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Abstract
We study toric nearly Kähler manifolds, extending the work of Moroianu and Nagy. We 
give a description of the global geometry using multi-moment maps. We then investigate 
polynomial and radial solutions to the toric nearly Kähler equation.
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1 Introduction

A nearly Kähler manifold is an almost Hermitian manifold (M, g, J) such that ∇J is skew 
symmetric: (∇XJ)X = 0 for every vector field X on M. Each of these can be decomposed 
as a Riemannian product of nearly Kähler manifolds which are either Kähler, 6-dimen-
sional, homogeneous, or twistor spaces over quaternionic Kähler manifolds of positive sca-
lar curvature  [14]. We will focus on the case of 6-dimensional nearly Kähler manifolds 
that are strict in the sense that they are not Kähler. These are characterized by being the 
links of metric cones with holonomy G2 , which makes them Einstein with positive scalar 
curvature [2].

A main challenge is to construct complete examples of 6-dimensional strictly nearly 
Kähler manifolds (which will be referred to simply as nearly Kähler manifolds in the rest 
of the paper). There are homogeneous nearly Kähler structures on S6 , S3 × S3 , ℂP3 , and the 
flag manifold SU(3)∕T2 . In  [3], these are shown to be the only homogeneous examples. 
In [6], cohomogeneity one examples are constructed on S6 and S3 × S3 . No other complete 
examples are known. The cohomogeneity two case has been studied in [9], which shows 
that the infinitesimal symmetry group must be �(2).

We will skip to cohomogeneity three in exchange for having an abelian symme-
try group by studying nearly Kähler manifolds which are toric in the sense that the 
automorphism group contains a 3-torus. The homogeneous nearly Kähler structure on 
S3 × S3 is the only known example. The general case has been studied in  [12], where 
the local theory is shown to be equivalent to a Monge–Ampère type equation which 
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we will refer to as the toric nearly Kähler equation. The current paper represents the 
author’s efforts to build on this work. One of the main ingredients is the idea of a 
multi-moment map, which was introduced in [11] as a multi-symplectic generalization 
of the moment map associated to a symplectic form. A toric nearly Kähler manifold 
(M, g, J, T) is equipped with two multi-moment maps,

which are defined in Sect.  2, where � is the Lie algebra of the torus T acting on M. A 
foundational result in (symplectic) toric geometry [1, 7] states that the moment map of a 
compact toric manifold has connected fibres, and its image is a convex polytope. The first 
condition implies that the moment map induces a homeomorphism from the space of orbits 
onto its image. We prove a nearly Kähler analogue of this:

Theorem 1 Let M be a complete toric nearly Kähler manifold with the action of a torus T3 
with Lie algebra � . Then the multi-moment maps induce a homeomorphism

The T action is free away from a finite number of orbits in the equator �−1(0) . Moreover the 
two orbits in �−1(0) are Lagrangian.

This theorem generalizes previous work by the author in [5], which describes multi-
moment maps of the homogeneous nearly Kähler structure on S3 × S3 . In that case, 
�
(
�−1(0)

)
 is Cayley’s nodal cubic surface, whose 4 nodal singular points correspond 

to the singular T orbits. By studying the topological consequences of this theorem, we 
prove the following:

Corollary 1 Any complete toric nearly Kähler manifold has at least 4 torus orbits where the 
action is not free.

As a consequence of this, radial solutions to the toric nearly Kähler equation cannot 
give complete metrics. By studying the corresponding ODE, we see that the singular-
ity that forms must occur at the Lagrangian orbit.

We also study the case when a hypothetical solution to the toric nearly Kähler equa-
tion is polynomial in the natural multi-moment map coordinates. The homogeneous 
nearly Kähler structure on S3 × S3 corresponds to a cubic solution �0 shown in Equa-
tion (4). Using an old theorem of Hesse [8], we prove:

Theorem 2 Every polynomial solution of the toric nearly Kähler equation with degree at 
most 5 is equivalent to the cubic solution �0 up to coordinate transformation.

The toric nearly Kähler equation restricted to the space of polynomials is overde-
termined for polynomials of degree greater than three, so it is unlikely that there will 
be other polynomial solutions. However, to show this explicitly is computationally dif-
ficult even in the quintic case.

� ∶ M → �2
� ≅ ℝ

3, � ∶ M → �3
� ≅ ℝ,

(�̄�, �̄�) ∶ M∕T ≅ S3.
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2  Local theory

In this section we review the local theory of toric nearly Kähler manifolds from [12], 
although we will use a coordinate invariant treatment in order to make clear the invari-
ance properties of the expressions.

First we introduce SU(3) structures, which are a convenient framework for studying 
nearly Kähler manifolds:

Definition 1 An SU(3) structure (�,� = �+ + i�−) on a 6-manifold M is a pair of forms 
� ∈ �2(M) and � ∈ �3(M,ℂ) satisfying

We will refer to these equations as the SU(3) structure equations.

Theorem  3 ([4]) A nearly Kähler structure is equivalent to an SU(3) structure (�,�+) 
satisfying

We will refer to these equations as the nearly Kähler structure equations.

