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Abstract
This paper is devoted to the classification of 4-dimensional Riemannian spin manifolds
carrying skew Killing spinors. A skew Killing spinor ψ is a spinor that satisfies the equation
∇Xψ = AX ·ψ with a skew-symmetric endomorphism A. We consider the degenerate case,
where the rank of A is at most two everywhere and the non-degenerate case, where the rank of
A is four everywhere. We prove that in the degenerate case the manifold is locally isometric
to the Riemannian productR× N with N having a skew Killing spinor and we explain under
which conditions on the spinor the special case of a local isometry to S

2 × R
2 occurs. In

the non-degenerate case, the existence of skew Killing spinors is related to doubly warped
products whose defining data we will describe.

Keywords Generalised Killing spinors · Doubly warped product · Hodge operator

Mathematics Subject Classification 53C25 · 53C27

1 Introduction

Let (Mn, g) be an n-dimensional Riemannian spin manifold. A generalised Killing spinor
on M is a sectionψ of the spinor bundle�M of M satisfying the overdetermined differential
equation ∇Xψ = AX · ψ for some symmetric endomorphism field A of T M . Here and as
usual, “·” denotes the Clifford multiplication on�M . Numerous papers have been devoted to
the classification of Riemannian spin manifolds carrying such spinors. Several results have
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been obtained for particular A but it is still an open problem to get a complete classification
for general A. Let us quote some of these results. First, recall that when A is the zero tensor
field, that is, the corresponding spinor is parallel, then M. Wang [24] showed that such
manifolds can be characterised by their holonomy groups which can be read off the Berger
classification. The case where A is a nonzero real multiple of the identity is that of classical
real Killing spinors. It was shown by C. Bär [3] that real Killing spinors correspond to parallel
spinors on the (irreducible) cone over the manifold, to which then M. Wang’s result applies.
Furthermore, in dimension n ≤ 8, there are several results on a classification up to isometry
[6,18]. When the tensor A is parallel [20], or a Codazzi tensor [5] or both A and g are analytic
[2] (see also [10]), it is shown that the manifold M is isometrically embedded into another
spin manifold of dimension n + 1 carrying a parallel spinor and that the tensor A is the
half of the second fundamental form of the immersion. We also cite the partial classification
of generalised Killing spinors on the round sphere [21,23] and on 4-dimensional Einstein
manifolds of positive scalar curvature [22] where in some cases the generalised Killing spinor
turns out to be a Killing spinor.

In this paper, we are interested in an equation dual to the generalised Killing one, which
we call skew Killing spinor equation. More precisely, on a given Riemannian spin manifold
(Mn, g), a spinor fieldψ is called a skewKilling spinor if it satisfies for some skew-symmetric
endomorphism field A of T M the differential equation

∇Xψ = AX · ψ (1)

for all X ∈ T M . This equation was originally defined in [16]. Each skew Killing spinor is
a parallel section with respect to the modified metric connection ∇ − A ⊗ Id, in particular
it has constant length. Moreover, for a given skew symmetric endomorphism field A of
T M , the space of skew Killing spinors is a complex vector space of dimension at most
rkC(�M) = 2[n/2].

Very few examples of Riemannian spin manifolds (Mn, g) carrying skew Killing spinors
are known for which A �= 0. For 2-dimensional manifolds, apart from R

2 or quotients
thereof with trivial spin structure, only the round sphere of constant curvature can carry such
spinors and in that case they correspond to restrictions of Killing spinors from S

3 onto totally
geodesic S2 [16]. In that case, the tensor A coincides with the standard complex structure J
induced by the conformal class of S2 or with−J depending on the sign of the Killing constant
chosen on S3. Each skew Killing spinor on S2 immediately gives rise to a three-dimensional
example, namely to a skew Killing spinor on S

2 × R, where A = ±J on S
2 is trivially

extended to the R-factor. More generally, for a manifold of dimension n = 3 the following
is known [16, Prop. 4.3]. If M3 admits a skew Killing spinor ψ , then, locally, ψ can be
transformed into a parallel spinor by a suitable conformal change of the metric. In particular,
M3 is locally conformally flat. If, in addition, M3 is simply-connected, then this conformal
change is defined globally. Conversely, if (M3, g) admits a nonzero parallel spinor, then for
any conformal change of g, there exists a skew Killing spinor with respect to the new metric.
See Sect. 4.1 for more detailed information.

In dimensions 6 and 7, there are lots of examples provided by SU(3)- resp. G2-structures
on M , see e.g. types χ1, χ2, χ4 in [1, Lemma 3.5] and type W2,W4 in [1, Lemma 4.5]
respectively.

Obvious examples in four dimensions can be obtained as products N × R, where N is a
three-dimensional manifold admitting a skewKilling spinor, see Example 4.1. A special case
of this construction is the product S2 ×R

2, see Example 4.2. For each of the endomorphisms
A± := ±J ⊕ 0, this manifold admits the maximal number of skew Killing spinors.
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The main purpose of this work is to establish a classification result when the dimension
of M is four. Note that the pointwise rank of A is either zero, two or four. We will split the
classification into two parts. In Sect. 4 we will study the degenerate case, where the rank
of A is at most two everywhere. In Sect. 5 we will consider the case where rk(A) = 4 on
all of M . Note that the two analysed classes of skew Killing spinors in dimension 4 do not
cover all the possible cases. There might exist nontrivial skew Killing spinors such that the
rank of A is 4 on some nonempty subset of the manifold and strictly smaller on another
nonempty subset. Before we start the classification, we determine the general integrability
conditions in arbitrary dimensions arising from the existence of a skew Killing spinor, see
Sect. 2. In Sects. 3 and 4, we specify these conditions to four dimensions, especially to the
degenerate case. We use that the spinor bundle �M splits into the eigenspaces �+M and
�−M of the volume form and the bundle of two-forms splits into those of self-dual and of
anti-self-dual forms, which act on �±M . We also adapt some techniques used in [22] but
for a skew-symmetric endomorphism A. We use the integrability conditions to achieve the
following classification result in case that the Killing map is degenerate everywhere.

Theorem A Let (M4, g)Letbe a connectedRiemannian spinmanifold carrying a skewKilling
spinor ψ , where the rank of the corresponding skew-symmetric tensor field A is at most two
everywhere. Then either ψ is parallel on M or, around every point of M, we have a local
Riemannian splitting R × N with N having a skew Killing spinor. If, in addition, the length
of the summand ψ+ in the decomposition ψ = ψ+ + ψ− ∈ �+M ⊕ �−M is not constant,
then we are in the second case with N = R × S

2, that is, (M, g) is a local Riemannian
product S2 × R

2 around every point.

For a more detailed formulation see Theorem 4.12, where we also discuss the global
structure of (M, g) if M is complete.

Let us turn to the case where the Killing map is non-degenerate everywhere. In Sect. 5.1
we will prove that, essentially, the existence of a skew Killing spinor ψ with non-degenerate
Killing map A is equivalent to the existence of a Killing vector field η and an almost complex
structure J satisfying certain conditions, see Proposition 5.1 for a detailed formulation. The
spinor ψ and the data η and J are related by the equations J (X) · ψ− = i X · ψ− and
g(η, X) = 〈X · ψ+, ψ−〉/|ψ |2 for all X ∈ T M .

In Sect. 5.2, we consider the special case where Aη is parallel to Jη. Then AJ = J A holds
and J is integrable, see Remark 5.3. Manifolds with skew Killing spinors satisfying these
conditions are related to doubly warped products. A doubly warped product is a Riemannian
manifold (M, g) of the form (I × M̂, dt2⊕ρ(t)2 ĝη̂ ⊕σ(t)2 ĝη̂⊥), where (M̂, ĝ) is a Rieman-
nian manifold with unit Killing vector field η̂, and ĝη̂, ĝη̂⊥ are the components of the metric
ĝ along Rη̂ and η̂⊥, respectively, I ⊂ R is an open interval and ρ, σ : I → R are smooth
positive functions on I . Locally, doubly warped products can be equivalently described as
local DWP-structures, see the appendix. On M̂ , we define a function τ̂ by ∇̂X η̂ = τ̂ Ĵ (X)

for X ∈ η̂⊥, where Ĵ is a fixed Hermitian structure on η⊥. Locally, (M̂, ĝ) is a Riemannian
submersion over a two-dimensional base manifold B. Let K̂ denote the Gaussian curvature
of B. We obtain the following result, see Theorem 5.5 and Corollary 5.8.

Theorem B Let (M, g) admit a skew Killing spinor such that Aη||Jη and |η| /∈ {0, 1/2}
everywhere. Then M is locally isometric to a doubly warped product for which the data K̂
and τ̂ are constant and ρ and σ satisfy the differential equations

(σ 2)′ = − 2
√
1 − 4ρ2

ρτ̂ , (σ 2)′ ρ′

ρ
= K̂ − 2

ρ2

σ 2 τ̂ 2.
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Conversely, if M is isometric to a simply-connected doubly warped product for which the
data K̂ and τ̂ are constant and ρ and σ satisfy the above differential equations, then (M, g)
admits a skew Killing spinor such that Aη||Jη.

The differential equations in Theorem B can be locally solved and one obtains explicit
formulas for the doubly warped product. Let us finally mention that the skew Killing spinors
onM = I× M̂ are related to quasi Killing spinors in the sense of [12] on M̂ , see Remark 5.10.

2 General integrability conditions for skew Killing spinors

In this section we give a few necessary conditions for the existence of nonzero skew Killing
spinors. Before we state the main result, we recall some facts from Riemannian and spin
geometry, see e.g. [6, Chap. 1], [19, Chap. 2] or [9, Chap. 1].

In all this paper we identify, on a Riemannian manifold (Mn, g), one-forms with vector
fields via the metric g. Recall that the Hodge star operator is defined by

ω ∧ ∗ω′ = 〈ω,ω′〉volg
for all differential p-forms ω,ω′ on M , where volg is the volume form of M (giving its
orientation). The Hodge star operator satisfies ∗2 = (−1)p(n−p) on p-forms and has the
following useful properties

X ∧ ∗ω = (−1)p+1 ∗ (X� ω) and X� ∗ ω = (−1)p ∗ (X ∧ ω) (2)

for any vector field X . Recall also that the Clifford multiplication between a vector field X
and a differential p-form ω is defined as

X · ω = X ∧ ω − X� ω and ω · X = ω ∧ X + (−1)p X� ω, (3)

from which the identity X · Y · +Y · X · = −2g(X , Y ) follows for any vector fields X and Y .

From now on, we assume M to be spin with fixed spin structure. In that case, there exists
a Hermitian vector bundle �M → M , called the spinor bundle, on which the tangent bundle
T M acts by Clifford multiplication, T M ⊗ �M → �M; X ⊗ ψ �→ X · ψ. We will write
XY · ψ instead of X · Y · ψ . Recall that a real p-form also acts by Clifford multiplication
in a formally self- or skew-adjoint way according to its degree: for any p-form ω and any
spinors ϕ,ψ , we have

〈ω · ϕ,ψ〉 = (−1)
p(p+1)

2 · 〈ϕ, ω · ψ〉.
The Levi-Civita connection ∇ on M defines a metric connection, also denoted by ∇, on

�M with respect to the Hermitian product 〈· , ·〉 and that preserves Clifford multiplication.
In other words, for all X , Y ∈ �(T M), the identities

X(〈ψ, ϕ〉) = 〈∇Xψ, ϕ〉 + 〈ψ,∇Xϕ〉, ∇X (Y · ϕ) = ∇XY · ϕ + Y · ∇Xϕ

are satisfied for all spinor fields ψ, ϕ. If we denote by RX ,Y := [∇X ,∇Y ] − ∇[X ,Y ] the
curvature tensor associated with the connection ∇, the spinorial Ricci identity states that, for
all ψ and X ,

− 1

2
Ric(X) · ψ =

n∑

j=1

e j · RX ,e j ψ, (4)

see e.g. [6, Eq. 1.13].
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In the following, we will assume the manifold M to carry a skew Killing spinor field
ψ with corresponding skew-symmetric endomorphism A. We make A into a 2-form via the
metric g, that is, we consider (X , Y ) �→ g(AX , Y ), whichwe still denote by A. In a pointwise
orthonormal basis {ei }i=1,··· ,n of T M , we have A = 1

2

∑n
j=1 e j ∧ Ae j (mind the factor 1

2 ).
In particular, Clifford multiplication of any spinor field ψ by A is given by

A · ψ = 1
2

n∑

j=1

e j · Ae j · ψ . (5)

In the next proposition, we compute the curvature data arising from the existence of such
a spinor. These integrability equations will play a crucial role for the classification in the
4-dimensional case.

