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Abstract
We investigate the maximal open domain E(M) on which the orthogonal projection map 
p onto a subset M ⊆ ℝ

d can be defined and study essential properties of p. We prove that 
if M is a C1 submanifold of ℝd satisfying a Lipschitz condition on the tangent spaces, then 
E(M) can be described by a lower semi-continuous function, named frontier function. We 
show that this frontier function is continuous if M is C2 or if the topological skeleton of Mc 
is closed and we provide an example showing that the frontier function need not be con-
tinuous in general. We demonstrate that, for a Ck-submanifold M with k ≥ 2 , the projection 
map is Ck−1 on E(M) , and we obtain a differentiation formula for the projection map which 
is used to discuss boundedness of its higher order differentials on tubular neighborhoods. 
A sufficient condition for the inclusion M ⊆ E(M) is that M is a C1 submanifold whose tan-
gent spaces satisfy a local Lipschitz condition. We prove in a new way that this condition is 
also necessary. More precisely, if M is a topological submanifold with M ⊆ E(M) , then M 
must be C1 and its tangent spaces satisfy the same local Lipschitz condition. A final section 
is devoted to highlighting some relations between E(M) and the topological skeleton of Mc.
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1 Introduction

In many problems from analysis and numerical analysis it is important to know the regular-
ity of the orthogonal projection p onto a sufficiently regular submanifold M of ℝd , that is, 
the function which maps points from the ambient space of M to their nearest element on 
M, if such an element exists uniquely, as well as the regularity of the respective distance 
function (see Definition  1 for a precise definition). A classical example is the Dirichlet 
problem for quasilinear partial differential equations, where the manifold of interest is the 
boundary of the underlying domain [8, 20]. The regularity properties of the distance func-
tion are crucial in the Lemma of Hopf, see Lions [14] and also Hopf [10]. Another more 
recent instance is the study of stochastic differential equations with discontinuous drift and 
their numerical solvability in Leobacher and Szölgyenyi [12, 13] or Neuenkirch et al. [16], 
where the manifold of interest is the set of discontinuities of the drift coefficient.

Early results are limited to the restriction of p to a small neighborhood of M, such as the 
tubular neighborhood theorems in Hirsch [9], Federer [6, 7], or Krantz and Parks [11]. The 
first non-local result we could find is contained in the article of Dudek and Holly [5], where 
the regularity of the distance function and the orthogonal projection is studied on the maxi-
mal open domain of definition E(M) of the projection function. The manifolds considered 
by Dudek and Holly are required to be C1 with a local Lipschitz condition on the tangent 
bundle, referred to as C1,1 (see Definition 3). Under these assumptions they showed that 
M ⊆ E(M) (we restate their result in Theorem 1).

The four major results of our article contribute to an almost complete understanding 
of the conditions on the submanifold for existence and regularity of the projection map 
and the shape of its domain, and will be presented subsequently. The first of these results 
concerns the shape of E(M) for a given submanifold, which can be described by the frontier 
function � for M. The latter measures locally how far one can move from a point of M in 
orthogonal direction without leaving E(M) (see Definition 5), thus quantifying the relation 
M ⊆ E(M).

Theorem A Let M ⊆ ℝ
d be a C1,1 submanifold. Then

1. The frontier function � is lower semi-continuous;
2. If M is C2 , then � is continuous.

One important consequence of Theorem A is Corollary 2, which states that E(M) is a 
fiber bundle if M is C2 . A counterexample, Example 3, shows that if M is C1,1 but not C2 , 
then, in general, it only admits a lower semi-continuous frontier function.

The second major result is that the Lipschitz condition on the tangent bundle used by 
Dudek and Holly [5] is not only sufficient, but even necessary. More precisely, we show 
in Theorem B that a topological submanifold which satisfies M ⊆ E(M) is necessarily C1,1.

Theorem B Let M be a C2 submanifold. For every x ∈ E(M) ⧵M the differential of p in x 
is given by

where v = ‖x − p(x)‖−1(x − p(x)) and Lp(x),v is the shape operator in direction v at p(x). For 
every x ∈ M the differential of p in x is Dp(x) = PTp(x)(M).

Dp(x) =
�
idTp(x)(M) − ‖x − p(x)‖Lp(x),v

�−1

PTp(x)(M),
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Theorem B has already been proven in Lytchak [15] for submanifolds of Riemannian 
manifolds. The proof uses methods and results from CAT(k) space theory. Using another 
method of proof, Rataj and Zajíček [19] provide a proof of Theorem B for submanifolds 
of ℝd . We provide a new self-contained proof which is a nice application of the Bor-
suk–Ulam theorem (entering through an elegant proof of Lemma  8) and the Brouwer 
fixed-point theorem (entering through Lemma 3). We point out in Remark 9 that Theo-
rem B generalizes one direction of the celebrated Blaschke’s Rolling Theorem.

We turn to our third major result: Dudek and Holly [5] show that the projection map 
is (k − 1)-times differentiable if the submanifold is of class Ck , k ≥ 2 , thus generalizing 
the local result by Foote [7]. Their result is restated here in Theorem 2. We give a dif-
ferent proof and derive a differentiation formula, which in similar form appeared in the 
literature, see, e.g., Ambrosio and Mantegazza [1, Section 3]. For an implicit form see 
Rataj and Zähle [18, Theorem 4.23]. The formula for the differential of p in Theorem C 
needs explaining: When we compose linear maps, we omit the ‘ ◦ ’ (like for matrix mul-
tiplication). This convention is used throughout the paper.

Theorem C Let M be a C2 submanifold. For every x ∈ E(M) ⧵M the differential of p in x 
is given by

where v = ‖x − p(x)‖−1(x − p(x)) and Lp(x),v is the shape operator in direction v at p(x). For 
every x ∈ M the differential of p in x is Dp(x) = PTp(x)(M).

From this particular formula for the differential we obtain criteria for the bounded-
ness of higher order differentials of the projection, see Corollary 4, which weakens the 
requirements on the hypersurfaces appearing in [12, 13, 16]. The statement of this cor-
ollary uses the concept of a subset’s reach introduced in Federer [6]. Theorem 6 high-
lights connections between the reach of M and its frontier function.

Our final major result is another continuity result for the frontier function of M, 
which depends on the topological skeleton S(Mc) of Mc , i.e., the centers of the maximal 
balls contained in the complement of M (cf. Definition 9).

Theorem D If M is a C1,1 submanifold and S(Mc) is closed, then � is continuous.

The paper is organized as follows: In Sect. 2 we recall and prove basic properties of 
the projection p and the set E(M) . Some of these results are of independent interest as 
they also hold for general subsets M ⊆ ℝ

d . The section also contains Theorem A and its 
corollaries. In Sect. 3 we prove regularity of p and the corresponding distance function 
(Theorem 2) and give a differentiation formula for p in terms of the manifold’s shape 
operator (Theorem C). We relate the boundedness of the (higher order) differentials of 
unit normal fields of a Ck hypersurface, k ≥ 2 , with positive reach to the boundedness of 
the higher order differentials of p (Corollary 4). Section 4 is dedicated to the proof of 
Theorem B and finally, Sect. 5 highlights the relation between E(M) and the medial axis/
topological skeleton of Mc in Theorem 8. It contains a version of the medial axis trans-
form adapted to our setting as well as Theorem D.

Dp(x) =
�
idTp(x)(M) − ‖x − p(x)‖Lp(x),v

�−1

PTp(x)(M),
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2  Parametrization of E(M)

We give some basic definitions and introduce some notation used throughout the paper.

Definition 1 Let M ⊆ ℝ
d be a nonempty set. 

(1) For every point x ∈ ℝ
d  denote the distance between x  and M  by 

d(x,M) ∶= inf{‖x − �‖ ∶ � ∈ M} , where ‖ ⋅ ‖ is the Euclidean norm on ℝd.
  We denote the distance function �M ∶ ℝ

d → [0,∞) by �M(x) = d(x,M).
(2) For � ∈ (0,∞) , we denote the � -neighborhood of M by 

(3) We define 

 Thus there exists p ∶ unpp(M) → M such that for all x ∈ unpp(M) it holds that p(x) 
is the unique nearest point to x on M. The function p is called the (orthogonal) projec-
tion onto M.

  A set U ⊆ ℝ
d has the unique nearest point property (unpp) with respect to M iff 

U ⊆ unpp(M).
(4) Let E(M) ∶=

⋃
{U ⊆ ℝ

d ∶ U is open and U ⊆ unpp(M)} = unpp(M)◦ be the maximal 
open set on which the function p is defined.

Notation (Balls) For x ∈ ℝ
d and r ∈ (0,∞) denote by

the open ball with center x and radius r and by

the closed ball. We denote the (d − 1)-dimensional unit sphere by S ∶= B̄1(0) ⧵ B1(0).

Notation (Line segments) For x1, x2 ∈ ℝ
d denote

and let ]x1, x2], [x1, x2[, [x1, x2] be the corresponding sets with (0,  1) replaced by 
(0, 1], [0, 1), [0, 1], respectively.

Definition 2 Let d,m, k ∈ ℕ ∪ {0} , m < d , and let M ⊆ ℝ
d . We say M is an m-dimen-

sional Ck submanifold of ℝd iff for every � ∈ M there exist open sets U,V ⊆ ℝ
d and a 

Ck diffeomorphism � ∶ V → U such that � ∈ U and for all y = (y1,… , yd) ∈ V  it holds 
� (y) ∈ M ⟺ ym+1 = ⋯ = yd = 0 . In the case where k = 0 , by a C0 diffeomorphism we 
mean a homeomorphism, and we also call M a topological submanifold. For the case k ≥ 1 , 
we write T

�
(M) for the tangent space on M in � ∈ M,

M𝜀 ∶= {x ∈ ℝ
d ∶ d(x,M) < 𝜀} .

unpp(M) ∶= {x ∈ ℝ
d ∶ ∃! � ∈ M ∶ ‖x − �‖ = d(x,M)} .

Br(x) ∶= {z ∈ ℝ
d ∶ ‖x − z‖ < r}

B̄r(x) ∶= {z ∈ ℝ
d ∶ ‖x − z‖ ≤ r} = Br(x)

]x1, x2[ ∶= {(1 − �)x1 + �x2 ∶ � ∈ (0, 1)}

T
�
(M) ∶= {t ∈ ℝ

d ∶ ∃� ∶ (−1, 1) → M aC1map with �(0) = � and �
�(0) = t}.
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Remark 1 Usually, the case m = d is not excluded in the definition of a submanifold. How-
ever, for the questions considered here this case is not very interesting: a d-dimensional 
submanifold M ⊆ ℝ

d is an open subset of ℝd . Thus, no point in ℝd ⧵M has a nearest point 
on M and for every x ∈ M we have p(x) = x , so E(M) = M and p is C∞ on E(M).

This means that the case m = d is not interesting for the kind of questions we pursue in 
this article, and we shall always assume m < d.