Definition 2 A toric nearly Kähler manifold (M,�,� , T) is a 6-manifold M equipped with 
a nearly Kähler structure SU(3) structure (�,� = �+ + i�−) which is invariant under the 
effective action of a 3-torus T. We will denote by (g, J) the associated Hermitian structure.

Let K ∶ � → � (TM) be the linear map which sends elements of the Lie algebra � of 
T to the vector field generating the corresponding action. Let �M denote the image of K. 
The exact forms d� and d�− are T-invariant, so by  [11] admit natural multi-moment 
maps

Let M̊ ∶= M�𝜀−1(0). By the definition of � , K is injective on M̊ . Thus we can define 
𝜃 ∈ 𝛺1(M̊, �) such that �◦K = Id and 𝜃|

𝔱
⟂

M̊

= 0. Define

Since � is a (3, 0)-form, M̊ is also described as the set of points where the image �M of 
K intersects transversally with J�M . This allows us to write TM̊ = �M ⊕ J�M with frame 
(𝜃, 𝛾) ∈ 𝛺1(M̊, �⊕ �).

Since � + i� gives a framing of 𝛬(1,0)M̊ , we can write � = i��3(� + i�) , so that

Similarly, the rest of the structures can be given in terms of the multi-moment maps (�, �) , 
the frame (�, �) , and a matrix

For example,

2�3 = 3�+ ∧ �−, � ∧ � = 0.

d� = 3�+, d�− = −2� ∧ �.

� ∶= �◦(�2K) ∶ M → �2
�
∗, � ∶= �−◦(�3K) ∶ M → �3

�
∗.

𝛾 ∶= J𝜃 = −𝜃◦J ∈ 𝛺1(M̊, �).

�+ = �(�3� − � ∧ �2�), �− = �(�3� − � ∧ �2�).

C = g◦(⊙2K) ∶ M → Sym2
�
∗.
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where � = 𝛾⌟C ∈ 𝛺1(M̊, �∗).

Lemma 1 ([12]) Using this framework, the SU(3) structure equations are equivalent to

while the nearly Kähler structure equations are equivalent to

where V ∈ 𝛤 (M̊,𝛬3
�
∗ ⊗ �) is the element corresponding to � via the natural isomorphism 

♮ ∶ 𝛬3
�
∗ ⊗ � ≅ 𝛬2

�
∗.

Here, by det C ∈ 𝛤
(
M̊, (𝛬3

�
∗)⊗2

)
 , we mean the square of the volume form on � 

induced by C. This agrees with the usual determinant in coordinates.
Since the functions � , V, and C are T-invariant, they descend to M̊∕T  , which can be 

locally identified with �2
�
∗ via � . Since we can think of � as giving coordinates on �2

�
∗ , 

we can think of � , V, and C as functions locally given in these coordinates on some 
U ⊂ 𝛬2

�
∗.

These coordinates allow explicit computations of several expressions in terms of a 
potential function:

Theorem 4 ([12]) There exists a function � ∶ U → (�3
�
∗)2 whose Hessian in � coordinates 

is C. We also have

where �r is the Euler vector field for �2
�
∗ (so that in coordinates �r = �i��i

).

Combining this with Equation (1) gives the Monge–Ampère type equation

which we will refer to as the toric nearly Kähler equation or just (⋆).
Note that with respect to the frame (�, �) , g is represented by the matrix

where � ∈ � (U,�2
�
∗) is the inclusion (identity) map.

The above theorem has a partial converse:

Theorem 5 ([12]) Every solution of the toric nearly Kähler equation on some open set U of 
�2

�
∗ defines in a canonical way a nearly Kähler structure with 3 linearly independent com-

muting infinitesimal automorphisms on U0 × T3 , where

� = �(�2� + �2�) + � ∧ �,

(1)det C = �2 + C(V ,V),

d (��) = 0,
1

4
� d � = � ∧ � − �� ⋅ (� ∧ �),

�2 =
8

3
(1 − �r)�, C(V ,V) = (�2

r
− �r)�,

det ◦Hess𝜑 =
(

8

3
−

11

3
𝜕r + 𝜕2

r

)
𝜑, (⋆)

D ∶=

(
Hess𝜑 − 𝜇

𝜇 Hess𝜑

)
∈ 𝛤

(
U, Sym2(�⊕ �)∗

)
,

U0 =
{
x ∈ U ∶ (1 − 𝜕r)𝜑 > 0 and D is positive definite

}
.
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Note that if � is given by a toric nearly Kähler structure, then (1 − �r)� is proportional to 
the �2 , and D is the expression of g in the frame (�, �) . Now consider the following set with an 
a priori weaker constraint than U0:

However, this constraint is not weaker:

Lemma 2 U0 = Û0.

Proof Since D being positive definite implies that Hess� is positive definite, we find that 
U0 ⊆ Û0 . It remains to show that D has no null vectors in Û0 , which implies the reverse 
inclusion.

Let C = Hess� and �2 = 8

3
(1 − �r)� . Defining j = C−1� , we find that any null vector 

for D is of the form (v,w) ∈ �⊕ � at some point p ∈ Û0 with

Thus v and w are eigenvectors of j2 at p with eigenvalue −1 . Thus it suffices to show that 
j2 ∈ �

(
U0, End (�)

)
 never attains an eigenvalue −1.

