og, on the Cartesian product P := [[,.; M; is
defined as the final topology with respect to the mappings

Op: Vi = (@ E,-> N[TVi— P. Gidier = @ @i ©)

iel iel iel

iel

for ¢ := (¢;)ies ranging through the families of charts ¢; : U; — V; € E; of M; such that
0 € Vi; here Ey := @D, E; is endowed with the locally convex direct sum topology, and
the left-hand side Vy of (9), which is an open subset of Ey, is endowed with the topology
induced by Ey. Let Uy := ©4 (V). Thus,

Uy = [(y,-),»el € 1_[ Ui:yi # ¢l._1(0) for only finitely many i € Il.
iel
Note that the projection pr;: P — M; is continuous for each i € I, entailing that the fine
box topology is Hausdorff. In fact, using the continuous linear projection 77; : E4 — E; onto

the ith component, we deduce from the continuity of pr; 0 ©y = ¢,

;. oily, foreach ¢ that
pr; is continuous.

7.2 Let ¢ be as before and v be an analogous family of charts v;: R; — S; € F;. If
o l(0) = w;l (0) for all but finitely many i € /, then

(©4)' Uy N Uy) = @ i (Ui N Ry,

iel
which is an open subset of €, ; E;. The transition map
(©9)" o Oy: ViU NR) - P ¢iUi N R), (xidier = (@i 0¥ ) (xi)ies
icl iel

is C*° (as follows from [11, Proposition 7.1]) and in fact a C*°-diffeomorphism, and hence a
homeomorphism, since @;1 o ®y is the inverse map. If ¢i_1 0) # ¢ i_l (0) for infinitely many
i € I, then (@qg)’1 (Up NUy) = @ and the transition map trivially is a homeomorphism.
Using a standard argument, we now deduce that Uy = ©4 (V) is open in (P, Op,) for all ¢
and ® is ahomeomorphism onto its image (see, e.g., [15, Exercise A.3.1]). By the preceding,
the maps @4 := (04]|Y)~!: Uy — Vy C E are smoothly compatible and hence form an
atlas for a C*°-manifold structure on P. Following [14], we write P™ for P, endowed with
the topology O, and the smooth manifold structure just described, and call P the fine box
product.
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Some auxiliary results are needed. We use notation as in 5.8 and Theorem 1.4.

Lemma7.3 Let M := My X --- X M, be a product of locally compact smooth manifolds
with rough boundary, N be a smooth manifold, @ € (No U {oo})" and f € C*(M, N).

(a) If My, ..., My, are compact, then the following bilinear map is continuous:
CYM,R) x Lp— Ty, (h,t) = ht with (ht)(x) = h(x)T(x).

() If My, ..., M, are paracompact, L € M is a compact subset and K := K| x --- x K,

with compact full submanifolds K; € M; for j € {l,...,n}, then the linear map
Ly — Typg, T Tlg is continuous.
(c) If My, ..., M, are paracompact, K := K| x --- x K, with compact full submanifolds

K; € Mjforje{l,...,n} and L C K be compact. Then, r: Ty — Ty 1,
T > T|g is an isomorphism of topological vector spaces.

Proof (a) The bilinear map is a restriction of the continuous mapping p: C*(M,R) x
C(M,TN) - C¥M, TN) from Lemma 3.12.

(b) The map is a restriction of the restriction map C*(M, TN) — C%(K, T N), which is
continuous (see Remark 3.6).

(c) For each x in the open subset M \ K of M, there exist compact full submanifolds
Ky, j<SMjforje{l,...,n}suchthat Ky := Ky 1 x---x Ky, S M\Kandx € K}.
Lemma 3.7 implies that the compact-open C*-topology on I' ¢ ; is initial with respect
to the restriction maps p: I'y, — C*(K,TN) and py: 'y — C%(K,,TN) for
x € M\ K. As each p, is constant (its value is the function Ky € y = Oy(y) € Tr)N),
it can be omitted without affecting the initial topology. The topology onI" ; g is therefore
initial with respect to p, and hence also with respect to the co-restriction r of p. Thus, r
is a topological embedding and hence a homeomorphism, as r(7) = o can be achieved
for o € I'f| 1 if we define T: M — TN piecewise via 7(x) := o(x) if x € K,
T(x) :=0s@) € Ty)N if x € M\ L. Being linear, r is an isomorphism of topological
vector spaces. m}