Remark 2 

1. If M is a Ck submanifold with k ≥ 0 , � ∈ M and � ∶ V → U is a diffeomorphism as in 
Definition 2, then the map � ∶ {y ∈ ℝ

m ∶ (y1,… , ym, 0,… , 0) ∈ V} → ℝ
d , 

 is a (local) parametrization of M with � in its image. We may always assume that 
0 ∈ V  and � = �(0).

2. If M is C1 and � ∈ M then, by virtue of the implicit function theorem, M can be locally 
represented as the graph of a C1 function � from the tangent space T

�
(M) into the cor-

responding normal space T
�
(M)⟂.

  More precisely,  there exist  open sets  W ⊆ T
𝜉
(M) and U ⊆ T

𝜉
(M)⟂ 

with 0 ∈ W ∩ U  and a C1 function � ∶ W → U  such that �(0) = 0 and 
M ∩ (� +W + U) = {� + t +�(t) ∶ t ∈ W}.

  One cannot generalize the statement to topological submanifolds, even if the tan-
gent space is replaced by some other linear space: consider as a counterexample 
M ∶= {x2 ∶ x ∈ [0,

1

2
)} ∪ {x3 ∶ x ∈ [0,

1

2
)}.

The following definition corresponds to condition (3.3) in [5].

Definition 3 Let m ∈ ℕ ⧵ {0} . Denote by G(m,ℝd) the Grassmannian of m-dimensional 
subspaces of ℝd . For T1, T2 ∈ G(m,ℝd) their Hausdorff distance is defined as

We say M is an m-dimensional C1,1 submanifold of ℝd iff M is an m-dimensional C1 sub-
manifold of ℝd and the map M → G(m,ℝd) , � ↦ T

�
(M) is locally Lipschitz w.r.t. the Haus-

dorff distance, i.e., if for all � ∈ M there exists an open set V ⊆ M and a positive constant L 
such that � ∈ V  and ∀� ∈ V ∶ dH

�
T
�
(M),T

�
(M)

�
≤ L‖� − �‖.

Definition 4 Let k ≥ 1 . For a Ck submanifold M of ℝd let

be the normal bundle for M. Moreover, let

and define the endpoint map F ∶ �(M) → ℝ
d by F(�, v) ∶= � + v.

Remark 3 As is stated in [7], if M is an m-dimensional Ck submanifold of ℝd , then �(M) is 
a m + (d − m)-dimensional Ck−1 submanifold of ℝd ×ℝ

d . We include an explanation of this 
in the “Appendix”. It follows that F is a Ck−1 function.

�(y1,… , ym) ∶= � (y1,… , ym, 0,… , 0)

dH(T1, T2) ∶= sup
�
inf{‖t2 − t1‖ ∶ t2 ∈ T2 ∩ S} ∶ t1 ∈ T1 ∩ S

�
.

�(M) ∶= {(�, v) ∈ ℝ
d ×ℝ

d ∶ � ∈ M, v ⟂ T
�
(M)}

�1(M) ∶= {(�, v) ∈ �(M) ∶ ‖v‖ = 1}
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The following result is a direct consequence of Dudek and Holly [5, Theorem 3.8].

Theorem 1 Let M ⊆ ℝ
d be a C1,1 submanifold and let � ∈ M . Then � has an open neigh-

borhood U in ℝd so that U ⊆ unpp(M) and for all x ∈ U , � ∈ U ∩M with x − � ⟂ T
�
(M) it 

holds p(x) = � , i.e., p(F(� , x − � )) = �.

Remark 4 Note that Theorem 1 implies that M ⊆ E(M) if M is C1,1.
Note further that if x ∈ E(M) ⧵M , then (x − p(x)) ⟂ Tp(x)(M) , since the sphere 

B̄x−p(x)(x) ⧵ Bx−p(x)(x) has a first-order contact with M in p(x).

The next lemma shows that unpp cannot be a property of isolated points. The lemma 
is further strengthened by Lemmas 2 and 3.

Lemma 1 Let M ⊆ ℝ
d , x ∈ ℝ

d ⧵M , and assume that there exists � ∈ M with 
‖x − �‖ = d(x,M).

Then the line segment ]x, �] has the unpp w.r.t. M, i.e., ]x, 𝜉] ⊆ unpp(M) , and for every 
z ∈ ]x, �] it holds that p(z) = �.

Proof Let z ∈ ]x, �] . For z = � the assertion is obvious. Now consider the case z ≠ � , and 
let � ∈ M . We have

By the continuity of the distance function we have ‖x − �‖ ≤ ‖x − �‖ , so that 
‖z − �‖ ≤ ‖z − �‖.

Suppose ‖z − �‖ = ‖z − �‖ . Thus equality holds in (1), which implies z ∈ [x, �] . z ≠ x 
by assumption and z ≠ � because, ‖z − 𝜂‖ = ‖z − 𝜉‖ > 0 . Thus z = �� + (1 − �)x for some 
� ∈ (0, 1) . On the other hand z = �� + (1 − �)x for some � ∈ (0, 1) , so that

From ‖z − �‖ = ‖z − �‖ we conclude � = � and thus � = � .   ◻

In [6, Theorem 4.8] it is shown that for every closed set M the projection map p onto 
M is continuous on every set where it is well-defined. The subsequent proposition is a 
version for which closedness is not needed; for every subset M ⊆ ℝ

d the projection p is 
continuous on every open set on which it is well-defined. The following result can be 
found in [5, Theorem 1.3].

Proposition 1 (Continuity of p) Let M ⊆ ℝ
d , U ⊆ ℝ

d be an open set with U ⊆ unpp(M) , 
and let p ∶ U → M denote the corresponding projection map. Then p is continuous.

Example 1 Consider the following example of a non-compact submanifold: 

(1)
‖x − �‖ = ‖x − z‖ + ‖z − �‖
‖x − �‖ ≤ ‖x − z‖ + ‖z − �‖.

� − z =
1 − �

�
(z − x) and � − z =

1 − �

�
(z − x).
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Here the projection is not continuous in x. On the other hand, there is no open set U 
containing x and having the unpp.

Also the next result can be found in [5, Theorem 1.5.(ii)].

Lemma 2 Let M ⊆ ℝ
d and x ∈ ℝ

d ⧵M such that there exists an open set U ⊆ unpp(M) 
containing x. Then there exists an open set Û ⊆ unpp(M) that contains ]x, p(x)[.

Lemma 3 Let M ⊆ ℝ
d and x ∈ ℝ

d ⧵M such that there exists an open set U ⊆ unpp(M) 
containing x. Then there exists a ∈ (1,∞) such that

Proof Consider a closed ball B ∶= B̄
𝜀
(p(x)) with � ≤

√
3

2
‖x − p(x)‖ . Then for every 

y ∈ B it holds that the (unsigned) angle ∢(x − y, x − p(x)) lies in the interval [0, �
3
] . 

By the continuity of p (Proposition  1) there exists � ∈ (0, ‖x − p(x)‖ − �) such that 
∀z ∈ ℝ

d ∶ ‖z − x‖ ≤ � ⇒ (z ∈ U and p(z) ∈ B) . Let

i.e., D is the (d − 1)-dimensional closed ball which is orthogonal to x − p(x) , lies on the 
side of x opposing p(x), and has the property that, for all z ∈ D , the angle ∢(z − x, x − p(x)) 
lies in the interval [0, �

3
] . 

p(x) + a(x − p(x)) ∈ U and p(p(x) + a(x − p(x))) = p(x).

D ∶=

�
z ∈ ℝ

d ∶ ∃v ∈ ℝ
d ∶ z = x +

1

2
�‖x − p(x)‖−1(x − p(x)) + v,

⟨x − p(x), v⟩ = 0 and ‖x − z‖ ≤ �},
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Therefore, every line spanned by y ∈ B and x has precisely one intersection with D . 
Define this as f(y) and consider the mapping g ∶ B → B defined by g(y) ∶= p(f (y)) . Note 
that f is continuous, so g is a continuous mapping from B → B . Since B is homeomorphic 
to the unit ball in ℝd , there exists a fixed point y0 of g by Brouwer’s fixed point theorem, 
i.e., there exists y0 ∈ B such that g(y0) = y0 . Note that y0 ∈ M by the definition of g.

Now p(f (y0)) = y0 and x ∈ ]f (y0), y0[ . By Lemma  1 we therefore have p(x) = y0 and 
thus p(f (y0)) = p(x).

We conclude the proof by noting that f (y0) is of the desired form 
f (y0) = p(x) + a(x − p(x)) with a ∈ (1,∞) .   ◻

Remark 5 Let us revisit Example 1. The point x lies in unpp(M) and ]x, p(x)[⊆ E(M) . 
However, x ∉ E(M) , and also there does not exist a ∈ (1,∞) such that 
p(p(x) + a(x − p(x))) = p(x) . Therefore, the assumption made in Lemma 3, that x be con-
tained in some open set in unpp(M) , is necessary.

Example 2 Consider the set M ∶= {(x, x2) ∈ ℝ
2 ∶ x ≥ 0} . Routine calculations yield that

The point 
(
0,

1

2

)
 has a unique closest point on M, namely (0, 0), but does not lie in E(M) . 

Of course, for all y ∈ [0,
1

2
] we have p((0, y)) = (0, 0) = p

(
(0,

1

2
)

)
 , but for y ∈ [

1

2
,∞) it 

holds p((0, y)) =
(√

2y−1

4
,
2y−1

4

)
.

In this example p is continuous on unpp(M) ≠ E(M) , but still the conclusion of Lemma 3 
does not hold since there is no open set U ⊆ unpp(M) with (0, 1

2
) ∈ U.

Definition 5 Let M be a C1,1 submanifold of ℝd . 

E(M) = ℝ
2 ⧵

{
(x, y) ∶ x ≤ 0, y =

1+3(x2)
1
3

2

}
,

unpp(M) = E(M) ∪ {(0,
1

2
)}.
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1. We define 

 and F∗ ∶ �∗(M) → E(M) by F∗(�, v) ∶= � + v , the restriction of the endpoint map to 
�∗(M).

2. We define � ∶ �1(M) → (0,∞], 𝜗(𝜉, v) ∶= sup{r > 0 ∶ ]𝜉, 𝜉 + rv[ ⊆ E(M)} and call � 
the frontier function for M.

Proposition 2 Let M be a C1,1 submanifold of ℝd . Then

1. The frontier function � is well-defined,
2. For all (�, v) ∈ �1(M) and all r ∈

[
0, �(�, v)

)
 it holds p(� + rv) = �,

3. �∗(M) =
{
(�, rv) ∶ (�, v) ∈ �1(M), r ∈

[
0, �(�, v)

)}
,

4. For every x ∈ E(M) we have [x, p(x)] ⊆ E(M).

Proof 

1. By Theorem 1, for all � ∈ M there exists an open set U ⊆ unpp(M) containing � . Since 
U is open and U ⊆ E(M) , the set 

{
r ∈ (0,∞) ∶ ]𝜉, 𝜉 + rv[ ⊆ E(M)

}
 is non-empty and 

therefore 𝜗(𝜉, v) > 0 for all (�, v) ∈ �1(M).
2. Clearly p(�) = � . Now let H ∶=

{
r ∈ (0,∞) ∶ p(� + rv) = �

}
 . The set H is non-empty 

by Theorem 1, so s ∶= supH is a positive real number or equal to infinity. Assume 
s < 𝜗(𝜉, v) . Then 𝜉 + sv ∈

]
𝜉, 𝜉 +

1

2
(s + 𝜗(𝜉, v))v

[
⊆ E(M) , in particular � + sv ∈ E(M) . 