Choosing a basis for � so that Cp is diagonal at any chosen p ∈ Û0 allows one to verify 
that C−1𝜇C−1 =

(
CV

det C

)♮

 , where we abuse notation by using ♮ to also denote the isomor-
phism 𝛬3

�⊗ �
∗ ≅ 𝛬2

� . Then

where throughout this computation we’ve been using juxtaposition to denote ‘matrix multi-
plication’, or contraction of a single �, �∗ index pair. Since V ∈ 𝜇−1(0) ⊆ j−1(0) , we find that 
j2 has eigenvalues 0 with multiplicity 1 and −C(V ,V)

det C
 with multiplicity 2. By the toric nearly 

Kähler equation, −1 is an eigenvalue only when � = 0 , which is impossible on Û0 by defini-
tion.   ◻

This lemma can be used to interpret what goes wrong when trying to find a completion of 
a local toric nearly Kähler manifold. If some connected M̊ is maximal in the sense that it is not 
properly contained in a toric nearly Kähler manifold where � doesn’t vanish, what is happen-
ing at the boundary? Using � , we can interpret this boundary as a set of points in �2

�
∗ . By (1), 

C is going to remain positive definite as long as � doesn’t vanish. Thus the previous lemma 
shows that if � does not limit to 0 at the boundary point, then the local solution � to the toric 
nearly Kähler equation cannot be extended to the boundary point. In Sect. 6, we show that 
local radial solutions can be extended to have the radius defined between 0 and some finite r0 . 
The differential equation is singular at 0, while � vanishes when the radius is r0.

3  Relation to toric G
2
 manifolds

For a strict nearly Kähler manifold (M,�,�+ + i�−) with metric g, consider the Riemann-
ian cone 

(
N = M × (0,∞), gN = r2g + d r2

)
 , where r ∈ (0,∞) is the radial coordinate. It is 

well known that N admits a parallel G2 structure given by

Û0 ∶=
{
x ∈ U ∶ (1 − 𝜕r)𝜑 > 0 and Hess𝜑 is positive definite

}
.

jw = v, jv = −w.

j2 = C−1𝜇C−1𝜇 =
(

CV

det C

)♮

V♮ =
−C(V ,V) Id + (CV)⊗ V

det C
,
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If M is toric, then the torus action lifts to a multi-Hamiltonian action on N with respect to 
the forms � and ∗ � . This makes N a toric G2 manifold as studied in [10]. The correspond-
ing multi-moment maps for � and ∗ � , respectively, are

From  [10], 𝜈N ⊕ 𝜀N maps the set of singular orbits S of N to a graph in 
𝛬2

�
∗ ⊕𝛬3

�
∗ ≅ ℝ

3 ⊕ℝ . Moreover, �N is constant on each connected component of S. In 
the case when N = M × (0,∞) is the cone over a toric nearly Kähler manifold, then the 
radial symmetries of (2) imply that �N vanishes on the graph, and moreover each edge of 
the graph is a radial ray shining out from the origin in �2

�
∗ . Since points on the edge of the 

graph correspond to torus orbits where a single circle collapses, we immediately find

Corollary 2 On a toric nearly Kähler manifold, the torus action is free away from a finite 
set of orbits where a single circle collapses and � vanishes.

4  Global properties

Let (M,�,� , T) be a connected complete toric nearly Kähler 6-manifold. In this section we 
will prove the properties of the multi-moment maps claimed in Theorem 1. Recall that we 
define M̊ = M�𝜀−1(0).

Lemma 3 𝜇|M̊ is a submersion.

Proof Lemma 4.1(i) in [12] gives d𝜇|M̊ = −4𝜀 ⋅ 𝛾 . The result follows since � has full rank 
and � does not vanish on M̊ .   ◻

Now we can show that 𝜇(M̊) is star-shaped around 0:

Lemma 4 Every p ∈ M̊ is contained in some path � on M̊ such that �|� ∶ � → �2
�
∗ is an 

injective map whose image is a line segment between 0 and �(p).

Proof If �(p) = 0 , there is nothing to show. Otherwise, there exists some maximal con-
nected subset L of the line segment 0�(p) which lifts to a path � on M̊ through p. By 
Lemma 3, L is non-empty and open. If L is closed, then L = 0�(p) as required. Otherwise, 
since M is complete, � has a limiting point p� ∈ M�M̊ . Hence L is a radial line segment 
travelling outward from �(p�) , a point at which � vanishes by the definitions of p′ and M̊ . 
However, using Theorem 4, we compute the radial directional derivative

This implies that �2 is non-positive along L, contradicting � ≠ 0 at p ∈ M̊ .   ◻

� ∶= d

(
r3�

3

)
, ∗ � ∶= − d

(
r4�−

4

)
.

(2)�N ∶=
1

3
r3� ∶ N → �2

�
∗, �N ∶= −

1

4
r4� ∶ N → �3

�
∗.