Proof of Theorem 1.4. For j € {1, ..., n},let (K i)iel; be alocally finite family of compact,
full submanifolds K; ; of M; whose interiors cover M. Let I := I} x --- x I,,. Then, the
sets K; := K1, x---x K, ;, form alocally finite family of compact full submanifolds of M
whose interiors cover M, fori = (i1, ..., i) € I. The map

p: C*(M,N) - [[C*Ki, N), f = (Flgier
iel

is injective with image

im(o) = {(fier € [TC*(Ki, N): i, j € 1) (%x € Ki N K)) i) = ;0] (10)
iel

In fact, the inclusion “C” is obvious. If (fj)ies is in the set on the right-hand side, then a
piecewise definition, f(x) := f;j(x) if x € K;, gives a well-defined function f: M — N
which is C* since f|(k;)e = fil(k;)e is C* foreach i € I. Then, p(f) = (f;)ici-
For each i € I, endow C%(K;, N) with the canonical smooth manifold structure, as in
Theorem 1.1, modeled on the set {I's: f € C¥(K;, N)} of the locally convex spaces Iy :=
{t € C*K;,TN): iry o1 = f}for f € C*(K;,N).Let Z: TN 2 U — N be
a local addition for N; as in Sect. 5, write U’ = {(mry(®), Z(v)): v € U} and 0 :=
(rrnlu, £): U — U'. For f € C¥(K;, N), consider Oy := I'y N C*(K;, U), O’f =
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{g € CYKi,N): (f,g) € C*(K;,UN},and ¢ps: O — O/f, T +— X ot asin Sect. 5. For
f € C%M,N),letTs be the set of all T € C*(M, TN) such that 77y o T = f and

{xeM:t(x) #0rx) € TryN}

is relatively compact in M. Define Oy := I'y N C¥(M, U) and let O} be the set of all
g € C*(M, N) such that

(f.g) e C*(M,U") and glmk = flm\k for some compact subset K C M.

Then, ¢r: Of — O’f, T > X o7 is a bijection with (gbf)’l(g) =0"!o(f, g). The linear
map

s: Ty — @Ff\](i, T > (Tlk;)iel
iel
is continuous on I'y ; for each compact subset L C M (see Lemma 7.3 (b)) and hence
continuous on the locally convex direct limit I s. As above, we see that

im(s) = {(ti)ier € @Fﬂlﬂ- (Wi, jel)(Vx € K;NKj) 1i(x) = 7;(x)}, (11

iel
which is a closed vector subspace of @;; I' (.. We now show that s is a homeomorphism
onto its image. In fact, s admits a continuous linear leftinverse. To see this, pick a C*°-partition
of unity (h;);e; on M subordinate to (K;);cy:then L; := supp(h;) is aclosed subset of K; and
thus compact. The multiplication operator B;: I' |, — [ 1;, T = h;T is continuous
linear (by Lemma 7.3 (a)). Moreover, the restriction operator'sl- 2Ty, — Ty k;+Li is an

"y is a continuous linear map. By the universal property of the locally convex direct sum,
also the linear map

o: @Ff\,(’. = Ty, (@ier = Z(Si_l o Bi)(ti)

iel iel

isomorphism of topological vector spaces (Lemma 7.3 (c)). Thus, sfl ofi: Uyix, &> Iy ©

is continuous. Hence, o |im(s) is continuous and linear. We easily verify that 0 o s = idr s
Abbreviate ¢; := (¢ K Y~V and ¢ := (¢;)ier. We now use the C °-diffeomorphism

Op: P Osix, = Uy, @ier = @' @)ier = (B0 ties
iel
from 7.1, the inverse of which is the chart

g1 Up — EB Ofik,» 8iier = (9i(8i))ier

iel
of [T, C*(K;, N) around (f|x;)ics- For (ti)ics € @;e; Oy, > we have
Op((Ti)ier) €im(p) & (Ti)ies € im(s).