Since p(� + rv) = � for all r ∈ (0, s) and p is continuous on E(M) , it holds p(� + sv) = � . 
By Lemma 3 there exists a ∈ (1,∞) such that 

 Hence, by Lemma  2 also ]𝜉, 𝜉 + asv[⊆ E(M) , contradicting s ∶= supH . Therefore, 
s ≥ �(�, v) and p(� + rv) = � for all r ∈ (0,�(�, v)).

3. This is obvious.
4. By Lemma 2 we have that for every x ∈ E(M) also the line segment [x, p(x)[ is contained 

in E(M) . By Theorem 1 we have M ⊆ E(M) so that indeed [x, p(x)] ⊆ E(M).

  ◻

Lemma 4 Let M be a C1,1 submanifold. Then F∗ is a homeomorphism and p(F∗(�, v)) = � 
for all (�, v) ∈ �∗(M).

Proof 

1. F∗ is injective: Let (�, v), (� ,w) ∈ �∗(M) with � + v = F∗(�, v) = F∗(� ,w) = � + w . From 
item 2 of Proposition 2 it follows p(� + v) = � and p(� + w) = � . By the unpp of E(M) , 
it holds � = p(� + v) = p(� + w) = � . Together with � + v = � + w we also get v = w.

2. F∗ is surjective: since every x ∈ E(M) can by written as x = p(x) + (x − p(x)) and 
(x − p(x)) ⟂ Tp(x)(M) (see Remark 4), we have x = F∗(p(x), x − p(x)) . By Proposition 2.
(4), [p(x), x] ⊆ E(M).

3. The function F∗ is clearly continuous. Its inverse satisfies (F∗)−1(x) = (p(x), x − p(x)) , 
and it is continuous since p is continuous by Proposition 1.

𝜈
∗(M) ∶= {(𝜉, v) ∈ 𝜈(M) ∶ [𝜉, 𝜉 + v] ⊆ E(M)},

� + asv ∈ E(M) and p
(
� + asv

)
= �.
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  ◻

We recall some well-known concepts.

Definition 6 Let M be an m-dimensional C1 submanifold of ℝd . 

1. Let V ⊆ M be an open set relative to M and let n ∶ V → ℝ
d be a continuous function 

such that ‖n(�)‖ = 1 and n(�) ∈ (T
�
(M))⟂ for every � ∈ V  . Then we call 

(
V , n

)
 a unit 

normal field.
2. Let V ⊆ M be an open set relative to M and let nm+1,… , nd ∶ V → ℝ

d be continuous 
functions such that 

 and n(�) ∈ (T
�
(M))⟂ for every � ∈ V  . Then we call 

(
V , nm+1,… , nd

)
 an orthonormal 

moving frame of �(V).

It is not hard to show—using the subsequent proposition and induction—that if M is a 
Ck submanifold with k ≥ 1 , then for every � ∈ M there exists a Ck−1 orthonormal moving 
frame 

(
V , nm+1,… , nd

)
 of �(V) with � ∈ V .

Proposition 3 Let M be an m-dimensional Ck submanifold of ℝd , with k ≥ 1 . Then for 
every (�, v) ∈ �1(M) there exists a Ck−1 unit normal field 

(
V , n

)
 with � ∈ V  and n(�) = v.

For k ≥ 2 it holds that, if (V1, n1) is another unit normal field with � ∈ V1 and n1(�) = v , 
then

where PT� (M) is the projection onto the tangent space T
�
(M).

Proof Let (�, v) ∈ �1(M) . Choose a local parametrization � ∶ W → ℝ
d of M with 0 ∈ W 

and �(0) = � (see item 1 of Remark 2). For every y ∈ W and every j ∈ {1,… ,m} define 
tj(y) ∶=

�

�yj
�(y) . Note that for every y ∈ W the set {t1(y),… , td(y)} forms a basis of the 

tangent space T
�(y)(M).

If m = d − 1 , then the cross product w ∶= t1 ×⋯ × td is normal to M and w(�) = �v for 
some � ∈ ℝ ⧵ {0} . W.l.o.g., 𝜆 > 0 . Now the vector field n = ‖w‖−1w is a unit normal field 
on V = �(W) with � ∈ V  and n(�) = v.

Now consider the case m < d − 1 . Write vm+1 ∶= v and extend vm+1 to a basis 
vm+1, vm+2,… , vd of 

(
T
�(0)(M)

)⟂ . Then

and by the continuity of the determinant and the functions t1,… , tm there exists 
c ∈ (0,∞) and an open set W1 ⊆ W containing 0 such that for all y ∈ W1 we have 
|| det

(
t1(y),… , td(y), vm+1,… , vd

)|| ≥ c.

Denote by P(y) the orthogonal projection from ℝd onto the space spanned by 
{t1(y),… , tm(y)} , i.e., on T

�(y)(M) , and define n(�(y)) by

⟨nj(�), n�(�)⟩ =
�

1 j = �

0 j ≠ �

PT� (M)Dn(�) = PT� (M)Dn1(�),

det
(
t1(0),… , tm(0), vm+1,… , vd

)
≠ 0,

n(�(y)) ∶= ‖vm+1 − P(y)vm+1‖−1(vm+1 − P(y)vm+1).
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Finally, in both cases, V ∶= �(W1) is an open subset of M by the invariance of domain the-
orem and we have � = �(0) ∈ V  . So (V, n) is a unit normal field with � ∈ V  and n(�) = v.

Let (V1, n1) be another unit normal field with � ∈ V1, n1(�) = v.

For every C1 vector field (V2, t) , with t ∶ V2 ⊂ V ∩ V1 → ℝ
d satisfying t(� ) ∈ T

�
(M) for all 

� , we have

Since (n − n1)(�) = 0 , we have t⊤D(n − n1)(𝜉) = 0 . Because t was arbitrary the result fol-
lows.   ◻

Definition 7 Let M be a C1 submanifold of ℝd and (�, v) ∈ �1(M) . 

1. For an arbitrary C1 unit normal field (V, n) with � ∈ V  , n(�) = v we define the shape 
operator L

�,v ∶ T
�
(V) → T

�
(V) by 

 where PT� (M) denotes the orthogonal projection onto the tangent space. Note that, L
�,v 

is well-defined by Proposition 3.
2. Denote by �1,… , �

�
 the (not necessarily distinct) positive eigenvalues of L

�,v . Then the 
points � + �

−1
1
v,… , � + �

−1
�
v are called centers of curvature of M in � in direction of v.

3. For every (�, v) ∈ �1(M) denote by �(�, v) the radius of curvature of M at � in direction 
of the unit normal v, 

 with the convention that inf � = ∞.

The following fact is most likely folklore, yet it is not easy to find a citation for item (2). 
Therefore, a proof is provided in the “Appendix”.

Proposition 4 Let M ⊆ ℝ
d be a C2 submanifold and let (�, v) ∈ �1(M) . Then

1. The shape operator L
�,v is self-adjoint.

2. Denote by �1,… , �m the (not necessarily distinct) eigenvalues of L
�,v.

  Then

with the convention that 0−1 = ∞.

The next proposition characterizes the critical values of the endpoint map. It is the sec-
ond example in Section 1.3 in [2] and also follows from [17, 4.1.9 Corollary].

Proposition 5 Let M ⊆ ℝ
d be a C2 submanifold and let (�, v) ∈ �(M) . Then 

det(DF)(�, v) = 0 iff � + v is a center of curvature in � in direction of ‖v‖−1v.

PT� (M)Dn(�) − PT� (M)Dn1(�) = PT� (M)D(n − n1)(�).

⟨n − n1, t⟩ = 0

t⊤D(n − n1) + (n − n1)
⊤Dt = 0.

L
�,v ∶= −PT� (M)Dn(�),

�(�, v) ∶= inf{r ∈ (0,∞) ∶ ∀� ∈ (0,∞) ∶ B
�
(�) ∩M ∩ Br(� + rv) ≠ �},

�(�, v) =
(
max(0,max(�1,… , �m))

)−1
,
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A similar observation as in the subsequent lemma can be found in [4, Example 9].

Lemma 5 Let M ⊆ ℝ
d be a C1,1 submanifold. Then

for every (�, v) ∈ �1(M).

Proof Let (�, v) ∈ �1(M) . In the case �(�, v) = ∞ there is nothing to show. In the 
case 𝜚(𝜉, v) < ∞ assume instead 𝜗(𝜉, v) > 𝜚(𝜉, v) . Choose r1 ∈ (�(�, v), �(�, v)) . Then 
M ∩ Br1

(� + r1v) ∩ B
�
(�) ≠ � for all � ∈ (0,∞) . In particular, M ∩ Br1

(� + r1v) ≠ � , which 
implies d(𝜉 + r1v,M) < r1 . On the other hand, by Lemma 4 we have � + r1v ∈ E(M) and 
p(� + r1v) = � , and in particular, d(� + r1v,M) = r1 . This is a contradiction.   ◻

Lemma 6 Let M be a C2 submanifold of ℝd . Then the map F∗ ∶ �∗(M) → E(M) is a 
diffeomorphism.

Proof We have already established in Lemma 4 that F∗ is a homeomorphism. Furthermore, 
F∗ is differentiable (see Remark 3). Thus, it remains to show that the Jacobian of F∗ has 
full rank in every point (�, v) ∈ �∗(M) . By Proposition 5 this could only fail if F(�, v) was 
a center of curvature of M. By Lemma 5 and Theorem 4 however, no center of curvature is 
contained in E(M) .   ◻

Theorem A Let M ⊆ ℝ
d be a C1,1 submanifold. Then 

1. The frontier function � is lower semi-continuous;
2. If M is C2 , then � is continuous.

Proof 

1. � is lower semi-continuous: Let (�, v) ∈ �1(M) . We first consider the case 
where 𝜗(𝜉, v) < ∞ .  Let  � ∈ (0,∞) and r ∈ (�(�, v) − �, �(�, v)) such that ]
𝜉, 𝜉 + rv

[
⊆ E(M) and, since E(M) is open, there exists � ∈ (0, r − �(�, v) + �) with 

B
𝜌
(𝜉 + rv) = {z ∈ ℝ

d ∶ ‖z − (𝜉 + rv)‖ < 𝜌} ⊆ E(M) . Since p is continuous and 
p(� + rv) = � by Lemma 4, we can choose � ∈ (0, �) such that 

 and in particular ∀z ∈ E(M) ∶ ‖𝜉 + rv − z‖ < 𝛿 ⇒ p(z) + r
z−p(z)

‖z−p(z)‖ ∈ E(M) . By the 
continuity of the endpoint map there exist �1, �2 ∈ (0,∞) such that for all 
(� ,w) ∈ �1(M) it holds 

 and therefore 

 This shows that � is lower semi-continuous in (�, v) . The proof for the case �(�, v) = ∞ 
is similar and is left to the reader.