�r(�
2) =

8

3
�r(1 − �r)� = −

8

3
C(V ,V) ≤ 0.
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Since � and � are T-invariant, they induce maps �̄� ∶ M∕T → 𝛬2
�
∗ and 

�̄� ∶ M∕T → 𝛬3
�
∗ , which are called orbital multi-moment maps.

Lemma 5 For any connected component M0 of M̊ , �̄�|M0∕T
 is injective.

Proof For any p ∈ M0 , let � be the path between p and some p� ∈ �−1(0) guaranteed by the 
previous lemma. The map

is clearly well defined and continuous. Since M0∕T  is connected and �̄�−1(0) is discrete, the 
image of F is a single orbit which we will denote by o0 ∈ M0∕T .

Now let o1, o2 ∈ M0∕T  with �̄�(o1) = �̄�(o2) . For each i ∈ {1, 2} , the previous lemma can 
be used to construct a path �i between o0 and oi in M0∕T  which is a lift of the line segment 
L between 0 and �̄�(o1) = �̄�(o2) . Since 𝜇|M̊ is a submersion, �̄�|M̊∕T is a local homeomor-
phism. In particular, To0�1 = �̄�−1(T0L) = To0�2 , implying that �1 = �2 . Thus o1 = o2 as 
required.   ◻

By this lemma, �̄� gives global coordinates on M0∕T  . This allows us to view the multi-
moment image (�, �)(M0) as the graph of �̄�|M0∕T

 . Since � vanishes on �M0 , we find that 
M/T is recovered by gluing together two of these graphs. We will first need a lemma:

Lemma 6 Along the set {� = 0} , d� only vanishes on a finite set of orbits.

Proof Let p ∈ �−1(0) , so that �−|�3�M
 vanishes at p. Note that by T invariance of the 

closed form d� = (�2K)⌟(3�+) , we have �+|�3�M
= 0 . Thus �|�3�M

 vanishes at p. Since 
� is a complex volume form, this implies that 𝛬3

�M|p ⊆ T1,1
p

M ∧ TpM . Thus for any 
0 ≠ � ∈ �3

� , we can write �M|p = P ∧ X ∈ T1,1
p

M ∧ TpM . We compute

By the non-degeneracy of � , this only vanishes when �M does, which are the points where 
the torus action is not free. By Corollary 2, this vanishing is at a finite set of orbits.   ◻

Theorem 6 (�̄�, �̄�) ∶ M∕T → 𝛬2
�
∗ ⊕𝛬3

�
∗ is injective with image a 3-sphere. Moreover, the 

component of (𝛬2
�
∗ ⊕𝛬3

�
∗)�(𝜇, 𝜀)(M) containing 0 is star-shaped about 0.

Proof Let M+ be a connected component of M̊ . By Lemma 4, U ∶= �(M+) is star shaped 
around the origin. In particular, �M+ has one connected component. Since � ≠ 0 on M̊ , � 
has a sign on M+ . Since � vanishes on the 2-dimensional 𝜕M+ ⊆ 𝜕M̊ , the previous lemma 
implies that � changes sign when crossing this boundary. Thus there is some other con-
nected component M− of M̊ with the opposite sign of � and 𝜕M+ ⊆ 𝜕M− . But �(M−) 
must also be star shaped around 0 with boundary �U , so �(M−) = U = �(M+) . Thus 
�M− = �M+ , so that we have M = M+ ∪M− . In particular, �̄� ∶ M → U is a double cover 
ramified over �U , with the sign of �̄� distinguishing the points in each �̄� fibre. Thus (�̄�, �̄�) is 
injective. Since U is diffeomorphic to a 3-ball, the image of (�̄�, �̄�) is a 3-sphere.

By relabelling if necessary, we can assume that ±� is positive on M± . The component of 
(𝛬2

�
∗ ⊕𝛬3

�
∗)�(𝜇, 𝜀)(M) containing 0 can be written as D+ ∪ D− , where

F ∶ M0∕T → �̄�−1(0) ∶ Tp ↦ Tp�

d�(�)p = �M|p⌟d�−
p
= (P ∧ X)⌟(−2� ∧ �) = −2�(P)(X⌟�).
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Now each D± is star-shaped around 0, since �̄�(M±) is and ±� is decreasing in radial direc-
tions. Thus D+ ∪ D− is star-shaped around 0 as required.   ◻

We can now wrap up the proof of the main theorem:

Proof of Theorem 1 Corollary 2 combined with Theorem 6 gives most of the claim. T orbits 
in �−1(0) must be Lagrangian by definition, and there are two of them, since �̄� is a double 
cover ramified at �−1(0) .   ◻

5  Some topology

We apply the results from the previous section to prove Corollary 1. The obstruction we 
use to prove this comes from Myers’ theorem [13], which asserts that if a complete Rie-
mannian manifold has Ricci curvature positive and bounded away from zero, then the 
diameter must be bounded. Since the same must be true for the universal cover, the funda-
mental group must be finite. In particular, the first Betti number must vanish.

Proposition 1 Let (M,�,� , T) be a connected complete toric nearly Kähler 6-manifold. 
Then the action of T is not free.