In fact, fori, j € I and x € K; N K; we have X(7;(x)) = X(z;(x)) if and only if 7; (x) =
7;(x), from which the assertion follows in view of (10) and (11). Thus,

g (im(p) N Up) = im(s) NED Oy«

iel
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showing that im(p) is a submanifold of ]_[lﬂél C*(K;, N). Let
Wy : im(p) N Uy — im(s) N @ Oflk,» 8idier = Py((giier)

iel

be the corresponding submanifold chart for im(p). Then,

p(0}) =im(p) N U,y and s(05) =im(s) NED Oy .
iel
Hence, (¢ f)_] =slo Wy o P|0’f : 0} — Oy is a chart for the smooth manifold structure
on C*(M, N) modeled on £ (the set of all T y) which makes p: C*(M, N) — im(p) a C*°-
diffeomorphism. Note that the smooth manifold structure on C* (M, N) which is modeled
on £ and makes p a C°°-diffeomorphism is uniquely determined by these properties. Thus,
it is independent of the choice of X. On the other hand, the (¢ f)_1 form a C*°-atlas for a

given local addition X. As the definition of the ¢, does not involve the cover (K;);es, the
smooth manifold structure just constructed is independent of the choice of (K;);c;- O
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A Details for Sects. 2 and 3

In this “Appendix”, we provide proofs for preliminaries in Sects. 2 and 3.

Proof of Lemma 2.8. The right-hand side (¢, y) + y.y (¢) of the differential equation y(z) =
y(t).y(t) is C*, whence its solution n will be C*1if it exists.

To verify existence and uniqueness of 7, we may assume that / is a non-degenerate compact
interval with initial point O or endpoint 0, since / is covered by such intervals. Thus, let / be
a line segment joining 0 and t # 0. Define & : [0, 1] — g via £(¢) := ty(¢t7). By the chain
rule, a C'-function n: I — G with 5(0) = e satisfies 8y = y ifand only if 0 : [0, 1] — G,
t — n(tt) satisfies 8to = &. The assertion now follows from the case I = [0, 1], which
holds by C”-semiregularity. O

Proof forLemma 2.14. (a) Let A: Y — F be the inclusion map, which is continuous linear
and thus smooth. If f|Y is C%, then also f = Ao f|Y is C%, by the chain rule [1,
Lemma 3.16]. Conversely, assume that f is C* and f(U) C Y. It suffices to deduce
that f|¥ is C* if & € (Ng)". The proof is by induction on |«|, and establishes in parallel
that 42 (f1¥) = dP f)|* for all B < a. If || = 0, the conclusion holds since f| is
continuous. If || > 1,let j € {1, ..., n} be minimal with o; > 0. Then, dﬁ(f|Y) exists
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for all B < a such that B; < «; — 1, and equals (d# f)|'. If B < & with B; = o, let
xeUandy, € Elﬁ "fori € {j,...,n}. Then, all difference quotients needed to define

dﬁf(x,O,...,O,yj,yjH,...,yn)

are linear combinations of function values of d#~¢j f and hence in Y. Since Y is closed,
the limit dﬁf(x, 0,...,0,yj,¥j+1, ..., yu) isin Y as well, and this remains valid for
x € U, by density of U® in U. Thus, (d? £)|¥ is a continuous function which extends
dP(f1¥,). We deduce that f|¥ is C* and d?(f|") = (d? f)|Y.

(b) If fis C¥, thenalso A, 0 f,using that A, is continuous linear and thus smooth. Conversely,
assume that A, o f is C* for all @ € A. Then,

Y i={()aca € [ | Fa: (Va < b) x4 = hap(xp)}

acA

is a closed vector subspace of [],. 4 F, and the map

acA

AMF =Y, x> (Aa(x))aea

is an isomorphism of topological vector spaces. Let pr,: ¥ — F, be the projection onto
the ath component. Since pr,oh o f = A, 0 fis C* foralla € A, the map Lo f
is C¥ to [[,ea Fa by [1, Lemma 3.8]. By (a), A o f is C* also as a map to Y. Thus,
f=r"lo(o f)isC. |

Proofof Lemma 2.15. If f is C?, then p, o f is C* for each a € A, the map p, being
smooth. Assume that, conversely, p, o f is smooth for eacha € A. Write = (Y1, ) with
Y1: M — Fandy,p: M — N.Since ¥, is smooth, {, 0 pg 0 f = (Ay Xidy) oo fis C¥,
whence so is its second component 1, o f (see [1, Lemma 3.8]). Also the first component
Aq oYy o fis C¥ for each a € A, whence Y| o f is C* by Lemma 2.14 (b). Hence, ¥ o f
is C%, by [1, Lemma 3.8], and hence sois f = ¢! o (¢ o f). o

Proofof Lemma 2.17. The proof is by induction on m := m; + --- + m,. f m = n,
there is nothing to show. Assume that m > n. After a permutation of Eq, ..., E,, we
may assume that m, > 2 (cf. Lemma 2.13). Let (B1,..., Bi—1) € 1—[?:—11 (No U {co})™,
Bn = Buts---» Bum,—1) € (No U {oo)™ ! such that |8;| < o; foralli e {1,...,n}.
Abbreviate B, := (Bp.1, - - - Bu,m,—2)- Forallk, £ € Ny such thatk + ¢ < B, n, 1, the map
fis CP1- BBkt Hence,

n—1 m;

f: 1_[ l_[ Ui,j xUp1 x - X Upmy—2 X (Unmp—1 X Upm,) — F
i=1j=1

is CP1-~Pr by [1, Lemma 3.12]. By the inductive hypothesis, f is C*. u]
The following lemma fills in the details for 3.3.