�(�, v) ≤ �(�, v)

∀z ∈ E(M) ∶ ‖𝜉 + rv − z‖ < 𝛿 ⇒
���
�
p(z) + r

z−p(z)

‖z−p(z)‖
�
− (𝜉 + rv)

��� < 𝜌,

‖𝜁 − 𝜉‖ < 𝛿1 and ‖w − v‖ < 𝛿2 ⇒ ‖𝜉 + rv − (𝜁 + rw)‖ < 𝛿

‖𝜁 − 𝜉‖ < 𝛿1 and ‖w − v‖ < 𝛿2 ⇒ 𝜗(𝜁 ,w) ≥ r > 𝜗(𝜉, v) − 𝜀.
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2. � is upper semi-continuous if M is C2 . Assume the opposite. Then there exist 
(�, v) ∈ �1(M) , � ∈ (0,∞) , and a sequence (�k, vk)k∈ℕ in �1(M) converging to (�, v) with 
�(�k, vk) ≥ � for every k ∈ ℕ but 𝜗(𝜉, v) < 𝛼 . Choose a sequence (rk)k∈ℕ in [�(�, v), �) 
with limk rk = � . From Lemma 4 it follows that �k + rkvk ∈ E(M) and p(�k + rkvk) = �k 
for every k ∈ ℕ . In other words, for every k ∈ ℕ we have Br

(
�k + rkvk

)
∩M = � and 

B̄r

(
𝜉k + rkvk

)
∩M = {𝜉k} .  T h u s ,  w e  o b t a i n  B

�(� + �v) ∩M = �  a n d 
B̄
𝛼(𝜉 + 𝛼v) ∩M ⊇ {𝜉} . This together with Lemma 1 implies that for all r ∈ [�(�, v), �) , 

we have that � is the unique nearest point to � + rv in M  . In particular, for 
z ∶= � + �(�, v)v we have {z} ∈ unpp(M) . Since z ∉ E(M) there is a sequence (uk)k∈ℕ 
converging to z such that for every k ∈ ℕ we have either that uk has no nearest point on 
M or has at least 2 nearest points on M. Consider now any sequence (�k)k∈ℕ in M with 
d(uk,M) = ‖uk − �k‖ . It is easy to see that (�k) is bounded, and therefore has a convergent 
subsequence (�kj )j∈ℕ . But then ‖z − limj �kj

‖ = limj ‖ukj − �kj
‖ ≤ limj ‖ukj − �‖ = ‖z − �‖ , 

so  that  ‖z − limj �kj
‖ = ‖z − �‖ and therefore  limj �kj

= �  .  Denote  now 
Pk ∶=

�
� ∈ M ∶ ‖uk − �‖ = d(uk,M)

�
 . Then it holds 

 since otherwise one could find a sequence (�k)k∈ℕ with �k ∈ Pk having an accumula-
tion point different from � , which we found to be impossible in the preceding par-
agraph. It is readily checked that, since M is a submanifold, there exists � ∈ (0,∞) 
such that B̄

𝜀
(𝜉) ∩M = B̄

𝜀
(𝜉) ∩M . From formula (2) it now follows that there exists N

�
 

such that for all k ≥ N
�
 we have Pk ⊆ M . In addition, it follows that for every k ≥ N

�
 

the point uk has at least 2 nearest points on M. We have so far succeeded, under the 
assumption that � is not upper semi-continuous, to show existence of z ∉ E(M) and of 
a sequence (uk)k∈ℕ , such that for every k ∈ ℕ there exist �k, �k ∈ M with �k ≠ �k and 
‖uk − �k‖ = d(uk,M) = ‖uk − �k‖ . This means that the endpoint map F is not injective 
on any open neighborhood of (�,�(�, v)v) in �(M) . It follows from the inverse func-
tion theorem that the differential of F is singular at (�,�(�, v)v) . By Proposition  5, 
F(�,�(�, v)v) is a center of curvature in � in direction of v. By Theorem 4 and Lemma 5 
we get �(�, v) = �(�, v) . Since M is C2 , the function � ∶ �1(M) → (0,∞] is continuous. 
We have already shown the existence of a sequence (�k, vk)k∈ℕ in �1(M) converging to 
some pair (�, v) ∈ �1(M) such that �(�k, vk) ≥ � for every k ∈ ℕ but 𝜗(𝜉, v) < 𝛼 . From 
Lemma  5 it follows that 𝜚(𝜉, v) = limk 𝜚(𝜉k, vk) ≥ limk 𝜗(𝜉k, vk) ≥ 𝛼 > 𝜗(𝜉, v) . This is 
the desired contradiction.

  ◻

Remark 6 The proof of the first assertion of the preceeding theorem may at first sight seem 
more complicated than necessary. The technicalities arise since, for example, one cannot 
simply conclude �(� ,w) ≥ � from B

�
(� + �w) ∩M = �.

Example 3 We construct an example of a 1-dimensional submanifold M of ℝ2 which is C1,1 
but for which � is not continuous. M is defined as the graph of a function f ∶ ℝ → ℝ with 
f (x) = ∫

x

0
g(y)dy and g ∶ ℝ → ℝ is defined as

(2)∀𝜀 > 0∃N
𝜀
∶ ∀k ≥ N

𝜀
∶ sup

𝜁∈Pk

‖𝜁 − 𝜉‖ ≤ 𝜀,

g(x) ∶=

⎧⎪⎨⎪⎩

0 if x ≤ 0 or x > 1

x − 1 if 2∕3 < x ≤ 1

3−(2k+1) − x if 2 ⋅ 3−2(k+1) < x ≤ 2 ⋅ 3−(2k+1) for some k ∈ ℕ ∪ {0}

x − 3−2k if 2 ⋅ 3−(2k+1) < x ≤ 2 ⋅ 3−2k for some k ∈ ℕ ∪ {0}.
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The function g is clearly Lipschitz with Lipschitz constant equal to 1 and 
T(x,f (x)) = {a(1, g(x)) ∶ a ∈ ℝ} , so M is C1,1 . It is readily checked that |g(x)| ≤ |x|

2
 , so 

f (x) ≤
x2

4
 . Since f (x) = 0 for x < 0 we have �((x, 0), (0, 1)) ≥ 2 for all x < 0.

On the intervals [2 ⋅ 3−(2k+1), 2 ⋅ 3−2k] we have f (x) = (x − 3−2k)2 + f (3−2k) , such that 
using also Lemma 5

So we have found a sequence (�k, vk) ∈ �1(M) with limk→∞(�k, vk) = ((0, 0), (0, 1)) and 
𝜗(𝜉k, vk) ≤

1

2
< 2 ≤ limx↗0 𝜗

(
(x, 0), (0, 1)

)
.

For illustration we plot the graphs of f ′ and f:  

Example 4 Let 
M =

(
[1,∞) × {0}

)
∪ {(x

1
, x

2
) ∈ ℝ

2 ∶ (x
1
− 1)2 + (x

2
− 1)2 = 1, x

1
< 1, x

2
< 1} ∪

(
{0} × [1,∞)

).
Obviously, M is not C2 , but it is readily checked that M is C1,1 and that � is continuous.

Example 5 In general, continuity of � is all we get, even if M is C∞ : it is easy to construct 
examples of C∞-submanifolds M such that � is not differentiable. We provide a drawing: 

�
(
(3−2k, f (3−2k), (0, 1)

)
≤ �

(
(3−2k, f (3−2k), (0, 1)

)
=

1

2
.
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k1

k2

M = k1 ∪ k2 ∪ k3

k3

We give two corollaries of Theorem  A, the second stating that E(M) is a vector 
bundle.

Corollary 1 Let M be a C2 submanifold of ℝd . Then the maps

are continuous.

The normal bundle �(M) is a vector bundle. The next corollary states that E(M) is 
homeomorphic to �(M) , if M is of class C2 . Further, the bundle structure naturally trans-
fers from �(M) through �∗(M) to E(M).

Corollary 2 Let M be a C2 submanifold of ℝd . Then the map

is a homeomorphism with inverse

𝜗 ∶ 𝜈
∗(M) → [1,∞)

(𝜉, v) ↦

⎧⎪⎨⎪⎩

𝜗

�
𝜉,

v

‖v‖
�

𝜗

�
𝜉,

v

‖v‖
�
−‖v‖

, if 𝜗

�
𝜉,

v

‖v‖
�
< ∞ and v ≠ 0,

1 otherwise,

𝜗 ∶ 𝜈(M) → (0, 1]

(𝜉,w) ↦

⎧
⎪⎨⎪⎩

𝜗

�
𝜉,

w

‖w‖
�

𝜗

�
𝜉,

w

‖w‖
�
+‖w‖

, if 𝜗

�
𝜉,

w

‖w‖
�
< ∞ andw ≠ 0,

1 otherwise,

� ∶ �
∗(M) → �(M)

(�, v) ↦ (�, �(�, v) v)
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Moreover, the homeomorphism � ∶= �◦(F∗)−1 ∶ E(M) → �(M) makes E(M) a vector bun-
dle with bundle map p ∶ E(M) → M . Through transport from �(M) , which is a vector bun-
dle, the vector operations on p−1({�}) for � ∈ M are given by +

�
= �−1

◦ + ◦(� × �) and 
⋅
�
= �−1

◦ ⋅ ◦(id
ℝ
× �) , where (+, ⋅) are the vector operations on the normal space (T

�
M)⟂.

Proof The first part follows immediately from Corollary 1. For the second part one needs 
to check the vector space axioms for the vector addition +

�
 and scalar multiplication ⋅

�
 on 

p−1({�}) , as well as the fiber bundle compatibility condition. The former follows by struc-
ture transport from (T

�
M)⟂ , the latter is a consequence of the fact that � is a homeomor-

phism.   ◻

Consider the following concept which has first been defined in [6].

Definition 8 Let M ⊆ ℝ
d . The reach of M is the largest �0 (if it exists) such that 

M𝜀0 ⊆ unpp(M) , i.e.,

Note that reach(M) ∈ [0,∞] . We call M a set of positive reach iff reach(M) > 0.

The following generalizes [7, Lemma], which states that compact C2 submanifolds 
have positive reach.

Proposition 6 Let M be a C1,1 submanifold. Then reach(M) ≤ inf{�(�, v) ∶ (�, v) ∈ �1(M)} , 
with equality if M is a closed subset of ℝd.