Proof Assume that the action of T is free, so that M is a T3 bundle over S3 . It follows that 
we have the Wang long exact sequence [16]

which shows that H1(M) ≅ H1(T
3) ≅ ℤ

3 has positive rank. This contradicts Myers’ theo-
rem.   ◻

Consider the set S ∈ M∕T  of T orbits where the action is not free. By Corollary 2, each 
orbit s ∈ S has a one-dimensional isotropy group whose Lie algebra is given by a line 
�(s) ∈ ℙ� . We will need the following lemma:

Lemma 7 The map � ∶ S → ℙ� is at most two to one.

Proof Since C is the metric on the torus orbits, S is the vanishing locus of det C . Thus (1) 
implies that the non-negative functions �2 and C(V, V) both vanish on S. Thus S ⊂ 𝜕M̊∕T  , 
and for any s ∈ S , �(s) = (ℙV)(s) , where ℙV ∈ � (M∕T ,ℙ�) is the projectivication of V. 
Note that the identification 𝛬2

�
∗ ≅ 𝛬3

�
∗ ⊗ � induces an identification ℙ�2

�
∗ ≅ ℙ� under 

which ℙ� is identified with ℙV  . But by Theorem 6, �̄� is injective on 𝜕M̊∕T ⊃ S . Thus it 
suffices to show that �̄�(S) ⊂ 𝜇(𝜕M̊) intersects the line ℙ�(s) at most two times. But �(M) is 
star-shaped around 0, so 𝜇(𝜕M̊) intersects the line ℙ�(s) at two antipodal points.   ◻

Consider the case where S has k orbits. We will consider decompositions M = A ∪ B , 
where A and B are both unions of T-orbits and A ∩ B ∩ S = � . To see that such a decom-
position exists, note that if H is a hyperplane in 𝛬2

�
∗ ⊕𝛬3

�
∗ disjoint from (�, �)(S) , then 

D± =
{
(x, y) ∈ 𝛬2

�
∗ ⊕𝛬3

�
∗ ∶ x ∈ �̄�

(
M±

)
,±y ∈

[
0,±𝜀(y)

]}
.

H∙(T
3) → H∙(M) → H∙−3(T

3)
[−1]
���������������→,
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there exists a neighbourhood U of H also disjoint from (�, �)(S) . Now it is clear that we 
can find A and B as claimed with (�, �)(A ∩ B) = U . Moreover, we see that no two orbits 
in S ∩ A (respectively S ∩ B ) correspond to the same element of � , since by the previous 
lemma, they would correspond to antipodal points in �

(
�−1(0)

)
 , which are avoided by this 

construction.
Now we have A ≅ Di and B ≅ Dj where i + j = k and Di is a T3 fibration over the 

three-ball D3 with i orbits where circles collapse. Moreover, these circles are different, 
in the sense that the collapsing directions correspond to different vectors in � . Using ≃ 
to denote homotopy equivalence, we will compute these for the first few Di:

Lemma 8 D0 ≃ T3 , D1 ≃ T2 , D2 ≃ S3 × S1.

Proof Since every bundle over D3 is trivial, D0 ≅ T3 × D3 ≃ T3.
D1 is a neighbourhood of the collapsed orbit. Thus D1 ≅ T2 ×ℝ

4 by identifying ℝ4 with 
D1∕T  and T2 the quotient of T with the circle that collapses.

D2∕T  is a neighbourhood of a curve C connecting the two collapsing orbits. Thus D2 
retracts to some D̃2 such that D̃2∕T ≅ C . Since the circles that collapse are different, we 
can write D̃2 ≅ (S1 × S1 × [0, 1])∕ ∼, where ∼ collapses the first circle at 0 and the second 
circle at 1. Now

identifies D̃2 ≅ S3 × S1 .   ◻

Before we proceed to applying Mayer–Vietoris to the decomposition M = A ∪ B , we 
still need to understand the equatorial region E ∶= A ∩ B.

Lemma 9 h1(E) = h4(E) ∈ [2, 3].

Proof E must be a T3 bundle over U ≃ S2 . Thus E retracts to a T3 bundle Ē over S2 . Since Ē 
is compact, we have the duality h1(Ē) = h4(Ē) . Part of the Wang sequence is

Thus h1(E) = h1(Ē) ∈ h1(T
3) −

[
0, h0(T

3)
]
= 3 − [0, 1] = [2, 3] .   ◻

We can now work with the Mayer–Vietoris sequence with respect to the decomposi-
tion M = A ∪ B = Di ∪ Dj . Since A ∩ B = E , this sequence is

We are now ready to prove the main result of this section:

Proof of Corollary 1 The Mayer–Vietoris sequence at ∙ = 1 gives

D̃2 → ℂ
2 × S1 ∶ [𝜃1, 𝜃2, 𝜃3, x] ↦

(
sin

(
𝜋

2
x
)
ei𝜃1 , cos

(
𝜋

2
x
)
ei𝜃2 , 𝜃3

)

→ H2−2(T
3) → H1(T

3) → H1(Ē) → 0.