Proposition 2.1 Let ψ be any spinor field solving

∇Xψ = AX · ψ, ∀ X ∈ T M

for some skew-symmetric endomorphism field A of the tangent bundle of a spin manifold
(Mn, g). Then the following identities hold for X , Y ∈ �(T M):

1. RX ,Yψ = ((∇X A)(Y ) − (∇Y A)(X) + 2AY ∧ AX) · ψ .
2. − 1

2Ric(X) · ψ = (∇X A + X� d A + (δA)(X) + 4A ∧ AX + 2A2X
) · ψ , where d is the

exterior derivative and δ is the codifferential w.r.t. the metric g.
3. Sψ = 4

(
2d A + δA + 4A ∧ A + |A|2) · ψ , where S denotes the scalar curvature of

(M, g) and |A|2 := ∑n
j=1 |Ae j |2 written in any pointwise orthonormal basis (e j )1≤ j≤n

of T M.

Proof We differentiate (1) and take suitable traces of the identities obtained. First, if x ∈ M
and X , Y ∈ �(T M) such that ∇X = ∇Y = 0 at x , then

∇X∇Yψ = ∇X (AY · ψ) = (∇X A)(Y ) · ψ + AY · ∇Xψ

= (∇X A)(Y ) · ψ + AY · AX · ψ

at x . Therefore, applying Eqs. (3), we write

RX ,Yψ = ∇X∇Yψ − ∇Y∇Xψ

= (
(∇X A)(Y ) − (∇Y A)(X) + AY · AX − AX · AY ) · ψ

= (
(∇X A)(Y ) − (∇Y A)(X) + 2AY ∧ AX − g(AY , AX) + g(AX , AY )

) · ψ

= (
(∇X A)(Y ) − (∇Y A)(X) + 2AY ∧ AX

) · ψ,

which is the first identity.

Next we fix a local orthonormal basis of T M , which we denote by (e j )1≤ j≤n . Using the
spinorial Ricci formula (4) and the identities (3), we compute
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−1

2
Ric(X) · ψ =

n∑

j=1

e j · RX ,e j ψ

=
n∑

j=1

e j · (
(∇X A)(e j ) − (∇e j A)(X) + 2Ae j ∧ AX

) · ψ

=
( n∑

j=1

e j · (∇X A)(e j ) −
n∑

j=1

e j ∧ (∇e j A)(X) +
n∑

j=1

e j�(∇e j A)(X)

+2
n∑

j=1

e j · (Ae j ∧ AX)
)

· ψ.

Now we compute each term separately. First,
∑n

j=1 e j · (∇X A)(e j ) · ψ = 2∇X A · ψ by (5),
where we see ∇X A as a 2-form on M . The second sum can be computed in terms of the
exterior and the covariant derivatives of A. Namely

−
n∑

j=1

e j ∧ (∇e j A)(X) =
( n∑

j=1

e j ∧ ∇e j A
)
(X) −

n∑

j=1

g(X , e j )∇e j A = X� d A − ∇X A.

The third sum can be expressed in terms of the codifferential of A:

n∑

j=1

e j�(∇e j A)(X) =
n∑

j=1

(∇e j A)(X , e j ) = −
n∑

j=1

(∇e j A)(e j , X) = (δA)(X).

It remains to notice that, by Eqs. (3), we have

n∑

j=1

e j · (Ae j ∧ AX) · ψ =
n∑

j=1

e j · Ae j · AX · ψ +
n∑

j=1

g(Ae j , AX)e j · ψ

= (2A · AX − A2X) · ψ = (2A ∧ AX + A2X) · ψ.

This shows the second equation.
To obtain the scalar curvature, we take the trace of the spinorial Ricci identity. For a given

local orthonormal basis (e j )1≤ j≤n of T M , we write

S

2
ψ = −1

2

n∑

j=1

e j · Ric(e j ) · ψ

=
n∑

j=1

e j · (∇e j A + e j� d A + (δA)(e j ) + 4A ∧ Ae j + 2A2e j
) · ψ

(3)=
n∑

j=1

(
e j ∧ ∇e j A − e j�∇e j A

)
· ψ +

n∑

j=1

(
e j ∧ (e j� d A) − e j�(e j� d A)

︸ ︷︷ ︸
0

)
· ψ

+
n∑

j=1

(δA)(e j )e j · ψ + 4
n∑

j=1

(
e j ∧ A ∧ Ae j − e j�(A ∧ Ae j )︸ ︷︷ ︸

0

)
· ψ

+2
n∑

j=1

(
e j ∧ A2e j︸ ︷︷ ︸

0

−g(A2e j , e j )
)

· ψ
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= (
d A + δA + 3d A + δA + 8A ∧ A + 2|A|2) · ψ

= (
4d A + 2δA + 8A ∧ A + 2|A|2) · ψ,

which is the last identity. Here, we use the identity
∑n

j=1 e j ∧ (e j� ω) = pω, which holds
for any p-form ω. ��

3 The vector fields � and � in four dimensions

In this section we consider a 4-dimensional spin manifold (M, g) that carries a skew Killing
spinor. On spin manifolds of even dimension 2m, the complex volume form (volg)C :=
ime1 · e2 . . . · e2m , where (e j ) j=1,··· ,2m is an arbitrary orthonormal frame, splits the spinor
bundle into two orthogonal subbundles that correspond to the eigenvalues ±1 of (volg)C.

Hence, on our four-dimensional manifold (M, g), we have �M = �+M ⊕ �−M , where

�±M := {ψ ∈ �M | (volg)C · ψ = ±ψ}.
The spaces�±M are preserved by the connection∇ of the spinor bundle and are interchanged
by Clifford multiplication by tangent vectors. According to this decomposition, we write any
spinor field ψ as ψ = ψ+ + ψ− and we set ψ̄ := ψ+ − ψ−. Recall now that differential
forms act on the spinor bundle �M as follows: for any differential p-form ω on M and
ψ ∈ �(�M)

ω · ψ = ∗ω · ψ̄ for p = 1, 2 and ω · ψ = −(∗ω) · ψ̄ for p = 3, 4. (6)

Let
∧2

± M = {ω ∈ ∧2 M | ∗ω = ±ω} be the spaces of self-dual and anti-self-dual forms

on M . For ω ∈ ∧2 M we denote by ω± the projections of ω to these spaces. Then, one can
easily see from Eqs. (6) that

∧2
± M acts trivially on �∓M and that the maps

∧2

− M −→ �−M ∩ (ψ−)⊥, ω− �−→ ω− · ψ−,

∧2

+ M −→ �+M ∩ (ψ+)⊥, ω+ �−→ ω+ · ψ+ (7)

are isomorphisms if ψ+ �= 0 and ψ− �= 0.
Now assume that ψ is a skew Killing spinor of norm one. By decomposing ψ into ψ+

and ψ− as above, we obtain isomorphisms (7) on the open set M ′ := M0 ∩ M1, with

M0 := {x ∈ M | ψ−(x) �= 0} and M1 := {x ∈ M | ψ+(x) �= 0}.
Equation (1) can be written as ∇Xψ± = AX · ψ∓. We define a vector field η on M and

a vector field ξ on M0 by

g(η, X) := 〈X · ψ+, ψ−〉, ψ+ =: ξ · ψ−, (8)

where the definition of ξ uses that the map TpM → �+
p M , X �→ X · ψ− is bijective

at each p ∈ M0. Then, clearly η = −|ψ−|2ξ holds on M0 and 1 = |ψ+|2 + |ψ−|2 =
|ψ−|2(1 + |ξ |2). We define

f := 1 − 2|ψ−|2, ρ := |η| ≤ 1/2.

Then

ρ = |ξ |
1 + |ξ |2 , f = |ξ |2 − 1

|ξ |2 + 1
, f 2 = 1 − 4ρ2, η = 1

2
( f − 1)ξ (9)
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holds, where these functions are defined.
We collect some properties of η and ξ that will be used later on.

Lemma 3.1 On M, we have

d f = 4Aη (10)

∇Xη = f AX (11)

dη = 2 f A, δη = 0 (12)

f d A = −4Aη ∧ A . (13)

Proof Differentiating the function |ψ−|2 along any vector field X ∈ T M gives

X(|ψ−|2) = 2〈∇Xψ−, ψ−〉 = 2〈AX · ψ+, ψ−〉 = 2g(η, AX) = −2g(Aη, X).

This proves (10). To prove (11), we consider two vector fields X and Y that can be assumed
to be parallel at some point x ∈ M to compute

g(∇Xη, Y ) = X(g(η, Y )) = X(〈Y · ψ+, ψ−〉)
= 〈Y · AX · ψ−, ψ−〉 + 〈Y · ψ+, AX · ψ+〉
= −g(Y , AX)|ψ−|2 + g(Y , AX)|ψ+|2
= (1 − 2|ψ−|2)g(AX , Y )

at x , which is (11). Moreover,

dη(X , Y ) = (∇Xη)(Y ) − (∇Y η)(X) = 2 f A(X , Y ),

which yields the first part of (12). The divergence of η is clearly zero by (11) and the fact
that A is skew-symmetric. Finally,

0 = ddη = 2 f d A + 2d f ∧ A,

which together with (10) gives (13). ��
Remark 3.2 It follows from Lemma 3.1 that ∇η is skew-symmetric on M which means that
η is a Killing vector field on M .

The open sets M0 and M1 are dense in {p ∈ M | Ap �= 0}. Indeed, if, e.g., ψ− vanishes
on some open setU ⊂ {p ∈ M | Ap �= 0}, then so does its covariant derivative and therefore
AX · ψ+ = 0 on U . Hence A = 0 on U , which contradicts the assumption on A.

With the notation introduced above, we have M0 = {x ∈ M | f (x) �= 1} and M1 = {x ∈
M | f (x) �= −1}. Then M ′ = M0 ∩ M1 = {x ∈ M | f (x) �= ±1} = {x ∈ M | ρ(x) �= 0}.
We define also the set

M ′′ := {
x ∈ M | ρ(x) /∈ {0, 1

2 }
} = M ′ ∩ {

x ∈ M | ρ(x) �= 1
2

}

= {x ∈ M | f (x) /∈ {0,±1}}.
By Lemma 3.1, equation (10), the open set M ′′ is dense in {p ∈ M | Ap(η) �= 0}. In
particular, M ′′ ⊂ M is dense if A is non-degenerate everywhere. The case where ρ = 1/2
on an open set will be treated in Proposition 4.3.

Remark 3.3 Let us change the orientation of M and denote by �̂M the spinor bundle with
respect to the new orientation. Then we can identify �̂M with �M via �̂+M = �−M and
�̂+M = �−M Accordingly, we define a section ψ̂ of �̂M by ψ̂+ = ψ−, ψ̂− = ψ+. With

123



Annals of Global Analysis and Geometry (2021) 59:501–535 509

ψ also ψ̂ is a skew Killing spinor and the vector fields ξ̂ and η̂ associated with ψ̂ are equal
to ξ̂ = −ξ/|ξ |2 and η̂ = −η, respectively.

On M ′′, we have |ξ | �= 1. Hence, if there exists a skew Killing spinor on M and if
M = M ′′, then we always may assume that |ξ | > 1 up to a possible change of orientation on
each connected component of M . If |ξ | > 1, then f is positive, therefore f = √

1 − 4ρ2.

4 The degenerate case

In this section we assume that rk(A) ≤ 2 everywhere on M4, which is equivalent to suppose
that the kernel of A is at every point either 4- or 2-dimensional. Then AX ∧ A = 0 for all
X ∈ T M . In particular, d A = 0 on M ′′ by Lemma 3.1.

4.1 Examples

Example 4.1 If (N , h) is a 3-dimensional spin manifold with a skew Killing spinor ϕ �= 0,
then (N × R, h ⊕ dt2) admits a skew Killing spinor ψ �= 0 for which |ψ+| = |ψ−| holds.
Let us prove the above statement. Recall that the spinor bundle of M = N × R is given by
�M = �N ⊕ �N and the Clifford multiplication on M is related to the one on N by [4]

(X ·N ⊕ − X ·N )ψ = X · ∂t · ψ.

where ∂t is the unit vector field on R and X ∈ T N . Now we set ψ := ϕ + ∂t · ϕ according
to the above decomposition. Let A denote the Killing map associated with ψ . Then we can
easily check that ∇∂tψ = 0 and, for X ∈ T N ,

∇Xψ = ∇Xϕ + ∂t · ∇Xϕ

= AX ·N ϕ + ∂t · (AX ·N ϕ)

= AX · ∂t · ϕ + ∂t · AX · ∂t · ϕ

= AX · ψ.

Hence ψ is a skew Killing spinor on M . The vector field ξ in this example is just −∂t which
is parallel. Since |∂t | = 1, we have |ψ+| = |ψ−|.

Let us recall at this point, what is known about three-dimensional manifolds with skew
Killing spinors. As already mentioned in the introduction, each skew Killing spinor on S

2

immediately gives rise to a three-dimensional example, namely to a skew Killing spinor on
S
2 × R. Furthermore, if dim N = 3 and if (N , g) admits a skew Killing spinor ψ , then
N is locally conformally flat [16, Prop. 4.3]. Indeed, locally, there exists a function u such
that ψ transforms into a parallel spinor ψ̄ with respect to the metric ḡ := e2ug and three-
dimensional Riemannian manifolds with a non-trivial parallel spinor field are flat. If N is
simply-connected, then u is globally defined. In the latter case the metric ḡ is not necessarily
complete even if (N , g) is.