In particular, if M is compact, then reach(M) = min{𝜗(𝜉, v) ∶ (𝜉, v) ∈ 𝜈1(M)} > 0.

Proof If reach(M) = 0 , then trivially reach(M) ≤ inf{�(�, v) ∶ (�, v) ∈ �1(M)} . If 
reach(M) > 0 , let � ∈

(
0, reach(M)

)
 . Then M� is open and M𝜀 ⊆ unpp(M) . Thus 

M𝜀 ⊆ E(M) . So for every (�, v) ∈ �1(M) and every r ∈ (0, �) we have � + rv ∈ E(M) 
and thus r < 𝜗(𝜉, v) , so � ≤ �(�, v) . From this it follows that reach(M) ≤ �(�, v) for all 
(�, v) ∈ �1(M).

Suppose now that M is a closed subset of ℝd . If inf{�(�, v) ∶ (�, v) ∈ �1(M)} = 0 there 
is nothing to show. Otherwise let � ∈ (0,∞) with 𝜀 < inf{𝜗(𝜉, v) ∶ (𝜉, v) ∈ 𝜈1(M)} and let 
x ∈ M� ⧵M . Let � ∈ M be a nearest point to x on M. Then (�, x − �) ∈ �(M) by Remark 4. 
We have 𝜗(𝜉, x−𝜉

‖x−𝜉‖ ) > 𝜀 , so � + r
x−�

‖x−�‖ ∈ E(M) for all r ∈ (0, �) . In particular, x ∈ E(M) 
and � = p(x) . So M𝜀 ⊆ unpp(M) , and therefore reach(M) ≥ �.

Now assume M is compact. Then also �1(M) is compact since it is homeomorphic to 
the product of compact spaces. By Theorem A, � is lower semi-continuous on �1(M) , and 
therefore attains its minimum in some point (�0, v0) ∈ �1(M) . By Theorem 1, 𝜗(𝜉0, v0) > 0 .  
 ◻

Remark 7 Let M ⊆ ℝ
d . If M has positive reach, then M is closed: suppose M were not 

closed. Let z ∈ M̄ ⧵M . Then z has no nearest point on M, and z ∈ M� for all � ∈ (0,∞) . 
Thus, M� ∉ unpp(M) for every � ∈ (0,∞) , so that reach(M) = 0.

�
−1 ∶ �(M) → �

∗(M)

(�,w) ↦ (�,�(�,w)w).

reach(M) = sup{𝜀 ∈ (0,∞) ∶ M𝜀
⊆ unpp(M)}.
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3  Derivatives of p and ı
M

A proof of the following theorem can be found in [5]. We give a different proof here, 
which makes it an immediate consequence of Lemmas 4 and 6.

Theorem 2 Let M be a Ck-submanifold of ℝd with k ≥ 1 . Then p is Ck−1 on E(M) and �M is 
Ck on E(M) ⧵M.

Proof If k = 1 then the claim is only that p is continuous and �M is differentiable. But con-
tinuity of p is the content of Proposition 1, differentiability of �M is settled by Foote [7, 
Theorem 2].

Consider now the case k ≥ 2 . We show that p is differentiable. We have already shown in 
Lemma 6 that F∗ ∶ �∗(M) → E(M) is a diffeomorphism, and by Lemma 4, p(F∗(�, v)) = � 
for all (�, v) ∈ �∗(M) . We have (F∗)−1(x) = (p(x), x − p(x)) for all x ∈ E(M) , so that

for all x ∈ E(M) , where p̃ ∶ 𝜈(M) → 𝜈(M) is the projection onto M × {0} ⊆ 𝜈(M).
We obtain p = F∗

◦p̃◦(F∗)−1 . The function F∗ is Ck−1 and so is therefore also (F∗)−1 . The 
projection p̃ is clearly Ck−1 , and so is p.

For the regularity of �M we use the argument given in [7], which we repeat here for con-
venience of the reader: �M(x) = ‖x − p(x)‖ for all x ∈ E(M) . Then for x ∈ E(M) ⧵M,

Since p ∶ E(M) → M and thus Dp is a mapping between the tangent bundles, i.e., 
Dp ∶ T(E(M)) → T(M) , Dp(x)v ∈ Tp(x)(M) , so that (x − p(x))⊤Dp(x)v = 0 . Hence 
(D𝛿2

M
)(x) = 2(x − p(x))⊤ , which is Ck−1 , since this holds for p. Thus �M is Ck .   ◻

Remark 8 In contrast to p, the distance function is defined on the whole of ℝd . Moreover, 
�M is continuous on ℝd . However, it is easy to find examples of C∞-submanifolds so that �M 
is not differentiable on ℝd ⧵M , for example, if M = {(x, y) ∈ ℝ

2 ∶ y = x2} , then �M is not 
differentiable in the points {(0, y) ∶ y > 1∕2}.

Dudek and Holly [5, Lemma 4′.1] compute the (Frechet-)derivative of p . In the fol-
lowing theorem we give a slightly different form which is more suitable for showing the 
subsequent Corollaries 3 and 4. The proof uses a method different from that in [5].

Theorem C Let M be a C2 submanifold. For every x ∈ E(M) ⧵M the differential of p in x 
is given by

where v = ‖x − p(x)‖−1(x − p(x)) and Lp(x),v is the shape operator in direction v at p(x). For 
every x ∈ M the differential of p in x is Dp(x) = PTp(x)(M).

We see that, in general, Dp(x) may explode as x approaches the boundary of E(M) , 
even for M that are well behaved, like a circle in the plane. The next two results state 

p(x) = F∗(p(x), 0) = F∗(p̃(p(x), x − p(x))) = F∗(p̃((F∗)−1(x)))

(D(𝛿2
M
))(x)v = 2(x − p(x))⊤(v − (Dp(x))v).

Dp(x) =
�
idTp(x)(M) − ‖x − p(x)‖Lp(x),v

�−1

PTp(x)(M),
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that the higher-order differentials of p on M� ⧵M with 𝜀 < reach(M) are bounded, pro-
vided the higher-reivatives of normal vectors are bounded.

Corollary 3 Let M ⊆ ℝ
d be a Ck submanifold with k ≥ 2 , let reach(M) > 0 and 

� ∈ (0, reach(M)) . Suppose there exist a constant K ∈ (0,∞) and a family of Ck−1 moving 
frames (Vi, ni,m+1,… , ni,d)i∈I such that M =

⋃
i∈I Vi and ‖Djni,�‖ is bounded by K for every 

i ∈ I , � ∈ {m + 1,… , d} and j ∈ {2,… , k − 1} . Then Djp is bounded on M� , for every 
j ∈ {2,… , k − 1}.

Proof Let x ∈ M� , i.e., ‖x − p(x)‖ < 𝜀 . Let �1,… , �m be the eigenvalues of L
�,v . Since L

�,v 
is self-adjoint by Theorem 4, ‖L

�,v‖ = max(��1�,… , ��m�) , and there is no loss of general-
ity in assuming ‖L

�,v‖ = ��1�.
If �1 ≥ 0 , then by Theorem  4, ‖L

�,v‖ = �(�, v)−1 . We have 
‖x − p(x)‖ < 𝜀 < 𝜀0 ≤ 𝜗(𝜉, v) ≤ 𝜚(𝜉, v) , by x ∈ M� , Theorem 6, and Lemma 5. Therefore,

If 𝜆1 < 0 , then ‖L
�,v‖ = ‖L

�,−v‖ = −�1 = �(�,−v) . From this we get 
‖x − p(x)‖ < 𝜀 < 𝜀0 ≤ 𝜗(𝜉,−v) ≤ 𝜚(𝜉,−v) , and thus again

Therefore idTp(x)(M) − ‖x − p(x)‖Lp(x),v with v = x−p(x)

‖x−p(x)‖ is invertible, and

Let now (V , nm+1,… , nd) be a moving frame with x ∈ V  and differentials bounded by K. 
Write down equation (7) and write n for the matrix (nm+1,… , nd):

where J(x) ∶=
�
idTp(x)(M) +

∑
j

�
x − p(x), nj(p(x))

�
(Dnj)(p(x))

�
 . From this and the fact that 

J(x) is invertible with uniformly bounded differential, we get

and thus Dp is uniformly bounded. Differentiating the right-hand side of (3) involves sums 
of products of n, Dn, D2n , p, Dp, their rows, columns and transposes, and J(x)−1 , which are 
all bounded. From this we get boundedness of D2p . By induction we get boundedness of 
Djp , j ∈ {1,… , k − 1} from boundedness of Djn , j ∈ {1,… , k − 1} .   ◻

��‖x − p(x)‖Lp(x),v�� = ‖x − p(x)‖���Lp(x),v
��� < 𝜀𝜚(𝜉, v)−1 ≤

𝜀

𝜀0

< 1.

��‖x − p(x)‖Lp(x),v�� = ‖x − p(x)‖���Lp(x),−v
��� < 𝜀𝜚(𝜉,−v)−1 ≤

𝜀

𝜀0

< 1.

���
�
idTp(x)(M) − ‖x − p(x)‖Lp(x),v

�−1��� =
���

∞�
�=0

�‖x − p(x)‖Lp(x),v)����

≤

∞�
�=0

��‖x − p(x)‖Lp(x),v���

≤

∞�
�=0

�
𝜀

𝜀0

��

<
�
1 −

𝜀

𝜀0

�−1
.

id
ℝd − n(p(x))n(p(x))⊤ = J(x)Dp(x),

(3)Dp(x) = J(x)−1
(
id

ℝd − n(p(x))n(p(x))⊤
)
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The situation simplifies if M is a hypersurface, i.e., a (d − 1)-dimensional submani-
fold of ℝd . Then on every connected open subset V ⊆ M there exist at most two C1 func-
tions n with the property that (V,  n) is a unit normal field, and those functions differ 
only by their sign. If M is not orientable, then (per definition) it is not possible to find a 
unit normal vector (V, n) with V = M . Nevertheless, every (V, n) is automatically Ck−1 
and sup

�∈M ‖Djn(�)‖ does not depend on the choice of a particular unit normal vector. 
With this, the following corollary is an immediate consequence of Corollary 3.

Corollary 4 Let M ⊆ ℝ
d be a Ck hypersurface with k ≥ 2 . Moreover, let reach(M) > 0 

and � ∈ (0, reach(M)) . If there exists K ∈ (0,∞) such that sup
�∈M ‖Djn‖ ≤ K for every 

j ∈ {2,… , k − 1} , then Djp is bounded on M� for every j ∈ {2,… , k − 1}.

4  The converse to Theorem 1

In their article [5] from 1994, Dudek and Holly prove that each point of a C1,1 submani-
fold of ℝd (see Definition 3) with dimension different from d possesses a neighborhood 
in the ambient space ℝd which has the unpp . This was the assertion of Theorem 1, or [5, 
Theorem 3.8] in the original paper. In Theorem B in this section we show the converse 
to the theorem, starting from topological submanifolds: if a topological submanifold M 
of ℝd with dimension m ≠ d is such that each point � of M has an ℝd-neighborhood U(�) 
such that U(𝜉) ⊆ unpp(M) , then M is C1,1.