H∙(E) → H∙(Di)⊕ H∙(Dj) → H∙(M)
[−1]
���������������→ .

h1(Di) + h1(Dj) ≤ h1(E) + h1(M) ≤ 3,
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where the second inequality uses the previous lemma and Myers’ theorem. But by 
Lemma  8, h1(Di) = 3 − i or i ∈ {0, 1, 2} . In particular, for k = i + j < 3 , we have 
h1(Di) + h1(Dj) = 6 − (i + j) > 3 , contradicting our upper bound.

For k = 3 , choose A ≅ D1 and B ≅ D2 . Since h1(M) = 0 , the Mayer–Vietoris sequence 
at ∙ = 1 gives h1(E) ≥ h1(D1) + h1(D2) = 3 . Combining this with the previous lemma gives 
h1(E) = h4(E) = 3 . Since h5(M) = h1(M) = 0 , the Mayer–Vietoris sequence at ∙ = 4 gives 
the contradiction

  ◻

6  Radial solutions

In this section, we study solutions of the form �(�) = x(t) , where t = 1

2
‖�‖2 is a radial 

coodinate, and ‖ ⋅ ‖ is the Euclidean metric on �2
�
∗ . These were studied in [12], where 

they show that the nearly toric equation simplifies to the ODE

subject to the constraint

where the derivatives are taken with respect to t. The main result is that such a radial solu-
tion cannot be complete:

Theorem  7 If (M,�,� , T) is a connected complete toric nearly Kähler 6-manifold cor-
responding to a solution � to the toric nearly Kähler equation, then � is not radially 
symmetric.

Proof Assume that � is radially symmetric. Combining this symmetry with Theorem  6, 
�(M) must be a closed 3-disc � centred at the origin. Now consider the set of points S in M 
where the torus action is not free. By Corollary 2, �(S) is a discrete set of points in �� . But 
by radial symmetry, �(S) must be either empty or all of �� . But �(S) is a discrete set, so it 
can’t be �� . Thus �(S) , and hence S is empty. This contradicts Proposition 1.   ◻

We now investigate what goes wrong with the ODE to prevent completeness. Local 
existence of solutions to ODE’s will give a local solution x(t) to D(x) = 0 near any pre-
scribed initial 1-jet 

(
t0, x(t0), x

�(t0)
)
 satisfying the constraints (3). Let (t−, t+) be the maxi-

mal open interval on which the solution can be extended while satisfying the constraints.
t± must be either a point where x(t) blows up or a boundary point of the constraints. 

By Lemma  2, 𝜀2 = 8

3
(x − 2tx�) > 0 implies the other constraint x′ >

√
2t . Thus the 

boundary condition is simply �2 = 0.

Lemma 10 x(t) does not blow up at t+ < ∞.

3 = h4(E) ≤ h4(D1) + h4(D2) = 1.

0 = D(x) ∶= 3(x�2 − 2t)(x� + 2tx��) − 8(x − 2tx�)

(3)x > 2tx′ > 2t
√
2t,
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Proof First note that 𝜀2 > 0 implies that (log x)� < 1

2t
 . Integrating this implies that 

x(t) < x0

√
t

t0
 . Since x(t) is also positive, it cannot blow up in finite time.

On the other hand, integrating x′ >
√
2t gives x − x0 >

√
2t

3

−
√
2t0

3

3
 . This lower bound for 

x grows faster as t increases than the upper bound for x in the previous paragraph. Thus t+ 
is finite.   ◻

We compute

Note that by Lemma 2, the constraints can be rewritten as 0 < 𝜀2 ∝ x − 2tx�.
Thus the constraints imply that x�2 − 2t > 0 , so the ODE is regular when the constraints 

hold and t > 0.

Lemma 11 t− = 0.

Proof Since t− is the boundary point of a maximal domain of an ODE subject to the con-
straint 𝜀2 > 0 , at t− either the ODE is singular and the solution x(t) becomes unbounded or 
�2 vanishes. Since the ODE is singular at t = 0 , we must have t− ≥ 0 . Since x is positive 
and increasing, it must be bounded in (t−, t+) . Since �2 is decreasing, it cannot vanish at t− . 
Thus t− must a singular point of the ODE, in particular the only one: 0.   ◻

By Theorem 7, there must be some singularity for x(t) in [0, t+] , and by the previous two 
lemmas it must be at t = 0.

Note that the estimate in Lemma 10 doesn’t essentially require radial symmetry: it only 
uses 𝜀2 ∝ 𝜑 − 𝜕r𝜑 > 0 . In particular, continuing the discussion following Lemma  2, � 
should not become unbounded as one tries to extend solutions in radial directions away 
from the origin.

7  Polynomial solutions

In this section we will try to understand polynomial solutions to the toric nearly Kähler 
equation. As described in [12], the toric nearly Kähler structure on S3 × S3 corresponds to 
the solution of the toric nearly Kähler equation

where 
{
�j

}3

j=1
 are coordinates on �2

�
∗ induced by the multi-moment map � . We will prove 

Theorem 2 by treating each degree of polynomial separately. First we will introduce some 
notation. If E is an equation or expression, and m is a monomial in ℝ

[
�1,�2,�3

]
, then [m]E 

and (m)E will refer, respectively, to the coefficient of m in E, and the part of E which is a 
multiple of m. We will use ∇ to denote the gradient in 

{
�j

}3

j=1
 coordinates, and abuse nota-

tion by not distinguishing it from its transpose, or a restricted gradient to an context-appro-
priate subset of the coordinates. Similarly, ∇2 will denote the Hessian, where the set of 
coordinates may depend on context.