Conversely, if (N , g) admits a nonzero parallel spinor, then for any conformal change
of the metric on the manifold N there exists a skew Killing spinor with respect to the new
metric. We conclude this overview with the flat case N = R

3. If ψ �= 0 is a solution of (1)
on N = R

3 endowed with the flat metric, then A = 0 and ψ is a parallel spinor field. Indeed,
as mentioned above, there exists a globally defined function u on R

3 such that the metric
ḡ := e2ug admits a parallel spinor. Hence, ḡ is also flat. In particular, the scalar curvature
S̄ vanishes. On the other hand, S̄ = 8e−2ue−u/2�eu/2 since ḡ arises by conformal change
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from the flat metric g. Therefore �(eu/2) = 0, that is, eu/2 is a harmonic function on R
3.

But since eu/2 ≥ 0, Liouville’s theorem implies that eu/2 – and so u itself – is constant. This
shows that A = 0.

Example 4.2 We consider M = S
2 × R

2. Let J denote the standard complex structure on
S
2. We define endomorphisms A± := ±J ⊕ 0 on T M = TS2 ⊕ TR2. For each of these

endomorphisms, the space of skew Killing spinors is four-dimensional. It is spanned by
elements with non-vanishing Aη and it is also spanned by elements for which Aη = 0 holds.

Let us prove this statement. The spinor bundle of S2 × R
2 is pointwise given by �(S2 ×

R
2) = �S

2 ⊗ �R
2 and the Clifford multiplication on S2 × R

2 is [4]

X · (ϕ ⊗ σ) = (X ·S2 ϕ) ⊗ σ̄ , Y · (ϕ ⊗ σ) = ϕ ⊗ (Y ·R2 σ),

for X ∈ TS2 and Y ∈ TR2. Now, we consider on S2 a skew Killing spinor ϕ, corresponding
to the standard complex structure J , and a parallel spinor σ in�+(R2) of norm 1. The spinor
field ψ := ϕ ⊗ σ is clearly a skew Killing spinor, since in the S2-direction we have

∇Xψ = (∇Xϕ) ⊗ σ = (J X ·S2 ϕ) ⊗ σ = J X · (ϕ ⊗ σ) = J X · ψ

and∇Yψ = 0 in theR2-direction. The same computation holds when replacing J by−J and
choosing σ ∈ �−(R2). As the spaces of skewKilling spinors ϕ corresponding to the standard
complex structure J or its opposite on S

2 are each complex 2-dimensional, we deduce that
the space of skew Killing spinors with Killing map A+ is at least – and therefore exactly –
4-dimensional. The same holds for A−. In particular, each skew Killing spinor on S2 ×R

2 is
a linear combination with constant coefficients of skew Killing spinors for A+ and also one
of skew Killing spinors for A−. Note that the vector field ξ , associated to the above-defined
skew Killing spinor ψ , is the one coming from the spinor ϕ on S2, since TS2 � �+

S
2 and

ψ+ = ϕ+ ⊗ σ = (ξS2 · ϕ−) ⊗ σ = ξS2 · (ϕ− ⊗ σ) = ξS2 · ψ−.

Therefore, ξ = ξS2 and A2ξ = J 2ξS2 = −ξS2 , which cannot vanish on the sphere. This
shows that Aη �= 0. If we consider instead of the above constructed ψ the spinor ψ + Y · ψ̄
for a parallel vector field Y onR2 with |Y | = 1, we obtain a skewKilling spinorwith ξ = −Y ,
hence Aη = 0.

4.2 Classification

Let us first assume that ρ = 1/2 on an open set. By definition of ρ, this condition is equivalent
to |ψ+| = |ψ−|. We prove that, under this assumption, the manifold is locally isometric to
that in Example 4.1.

Proposition 4.3 Letψ be a nonzero skewKilling spinor on M4 and assume that |ψ+| = |ψ−|
on an open set U. Then U is a local Riemannian product of a line by a 3-dimensional
Riemannian manifold carrying a skew Killing spinor.

Proof Let ψ be a skew Killing spinor of norm one such that |ψ+| = |ψ−|. Then f = 0 by
definition of f . Therefore η is parallel by Lemma 3.1. In this case η⊥ is integrable and the
spinor ψ restricts to a skew Killing spinor on the integral manifolds. In fact, for any given
integral manifold N , its spinor bundle is identified with�+M , so the spinor ϕ = ψ+ restricts
to a skew Killing spinor on N . Indeed,

∇N
X ϕ = ∇M

X ψ+ = AX · ψ− = −AX · ξ · ψ+ = −AX ·N ϕ,
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which proves the assertion. ��
In the next part of the section, we want to exclude the case ρ = 1/2 and make the stronger

assumption

(M4, g) is a Riemannian spin manifold
carrying a skew Killing spinor such that M = M ′′ and rk(A) = 2 everywhere.

(GA)

Due to the orthogonal splitting of the spinor bundle�M = �+M⊕�−M we can decom-
pose further the equations in Proposition 2.1 in order to get more integrability conditions.
Namely,

Proposition 4.4 Under assumption (GA), we have

δA = 0 (14)

S = 4|A|2 (15)

Ric(η) = −4A2η (16)

∇ηA = 0 (17)

(∇X A)(η) = − f
( 1
4Ric(X) + A2X

)
(18)

∇X (Aη) = − f

4
Ric(X), (19)

η�∇X (∗A) = ∇X ((∗A)η) = 1

4
Ric(X) + A2X (20)

0 =
(
1
2Ric(X) ∧ ξ + 2A2X ∧ ξ + ∇X A

)

− (21)

for every X ∈ T M.

Proof We take the orthogonal projection of the formulas in Proposition 2.1 to �+M and
�−M . This gives, after using ψ+ = ξ · ψ−, d A = 0 and A ∧ AX = 0 that

0 = ( 1
2Ric(X) + 2A2X

) · ψ− + (∇X A + (δA)(X)) ξ · ψ− (22)

0 = ( 1
2Ric(X) + 2A2X

) · ξ · ψ− + (∇X A + (δA)(X)) · ψ− (23)

for all X ∈ T M and

0 = (|A|2 − 1
4S

) · ξ · ψ− + (δA) · ψ− (24)

0 = (|A|2 − 1
4S

) · ψ− + (δA) · ξ · ψ−, (25)

respectively. Equation (22) gives

0 = ( 1
2Ric(X) + 2A2X + ξ ∧ ∇X A + ξ�∇X A + (δA)(X)ξ

) · ψ−.

Hence, by formula (6), we obtain

0 = 1
2Ric(X) + 2A2X + ∗(ξ ∧ ∇X A) + ξ�∇X A + (δA)(X)ξ. (26)

Equation (23) yields

0 = ( 1
2Ric(X) ∧ ξ − 1

2Ric(X , ξ) + 2A2X ∧ ξ − 2g(A2X , ξ) + ∇X A + (δA)(X)
) · ψ−.

Now, by taking the scalar product with ψ− and identifying the real part, the 0-th order term
must vanish. This gives

0 = 1
2Ric(ξ) + 2A2ξ − δA. (27)
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Also, we have
( 1
2Ric(X) ∧ ξ + 2A2X ∧ ξ + ∇X A

) · ψ− = 0.

The isomorphism from
∧2

− M to the orthogonal complement (ψ−)⊥ yields equality (21)
from the above identity. Equation (24) gives

0 = δA + (|A|2 − 1
4S)ξ . (28)

Furthermore, equation (25) yields

0 = (|A|2 − 1
4S − (δA)(ξ) − ξ ∧ δA

) · ψ−.

Taking the Hermitian product with ψ−, we obtain

0 =
(
ξ ∧ δA

)

− (29)

0 = −(δA)(ξ) + |A|2 − 1
4S (30)

after identifying the real parts. By (29), we have

ξ ∧ δA = ∗(ξ ∧ δA) = −ξ� ∗ δA.

Hence, the interior product with ξ yields 0 = ξ�(ξ ∧ δA) = |ξ |2δA − (δA)(ξ) · ξ. Now,
applying equation (28) to ξ gives

0 = (δA)(ξ) + (|A|2 − 1
4S

) |ξ |2,
which, after combining with (30), leads to 0 = (1 + |ξ |2)(δA)(ξ), which gives (14). Now
(28) yields (15). Equation (16) now follows from (27) and (14).

From (21), we get

∗
(
1
2Ric(X) ∧ ξ + 2A2X ∧ ξ + ∇X A

)
= 1

2Ric(X) ∧ ξ + 2A2X ∧ ξ + ∇X A,

which, by equation (2), is equivalent to

1
2 ξ� ∗ (Ric(X)) + 2ξ� ∗ (A2X) + ∗∇X A = 1

2Ric(X) ∧ ξ + 2A2X ∧ ξ + ∇X A.

Taking the interior product by ξ , this gives

ξ� ∗ ∇X A = ξ�
(( 1

2Ric(X) + 2A2X
) ∧ ξ

) + ξ�∇X A,

therefore

∗(ξ ∧ ∇X A) = (− 1
2Ric(X) − 2A2X

) |ξ |2 + ξ�∇X A

by Eqs. (2) and (16). On the other hand, Eqs. (26) and (14) give

∗(ξ ∧ ∇X A) = − 1
2Ric(X) − 2A2X − ξ�∇X A.

Substracting and adding the latter two equations and replacing ξ by −(1+|ξ |2)η yields (18)
and the identity η�∇X (∗A) = 1

4Ric(X)+ A2X for all X ∈ �(T M). The last equation yields
(20) since (∗A)(∇Xη) = f (∗A)(AX) = ∗ f AX ∧ A = 0. Furthermore, equation (18) shows
that the expression (∇X A)(η, Y ) is symmetric in X and Y . Therefore

0 = (∇X A)(η, Y ) − (∇Y A)(η, X) = −d A(X , Y , η) + (∇ηA)(X , Y ) = (∇ηA)(X , Y )

by d A = 0. This proves (17). Equation (19) follows from (18) together with ∇Xη = f AX .
��
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Remark 4.5 We can prove integrability conditions analogous to those in Proposition 4.4 also
for arbitrary rank of A. These general conditions are more involved. Since we will not use
them in the present paper, we do not state them here.

Lemma 4.6 Under assumption (GA), the set {p ∈ M | Aη|p �= 0} is dense in M.

Proof Assume that Aη = 0 on an open set U . We know that η is a Killing vector field on
M . Moreover, by Lemma 3.1, the vector field η has constant length on U . Indeed, for every
X ∈ T M ,

X
(|η|2) = 2g (∇Xη, η) = 2 f g(AX , η) = −2 f g(Aη, X) = 0.

By [7, Thm. 4], since (16) implies Ric(η) = 0, we can conclude that η is parallel on U .
But this contradicts equation (11) in Lemma 3.1 since f �= 0 and A �= 0 everywhere by
assumption. ��

In the following, we will often assume that Aη �= 0 on all of M . If Aη �= 0, then we

have A2η �= 0 everywhere, from which it follows that the vectors Aη
|Aη| and

A2η

|A2η| form an

orthonormal basis of the image of A. As A is of rank 2, we obtain

A = 1

|Aη|2 Aη ∧ A2η. (31)

Furthermore, note that (31) already implies

A3η = −|A2η|2
|Aη|2 Aη = −S

8
Aη, (32)

where the last equality comes from the identity (15). Obviously, A3η = −S
8 Aη holds also if

Aη = 0.
Since d f = 4Aη by Lemma 3.1, (19) implies

∇d f = − f Ric. (33)

This equation has been extensively studied in [14]. Using this formula, we now express the
Ricci tensor of the vector field Aη. ��
Lemma 4.7 If (GA) holds, then the Ricci tensor satisfies

Ric(Aη) = S

2
Aη + f

16
dS, Ric((∗A)η) = 1

16
dS. (34)

In particular, we have

(Aη)(S) = f ((∗A)η)(S). (35)

Proof ByBochner’s formula for 1-forms,�(d f )−Ric(d f ) = ∇∗∇(d f ) holds. Since∇d f =
− f Ric is symmetric and since ∇∗ = δ on symmetric (0, 2)-tensors, this gives

�(d f ) − Ric(d f ) = δ∇d f = δ(− f Ric) = Ric(d f ) − f δ(Ric) = Ric(d f ) + f

2
dS,

where we used the well-known identity dS = −2δRic. Hence, we deduce

�(d f ) = 2Ric(d f ) + f

2
dS.
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But (33) also gives � f = −trg (∇d f ) = f S, so that �(d f ) = d(� f ) = d( f S). Therefore

Ric(d f ) = 1

2
Sd f + f

4
dS.