Theorem  B will be formulated and proven after two essential lemmas below. The 
proof’s core is Lemma 8, which allows the construction of normal and tangent spaces 
to M by merely using the property that each point of M has a neighborhood admitting 
unique projections onto M. The proof of Lemma 8 relies on an iterative application of 
the Borsuk–Ulam theorem. We shall also use the following lemma.

Lemma 7 Let M be a subset of ℝd and U ⊆ unpp(M) . If U is convex, then for every � ∈ M 
the set U ∩ p−1(�) is convex.

Proof Let x1, x2 ∈ U with p(x1) = p(x2) = � , and let x3 ∈ ]x1, x2[ . Then 
it is not hard to check that B‖x3−𝜉‖(x3) ⊆ B‖x1−𝜉‖(x1) ∪ B‖x2−𝜉‖(x2) . Since �
B‖x1−�‖(x1) ∪ B‖x2−�‖(x2)

�
∩M = � , 

�
B̄‖x1−𝜉‖(x1) ∪ B̄‖x2−𝜉‖(x2)

�
∩M = {𝜉} we 

have B‖x3−�‖(x3) ∩M = � and B̄‖x3−𝜉‖(x3) ∩M ⊆ {𝜉} . On the other hand clearly 
𝜉 ∈ B̄‖x3−𝜉‖(x3) ∩M , and therefore {𝜉} = B̄‖x3−𝜉‖(x3) ∩M .   ◻

We remind the reader that for a set A ⊆ ℝ
d and r ∈ (0,∞) we denote 

Ar = {x ∈ ℝ
d ∶ d(x,A) < r} . For example, if H is a 2-dimensional subspace of ℝ3 and 

S = B̄1(0) ⧵ B1(0) , 0 < r1 ≤ r2 , then A =
(
(r2S) ∩ H

)r1 is the interior of a filled torus, the 
case r1 = r2 giving a “horn torus”. Note that A ∩ H⟂ = � , even in the latter case.

Lemma 8 Let M be an m-dimensional topological submanifold of ℝd with the property 
that for every � ∈ M there exists U ⊆ unpp(M) with U open and � ∈ U . Then for every 
� ∈ M there exists r ∈ (0,∞) such that for every � ∈ M ∩ Br(�) there exists a (d − m)

-dimensional subspace N
�
 of ℝd with
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where S denotes the (d − 1)-dimensional unit sphere.

Proof There exist open sets V ,W ⊆ ℝ
d with 0 ∈ V  , � ∈ W and a continuous map 

� ∶ V → W with � (0) = � and M ∩W = {� (y) ∶ y ∈ V , ym+1 = ⋯ = yd = 0} . 
There exists r ∈ (0,∞) such that B3r(𝜂) ⊆ U ∩W . Let � ∈ M ∩ Br(�) . Denote by 
�d−1 ∶ ℝ

d → ℝ
d−1 the projection defined by �d−1(y1,… , yd) ∶= (y1,… , yd−1) . 

By Proposition  1, and since 𝜉 + rS ⊆ B3r(𝜂) ⊆ U ⊆ unpp(M) , f1 ∶ S → ℝ
d−1 , 

f1(v) ∶= �d−1

(
�−1(p(� + rv))

)
 is continuous. By the Borsuk–Ulam theorem there 

exists nd ∈ S with f1(nd) = f1(−nd) , yielding p(� + rnd) = p(� − rnd) =∶ � . Obviously, 
‖� + rnd − �‖ ≤ r and ‖� − rnd − �‖ ≤ r and ‖� + rnd − (� − rnd)‖ = 2r . Thus, by the tri-
angle inequality ‖� + rnd − �‖ = r and ‖� − rnd − �‖ = r and therefore � = � . Let N(1) be 
the hyperplane {v ∈ ℝ

d ∶ ⟨v, nd⟩ = 0} = n⟂
d
.

Now let �d−2 ∶ ℝ
d → ℝ

d−2 be the projection defined by 
�d−2(y1,… , yd) ∶= (y1,… , yd−2) , and let f2 ∶ S ∩ N(1) → ℝ

d−2 , 
f2(v) ∶= �d−2

(
�−1(p(� + rv))

)
 . Applying the Borsuk–Ulam theorem again yields 

nd−1 ∈ S ∩ N(1) with p(� + rnd−1) = p(� − rnd−1) = � , as before. Let N(2) be the d − 2 
dimensional space N(2) = {v ∈ ℝ

d ∶ ⟨v, nd−1⟩ = 0 and ⟨v, nd⟩ = 0} = n⟂
d−1

∩ n⟂
d
.

By iterating this procedure we get d − m orthonormal vectors nm+1,… , nd 
for which p(� + rnj) = p(� − rnj) = � , j = m + 1,… , d , and d − m subspaces 
N
𝜉
∶= N(d−m) ⊆ ⋯ ⊆ N(1) . Note that N

�
 is the linear space spanned by nm+1,… , nd.

Let

where conv(A) denotes the convex hull of a set A ⊆ ℝ
d . By construction of the nj ’s and by 

Lemma  7, we have p(� + K) = {�} . Using Lemma  3 we get p
(
� +

(
(rS) ∩ N

�

))
= {�} . 

From this the assertion follows.   ◻

If t ∈ ℝ
d ⧵ {0} is a vector and T ⊆ ℝ

d is a non-trivial linear subspace, then 
∢(t,T) ∶= min{∢(t, t2) ∶ t2 ∈ T ⧵ {0}}.

If T1, T2 ⊆ ℝ
d are two non-trivial linear subspaces, we define

Note that dH(T1, T2) ∶= 2 arcsin(∢(T1, T2)∕2) for T1, T2 ∈ G(m,ℝd).

Theorem B Let M be an m-dimensional topological submanifold of ℝd with M ⊆ E(M) . 
Then M is C1,1.

Proof Step 1 We show that M is locally the graph of a function � over an m-dimen-
sional subspace of ℝd.

Let � ∈ M . By Lemma  8 there exists r ∈ (0,∞) such that for every � ∈ M ∩ Br(�) 
there exists a (d − m)-dimensional subspace N

�
 of ℝd and such that (4) is satisfied. More-

over, r can by chosen so that M1 ∶= M ∩ Br(�) is homeomorphic to an open subset of 
ℝ

m . For every � ∈ M with ‖𝜉 − 𝜂‖ < r write T
�
∶= N⟂

�
 , where N

�
 is the linear space con-

structed in Lemma  8. Consider the map f ∶ M1 → T
�
 , f (�) = PT�

(� − �) . The map f is 

(4)
(
� +

(
(rS) ∩ N

�

))r

∩M = � and
(
� +

(
(rS) ∩ N

�

))r

∩M = {�},

K ∶= rconv{nm+1,… , nd,−nm+1,… ,−nd},

∢(T1, T2) ∶= max
{
min{∢(t1, t2) ∶ t2 ∈ T2 ⧵ {0}} ∶ t1 ∈ T1 ⧵ {0}

}
.
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injective: suppose to the contrary that there exist �, � ∈ M1 with PT�
(� − �) = PT�

(� − �) , 
so ∢(� − �, T

�
) =

�

2
 . By (4) and ‖𝜉 − 𝜂‖ < r we have ∢(𝜉 − 𝜂, T

𝜂
) <

𝜋

6
 , and simi-

larly ∢(𝜂 − 𝜉, T
𝜉
) <

𝜋

6
 , so that ∢(T

𝜉
, T

𝜂
) <

𝜋

3
 . We also have ∢(𝜁 − 𝜉, T

𝜉
) <

𝜋

6
 . But 

∢(𝜁 − 𝜉, T
𝜂
) ≤ ∢(𝜁 − 𝜉, T

𝜉
) + ∢(T

𝜉
, T

𝜂
) <

𝜋

6
+

𝜋

3
<

𝜋

2
 , a contradiction.

The set V ∶= {PT�
(� − �) ∶ � ∈ M1} is open in T

�
 by Brouwer’s invariance of domain 

theorem. Thus, the map � ∶ V → N
�
 , �(t) = f −1(t) − � − t provides us with a parametriza-

tion of M1 via t ↦ � + t +�(t) . We see that M1 is the graph of a function.
Step 2 We show that � is differentiable.
Let t ∈ V  . Then � ∶= � + t +�(t) ∈ M1 and ∢(T

𝜉
, T

𝜂
) <

𝜋

3
 such that T

�
∩ (T⟂

�
) = {0} . 

Thus, there exists a linear mapping At ∶ T
�
→ T⟂

�
 with T

�
= {h + Ath ∶ h ∈ T

�
} . Since 

∢(T
𝜂
, T

𝜉
) <

𝜋

3
 and because of (4) it holds − 8

r
‖h‖2 ≤ ‖�(t + h) −�(t) − Ath‖ ≤

8

r
‖h‖2 for 

all h with sufficiently small norm. Thus, � is differentiable in t, with differential At . In par-
ticular, T

�
(M) = T

�
 for every � ∈ M.

Step 3 We show that the differential of � is Lipschitz so that, in particular, M is C1.
So far we have succeeded in showing that for all t ∈ V  and all h ∈ T

�
 satisfying 

t + h ∈ V  it holds

for some remainder function � satisfying ‖𝜅(t, h)‖ <
8

r
‖h‖2.

Now fix t ∈ V  and let a be such that Ba(t) ∩ T
𝜂
⊆ V  . Let h, k ∈ T

�
 with 

0 < ‖h‖ = ‖k‖ <
a

2
 . Then

We add the first and fourth equation and subtract the second and third to get

and thus

since we assumed ‖k‖ = ‖h‖ . Therefore,

and, because k was arbitrary with ‖k‖ = ‖h‖ , it follows that ‖At+h − At‖ ≤
24

r
‖h‖ , which 

means that the mapping t ↦ At is Lipschitz.
Step 4 We show that M is C1,1 . For this it suffices to show that � ↦ T

�
 is Lipschitz on 

M ∩ B r

4

(�) . Let now �, � ∈ M ∩ B r

4

(�) , thus � ∈ M ∩ B r

2

(�) . Note that since � ∈ M ∩ B r

4

(�) , 
clearly M ∩ B r

2

(𝜉) ⊆ M1 and therefore Step 1–Step 3 can be performed for 
�,M ∩ B r

2

(�) in position of �,M1 , yielding also the same Lipschitz constant in Step 3.

�(t + h) = �(t) + Ath + �(t, h)

�(t + k) = �(t + h) + At+h(k − h) + �(t + h, k − h)

�(t − k) = �(t + h) + At+h(−k − h) + �(t + h,−k − h)

�(t + k) = �(t) + Atk + �(t, k)

�(t − k) = �(t) + At(−k) + �(t,−k).