�2 =
8

3
(x − 2tx�), 2tx�� =

�2

x�2 − 2t
− x�, (�2)� = −

8

3

�2

x�2 − 2t
.

(4)�0 ∶= 3 +
�

j

�2
j
+

1√
3

�

j

�j,
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Proposition 2 Every cubic solution to the toric nearly Kähler equation is equivalent to �0 
up to linear changes in coordinates.

Proof Let � be some cubic solution of the toric nearly Kähler equation (⋆) . Write 
� =

∑3

j=0
�k , where each �k is a degree k homogeneous polynomial in 

{
�j

}3

j=1
 . As noted 

in [12], �1 can be chosen to be 0. The degree 3 term of (⋆) gives

Since ||∇2�3|| ∝ �3 , the plane algebraic curve V
(
𝜑3

)
⊂ ℂP2 is a union of lines [15], so that 

�3 is a product of linear factors. We can choose coordinates along these lines so that 
�3 = �

∏3

j=1
�j for some � ∈ ℝ . We can compute ||∇2�3|| = 2�2�3, so we must have �2 = 1

3
 . 

Again, by changing coordinates, we may assume that � =
1√
3
.

Writing �2 = �2
d
+ �2

o
 , where ∇2�2

d
 is a diagonal matrix, while ∇2�2

o
 vanishes on the 

diagonal, one can compute that the degree 2 term of ||∇2�|| is 2
3

(
�2
o
− �2

d

)
 . Thus the degree 

2 term of (⋆) is

so that �o = 0 . Thus ∇2�2 is a diagonal matrix. We still have the freedom to scale the coor-
dinates so that ∇2�2 = 2 Id , or equivalently �2 =

∑3

j=1
�2
j
. The degree 0 term of (⋆) now 

gives 8
3
�0 = ||∇2�2|| = 8 , so that �0 = 3 . Thus � = �0 .   ◻

For higher degree polynomial solutions, the toric nearly equation becomes overde-
termined, since ||∇2�|| is formally a polynomial of degree 3(deg(�) − 2) . This suggests 
that the cubic solution might be the only polynomial solution. By diagonalizing ∇2�2 , 
we can always choose a basis so that �2 =

∑3

j=1
�2
j
 . As discussed in the previous proof, 

we will also get �0 = 3 and �1 = 0 . The degree 1 term of (⋆) tells us that �3 is harmonic.
Our main tool will be the following theorem, which we will refer to as Hesse’s theo-

rem since Hesse originally claimed the result:

Theorem 8 ([8]) If f is a homogeneous polynomial in 4 or less variables over an algebrai-
cally closed field, then det ◦Hess (f ) = 0 if and only if f is independent of one of the vari-
ables after a suitable homogeneous coordinate change.

Remark 1 More geometrically, this theorem shows that det ◦Hess (f ) vanishes whenever 
the directional derivative of f vanishes along some vector X. The coordinate change cor-
responds to any linear map which sends X to a generator of a coordinate axis. In particular, 
we can choose such a linear map to be orthogonal, meaning that the quadratic function ∑3

j=1
�2
j
 is preserved. For the rest of the paper, whenever we use Hesse’s theorem, we will 

use such an orthogonal coordinate change.

Proposition 3 There are no quartic solutions to the toric nearly Kähler equation.

Proof Let � =
∑4

j=0
�j be a solution to (⋆) , where each �j is a homogeneous polynomial of 

degree j. Assume that �4 ≠ 0 , so that � is quartic. We can choose coordinates so that the 

|||∇
2�3||| =

(
8

3
−

11

3
�r + �2

r

)
�3 =

(
8

3
− 11 + 9

)
�3 =

2

3
�3.

−
2

3
�2 =

2

3

(
�2
o
− �d

)
,
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quadratic part of � is 3 + x2 + y2 + z2 , where (x, y,  z) is a relabelling of the coordinates (
�j

)3
j=1

.
The degree 6 term of (⋆) is ||∇2�4

|| = 0 . By Hesse’s theorem, this is equivalent to �4 
being a function of two variables. Thus, we can choose coordinates so that �4 = �4(x, y).

Lemma 12 After some rotation of the y − z coordinates, �3
zz
= 0.

Proof Assume that the claim is false, so that �3
zz
≠ 0 . The degree 5 term of (⋆) gives 

|||∇
2
xy
�4|||�

3
zz
= 0 , so that |||∇

2
xy
�4||| = 0 . Using Hesse’s theorem, we can choose coordinates so 

that �4 depends only on x. Now the degree 4 term of (⋆) gives

Write �3 = x3 B0 + x2 B1 + x B2 + B3 , where each Bj is a degree j homogeneous polynomial 
in y and z. The x2 term of the above equation gives 0 = ||∇2B3|| . Using a similar argument as 
in Remark 1, we can use Hesse’s theorem to rotate the y − z coordinates (preserving y2 + z2 
while fixing x) so that B3 ∝ y3 . Note that our assumption still gives �3

zz
≠ 0 , hence B2

zz
≠ 0 . 