LemmaA.1 Let My, ..., M, and N be smooth manifolds with rough boundary, M := M1 x
X Myand f: M — N bea C*-map witha € (No U {o0})". Then, f(x,-): My — N is
C% foreachx € M := My X --- X M,_1 and

hi: My X -+ x Mp_y x T"(M,)) - T*N, (&, v) — TE(f(&, ))(v)

is a C*ken_map for all k € No such that k < a,.
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Proof We show by induction on ko € N that the conclusion holds with k < k¢ for all functions
as described in the lemma, for all & with o, > k. Using local charts, we may assume that
U; := M; isalocally convex subset of alocally convex space E; forall j € {1,...,n}and N
alocally convex subset of a locally convex space F;thus fisamapU = Uy x---xU, — F.
The case ko = 0 being trivial as hg = f is C*. Let 1 < ko < &, now. Then,

df: Uy x - xU, xE, > F
is a C(@~¢0_map. Being linear in the final argument, d® f is C*~¢ as a map
U x---xU,_1 x (U, x E;)> F

of n variables, i.e., as amap on the domain T U = Uy x U,_1 x TU,, (see[1, Lemma3.11]).
Letpr;: TU, = U, x E, — U, be the projection onto the first component. Then, g :=
foidy, x--- xidy, , xpry: Uy x --- x Uy—1 x TU, — F is C* by the chain rule [I,
Lemma 3.16], and hence C*~°». Thus, h; = (g, d*" ) is C*~ %", by [1, Lemma 3.8]. By the
inductive hypothesis, the maps

Up x - x Uy x TH(TU,) — TI(TF), &, v)— T(hi(x, )W)

are C*~¢—Jen forall j € {0, ..., ko — 1}. It only remains to observe that this map equals
hj+1. ]

Proof of Lemma 3.5. (a) For g € Nj with 8 < «, consider the maps
TP c*M,N) - C(T?M, TPIN), f TP f

and 75: C*(M, L) — C(TPN,T'PIL), f — T8 f. Going through the recursive con-
struction of T#(g o f) in 3.3 for f € C%M, N) and making repeated use of the
functoriality of 7', we see that

TP(go f)=TWgoTPf. (12)

Thus, 75 0 C*(M, g) = C(T’SM, T“S'g) o T#, which is a continuous map by [15,
Lemma A.6.3]. The topology on C#(M, L) being initial with respect to the maps T8, We
deduce that C¥(M, g) is continuous.

(b) For B € NZ with B < «, consider the maps T#: C*(M,N) — C(TPM,TFIN),
f + TP f and 5: C¥(L,N) — C(TPL, TPIN), f — TEF. Going through the
recursive construction of T#(f o g) in 3.3 for f € C*(M, N) and making repeated use
of the functoriality of T', we see that

TP (fog) = (TP f)ohg (13)

with hg := TPig) x --- x TPrg,. Thus, 750 C%(g, N) = C(hp, T'PIN) o TP, which is
a continuous map by [15, Lemma A.6.9]. The topology on C*(L, N) being initial with
respect to the maps 74, we deduce that C%(g, N) is continuous. O

Proof of Lemma 3.7. By definition, the compact-open C*-topology O on C*(M, N) is initial
with respect to the maps 7g: C*(M, N) — C(TPM, TIN), f + TBf for B € (Np)"
such that B < a. As the interiors (T#K;)° cover T# M, the compact-open topology on
C(TPM, TIFIN) is initial with respect to the restriction maps pg;: C(TPM, TIFIN) —
C(TPK;, TIPIN), by [15, Lemma A.6.11]. By transitivity of initial topologies, O is initial
with respect to the mappings pg ; otg. Let p; : C*(M, N) — C%(K;, N) the restriction map.
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The compact-open C“-topology on C*(K;, N) being initial with respect to the mappings
50 CY(K;,N) — C(TPK;, T'PIN), f > TP f, we deduce from