0 = 2(At+h − At)k + �(t + h, k − h) − �(t + h,−k − h) − �(t, k) + �(t,−k)

2‖(At+h − At)k‖ ≤
8

r
(‖k − h‖2 + ‖ − k − h‖2 + ‖k‖2 + ‖ − k‖2)

=
8

r

�
2‖h‖2 + 4‖k‖2� = 48

r
‖h‖2,

‖k‖−1‖(At+h − At)k‖ ≤
24

r
‖k‖−1‖h‖2 = 24

r
‖h‖,
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In particular, as done for � in Step 1, M ∩ B r

2

(�) can be represented as a graph over 
T
�
 : there exists �̄� ∶ T

𝜉
∩ B r

2

(0) → N
𝜉
 such that 

M ∩ {𝜉 + (T
𝜉
∩ B r

2

(0)) + (N
𝜉
∩ Br(0))} = {𝜉 + t + �̄�(t) ∶ t ∈ T

𝜉
∩ B r

2

(0)} and �̄�(0) = 0.
Hence, 𝜁 = 𝜉 + t + �̄�(t) for some t ∈ T

�
 , and T

𝜁
= {t1 + D�̄�(t)t1 ∶ t1 ∈ T

𝜉
} . Now let 

s ∈ T
�
 with ‖s‖ = 1 and such that ∢(T

𝜉
, T

𝜁
) = arctan(‖D�̄�(t)s‖) and hence 

∢(T
𝜉
, T

𝜁
) ≤ arctan(‖D�̄�(t)‖) . We use the estimate 2 arcsin

(
1

2
arctan(x)

)
≤ x for x ∈ [0,∞) 

(which can be shown by proving that g defined by g(x) ∶= x − 2 arcsin
(

1

2
arctan(x)

)
 satis-

fies g(0) = 0 and g′ > 0 ), the Lipschitz continuity of �̄� from Step 3 and Pythagoras’ 
theorem to compute the estimate

  ◻

Remark 9 [21, Theorem 1] generalizes Blaschke’s Rolling Theorem for the boundary of 
a compact and path-connected subset P ⊆ ℝ

d . In particular, the theorem there states that 
there exists r0 > 0 such that a ball of radius r rolls freely inside P and Pc for all 0 ≤ r ≤ r0 
iff �P is a C1,1 hypersurface.

For hypersurfaces this free-rolling condition is equivalent to reach(�P) ≥ r0 , using the 
notation of the present article. However, the methods used there cannot be used to prove 
Theorem B, and also there is no obvious way to generalize the whole setup in [21] to codi-
mensions other than 1.

5  The topological skeleton

Here, we highlight the relation between E(M) and the topological skeleton (a.k.a. medial 
axis) of Mc.

Definition 9 Let A ⊆ ℝ
d be a subset. 

1. A ball Br(x) with r ∈ (0,∞) is called maximal in A, iff 

(1) Br(x) ⊆ A ;
(2) for all x1 ∈ ℝ

d, r1 ∈ (0,∞) ∶ Br(x) ⊆ Br1
(x1) ⊆ A , then r1 = r, x1 = x.

2. Define the topological skeleton by 

Remark 10 Note that a ball Br(x) is maximal in A iff Br(x) is maximal in A◦ . Therefore, 
S(A) = S(A◦).

Note further that if x has at least 2 nearest points on Ac , then x ∈ S(A).

dH(T𝜉 , T𝜁 ) = 2 arcsin
�

1

2
arctan(‖D�̄�(t)‖)

�
≤ ‖D�̄�(t)‖

≤
24

r
‖t‖ ≤

24

r
‖t + �̄�(t)‖ =

24

r
‖𝜉 − 𝜁‖.

S(A) ∶= {x ∈ ℝ
d ∶ ∃r ∈ (0,∞) ∶ Br(x) is maximal in A}
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The following is an adaptation of the well-known medial axis transform, which 
allows reconstruction of an open subset of ℝd from its topological skeleton. In our ver-
sion the complement of a closed set (for example a closed manifold) is recovered from 
its skeleton.

Proposition 7 (Medial axis transform, recovery from skeleton) Let M ⊆ ℝ
d be a closed 

subset. Let H(M) be the set of all closed half-spaces containing M. Then

Proof Let B =
⋃�

Br(x) ∶ x ∈ S(Mc) and r = d(x,M)
�
.

The inclusion 
�⋃

H∈H(M)
Hc

�
∪B ⊆ Mc is obvious.

We show Mc ⊆

�⋃
H∈H(M)

Hc
�
∪B . Note that 

⋃
H∈H(M)

Hc equals the complement of 
the convex hull conv(M) of M. Now let x ∈ Mc ⧵ conv(M)c . Since M is closed, x has near-
est points on M. Consider first the case that x has 2 or more distinct nearest points. Then 
Bd(x,M)(x) is maximal in Mc . Thus, x ∈ S(Mc) and therefore x ∈ Bd(x,M)(x) ⊆ B.

Next, consider the case that x has a unique nearest point � on M, and let 
𝛼 = sup{a ∈ [1,∞) ∶ Ba‖x−𝜁‖

�
𝜁 + a(x − 𝜁 )

�
⊆ Mc} . Since the set over which the supre-

mum is taken contains 1, we see that � ∈ [1,∞].
If � = ∞ then Ba‖x−𝜁‖

�
𝜁 + a(x − 𝜁 )

�
⊆ Mc for arbitrarily large a, so x ∈ Hc for the 

closed half-space H = {z ∈ ℝ
d ∶ ⟨z − � , x − �⟩ ≤ 0} . Thus x ∈ conv(M)c , which was 

excluded.
If � ∈ [1,∞) it is easy to show that the ball B

�‖x−�‖
�
� + �(x − � )

�
 is maximal. So 

� + �(x − � ) ∈ S(Mc) and x ∈ B‖x−𝜁‖(x) ⊆ B
𝛼‖x−𝜁‖

�
𝜁 + 𝛼(x − 𝜁 )

�
⊆ B .   ◻

The next result describes the relation between E(M) and the skeleton of Mc.

Proposition 8 Let M ⊆ ℝ
d . Then

where F(M) is the set of points x ∈ ℝ
d for which there is no nearest point to x in M.

Proof Since 
(
M)c =

(
Mc

)◦ , S
((

M
)c)

= S(Mc) , it is enough to prove the first equality.
Step 1 We show E(M)c ⊆ S(Mc) ∪F(M).
Let x ∈ E(M)c . W.l.o.g. there exists a sequence (xn)n∈ℕ converging to x such that either 

all xn have no nearest point on M or all xn have multiple nearest points on M.
In the first case, all xn are in F(M) by definition. Therefore x ∈ F(M) . In the second 

case, all xn have multiple nearest points on M. Thus xn is the center of a maximal ball in Mc 
and therefore xn in S(Mc) . Hence x ∈ S(Mc).
Step 2 We show S(Mc) ∪F(M) ⊆ E(M)c.
First let x ∈ F(M) . Then x ∈ E(M)c by definition of E(M) . Let x ∈ S(Mc) and 

assume x ∉ E(M)c , i.e., x ∈ E(M) . Therefore, x has a unique nearest point � on M. 
By Lemma  3 there exists a ∈ (1,∞) such that � + a(x − � ) is the center of the ball 
Ba‖x−𝜁‖(𝜁 + a(x − 𝜁 )) ⊆ Mc , which contains the ball B‖x−�‖(x) . Thus, x is not the center of a 
maximal ball in Mc , contradicting x ∈ S(Mc).

Mc =

( ⋃
H∈H(M)

Hc

)
∪
⋃{

Br(x) ∶ x ∈ S(Mc) and r = d(x,M)
}
.

E(M)c = S
(
Mc

)
∪F(M) = S

((
M
)c)

∪F(M),



582 Annals of Global Analysis and Geometry (2021) 60:559–587

1 3

We have shown that S(Mc) ∪F(M) ⊆ E(M)c . Since E(M)c is closed, also 
S(Mc) ∪F(M) ⊆ E(M)c .   ◻

Remark 11 

1. The skeleton S(Mc) is not automatically closed: consider as a counterexample 
M = {(x, |x|) ∈ ℝ

2 ∶ x ∈ ℝ} , where S(Mc) =
{
(0, y) ∶ y ∈ (0,∞)

}
.

2. F(M) is not automatically closed: consider as a counterexample Example 1, where 
x ∉ F(M) but the points on the left of x, and belonging to the line through x and p(x) 
lie in F(M).

3. F(M) = � for closed M. Note further that if M is countable with no accumulation points, 
then E(M)c is the union of the boundaries of the Voronoi cells corresponding to M (see 
[3, Subsection 6.2.1]).

For the main purpose of this manuscript, closedness of the skeleton has an important 
consequence.

Theorem D If M is a C1,1 submanifold and S(Mc) is closed, then � is continuous.

Note that by virtue of Theorem D and Corollary 2 we get that E(M) is a fiber bundle if M 
is C1,1 with closed S(Mc).

Proof In view of Theorem A we only need to show that � is upper semi-continuous. For 
this we follow the second part of the proof of Theorem A, where we construct, under the 
assumption that � is not upper semi-continuous in (�, v) ∈ �1(M) , a sequence (uk)k∈ℕ con-
verging to z = � + �(�, v)v , such that for every k ∈ ℕ there exist �k, �k ∈ M with �k ≠ �k 
and ‖uk − �k‖ = d(uk,M) = ‖uk − �k‖.

But this implies that uk ∈ S(Mc) for all k ∈ ℕ . Since S(Mc) is closed by assumption, 
we also have z ∈ S(Mc) . This means that z is the center of a maximal ball in Mc.

On the other hand, since � is not upper semi-continuous in (�, v) , there exists 𝛼 > 𝜗(𝜉, v) 
such that for all r ∈ [�(�, v), �) it holds that 𝜉 + rv ⊆ unpp(M) and � is the unique nearest 
point to � + rv on M (see again the proof of Theorem A).