The first equation in (34) now follows from the equality d f = 4Aη.
In the following, we will compute the Ricci curvature of the vector field (∗A)η. Notice

first that (∗A)η = η�(∗A) = ∗(η∧ A). Hence, this vector field belongs to the kernel of A as

g(AX , (∗A)η)volg = AX ∧ ∗2(η ∧ A) = −AX ∧ η ∧ A = 0

for any X ∈ T M . Based on the fact Aη�(∗A) = ∗(Aη ∧ A) = 0, we first compute

Aη�∇X (∗A) = −(∗A)(∇X Aη) = f

4
(∗A)(Ric(X)) = ∗ f

4
(Ric(X) ∧ A). (36)

This gives

η�(Aη�∇X (∗A)) = − ∗ f

4
(η ∧ Ric(X) ∧ A) = − f

4
Ric(X)� ∗ (η ∧ A)

= − f

4
Ric((∗A)η, X).

On the other hand, by (20) and (32), we have

Aη�(η�∇X (∗A)) = Aη�
(1
4
Ric(X) + A2X

) = g
(1
4
Ric(Aη) + A3η, X

) = f

64
g(dS, X).

Comparing the two identities gives the second equation in (34). Equation (35) can be deduced
from computing Ric(Aη, (∗A)η)) in two ways from (34) taking the scalar product by (∗A)η

in the first formula and by Aη in the second one. Remember that (∗A)η lies in the kernel of
A. ��

In the following, we will establish and prove three technical lemmas (Lemmas 4.8, 4.9
and4.10),whichwill show that the kernel and the image of the endomorphism A are integrable
and totally geodesic. Then the proof of Theorem A will follow from the de Rham theorem.

Lemma 4.8 Assume that (GA) holds. Then we have the identity

∇AηA
2η = − f

4
Ric(A2η) − f 2

32
A(dS). (37)

Proof By continuity, it suffices to prove the assertion on the set {p ∈ M | Aη|p �= 0} since
this set is dense in M by Lemma 4.6. Therefore we may assume that Aη �= 0 everywhere.
For any X ∈ T M , we have

d(|Aη|2) = 2g(∇(Aη), Aη) = − f

2
Ric(Aη), (38)

where we use equation (19) in the last equality. Therefore, from Lemma 4.7, we find

d

(
1

|Aη|2
)

= f

2|Aη|4 Ric(Aη) = f

4|Aη|4
(
S Aη + f

8
dS

)
.

Moreover, δ(A2η) = 0. Indeed, for any two-form ω in four dimensions and any vector X ,
the formula δ(X�ω) = ∗(dX ∧∗ω)− δω(X) holds. Using δA = 0 and 4d(Aη) = dd f = 0,
this yields

δ(A2η) = δ(Aη�A) = ∗(d(Aη) ∧ ∗A) − (δA)(Aη) = 0.
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Now, by taking the divergence of both sides of (31), we compute

0 = δA = δ

(
1

|Aη|2 Aη ∧ A2η

)
= −d

(
1

|Aη|2
)

�(Aη ∧ A2η) + 1

|Aη|2 δ(Aη ∧ A2η)

= − f

4|Aη|2 (S Aη + f

8
dS)�A + 1

|Aη|2
(
δ(Aη)A2η + ∇A2ηAη − ∇AηA

2η − δ(A2η)Aη
)
,

where we use the formula δ(X ∧ Y ) = (δX)Y + ∇Y X − ∇XY − (δY )X , valid for any
X , Y ∈ T M . Furthermore, the divergence of Aη is equal to f S/4 as an easy consequence
from taking the trace of equation (19). This finally gives (37). ��

The following technical lemma expresses a partial trace of the Ricci tensor.

Lemma 4.9 Assume that (GA) holds and that Aη �= 0 everywhere. Then the following identity
holds:

1

|Aη|2 Ric(Aη, Aη) + 1

|A2η|2 Ric(A
2η, A2η) = S − 2

f S
Aη(S).

Proof The proof relies on taking the scalar product of Ric(A2η) in Lemma 4.8 with the vector
field A2η. Indeed, we have

Ric(A2η, A2η) = − 4

f

(
g(∇AηA

2η + f 2

32
A(dS), A2η)

)

= − 2

f
Aη(|A2η|2) + f

8
g(dS, A3η)

(32)= − 2

f
Aη

(S
8
|Aη|2

)
− f S

64
Aη(S)

(38)= S

8
Ric(Aη, Aη) −

( |Aη|2
4 f

+ f S

64

)
Aη(S).

Hence, again by (32), we find

Ric(A2η, A2η)

|A2η|2 = Ric(Aη, Aη)

|Aη|2 −
(

2

f S
+ f

8|Aη|2
)
Aη(S).

Finally, the identity

Ric(Aη, Aη)

|Aη|2 = S

2
+ f

16|Aη|2 Aη(S),

which follows from Lemma 4.7, leads to the required equality. ��

Lemma 4.10 If (GA) holds, then the scalar curvature is constant and Ric + 4A2 = 0.

Proof As in the proof of Lemma 4.8, wemay assume that Aη �= 0 everywhere. ByLemma 4.7
we know that

Ric(Aη) − S

2
Aη = f Ric((∗A)η).

We take the divergence of both sides. We start with the left hand side. Note that for any
vector field X ∈ �(T M) the formula δ(Ric(X)) = g(δRic, X) − ∑4

i=1 g(Ric(ei ),∇ei X)
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holds, where e1, . . . , e4 is any pointwise orthonormal basis. Using this and δ(Aη) = f S
4 , we

compute

δ(Ric(Aη) − S

2
Aη) = g(δRic, Aη) −

4∑

i=1

g(Ric(ei ),∇ei Aη) − 1

2

( − g(dS, Aη) + S δ(Aη)
)

= −1

2
g(dS, Aη) + f

4

4∑

i=1

g(Ric(ei ),Ric(ei )) + 1

2
g(dS, Aη) − f

8
S2

= f

4
|Ric|2 − f

8
S2. (39)

To get the divergence of the right-hand side, we first compute that of the vector field
Ric((∗A)η). For this, we use the same formula as above and again dS = −2δRic to write

δ(Ric((∗A)η)) = −1

2
((∗A)η)(S) −

4∑

i=1

g(Ric(ei ),∇ei ((∗A)η))

= − 1

2 f
(Aη)(S) −

4∑

i=1

g(Ric(ei ),∇ei ((∗A)η)). (40)

In the last equality, we used (35). Inserting (20) into (40), we find

δ(Ric((∗A)η)) = − 1

2 f
(Aη)(S) − 1

4
|Ric|2 −

4∑

i=1

g(Ric(ei ), A
2ei ),

which in turn gives

δ( f Ric((∗A)η)) = −g(d f ,Ric((∗A)η)) + f · δ(Ric((∗A)η)))

= −3

4
(Aη)(S) − f

4
|Ric|2 − f

4∑

i=1

g(Ric(ei ), A
2ei ) (41)

by (34). Comparing Eqs. (39) and (41), we obtain

4∑

i=1

g(Ric(ei ), A
2ei ) = − 3

4 f
(Aη)(S) − 1

2
|Ric|2 + 1

8
S2.

On the other hand, this sum can be computed on the particular orthonormal frame
Aη

|Aη| ,
A2η

|A2η| , e3, e4 with e3, e4 in the kernel of A as follows: using Lemma 4.9, we write

4∑

i=1

g(Ric(ei ), A
2ei ) = 1

|Aη|2 Ric(Aη, A3η) + 1

|A2η|2 Ric(A
2η, A4η)

(32)= −S

8

(
1

|Aη|2 Ric(Aη, Aη) + 1

|A2η|2 Ric(A
2η, A2η)

)

= −S2

8
+ 1

4 f
Aη(S). (42)

Comparing these two computations yields

4Aη(S) = f (S2 − 2|Ric|2). (43)
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The Cauchy-Schwarz Inequality gives

4∑

i=1

g(Ric(ei ), A
2ei ) ≤ |Ric||A2|. (44)

We take the square of this inequality. Then we use (42) and (43) to express the left- and
right-hand sides, respectively. We obtain

(
− S2

8
+ 1

4 f
Aη(S)

)2 ≤
(S2

2
− 2

f
Aη(S)

)S2

32
= S4

64
− S2

16 f
Aη(S),

where besides (15), which says that S = 4|A|2, we used |A2|2 = (|A|2)2/2, which follows
from the fact that A is skew-symmetric of rank two. This inequality is only true if Aη(S) = 0.
But then (44) is an equality. Hence, Ric is a multiple of A2 at every point of M4. Since
TrRic = S and TrA2 = −|A|2 = −S/4, we obtain Ric = −4A2. As the vector field (∗A)η

lies in the kernel of A, the second equation in (34) implies that the scalar curvature is constant.
This ends the proof. ��
Lemma 4.11 If (GA) is satisfied, then (M, g) is locally isometric to R2 × S

2.

Proof We show that the two orthogonal distributions Im(A) and Ker(A) – which are both
of rank two by assumption – are parallel. If this is proved to be true, then we get a local
Riemannian product by the de Rham decomposition theorem. Clearly, it suffices to show
that Im(A) is parallel since Ker(A) = Im(A)⊥. Let us first consider the open subset V :=
{p ∈ M | Aη|p �= 0}. On V , the image of A is spanned by Aη and A2η. Note that ∇X Aη =
f A2X by (19) and Lemma 4.10. Therefore ∇X Aη is contained in Im(A) for all X ∈ T M .
Furthermore, by equation (36) and Lemma 4.10, we have Aη�∇X (∗A) = 0 for all X ∈ T M .
Equation (21) now gives Aη�∇X A = 0. Therefore ∇X A2η = A(∇X (Aη)) = f A3(X). In
particular, also ∇X A2η is contained in Im(A) for all X ∈ T M4. This proves that Im(A) is
parallel.

We want to extend this splitting of T M into two parallel distributions to all of M . To this
end, we observe that, on V , the Ricci map has constant eigenvalues 0, 0,S/2,S/2 > 0 and
Ker(A) and Im(A) are the eigendistributions. Since V ⊂ M is dense by Lemma 4.6, these
are also the eigenvalues of Ric on all of M and the two-dimensional eigendistributions of
Ric are parallel on all of M . We deduce that (M, g) is locally isometric to the Riemannian
product R2 × S

2. ��
Nowwe can prove themain result of this section. In particular, it says that, in the degenerate

case, the skew Killing spinor is parallel or (M, g) is locally isometric to one of the examples
discussed in Section 4.1.

Theorem 4.12 Let (M4, g) be a connected Riemannian spinmanifold carrying a skewKilling
spinor ψ , where the rank of the corresponding skew-symmetric tensor field A is ≤ 2 every-
where. Then either ψ is parallel (i.e., A = 0) on M or, around every point of M, we have a
local Riemannian splitting R × N with N having a skew Killing spinor. If, moreover, |ψ+|
(hence also |ψ−|) is not constant, then (M, g) is a local Riemannian product S2×R

2 around
every point and the Killing map equals ±J ⊕ 0.

If, in addition, (M, g) is complete, then (M, g) is globally isometric to the Riemannian
product S2 × �2, where �2 is either flat R2, a flat cylinder with trivial spin structure or a
flat 2-torus with trivial spin structure.
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Proof We defineU := {p | Ap �= 0} andU ′ := U ∩M ′,U ′′ := U ∩M ′′. Recall thatU ′ ⊂ U
is dense. We know that equation (33) holds on the open set U ′′. We claim that it holds on
all of M . Obviously, it is true on the closure U ′′ of U ′′. It also holds on U ′ \ U ′′ since this
set is open with f ≡ 0. Consequently, it holds on U ′, therefore on U since U ′ ⊂ U dense.
Hence it is true on supp(A) = U . Furthermore, on the complement of supp(A), we have
d f = 0 and Ric = 0, which implies that (33) holds on M . Now we can apply Prop.1.2 in
[17], which shows that either f ≡ 0 on M or supp( f ) = M . If f ≡ 0, then Proposition 4.3
applies. Assume now that supp( f ) = M . Then M ′′ is dense in M . Let U and U ′′ be defined
as above. On U ′′, the assumption (GA) is satisfied. As we have seen, the eigenvalues of Ric
are 0 and S/2 and the eigendistributions of Ric on U ′′ are parallel. Therefore this holds also
on U

′′ = U . If U = M , then we are done by Lemma 4.11. If U = ∅, then ψ is parallel.
Assume that U were non-empty and not equal to M . Then the complement W of U is open
and not empty with A|W = 0. Thus ψ is parallel on W , hence Ric = 0 on W , therefore also
on W . Since M is connected, U ∩ W is non-empty. Hence we can choose a point p in this
intersection. But then p ∈ U would imply that S/2 > 0 is an eigenvalue of Ricp and p ∈ W
would imply that Ricp = 0, a contradiction.

Note that, as we already noticed in [14, Theorem 2.4], the manifold (M, g) must be
globally isometric to the product S2 × �2, where �2 is a quotient of flat R2. The reason is
that the fundamental group of M can act on the S2-factor only in a trivial way. It remains to
recall that a parallel spinor descends from R

2 to a nontrivial quotient (flat cylinder or torus)
if and only if the fundamental group acts on the spin structure of R2 in a trivial way, that is,
the quotient �2 carries the trivial spin structure. ��

We end this section with the question—asked by Ilka Agricola— whether skew Killing
spinors can be seen as parallel spinors w.r.t. a covariant derivative induced by some metric
connection on (T M, g).