PBiOTp=TBiOP
that O is initial with respect to the maps p;. O

ProofofLemma 3.8. The case n = 1 is well known. The general case follows as T#S =
TPIS) x - x TPS, and TPM = TP My x --- x TP M,,. O

Proof of Lemma 3.9. The inclusion map A: S — N is smooth. By Lemma 3.8, the inclusion
map TPIn: TIPS — T‘mNisatopological embedding, foreach 8 € (Np)” suchthat 8 < «.
Thus, (TY10),.: C(TPM, TIPSy — C(TPM, TFIN) is a topological embedding for the
compact-open topologies (see, e.g., [15, Lemma A.6.5]). The compact-open C*-topology O
on C*(M, S), which is initial with respect to the maps t5,5: C*(M, S) — C(TPM, TIF1S),
f + TP f is therefore also initial with respect to the mappings (T'#I1), 0 7g,s. The compact-
open C%-topology on C*(M, N) is initial with respect to the maps tg y: C*(M, N) —
C(TPM, TPIN), f > TP f. As (T"PI)), 0 155 = Tp N 0 Ax, We see that the topology
O is initial with respect to the inclusion map A.: C*(M, S) — C*(M, N). Thus, O is the
induced topology. O

Proof of Lemma 3.10. For each k € Ny, T¥F = F ¥ isa locally convex space. For each
B € (Np)" such that 8 < «, the map

TP c*M,F)— c(T’M, TP'F), fr>TPf

is linear. In fact, T* : CK(N, F) — C(T*N, T*F) is linear for each smooth manifold N with
rough boundary [15, proof of Proposition 4.1.11] and k € Ny, establishing linearity if n = 1.

If n > 2, the preceding entails that 7082 f(v) = TAr(f(x1, ..., Xp—1, -))(v,) is linear
in fforallx; e Mjforje{l,...,n—1}and v, € TP M,, showing that T(U’""O’ﬁ")f is
linear in f. Likewise, g and T ©-0-Bi-1.Bn) £ is linear in f in the recursive construction

in 3.3, which gives the assertion for n > 2. Thus,

C*M, F)— [[ca’m, T¥IF), £ (TP f)p<a
B=a
is a linear map. It is a homeomorphism onto its image, which is a locally convex space. Hence
also, C*(M, F) is a locally convex space. O

Proof of Lemma 3.11. (a) For each k € Ny, the topology on TXF = F2' is initial with
respect to the linear maps TkAi = kizk: F * Fizk. For each g € Ng with 8 < «,
the compact-open topology on C(T# M, TIPIF) is therefore initial with respect to the
mappings

CTPm, TPy c(TPM, TP F) - (TP M, T'P'F)

fori € I,see[15, Lemma A.6.4]. Thus, the compact-open C*-topology O on C*(M, F)
is initial with respect to the maps C(T#M, T¥I);)) o TP with T#: C*(M,F) —
C(TPM, TIPIF). As TP(Aj o f) = (TWIx;) o (TP f), writing 7; g(g) := TPg for
g € C¥(M, F;) we have

CTPM, TP %) o TP =110 C*(M, 1i).

The topology on C* (M, F;) being initial with respect to the mappings 7; g : C*(M, F;) —
C(TPM, T E) for B < a, we deduce that O is initial with respect to the mappings
C*(M, i) = (Ai)x-
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(b) By [1, Lemma 3.8], the linear map © is a bijection. The topology on F being initial
with respect to the maps pr;, (a) shows that the topology on C*(M, F) is initial with
respect to the maps (pr; ) and hence makes ® a topological embedding. Hence, © is a
homeomorphism, being bijective.

(c) By [1, Lemma 3.8], ¥ is a bijection. By Lemma 3.5, W is continuous. To see that
W1 is continuous, we prove its continuity at a given element ( f1, f2) in C*(M, Np) x
C*(M, Ny).Forx € M, pickachart ¢, ;: Uy; — V,; € Ey; of N; around f;(x), for
i € {1,2}. There exist compact full submanifolds K ; of M; for j € {1,...,n} such
that Ky := Ky 1 x -+ x Ky n € (f1, fz)’l(Ux,l x Uy p)and x € K?. By Lemma 3.7,
the topology on C*(M, N1 x N) is initial with respect to the restriction maps

px: C*(M, N1 x N2) = C%(K,, N1 x Na).