But this contradicts the earlier finding that z = � + �(�, v)v is the center of a maximal 
ball in Mc .   ◻

Appendix: Supplementary proofs

Proof that �(M) is a Ck−1 submanifold, Remark  3 Let (�,w) ∈ �(M) . By Proposi-
tion  3 and the construction in the according proof (which does not use any conclu-
sion of Remark  3), there is a neighborhood V of � relative to M and Ck−1 functions 
t1,… , tm, nm+1,… , nd ∶ V → ℝ

d such that t1(� ),… , tm(� ) are a basis of T
�
(M) for all � ∈ V  

and (V , nm,… , nd) is an orthonormal moving frame of �(M) . Further, there exist open sets 
Ṽ , Ũ and a Ck diffeomorphism 𝛹 ∶ Ũ → Ṽ  such that 𝜉 ∈ Ṽ  and for all y = (y1,… , yd) ∈ Ũ 
it holds � (y) ∈ M ⟺ ym+1 = ⋯ = yd = 0 . Without loss of generality V = M ∩ Ṽ  . Then, 
Ṽ ×ℝ

d is a neighborhood of (�,w) . We can now define �̂� ∶ W̃ ×ℝ
d → Ṽ ×ℝ

d by
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with P
ℝm denoting the projection onto the first m coordinates. One can see from the repre-

sentation (5) that �̂� is a Ck−1 mapping, meeting the requirements of Definition 2 (up to the 
ordering of the components) showing that �(M) is a Ck−1 submanifold of ℝd ×ℝ

d having 
dimension m + (d − m) .   ◻

Proof of Theorem 4 We know from item 2 of Remark 2 that M can be represented as 
the graph of a function on T

�
(M) in the vicinity of � , i.e., there exist open sets W ⊆ T

𝜉
(M) 

and U ⊆ T
𝜉
(M)⟂ with 0 ∈ W ∩ U and a C2 function � ∶ W → U such that �(0) = 0 and 

M ∩ (� +W + U) = {� + t +�(t) ∶ t ∈ W} . W.l.o.g. we may identify T
�
(M) with ℝm × {0} 

and T
�
(M)⟂ with {0} ×ℝ

d−m and we may assume �(0) = � = 0 . Since � parametrizes 
M over the tangent space in � = 0 , we have D�(0) = 0 . By Proposition 3 there exists an 
orthonormal moving frame (V , nm+1,… , nd) of �(V) with V ⊂ M ∩ (W + U) open, and 
0 ∈ V  , and v = nm+1(0) . For k = m + 1,… , d let �k denote the k-th component of � , 
�k(y) = ⟨�(y), nk(0)⟩ . Note that �k is C2 and D�k(0) = 0 , so by Taylor’s theorem

with limy→0 ‖y‖−2rk(y) = 0 , where Hk is the Hessian of �k in 0.
Let �j denote differentiation w.r.t.  to the j-th coordinate, and let e1,… , em denote 

the canonical basis vectors of ℝm . For all y ∈ W with y +�(y) ∈ V  we have that 
{�j(y +�(y)) ∶ j = 1,… ,m} = {(ej + �j�(y)) ∶ j = 1,… ,m} forms a basis of the tangent 
space of M in y +�(y) . In particular,

so that

and therefore,

Thus, the Hessian of �k is the matrix representation of the shape operator L0,nk with respect 
to the basis (e1,… , em) of T0(M) . So far we have shown that

with limy→0 ‖y‖−2r(y) = 0 ( r = rm+1nm+1(0) +⋯ + rdnd(0) ). In particular, the Hessian is 
self-adjoint and so is L0,nk , for every k ∈ {m + 1,… , d}.

Let �1 ≥ ⋯ ≥ �m be the eigenvalues of Hm+1 (and thus of L0,nm+1 ). There is no loss of 
generality in assuming that (e1,… , em) are the corresponding eigenvectors of Hm+1 and 
thus of L0,nm+1.
Case 1 𝜆1 < 0 . Then for all R > 0 and for all z ∈ BR(Rnm+1(0)) we have

(5)(y, �1,… , �d) ↦

(
� (y),

m∑
i=1

�iti
(
� (P

ℝm (y))
)
+

d∑
i=m+1

�ini
(
� (P

ℝm (y))
))

,

𝛷k(y) = y⊤Hky + rk(y)

0 =
⟨
�j(y +�(y)), nk(y +�(y))

⟩
∀j = 1,… ,m,

k = m + 1,… , d

⇒ 0 =
⟨
�i�j�(0), nk(0)

⟩
+
⟨
ej,Dnk(0)ei

⟩
∀i, j = 1,… ,m,

k = m + 1,… , d

⟨
ej,−Dnk(0)ei

⟩
=
⟨
�i�j�(0), nk(0)

⟩
= �i�j�k(0),

⟨
ej, L0,nk ei

⟩
=
⟨
ej,−PT0(M)Dnk(0)ei

⟩
= �i�j�k(0) = (Hk)ij.

�(y) =

d�
k=m+1

⟨y, L0,nk y⟩nk(0) + r(y)
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Therefore BR(Rnm+1(0)) ⊆ {z ∈ ℝ
d ∶ ⟨z, nm+1(0)⟩ > 0}.

For 𝜁 = y +𝛷(y) ∈ V ⊆ M , we have that

for ‖y‖ sufficiently small, and thus y +�(y) ∉ BR(Rnm+1(0)) for such y.
Case 2 𝜆1 > 0 . Let R <

1

2𝜆1
 . Then �BR(Rnm+1(0)) is locally the graph of 

nm+1(0)
⟂ → ℝnm+1(0) , y +

∑d

k=m+2
wknk(0) ↦ R −

√
R2 − ‖y‖2 − ‖w‖2 . We show that the 

component of the manifold in direction of nm+1(0) lies below that graph, which implies that 
the manifold has empty intersection with the interior of BR(Rnm+1(0)) near 0:

It remains to verify that

for ‖y‖ sufficiently small with equality iff y = 0 , where the remainder r̃ satisfies 
limy→0 ‖y‖−2r̃(y) = 0 . It is easy to see that for y ∈ ℝ

m , ‖y‖ small enough ,

with equality in (∗) iff y = 0 , and (6) follows.
Hence there exists 𝜀 > 0 with BR(Rnm+1) ∩M ∩ B

�
(0) = �.

On the other hand, if R >
1

2𝜆1
 , for all 𝜀 > 0 we have BR(Rnm+1) ∩M ∩ B

�
(0) ≠ � . This is 

obtained by a similar calculation, where one has to note that there exists a > 0 such that for 
all y with ‖y‖ sufficiently small but ‖y‖ ≠ 0,

Case 3 �1 = 0 . Similar to Case 2, one can show that for all R > 0 there exists 𝜀 > 0 such 
that BR(Rnm+1) ∩M ∩ B

�
(0) = � .   ◻

Proof of Theorem C Fix x ∈ E(M) and let (V , nm+1,… , nd) be an orthonormal moving 
frame of �(V) with p(x) ∈ V .

⟨z,Rnm+1(0)⟩ > ‖z‖2
2

> 0.

⟨𝜁 , nm+1(0)⟩ = ⟨y, L0,nm+1y + rk(y), nm+1(0)⟩ =
m�
j=1

𝜆jy
2
j
+ rk(y) < 0,

y +�(y) = y +

d�
k=m+2

�k(y)nk(0) +�m+1(y)nm+1(0)

= y +

d�
k=m+2

⟨y, L0,nk(0)y⟩nk(0) + ⟨y, L0,nm+1(0)y⟩nm+1(0) + r(y).

(6)R −

����R2 − ‖y‖2 −
m�

k=m+2

⟨y, L0,nk(0)y⟩2 ≥ ⟨y, L0,nm+1(0)y⟩ + r̃(y)

R −

����R2 − ‖y‖2 −
m�

k=m+2

⟨y,L0,nk(0)y⟩2 ≥ R −
√
R2 − ‖y‖2

(∗)

≥�1‖y‖2 ≥
m�
k=1

�ky
2
k
= ⟨y, L0,nm+1(0)y⟩,

R −

����R2 − ‖y‖2 −
m�

k=m+2

⟨y, L0,nk(0)y⟩2 < R −
√
R2 − ‖y‖2 − a‖y‖2.
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Step 1 We show that

For this consider a C1 curve � ∶ (−�, �) → E(M) with p(�(s)) ∈ V  for all s ∈ (−�, �) and 
�(0) = x . We can write

where for the sake of brevity it is understood that summation ranges from m + 1 to d. 
Define curves �j ∶= nj◦p◦� and scalar functions yj ∶= ⟨� − p◦� , �j⟩ for j = m + 1,… , d , 
so that � = p◦� +

∑
j yj�j , and abbreviate P = PTp(x)(M) . Then

Note that Dp ∶ T(E(M)) → T(M) , so Dp(x) maps into Tp(x)(M) and thus PDp = Dp . Since 
P�j(0) = Pnj◦p◦�(0) = 0 and (Dp◦𝛾(0))�̇�(0) ∈ Tp(𝛾(0))(M) = Tp(x)(M) and �̇� can be chosen 
freely in Tp(x)(M) , it follows

In particular, in the case where x ∈ M , we see Dp(x) = P.
Step 2 We show that

is invertible for ‖x − p(x)‖ ≠ 0.
Otherwise there exists t ∈ Tp(x)(M) that is mapped to 0 by idTp(x)(M) − ‖x − p(x)‖Lp(x),v , 

and therefore

so that t is an eigenvector for Lp(x),v corresponding to the positive eigenvalue ‖x − p(x)‖−1 . 
It follows from Theorem 4 that ‖x − p(x)‖ ≥ �

�
p(x),

x−p(x)

‖x−p(x)‖
�
 , which contradicts x ∈ E(M) 

by Lemma 5.
Step 3 Conclusion of the proof. For the case where x ∈ M there is nothing left to 

show.

(
idTp(x)(M) +

d∑
j=m+1

⟨
x − p(x), nj(p(x))

⟩
PTp(x)(M)(Dnj)(p(x))

)
Dp(x) = PTp(x)(M).

� = p◦� + (� − p◦�) = p◦� +
∑
j

⟨
� − p◦� , (nj◦p◦�)

⟩
(nj◦p◦�),

�̇� = (Dp◦𝛾)�̇� +
∑
j

(ẏj𝛽j + yj�̇�j)

P�̇� = P(Dp◦𝛾)�̇� +
∑
j

(Pẏj𝛽j + Pyj�̇�j) = P(Dp◦𝛾)�̇� +
∑
j

(ẏjP𝛽j + yjP�̇�j)

= P(Dp◦𝛾)�̇� +
∑
j

(ẏjP𝛽j + yjP(Dnj◦p◦𝛾)(Dp◦𝛾)�̇�).

(7)

P = P(Dp◦�)(0) +
∑
j

yj(0)P(Dnj◦p◦�)(0)Dp◦�(0)

=

(
idTp(x)(M) +

∑
j

⟨
�(0) − p(�(0)), nj(p(x))

⟩
P(Dnj◦p◦�)(0)

)
Dp◦�(0)

=

(
idTp(x)(M) +

∑
j

⟨
x − p(x), nj(p(x))

⟩
P(Dnj)p(x)

)
Dp(x).

idTp(x)(M) − ‖x − p(x)‖Lp(x),v

t = ‖x − p(x)‖Lp(x),vt,
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In the case where x ∉ M we have 
∑

j⟨x − p(x), nj(p(x))⟩nj(p(x)) = x − p(x) = ‖x − p(x)‖v 
by the definition of v. Furthermore, v =

∑
j⟨v, nj(p(x))⟩nj(p(x)) , and (V,  n) with 

n ∶=
∑

j⟨v, nj(p(x))⟩nj is a unit normal field with n(p(x)) = v . Thus, P(Dn)(p(x)) = −Lp(x),v 
by Definition 7.

On the other hand,

By Steps 2 and 3, we can infer that on Tp(x)(M)

and since Dp(x) vanishes on Tp(x)(M)⟂,

  ◻
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