Proposition 4.13 Let (M4, g) be any Riemannian spin manifold and ψ be any nonzero skew
Killing spinor on M. Assume that, w.r.t. the splitting ψ = ψ+ + ψ−, neither ψ± vanish on
M. Assume there exists a metric connection ∇′ on (T M, g) such that ψ is parallel w.r.t. the
covariant derivative induced by ∇′ on �M.

Then Aξ = 0, in particular |ψ+| = |ψ−|. Moreover, ∇′
X = ∇X + 2

(
(AX ∧ ξ

|ξ |2 )+
−(AX ∧ ξ)−

)
for all X ∈ T M.

Proof Write ∇′ = ∇ − B for some unknown B ∈ T ∗M ⊗ �2T ∗M . Recall that, for any
X ∈ T M , BX ∈ End(T M) must be skew-symmetric because of both ∇,∇′ being metric.
Then for any section ϕ ∈ �M and any X ∈ T M ,

∇′
Xϕ = ∇Xϕ − 1

2
BX · ϕ,

where we see BX as a two-form acting by Clifford multiplication on �M . Since by assump-
tion ψ+ does not vanish anywhere, ξ is a nowhere vanishing vector field on M . The question
is now whether B exists such that

1

2
BX · ψ = AX · ψ
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holds for all X ∈ T M . Using the splittingψ = ψ+ +ψ−, we obtain the following equivalent
systems:

⎧
⎨

⎩

1
2 BX · ψ+ = AX · ψ−

1
2 BX · ψ− = AX · ψ+

⇐⇒

⎧
⎪⎨

⎪⎩

1
2 BX · ψ+ = −AX · ξ

|ξ |2 · ψ+

1
2 BX · ψ− = AX · ξ · ψ−

⇐⇒

⎧
⎪⎨

⎪⎩

1
2 BX · ψ+ = −(AX ∧ ξ

|ξ |2 ) · ψ+ + 〈AX ,
ξ

|ξ |2 〉ψ+

1
2 BX · ψ− = (AX ∧ ξ) · ψ− − 〈AX , ξ 〉ψ−

⇐⇒

⎧
⎪⎨

⎪⎩

(
1
2 BX + (AX ∧ ξ

|ξ |2 )
)

· ψ+ = 〈AX ,
ξ

|ξ |2 〉ψ+

( 1
2 BX − (AX ∧ ξ)

) · ψ− = −〈AX , ξ 〉ψ−.

Recall that a real 2-formacts in a skew-Hermitianwayon�M , thereforeweobtain 〈AX , ξ 〉 =
0 for all X ∈ T M , which implies that Aξ = 0. Moreover, since self-dual resp. anti-self-dual
2-forms kill negative resp. positive half spinors, the preceding system is equivalent to

⎧
⎪⎨

⎪⎩

(
1
2 BX + (AX ∧ ξ

|ξ |2 )
)

+ · ψ+ = 0

( 1
2 BX − (AX ∧ ξ)

)
− · ψ− = 0 .

On the other hand, as we have seen above, the maps
∧2

− M −→ �−M ∩ (ψ−)⊥, ω− �−→
ω− · ψ− and

∧2
+ M −→ �+M ∩ (ψ+)⊥, ω+ �−→ ω+ · ψ+ are isomorphisms if

ψ+ �= 0 and ψ− �= 0. Therefore we can deduce that
(
1
2 BX + (AX ∧ ξ

|ξ |2 )
)

+ = 0 and
( 1
2 BX − (AX ∧ ξ)

)
− = 0, which yields BX = −2

(
(AX ∧ ξ

|ξ |2 )+ − (AX ∧ ξ)−
)
and

concludes the proof of Proposition 4.13. ��
With otherwords, only a special subcase of the degenerate case can be consideredwith that

ansatz, namely that considered in Proposition 4.3.As a consequence, the general classification
of 4-dimensional Riemannian spin manifolds with skew Killing spinors cannot be obtained
that way.

5 Skew Killing spinors with non-degenerate Killingmap A

This section is devoted to the case where we have a skew Killing spinor ψ whose Killing
map A is non-degenerate everywhere. Recall thatψ defines a vector field η by (8). As above,
we put ρ := |η|. Here, we want to assume that M ′′ = {x ∈ M | ρ(x) /∈ {0, 1/2}} = {x ∈
M | f (x) /∈ {0,±1}} is equal to M . This is a sensible restriction since M ′′ is dense in M if A
is non-degenerate everywhere, see Sect. 3. Working on M ′′ has the advantage that we do not
have to care about the sign of f . Indeed, as explained in Remark 3.3, up to a possible change
of orientation on each connected component we may assume that f > 0. In particular, f is
defined by ρ = |η| via f = √

1 − 4ρ2, which will be important for the reverse direction of
Proposition 5.1.

We remark that the main results of this section are also true if A is degenerate as long as
we consider only the (not necessarily dense) subset M ′′ ⊂ M . However, here the degenerate
case is less interesting since it has already been thoroughly studied in the preceding section.
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5.1 Equivalent description by complex structures

Let M be a manifold and A be a skew-symmetric endomorphism field on M . Define a
tensor field CA on M by CA(X , Y ) := (∇X A)(Y ) − (∇Y A)(X). In the first part of the next
proposition we will assume that M = M ′′ holds. As already noted, this is reasonable if A is
non-degenerate everywhere.

Proposition 5.1 Let M be a four-dimensional spin manifold and A be a skew-symmetric
endomorphism field on M. Put C := CA.

If (M, g) admits a skew Killing spinor ψ associated with A such that M = M ′′, then
there exist an almost Hermitian structure J and a nowhere vanishing vector field η of length
|η| =: ρ < 1/2 such that

(∇Y J )(X) = 4

f − 1
X�

(
Jη ∧ AY + η ∧ J AY

)
, (45)

∇η = f A, (46)

g(C(η, X), Jη) = ρ2 f g(CP , X) (47)

g(C(Jη, Z), Jη) = ∗(CP ∧ Z ∧ η ∧ Jη), Z ∈ P := {η, Jη}⊥, (48)

where f := √
1 − 4ρ2 and CP := C(s, Js) for any unit vector s ∈ P, and such that the

sectional curvature KP in direction P satisfies

KP = −ρ−2g(CP , Jη) + 4A2
P , (49)

where AP := g(As, Js) for any unit vector s ∈ P.
If M is simply-connected, then also the converse statement is true.

Lemma 5.2 Assume that J , A and η satisfy equations (45) and (46). Then

g(C(X , Y ), η) = 0, (50)

R(X , Y )η = f C(X , Y ) − 4η�(AX ∧ AY ), (51)

R(X , Y )Jη = −JC(X , Y ) + 4

f − 1
g(C(X , Y ), Jη)η − 4J (η)�(AX ∧ AY ). (52)

Proof Note first that X( f 2) = X(1−4|η|2) = −8g(∇Xη, η) = −8 f g(AX , η). This implies
X( f ) = −4g(AX , η), which we will use in the following. Let X and Y be vector fields on
M and assume that ∇X = ∇Y = 0 holds at a point p ∈ M . At p, we have

∇X∇Y η = ∇X ( f AY ) = −4g(AX , η)AY + f (∇X A)Y .

Therefore

R(X , Y )η = −4
(
g(AX , η)AY − g(AY , η)AX

) + f C(X , Y ),

which gives Eq. (51). In particular, this yields 0 = R(X , Y , η, η) = g(C(X , Y ), η), which
proves (50) since f �= 0 everywhere.
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In the following computation, the sign ‘≡’ means equality up to a term S(X , Y ) for some
symmetric bilinear map S. We compute

∇X∇Y (Jη) = ∇X
(
(∇Y J )(η) + J (∇Y η)

)

= ∇X

( 4

f − 1

( − g(η, AY )Jη + ρ2 J AY − g(η, J AY )η
) + J (∇Y η)

)

≡ 16

( f − 1)2
g(AX , η)

(
ρ2 J AY − g(η, J AY )η

)

+ 4

f − 1

(
− g(η, (∇X A)Y )Jη − g(η, AY )(∇X J )η − f g(η, AY )J AX

+2 f g(AX , η)J AY + ρ2(∇X J )(AY ) + ρ2 J (∇X A)Y − f g(AX , J AY )η

−g(η, (∇X J )AY )η

−g(η, J (∇X A)Y )η − f g(η, J AY )AX
)

+ f (∇X J )(AY ) + J (∇X∇Y η)

≡ 16

( f − 1)2
g(AX , η)

(
ρ2 J AY − g(η, J AY )η

)

+ 4

f − 1

(
− g(η, (∇X A)Y )Jη − g(η, AY )(∇X J )η + 2 f g(AX , η)J AY + ρ2(∇X J )AY

+ρ2 J (∇X A)Y − g(η, (∇X J )AY )η − g(η, J (∇X A)Y )η − 2 f g(η, J AY )AX
)

+J (∇X∇Y η)

≡ 16ρ2

( f − 1)2
(
g(AX , η)J AY + g(Jη, AY )AX

)

+ 4

f − 1

(
− g(η, (∇X A)Y )Jη + 2 f g(AX , η)J AY + ρ2 J (∇X A)Y

−g(η, J (∇X A)Y )η − 2 f g(η, J AY )AX
)

+J (∇X∇Y η)

= 4g(AX , η)J AY + 4g(AY , Jη)AX − 4

f − 1

(
g(η, (∇X A)Y )Jη + g(η, J (∇X A)Y )η

)

−( f + 1)J (∇X A)Y + J (∇X∇Y η).

This implies

R(X , Y )Jη = 4g(AX , η)J AY − 4g(AY , η)J AX + 4g(AY , Jη)AX − 4g(AX , Jη)AY

− 4

f − 1

(
g(η,C(X , Y ))Jη − g(Jη,C(X , Y ))η

) − ( f + 1)JC(X , Y ) + J (R(X , Y )η).

Using Eqs. (50) and (51) we obtain (52). ��
Proof of Prop. 5.1 Before we start the proof of the two directions of the assertion, let us
first suppose that, on M , we are given a Hermitian structure J and a nowhere vanishing
vector field η of length ρ < 1/2. We want to define a vector field ξ such that the identities
ξ = −(|ξ |/ρ) · η and ρ = |ξ |/(1 + |ξ |2) hold according to equation (9). Since this leads to
a quadratic equation, we have to choose one of the solutions. Here we use our assumption
M = M ′′ and define f = √

1 − 4ρ2 and ξ = 2( f − 1)−1η, compare Remark 3.3, which
motivates this choice. Assume that the orientation on M is such that orthonormal bases of
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the form s1, Js1, s2, Js2 are negatively oriented. We define a one-dimensional subbundle E
of �M by

E := {ϕ | J (X) · ϕ− = i X · ϕ− for all X ∈ T M, ϕ+ = ξ · ϕ−}. (53)

We want to show that E is parallel with respect to ∇̂ defined by ∇̂Xϕ := ∇Xϕ− AX ·ϕ if and
only if J and η satisfy (45) and (46). Let X and Y be vector fields satisfying ∇X = ∇Y = 0
at p ∈ M . Then we have at p ∈ M

J (X) · (∇̂Yϕ)− = J (X) · (∇Yϕ − AY · ϕ)−

= J (X) · (∇Yϕ− − AY · ϕ+)

= ∇Y (J (X) · ϕ−) − (∇Y J )(X) · ϕ− − J (X)A(Y ) · ϕ+

= ∇Y (i X · ϕ−) − (∇Y J )(X) · ϕ− + A(Y )J (X)ξ · ϕ− + 2g(J X , AY )ϕ+

= i X · ∇Yϕ− − (∇Y J )(X) · ϕ− − i A(Y )ξ X · ϕ− − 2g(J X , ξ)AY · ϕ−

+2g(J X , AY )ϕ+

= i X · ∇Yϕ− − (∇Y J )(X) · ϕ− − i X A(Y )ξ · ϕ− + 2ig(ξ, X)AY · ϕ−

−2ig(AY , X)ξ · ϕ− − 2g(J X , ξ)AY · ϕ− + 2g(J X , AY )ξ · ϕ−

= i X · ∇Yϕ− − (∇Y J )(X) · ϕ− − i X A(Y ) · ϕ+ + 2g(ξ, X)J A(Y ) · ϕ−

−2g(AY , X)J (ξ) · ϕ− − 2g(J X , ξ)AY · ϕ− + 2g(J X , AY )ξ · ϕ−.

This equals i X · ( ˆ∇Yϕ)− if and only if (∇Y J )(X) = 2X�
(
Jξ ∧ AY + ξ ∧ J AY

)
holds,

which is equivalent to equation (45). Furthermore,

( ˆ∇Xϕ)+ = ∇Xϕ+ − AX · ϕ− = ∇X (ξ · ϕ−) − AX · ϕ−

= (∇X ξ) · ϕ− + ξ · ∇Xϕ− − AX · ϕ−

= (∇X ξ) · ϕ− + ξ A(X) · ϕ+ + ξ · ( ˆ∇Xϕ)− − AX · ϕ−

= (∇X ξ − (1 − |ξ |2)AX + 2g(Aξ, X)ξ
) · ϕ− + ξ · ( ˆ∇Xϕ)−.