It thus suffices to show that p, o W1 is continuous at ( fi, f») for all x € M. Now p, o
vl = \IJ;I o (px.1 X px,2) using the continuous restriction maps py ;: C*(M, N;) —
C*(K,, N;) fori € {1, 2} and the map

W, : C*(Ky, N1 X N2) = C*(Ky, N1) x C*(Ky, N2)

taking a function to its pair of components. Thus, it suffices to show that \If;l is con-
tinuous at (f1|k,. f2lk,)- Now f;|k, is contained in the open subset C*(Ky, Uy ;) of
C*(K,, Nj), on which the latter induces the compact-open C“-topology, by Lemma 3.9.
The map W1 takes this set onto C*(M, Uy,1 x Uy 2), on which C*(M, N; x N»)
induces the compact-open C“-topology. It thus suffices to show that W~ 1'js continuous
at (filk,. f2lk,) as a map

C%(Ky, Uy1) x C%(Ky, Uyn) — C%(Ky, Uyt x Uy 2).

Now (¢x,j)s: C*(Ky, Uy j) — C*(Ky, Vy ;) is a homeomorphism for i € {1, 2} and
also (hx 1 X Py 2)x: C¥(Ky, Uy 1 XUy 2) = C*(Kx, Vi 1 X Vi 2)is ahomeomorphism,
by Lemma 3.5. It thus suffices to show that the mapping (@1 X ¢x.2)x0 \IJ;I o((dx.1)x X
(¢x,2)*)_1:

Ca(KXs Vx,l) X Ca(va Vx,Z) i Ca(KXa Vx,l X VX,Z)
is continuous. But this mapping is a restriction of the homeomorphism C* (K, Ey 1) X

CY(Ky, Ex2) — C%(Ky, Ex1 x Ex ) discussed in (b). O

Proof of Lemma 3.12. The scalar multiplication o : R x TN — T N being smooth, the map
0x: C*(M,R x TN) - C*(M,TN), h — o o h is continuous (see Lemma 3.5). Hence,
"= o oW lis continuous, using the homeomorphism W : C*(M, RxTN) — C*(M, R)x
CYM,TN) from Lemma 3.11. O

Proof of Lemma 3.13. Let (U;);¢; be the family of pairwise distinct connected components
of N and (V) ey be the family of components of M. Then,

riCP(M.E)— [[CP(vVi. E). £ (flv)jes
jeJ

is a bijective linear map; by Lemma 3.7, it is a homeomorphism. Likewise,

p: C*P(N x M, E) — l_[ c*PU; x Vi, E), = (fluxv)a,jperxt
(. j)elxJ

@ Springer



Annals of Global Analysis and Geometry (2022) 61:359-398 397

and R: C%(N,CB(M, E)) —> [1ie; C*(Us, CctM, E)), f = (flu;)ier are isomorphisms
of topological vector spaces. By Lemma 3.5, the mapping C* (U;, r): C*(U;, CP(M, E)) —
c*(U;, ]_[jEJ ch (Vj, E)) is an isomorphism of topological vector spaces and so is the map

O;: C“(U,-, []c’w;. E)) - []c*wi. cPv;, By
jeJ jeJ
taking a map to its family of components (see Lemma 3.11 (b)). Hence,
g=[]eio]]C*WiroR: C*WN.CP(M, E)) > ] €W CP(v; E)
iel iel (i,j)elxJ

is an isomorphism of topological vector spaces. By [1, Theorem B], the map ®; ; : Cc%P(U; x
Vi, E)) = C*(U;, CB(V;, E)), f — fV islinear and a topological embedding, whence so
is

vi= [[ @y [] c*fwixviE)—> [] c*wW.cP;. Ey.
(.j)elxJ (i, )elxJ (i.j)elxJ

Evaluating at x € N and theniny € M (say x € U; and y € V;), we verify that

fY=E"owop)(f)

forall f € Ca'ﬂ(N x M, E), whence ¥ € C*(N, Cﬁ(M, E)) and ® makes sense as a map
to the latter space. We have a commutative diagram

CoB(N x M, E) > C*(N, CF(M, E))
p | E
v
[T, C*PW; x Vj. E) — [, ; C*(U;. CP(V;. E))
where the vertical arrows are homeomorphisms and W is a topological embedding. Hence,

® is a topological embedding. If M is locally compact, then so are the V;, whence each
of the maps ®; ; is a homeomorphism by [1, Theorem 4.4] and hence also W. Then also,

® = E~! o W o p is a homeomorphism. O
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