This equals ξ · ( ˆ∇Xϕ)− if and only if ∇X ξ = (1 − |ξ |2)AX − 2g(Aξ, X)ξ holds, which is
equivalent to (46). Consequently, E is parallel with respect to ∇̂ if and only if J and η satisfy
(45) and (46).

Assume that ∇̂ reduces to a connection ∇̂E on E . Then Eqs. (45) and (46), and therefore
also (50), (51) and (52) hold. We will show that the curvature R̂ of ∇̂E vanishes if and only
if the Riemannian curvature R of M equals the tensor B defined by

B(X , Y ) := ρ−2( ∗ (C(X , Y ) ∧ η) − f C(X , Y ) ∧ η
) − 4AX ∧ AY (54)

for all vector fields X and Y on M . By an easy calculation similar to that in the proof of
Proposition 2.1, we get

R̂X ,Yϕ = 1
2 R(X , Y ) · ϕ − C(X , Y ) · ϕ + 2

(
AX ∧ AY

) · ϕ.

This shows that R̂ vanishes if and only if

R(X , Y ) · ϕ = 2C(X , Y ) · ϕ − 4
(
AX ∧ AY

) · ϕ (55)

for all vector fields X and Y and all sections ϕ of E . In the following, we will use that
∧2

± M
acts trivially on �∓M and that, for any nowhere vanishing section ϕ± of �±M , the maps
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defined by (7) are isomorphisms. Let ϕ be a section of E such that ϕ+(x) �= 0, ϕ−(x) �= 0
for all x ∈ M (here we use that ξ does not vanish). Then

2C(X , Y ) · ϕ = 2C(X , Y ) · (
ξ · ϕ− − |ξ |−2ξ · ϕ+)

(50)= 2(C(X , Y ) ∧ ξ) · ϕ− − 2|ξ |−2(C(X , Y ) ∧ ξ) · ϕ+

= 2(C(X , Y ) ∧ ξ)− · ϕ − 2|ξ |−2(C(X , Y ) ∧ ξ)+ · ϕ

= 4

f − 1
(C(X , Y ) ∧ η)− · ϕ − f − 1

ρ2 (C(X , Y ) ∧ η)+ · ϕ

= ρ−2( ∗ (C(X , Y ) ∧ η) − f C(X , Y ) ∧ η
) · ϕ.

Therefore (54) and (55) show that R̂ vanishes if and only if R = B. The latter condition is
equivalent to the system of equations

R(X , Y )η = B(X , Y )η (56)

R(X , Y )Jη = B(X , Y )Jη (57)

R(s, Js, s, Js) = g(B(s, Js)s, Js) (58)

g(B(η, X)s, Js) = g(B(s, Js)η, X) (59)

g(B(Jη, Z)s, Js) = g(B(s, Js)Jη, Z) (60)

for all X , Y ∈ X(M) and all Z ∈ �(P). Recall that (50) holds in our situation, which we
will use in the following computations. Equations (59) and (60) are equivalent to the two
equations

g
(
s�

( ∗ (C(η, X) ∧ η) − f C(η, X) ∧ η
)
, Js

) = g
(
η�

( ∗ (CP ∧ η) − f CP ∧ η
)
, X

)
,

g
(
s�

( ∗ (C(Jη, Z) ∧ η) − f C(Jη, Z) ∧ η
)
, Js

) = g
(
Jη�

( ∗ (CP ∧ η) − f CP ∧ η
)
, Z

)
,

which are equivalent to (47) and (48), respectively. Because of

η�
( ∗ (C(X , Y ) ∧ η) − f C(X , Y ) ∧ η

) = f ρ2C(X , Y ),

and

J (η)�
( ∗ (C(X , Y ) ∧ η) − f C(X , Y ) ∧ η

) = ∗(C(X , Y ) ∧ η ∧ Jη) − f g(C(X , Y ), Jη)η

= −ρ2g(C(X , Y ), s)Js + ρ2g(C(X , Y ), Js)s − f g(C(X , Y ), Jη)η

= −ρ2(g(JC(X , Y ), Js)Js + g(JC(X , Y ), s)s
) − f g(C(X , Y ), Jη)η

= −ρ2 JC(X , Y ) − ( f + 1)g(C(X , Y ), Jη)η

= −ρ2 JC(X , Y ) + 4ρ2

f − 1
g(C(X , Y ), Jη)η,

Lemma 5.2 shows that equation (56) is equivalent to (51) and (57) is equivalent to (52).
Recall that (51) and (52) are satisfied in our situation. Finally,

g
(
s�

( ∗ (CP ∧ η) − f CP ∧ η
)
, Js

) = g
( ∗ (s ∧ CP ∧ η), Js

) = g(CP , Jη),

which implies that (58) is equivalent to (49). Consequently, the curvature R̂ of ∇̂ vanishes if
and only if the Eqs. (47), (48) and (49) hold.

Nowwecanprove both directions of the proposition. Suppose that there exists a spinor field
ψ on M satisfying ∇Xψ = AX ·ψ for all X ∈ T M such that M = M ′′. The latter condition
means that the vector field η defined in (8) satisfies 0 < ρ = |η| < 1/2. In particular,ψ− �= 0
everywhere and we can define an almost Hermitian structure J by J (X) · ψ− = i X · ψ−.
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Therefore we may apply our above considerations. If we define E ⊂ �M and ∇̂ as above,
then ψ is a ∇̂-parallel section of E . In particular, ∇̂ reduces to a connection ∇̂E and the
curvature of ∇̂E vanishes therefore (45)– (49) hold.

Conversely, if we are given an almost Hermitian structure J and a nowhere vanishing
vector field η of length 0 < ρ = |η| < 1/2 such that (45)–(49) are satisfied. Then we
can define a one-dimensional subbundle E ⊂ �M by (53) together with a flat covariant
derivative ∇̂ on E . If M is simply-connected, then E admits a parallel section, which is a
skew Killing spinor. ��

Remark 5.3 Let J be an almost Hermitian structure on a four-dimensional manifold M such
that (45) and (46) hold for a skew-symmetric endomorphismfield A and a vector field E . Then
J defines a reduction of the SO(4)-bundle SO(M) to U(2). Here we want to give the intrinsic
torsion of this bundle in the special case where A and J commute. The two components of
the intrinsic torsion of this bundle are the Nijenhuis tensor N of J and the differential d� of
the Kähler form � := g(J ·, ·). A direct calculation using (45) and (46) shows that under the
assumption AJ = J A these components are given by N = 0 and d� = −2A ∧ (ξ��).

5.2 The case where A� is parallel to J�

Let us assume again that the Killing map A is non-degenerate everywhere. We want to
consider the case where Aη is parallel to Jη in more detail. We will see that, in this situation,
the existence of skew Killing spinors is related to doubly warped products and to local
DWP-structures. These notions and their basic properties are explained in the “appendix”.

Lemma 5.4 Assume that M admits a skewKilling spinor with nowhere vanishing Killingmap
A that satisfies Aη = u Jη for some function u. Then A2η = −u2η. In particular, AJ = J A.

Proof Note first that Eqs. (13) and (50) give

0 = f (d A)(X , Y , η) = f
(
g((∇X A)Y , η) − g((∇Y A)X , η) + g((∇ηA)X , Y )

)

= f g(C(X , Y ), η) + f g((∇ηA)X , Y ) = f g((∇ηA)X , Y )

for all X , Y ∈ T M . Consequently, f ∇ηA = 0. Because of

η�(Jη ∧ Aη + η ∧ J Aη) = |η|2 J Aη − g(η, J Aη)η = −u|η|2η + u|η|2η = 0,

Eq. (45) gives (∇η J )η = 0. Now, by differentiating the equality Aη = u Jη in the direction
of η, we get

∇ηAη = (∇ηA)η + A(∇ηη) = η(u)Jη + u(∇η J )η + u J (∇ηη) = η(u)Jη + u J (∇ηη).

Finally, using the fact that ∇ηη = f Aη and f ∇ηA = 0, we get that η(u) = 0 and f 2A2η =
−u2 f 2η. The latter equation implies A2η = −u2η since supp( f ) = M . ��

Let (M̂3, ĝ, η̂) be a minimal Riemannian flow, i.e., an orientable three-dimensional Rie-
mannian manifold together with a unit Killing vector field η̂. Then, locally, (M̂, ĝ) is a
Riemannian submersion over a two-dimensional base manifold B. Let us fix a Hermitian
structure Ĵ on η̂⊥ and put ω := ĝ(·, Ĵ ·). We define a function τ̂ on M̂ which is constant
along the fibres by ∇̂X η̂ = τ̂ · Ĵ (X) for X ∈ η̂⊥. Furthermore, let K̂ denote the Gaussian
curvature of B. Now consider the metric grs = r2 ĝη̂ ⊕ s2 ĝ ˆη⊥ on M̂ , where ĝη̂, ĝη̂⊥ are the
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components of the metric ĝ along Rη̂ and η̂⊥, respectively and r , s are positive real parame-
ters. Then (M̂, grs, r−1η̂) is again a minimal Riemannian flow and we obtain new functions
τ̂ and K̂ , say τ̂rs and K̂rs . These functions satisfy

τ̂rs = rs−2τ̂ , K̂rs = s−2 K̂ . (61)

If our four-dimensional manifold M is endowed with a DWP-structure, then every three-
dimensional leaf associated with this structure can be understood as a minimal Riemannian
flow. In this way, we obtain functions τ and K on M .

In the first part of the next theorem we will assume that ρ = |η| /∈ {0, 1/2} holds
everywhere, i.e., that M = M ′′. As noted in the introduction to Sect. 5, this is a reasonable
assumption if A is non-degenerate everywhere.

Theorem 5.5 Assume that M admits a skew Killing spinor such that Aη||Jη and that ρ =
|η| /∈ {0, 1/2} everywhere. Then (ν := −ρ−1 Jη, η) is a local DWP-structure on M such
that

f μ = τ, K = 2μλ + 2τ 2, (62)

for f := √
1 − 4ρ2, where λ and μ are the eigenvalues of the Weingarten map W = −∇ν

on Rη and η⊥ ∩ ν⊥, respectively.
Conversely, suppose that M is simply-connected and admits a local DWP-structure (ν, η)

on M such that the length ρ of η satisfies 0 < ρ < 1/2. Moreover, assume that K and τ satisfy
(62) for f := √

1 − 4ρ2. Then M admits a skew Killing spinor such that η is associated with
ψ according to (8) and such that Aη||Jη.

Proof Assume first that M admits a skew Killing spinor such that Aη||Jη and 0 < ρ < 1/2
everywhere. We define a vector field ν and functions AE and AP by

ν = −ρ−1 Jη, AJη = −AEη, AJ Z = −AP Z , Z ∈ {η, ν}⊥.

Then η is a Killing vector field, see Remark 3.2. Equation (46) yields

ν(ρ) = f AE . (63)

We want to show that (ν, η) is a DWP-structure. The next Lemma will prove all properties of
such a structure except the conditions for theWeingarten mapW = −∇ν and its eigenvalues.
��
Lemma 5.6 Assume that M admits a skewKilling spinor such that Aη||Jη and |η| /∈ {0, 1/2}
everywhere. Then

1. ν⊥ is integrable,
2. the vector field η has constant length on the integral manifolds of ν⊥,
3. the unit vector field ν is geodesic.

Proof Take X , Y ⊥ Jη. Using J A = AJ we obtain

g([X , Y ], Jη) = g(∇XY , Jη) − g(∇Y X , Jη) = −g(Y ,∇X (Jη)) + g(X ,∇Y (Jη))

= −g(Y , (∇X J )η) − g(Y , J (∇Xη)) + g(X , (∇Y J )η) + g(X , J (∇Y η))

= −4( f − 1)−1g
(
Y , η�

(
Jη ∧ AX + η ∧ J AX

)) − f g(Y , J AX)

+4( f − 1)−1g
(
X , η�

(
Jη ∧ AY + η ∧ J AY

)) + f g(X , J AY )

= 4( f − 1)−1 (−g
(
Y , ρ2 J AX − g(η, J AX)η

)

+g
(
X , ρ2 J A(Y ) − g(η, J AY )η

))

= 0
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since J Aη is a multiple of η. This proves the first claim. For X ⊥ Jη, we have

Xg(η, η) = 2g(∇Xη, η) = 2 f g(AX , η) = 0

since Aη||Jη. This shows the second assertion. The third one follows from (45), (46) and
(63). ��

We compute the eigenvalues of the Weingarten map −∇ν, where we use that ρ = |η| is
constant on the integral manifolds of ν⊥:

− ∇ην = ρ−1∇η(Jη) = ρ−1(∇η J )(η) + ρ−1 J (∇ηη)

= 4( f − 1)−1ρ−1η�(Jη ∧ Aη + η ∧ J Aη) + f ρ−1 J Aη

= − f ρ−1AEη, (64)

−∇Zν = ρ−1∇Z (Jη) = ρ−1(∇Z J )(η) + ρ−1 J (∇Zη)

= 4( f − 1)−1ρ−1η�(Jη ∧ AZ + η ∧ J AZ) + f ρ−1 J AZ

= ρ−1AP Z (65)

for Z ∈ ν⊥ ∩ η⊥. Therefore

λ = − f ρ−1AE , μ = ρ−1AP (66)

are the eigenvalues of −∇ν. We fix a local section s in P = {η, ν}⊥ and put

s1 := −η/ρ, s2 := Js1 = ν, s3 := s, s4 := Js. (67)

Let s1, . . . , s4 denote the dual local basis of T ∗M . By (46), (64) and (65), the coefficients
θi j := g(∇si , s j ) of the Levi Civita connection satisfy

θ12 = − f ρ−1AE s1, θ13 = f ρ−1AP s4, θ14 = − f ρ−1AP s3,
θ23 = −ρ−1AP s3, θ24 = −ρ−1AP s4 .

(68)

This gives

CP = −2ρ−1(A2
P + f AP AE

)
s2 − s3(AP )s3 − s4(AP )s4.

Indeed, (50) shows that g(CP , s1) = 0. Furthermore,

g(CP , s2) = g((∇s3 A)(s4) − (∇s4 A)(s3), s2)

= s3
(
g(As4, s2)

) − g(A(∇s3s4), s2) − g(As4,∇s3s2)

−s4
(
g(As3, s2)

) + g(A(∇s4s3), s2) + g(As3,∇s4s2)

= g(∇s3s4, As2) − g(As4,∇s3s2) − g(∇s4s3, As2) + g(As3,∇s4s2)

= AE
(
θ14(s3) − θ13(s4)

) + AP
(
θ23(s3) + θ24(s4)

)
,

g(CP , s3) = g((∇s3 A)(s4) − (∇s4 A)(s3), s3) = g((∇s3 A)(s4), s3)

= g(∇s3(As4) − A(∇s3s4), s3)

= −g(∇s3(APs3), s3) + g(∇s3s4, APs4)

= −s3(AP ).

Analogously, g(CP , s4) = −s4(AP ). Equations (68) imply

g(C(Jη, Z), Jη) = ρ2g(C(s2, Z), s2) = ρ2(s2(g(AZ , s2))

−g(A(∇s2 Z), s2) − g(AZ ,∇s2s2)
) = 0
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for Z ∈ {s3, s4} and, similarly,

g(C(η, X), Jη) = ρ2(s1(AEg(X , s1)) − AEg(∇s1X , s1) − g(AX ,∇s1s2) − X(AE )
)

= ρ2(s1(AE )g(X , s1) + AEg(X ,∇s1s1) + g(X , A(∇s1s2)) − X(AE )
)

= ρ2(s1(AE )g(X , s1) − f A2
E

ρ
g(X , s2) + f A2

E

ρ
g(X , s2) − X(AE )

)

= −ρ2X(AE )

for X ∈ {s2, s3, s4}. Furthermore, g(C(η, s1), Jη) = 0 since C is antisymmetric. Hence,
under the assumption that (68) holds, Eqs. (47), (48) and (49) are equivalent to the system
of equations

s2(AE ) = 2 f ρ−1A2
P + 2 f 2ρ−1AE AP (69)

s j (AP ) = s j (AE ) = 0, j = 3, 4, (70)

KP = −2 f ρ−2AE AP − 2(ρ−2 − 2) A2
P . (71)

We also have

s1(AE ) = s1(AP ) = 0.

Indeed, (50) implies g
(
C(s1, s2), η

) = 0, therefore we obtain

0 = g
(
(∇s1 A)s2 − (∇s2 A)s1, η

) = g
(
(∇s1 A)s2, η

) = g
(∇s1(As2), η

) = ρs1(AE ),

which gives s1(AE ) = 0. Using (69) and taking into account that [s1, s2] is a multiple of s1,
we get

0 = s1(s2(AE )) = 2s1
(
f ρ−1A2

P + f 2ρ−1AE AP
) = 2 f ρ−1(2AP + f AE

)
s1(AP ).

Assume that s1(AP )(x) �= 0 at x ∈ M . Then s1(AP ) �= 0 in an open neighbourhoodU of x .
But then 2AP = − f AE on U , which would imply s1(AP ) = 0, a contradiction.

Hence we proved that besides ρ also AE and AP are constant on the integral manifolds
of ν⊥. Therefore also μ and λ are constant along these leaves. Consequently, (ν, η) is a local
DWP-structure on M . By (66), the associated function τ satisfies

τ = ρ−1g(∇sη, Js) = ρ−1g( f As, Js) = f μ,

where s ∈ {η, ν}⊥ is of length one. This proves the first equation in (62).
It remains to prove that also the second equation in (62) is true. Let N be an integral

manifold of ν⊥. Then, locally, N is a Riemannian submersion over a base manifold B. The
following lemma will relate the sectional curvature KP in direction of P = span{s3, s4} to
the Gaussian curvature K of B, which will almost finish the proof of the forward direction
of Theorem 5.5.

Lemma 5.7 Let (ν, η) be a local DWP-structure such that the coefficients of the Levi-Civita
connection satisfy (68) with respect to an orthonormal frame s1 = −η/ρ, s2 = ν, s3, s4.
Then the Gaussian curvature K of B equals

K = KP + (1 + 3 f 2)ρ−2A2
P .

Proof The second fundamental form α of N ⊂ M satisfies

α(s3, s3) = α(s4, s4) = ρ−1APs2, α(s3, s4) = 0,
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which follows from (68). Hence the Gauss equation gives

KP = R(s3, s4, s4, s3) = RN (s3, s4, s4, s3) − g
(
α(s3, s3), α(s4, s4)

)

= RN (s3, s4, s4, s3) − ρ−2A2
P . (72)

Let A denote the fundamental tensor used in O’Neill’s formulas. We have

As j s j = g(∇s j s j , s1)s1 = 0, j = 3, 4

and

As3s4 = −As4s3 = g(∇s3s4, s1)s1 = −θ14(s3)s1 = f ρ−1APs1.

The O’Neill formula for RN now gives

RN (s3, s4, s4, s3) = K − 3|As3s4|2 = K − 3 f 2ρ−2A2
P ,

which combined with (72) implies the assertion. ��

Lemma 5.7 together with (66) and (71) finally shows that B has constant curvature

K = −2 f ρ−2AE AP + 2 f 2ρ−2A2
P = 2μλ + 2τ 2.

Now let M be simply-connected and let (ν, η) be a local DWP-structure on M such
that 0 < |η| < 1/2 and such that (62) holds. Note that f = √

1 − 4ρ2 is smooth since
ρ = |η| < 1/2. By assumption, ρ is constant on the integral leaves of ν⊥. We write ∂t for
the derivative in direction ν. By (78), we have ρ′ = −λρ, which implies

f ′ = 4λρ2/ f = λ(− f + 1/ f ). (73)

We define the functions

AE := −λρ f −1, AP := μρ, (74)

which are all constant along the integral leaves of ν⊥. We consider a local orthonormal frame

s1 := −η/ρ, s2 = ν, s3, s4

such that s3, s4 is a positively oriented basis of {η, ν}⊥. The assumption that (ν, η) is a local
DWP-structure with eigenvalues λ and μ together with the assumption τ = f μ imply that
the local coefficients of the Levi-Civita connection satisfy Eqs. (68). Indeed,

∇s2s2 = 0, ∇s1s2 = −λs1, ∇s j s2 = −μs j , j = 3, 4

implies

θ12 = −g(∇s2, s1) = −g(∇s1s2, s1)s
1 = λs1,

θ23 = g(∇s2, s3) = g(∇s3s2, s3)s
3 = −μs3,

and (74) gives the formulas for θ12 and θ23. Similarly, we get θ24. On span{s3, s4}, we fix
the Hermitian structure J that maps s3 to s4. Recall that τ is defined by ∇Xη = τ J X for
all X ∈ span{s3, s4}. Since η is a Killing vector field and ρ is constant along the integrals
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leaves, we obtain

θ13 = g(∇s1s1, s3)s
1 + · · · + g(∇s4s1, s3)s

4

= −ρ−1( g(∇s1η, s3)s
1 + g(∇s2η, s3)s

2 + g(∇s4η, s3)s
4)

= −ρ−1( − g(s1,∇s3η)s1 − g(s2,∇s3η)s2 + g(∇s4η, s3)s
4)

= −g(s1,∇s3s1)s
1 − g(s2,∇s3s1)s

2 + τ s4

= f μs4 = f ρ−1APs
4,

where we used the already proven equation θ12(s3) = 0. Analogously, we obtain θ14. Now
we define skew-symmetric maps A and J by

A(s1) = AEs2, A(s2) = −AEs1, A(s3) = APs4, A(s4) = −APs3,

J (s1) = s2, J (s2) = −s1, J (s3) = s4, J (s4) = −s3.

Note that J extends the above defined map J on span{s3, s4}. A few lines above, we proved
that (68) holds in our situation. Using this equation, we obtain

∇s1η = −ρ∇s1s1 = f AEs2 = f A(s1),

∇s2η = −ρ′s1 − ρ∇s2s1 = λρs1 = − f AEs1 = f A(s2),

∇s3η = −ρ∇s3s1 = f APs4 = f A(s3),

∇s4η = −ρ∇s4s1 = − f APs3 = f A(s4).

Hence, η satisfies (46). By definition of J and A, Eq. (45) is equivalent to the system of
equations

∇η J = ∇Jη J = 0,
(∇s J )(η) = ( f + 1)APs, (∇s J )(Jη) = −( f + 1)AP J (s),
(∇s J )(s) = 4( f − 1)−1APη, (∇s J )(Js) = −4( f − 1)−1AP J (η),

for all s ∈ {η, Jη}⊥, |s| = 1, which indeed can be verified using (68). Finally, we prove that
(47), (48) and (49) hold. We already have seen that these equations are equivalent to (69),
(70) and (71). Nowwe use Lemma 5.7. Together with our assumption (62) and equation (74),
it implies

KP = 2μλ + 2τ 2 − ρ−2(1 + 3 f 2)A2
P = −2 f ρ−2AP AE − ρ−2(1 + f 2)A2

P ,

which is equivalent to (71). Also (70) holds since ρ, λ and μ are constant on the leaves by
assumption. It remains to prove (69). Locally, (M, g) is isometric to a doubly warped product
(I × M̂, ρ(t)2 ĝη̂ ⊕ σ(t)2 ĝ ˆη⊥). In particular, σ ′ = −μσ by (78). Furthermore, τ = τ̂ ρσ−2

and K = K̂σ−2 by (61) for some constants τ̂ and K̂ . By assumption (62),

μ f = ρσ−2τ̂ .

Taking the absolute value and then the logarithm on both sides and differentiating, we obtain

μ′

μ
+ f ′

f
= ρ′

ρ
− 2

σ ′

σ
= −λ + 2μ

and therefore, by (73),

μ′ = (1 − f −2)λμ − λμ + 2μ2 = − f −2λμ + 2μ2
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holds (globally) on M . By assumption,

K̂ = Kσ 2 = (2μλ + 2τ 2)σ 2 = 2μ(λ + μ f 2)σ 2.

Differentiating, using σ ′ = −μσ and dividing by 2μσ 2 yields

0 = μ′

μ
(λ + μ f 2) + λ′ + μ′ f 2 + 2μ f f ′ − 2μλ − 2μ2 f 2

= (−λ f −2 + 2μ)(λ + μ f 2) + λ′ + (−λμ f −2 + 2μ2) f 2 + 2(1 − f 2)λμ

−2μλ − 2μ2 f 2,

thereforeλ′ = λ2 f −2−2 f 2(μ2−λμ),which gives (69) byEqs. (73) and (74). Consequently,
weproved that Eqs. (45)–(49) hold.NowProposition 5.1 shows the existence of a skewKilling
spinor. ��
Corollary 5.8 Let (M, g) admit a skew Killing spinor such that Aη||Jη and |η| /∈ {0, 1/2}
everywhere. Then M is locally isometric to a doubly warped product (I× M̂, dt2⊕ρ(t)2 ĝη̂⊕
σ(t)2 ĝη̂⊥) for which the data K̂ and τ̂ are constant and ρ and σ satisfy the differential
equations

(σ 2)′ = − 2
√
1 − 4ρ2

ρτ̂ (75)

(σ 2)′ ρ′

ρ
= K̂ − 2

ρ2

σ 2 τ̂ 2. (76)

Conversely, if M is isometric to a doubly warped product (I × M̂, dt2 ⊕ ρ(t)2 ĝη̂ ⊕
σ(t)2 ĝη̂⊥) for which the data K̂ and τ̂ are constant and ρ and σ satisfy the differential

equations (75) and (76) and if M̂ is simply-connected, then (M, g) admits a skew Killing
spinor such that Aη||Jη.

Proof The condition μ · f = τ is equivalent to − σ ′
σ

· f = ρ

σ 2 τ̂ , hence to (75), and K =
2μλ + 2τ 2 is equivalent to K̂

σ 2 = 2 ρ′
ρ

σ ′
σ

+ 2
(

ρ

σ 2 τ̂
)2
, hence to (76). ��

Remark 5.9 Locally, Eqs. (75) and (76) can be solved explicitly to get solutions σ and ρ.

Remark 5.10 Let us study the restriction of a skew Killing spinor ψ to N . The restriction
(�M)|N can be understood using an isomorphism

φ : (�M)|N −→ �N ⊕ �N = φ((�+M)|N ) ⊕ φ((�−M)|N )

which is compatible with the Clifford multiplication in the following sense. If φ(ϕ) = (u, v),
then

φ(ν · ϕ) = (−v, u), φ(ν · X · ϕ) = (−X ·N u, X ·N v),

where ν = s2 is a normal vector of N , X is a tangent vector of N and ‘ ·N ’ denotes the Clifford
multiplication on�N . In particular, s1s3s4 ·N u = u for all u ∈ �N . By the spinorial O’Neill
formulas, we obtain

∇N
η φ(ψ±) = − λ

2 f
η ·N φ(ψ±), ∇N

Z φ(ψ±) = −μ f

2
Z ·N φ(ψ±) (77)
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for all Z ∈ T N ∩ η⊥. Up to rescaling, these are Sasakian quasi-Killing spinors on N , which
we will explain in the following.

Up to rescaling of the metric, each integral manifold N in our construction has a Sasakian
structure, see [8] for a definition of such structures. Indeed, η restricted to N is a Killing
vector field of constant length and ∇η restricted to η⊥ equals |η|τ J |η⊥ , where also τ is
constant. The Nijenhuis tensor of J |η⊥ vanishes since η⊥ is two-dimensional. Consequently,

ξ̃ := η/(τ |η|) is the Reeb vector field of a Sasakian structure on (N , g̃ := τ 2g). The scalar
curvature of (N , g̃) equals S = 4λ/( f τ) + 2.

A spinor field ψ on a Sasakian manifold (M̃, ξ̃ , g̃) with Reeb vector field ξ̃ is called a
Sasakian quasi-Killing spinor of type (a, b) if it satisfies ∇Xψ = aX · ψ for X ∈ ξ̃⊥ and
∇ξ̃ ψ = (a+b)ξ̃ ·ψ for a, b ∈ R. If (M̃, ξ̃ , g̃) admits a Sasakian quasi-Killing spinor of type

(a, b), then the scalar curvature S is constant and given by S = 8m(2m + 1)a2 + 16mab,
see [12], Lemma 6.4. In the following sense, in three dimensions, the converse is true. Let
(M̃, g̃, ξ̃ ) be a simply-connected three-dimensional Sasakian spin manifold with constant
scalar curvature S. Then there exist two linear independent Sasakian quasi-Killing spinors
of type (−1/2, 3/4 − S/8), see [12], Theorem 8.4.

We identify the spinor bundle �̃N of (N , g̃) with �N by �N → �̃N , ϕ �→ ϕ̃ such that
a section ϕ in �N satisfies

(X ·N ϕ)∼ = X̃ ·N ϕ̃, (∇N
X ϕ)∼ = ∇̃N

X ϕ̃,

where X̃ := X/|τ | and ∇̃N denotes the Levi-Civita connection on �̃N . Now we consider
the restriction of the skew Killing spinor ψ = ψ+ + ψ− to N . We will write ψ± instead of
φ(ψ±). Then, by (77),

∇̃N
η ψ̃± = (∇N

η ψ̃±)∼ = (− λ

2 f
η ·N ψ±)∼ = − λ

2 f |τ |η ·N (ψ±)∼,

∇̃N
Z ψ̃± = (∇N

Z ψ̃±)∼ = (−μ f

2
Z ·N ψ±)∼ = − μ f

2|τ | Z ·N (ψ±)∼ = − sgn(τ )

2
Z ·N (ψ±)∼

for Z ∈ η⊥. Hence, ψ̃± is a Sasakian quasi-Killing spinor with a = −sgn(τ )/2 and

b = − λ

2 f |τ | + sgn(τ )

2
= sgn(τ )

(
− λ

2 f τ
+ 1

2

)
= sgn(τ )

(3
4

− S

8

)
.

Therefore we are up to a change of orientation exactly in the situation described above.
In dimension three Sasakian quasi-Killing spinors of type (−1/2, 3/4− S/8) can also be

understood as transversal Killing spinors, see [13] for a definition. If we return to our original
metric g on N , this means that the restrictions of ψ± to N are transversal Killing spinors.
Indeed,

∇̄ηψ
± = ∇N

η ψ± − 1

2
τ |η|s3s4 ·N ψ± = ∇N

η ψ± + 1

2
τ |η|s1 ·N ψ±

=
(

− λ

2 f
− 1

2
τ
)
η ·N ψ±,

∇̄Zψ± = ∇N
Z ψ± − 1

2
τ s1 J (Z) ·N ψ± = −μ f

2
Z ·N ψ± + τ

2
Z ·N ψ± = 0

holds for the transversal covariant derivative ∇̄ on N .
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A Appendix: Doubly warped products

Definition A.1 A doubly warped product is a Riemannian manifold (M, g) of the form

(I × M̂, dt2 ⊕ ρ(t)2 ĝη̂ ⊕ σ(t)2 ĝη̂⊥),

where (M̂, ĝ) is a Riemannian manifold with unit Killing vector field η̂ and ĝη̂, ĝη̂⊥ are the
components of the metric ĝ along Rη̂ and η̂⊥, respectively, I ⊂ R is an open interval and
ρ, σ : I → R are smooth positive functions on I .

Definition A.2 Let (M, g) be a Riemannian manifold. A local DWP-structure (ν, η̂) on
(M, g) consists of

1. a unit geodesic vector field ν whose orthogonal complement distribution is integrable,
2. a nontrivial Killing vector field η̂ on (M, g) that is pointwise orthogonal to ν and whose

length is constant along any integral leaf of ν⊥

with the property that the Weingarten map W := −∇ν of each integral leaf of ν⊥ has two
eigenspaces, Rη̂ and η̂⊥ ∩ ν⊥ and the corresponding eigenvalues λ and μ are constant along
the leaf.

In Definition A.2, DWP stands for “doubly warped product”. Both notions of doubly-
warped products appear to be equivalent at a local scale:

Proposition A.3 If (M, g) is isometric to a doubly warped product, then (M, g) admits a
local DWP-structure. Conversely, if (M, g) has a local DWP-structure, then it is locally
isometric to a doubly-warped product.

Proof First assume that (M, g) is isometric to a doubly warped product, thus (M, g) =
(I × M̂, dt2 ⊕ ρ(t)2 ĝη̂ ⊕ σ(t)2 ĝη̂⊥). Then we have the following expressions for the Levi-

Civita connection ∇ of (M, g), see e.g. [15, Sect. 3] (mind that our η̂ here corresponds to ξ̂

in [15] and that our ρ and σ correspond to ρσ and ρ, respectively). For all sections X , Y of

π∗
2 Q, where Q := ˆη⊥ →M̂ ,

∇∂t ∂t = 0, ∇∂t η̂ = ρ′

ρ
η̂, ∇∂t X = ∂X

∂t
+ σ ′

σ
X ,

∇η̂∂t = ρ′

ρ
η̂, ∇η̂η̂ = −ρρ′∂t , ∇η̂X = ∇̂η̂X + ρ2

σ 2 ĥ X ,

∇X∂t = σ ′

σ
X , ∇X η̂ = ρ2

σ 2 ĥ X , ∇XY = ∇̂XY − 1

σ 2 g(ĥ X , Y )ξ − σ ′g(X , Y )∂t ,

(78)
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where ĥ := ∇ M̂ η̂ ∈ �(End(Q)). It is straightforward to see that ν := ∂t is a geodesic vector
field with ν⊥ = T M̂ , the vector field η̂ (seen as a section of π∗

2 T M̂ ⊂ T M) is Killing on

(M, g)with constant length along each {t}× M̂ and thatW := −∇∂t = − ρ′
ρ
IdRη̂ ⊕− σ ′

σ
IdQ .

Conversely, let (ν, η̂) be a local DWP-structure on (M, g). Let p be a point in M . Then
we find a local leaf M̂ of ν⊥ such that the integral curves of ν starting from M̂ are defined
at least on an interval (−t0, t0). We denote by ĝ the induced metric on M̂ . Up to rescaling
η̂ by a nonzero constant, we may assume that ĝ(η̂, η̂) = 1 along M̂ . Consider the map
F : (−t0, t0) × M̂ → M given by F(t, x) := Ft (x), where (Ft )t is the flow of the vector
field ν. The map F is clearly a local diffeomorphism. Next we identify the pull-back metric
F∗g on (−t0, t0) × M̂ . For any given (t, x) ∈ (−t0, t0) × M̂ and X ∈ Tx M̂ , we have

(F∗g)(t,x)(∂t , X) = gF(t,x)(ν, dx Ft (X)) = gF(t,x)(dx Ft (ν), dx Ft (X)) = (F∗
t g)x (ν, X).

Since ν is geodesic of constant length, (Lνg)(ν, Y ) = g(∇νν, Y )+ g(∇Y ν, ν) = 0 holds for
all Y ∈ T M . Consequently, the derivative

∂

∂t
(F∗

t g)x (ν,X) = ∂

∂s
(F∗

t+s g)x (ν,X)
∣∣
s=0

= (Lνg)F(t,x)((Ft )∗ν, (Ft )∗X) = (Lνg)F(t,x)(ν, (Ft )∗X)

vanishes, therefore (F∗
t g)x (ν, X) = (F∗

0 g)x (ν, X) = gx (ν, X) = 0 for all (t, x) ∈
(−t0, t0) × M̂ . This proves the splitting F∗g = dt2 ⊕ gt , where gt := (F∗

t g)|T M̂×T M̂ . As a

next step, we compute gt more precisely along each of the distributionsRη̂ and Q of T M̂ . We
first notice that η̂ is invariant under the flow of ν. Namely, we write W = λIdRη ⊕ μIdQ for
functions λ,μ : R → R, which are constant along each integral leaf of ν⊥ by assumption.
Since η̂ is Killing, we have g(∇ν η̂, ν) = 0. Moreover, because of η̂ ⊥ ν,

g(∇ν η̂, η̂) = −g(∇η̂η̂, ν) = g(∇η̂ν, η̂) = −g(W η̂, η̂) = −λg(η̂, η̂).

Note that this proves in particular that, if η̂ vanishes at a point, then it must vanish on the
corresponding integral leaf of ν⊥ and therefore identically on the image of F since g(η̂, η̂)

satisfies the ODE ν(g(η̂, η̂)) = −2λg(η̂, η̂). Furthermore, for every X ∈ Q,

g(∇ν η̂, X) = −g(∇X η̂, ν) = g(∇Xν, η̂) = −μg(η̂, X) = 0.

As a first consequence, ∇ν η̂ = −λη̂. This implies Lν η̂ = [ν, η̂] = ∇ν η̂ − ∇η̂ν = 0, so that
(Ft )∗η̂ = η̂ for every t ∈ R. For any X , Y ∈ ν⊥, we have

(Lνg)(X , Y ) = g(∇Xν, Y ) + g(∇Y ν, X) = −2g(WX , Y ).

Therefore, in particular,

∂

∂s
(F∗

s g)(η̂, Y )
∣∣
s=t = (Lνg)F(t,x)((Ft )∗η̂, (Ft )∗Y ) = (Lνg)F(t,x)(η̂, (Ft )∗Y )

= −2g(W η̂, (Ft )∗Y ) = −2(λ ◦ F) · g(η̂, (Ft )∗Y )

= −2(λ ◦ F)(F∗
t g)(η̂, Y ). (79)

Consequently, for fixed Y ∈ Tx M̂ ∩ ν⊥, the function ϕ(t) := (Ft )∗g(η̂, Y ) satisfies the
differential equation

ϕ′(t) = −2λ(F(t, x)) · ϕ(t).
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For Y ∈ Q, we have ϕ(0) = 0, hence ϕ = 0. This means that the flow of ν preserves the

distribution η̂⊥. For Y = η̂, we have ϕ(0) = 1, therefore

(Ft )
∗g(η̂, η̂) = ϕ(t) = exp(−2

∫ t

0
λ ◦ Fsds) =: ρ(t)2.

Finally, for X , Y ∈ Q, a computation analogous to (79) shows that

∂

∂s
(F∗

s g)(X , Y )

∣∣∣
s=t

= −2(μ ◦ F)(F∗
t g)(X , Y ),

which yields

(F∗
t g)(X , Y ) = exp(−2

∫ t

0
μ ◦ Fsds) · ĝ(X , Y ) =: σ(t)2 ĝ(X , Y ).

It remains to notice that η̂ must be a Killing vector field along (M̂, ĝ) since it is already
Killing on (M, g) and is tangent to M̂ . On the whole, we obtain the doubly warped product
metric as required. ��
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