The x3 term of the above equation then gives B3
yy
B2
zz
= 0 , implying B3 = 0 . The x4 term of 

the above equation gives ||∇2B2|| =
1

3
.

Now ��3 = 0 implies that B1 = 0 . The degree 3 term of ||∇2�|| modulo x3 is

where the first equality can be verified directly since B2 is a homogeneous quadratic poly-
nomial. Thus the coefficient of x of the degree 3 term of (⋆) is 2

3
B2 = −

2

3
B2 , so that B2 = 0 . 

This contradicts ||∇2B2|| =
1

3
 .   ◻

Since �3
zz
= 0 , we can write �3 = B3(x, y) + z B2(x, y). We have

Since �3 is harmonic, so are B2 and B3.

Now 
[
z2
]
 (⋆) gives 2||∇2B2|| = −

2

3
. Combining this with �B2 = 0 , we can rotate coordinates 

so that B2 =
xy√
3
 . Now (z) (⋆) gives

Thus 0 = �4
xy
= B3

xy
 . Since B3 is harmonic, it must vanish. Note that we now have 

� = �0 + �4. Now it is easy to see that the degree 2 part of (⋆) gives ��4 = 0 , since it is 
the only term depending on �4 . Combining this with �4

xy
= 0 shows that �4 = 0 , a contra-

diction.   ◻

Working quite a bit harder we can establish the quintic case:

Proposition 4 There are no quintic solutions to the toric nearly Kähler equation.

4�4 = �4
xx

|||∇
2
yz
�3|||.

|||∇
2(x B2)

||| = −2x B2|||∇
2B2||| = −

2

3
x B2,

� = 3 + x2 + y2 + z2 + B3 + z B2 + �4.

∇2� =

(
2 Id + ∇2(B3 + �4) ∇B2

∇B2 2

)
+ z

(
∇2B2 0

0 0

)
.

0 =
4√
3
(B3 + �4)xy.
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Proof Let � =
∑5

j=0
�j be a solution to (⋆) with �5 ≠ 0 . The degree 9 term of (⋆) gives 

||∇2�5|| = 0 . Using Hesse’s theorem, we can change variables so that �5
z
= 0.

Lemma 13 �4
zz
= 0

Proof Assume �4
zz
≠ 0 . The degree 8 term of (⋆) gives 0 = �4

zz

|||∇
2
xy
�5|||. Thus |||∇

2
xy
�5||| = 0 . 

By Hesse’s theorem, we may assume that �5
y
= 0 . Write �4 =

∑
j x

j C4−j , where each Cj is a 
degree j homogeneous polynomial in y and z. The degree 7 term of (⋆) gives

where ⟨N,M⟩ ∶= 2 adj (N) ⋅M = [t]�N + tM�. If any Cj vanishes, then we have

where {j, k,�} = {2, 3, 4} . This implies that Ck and C� are both proportional to powers of 
the same linear term, which we may choose to be y by changing coordinates. This con-
tradicts �4

zz
≠ 0 . Thus no Cj vanishes. Since ||∇2C2|| = 0 , we may use Hesse’s theorem 

to choose coordinates so that C2 ∝ y2 . Since 
⟨
∇2C3,∇2C2

⟩
= 0 , we must have C3

zz
= 0 . 

Thus C4
zz
= �4

zz
≠ 0 . Combining this with ||∇2C4|| = 0 , we may choose coordinates so that 

C4 ∝ z4 . Then 0 =
⟨
∇2C4,∇2C3

⟩
 implies that C3

yy
= 0 . Thus C3 = 0 , a contradiction   ◻

Lemma 14 �zzz = 0.

Proof Assume �zzz ≠ 0 . Write � = � + z � + z2 � + z3 � , where �, �, � , and � are polyno-
mials in x and y of degrees 5, 3, 1,   and 0, respectively. Again, we will use exponents to 
denote the corresponding homogeneous parts. We are assuming � ≠ 0 . We have

The degree 7 term of (⋆) with a factor of z gives ||∇2�5|| = 0 . The degree 6 term with a 
factor z2 gives 

⟨
∇2�5,∇2�3

⟩
= 0 . The degree 5 term with a factor of z3 gives ||∇2�3|| = 0 . 

Hesse’s theorem allows us to interpret this as �5 and �3 each depending on only one vari-
able, which must be the same due to the cross-term. Thus we can assume that �5 and �3 are 
both functions of x.

The degree 6 term with a factor of z gives 0 = �5
xx
�4
yy
� , so that �4

yy
= 0 . Thus we have 

∇2
yz
�4 = 0 . Note that we now have no distinguished direction in the y − z plane.
We write � = A + B + C + D , where A, B, C,  and D have degree in [y, z], respectively 

0, 1, 2,  and 3 and total degrees, respectively, 5, 4, 3 and 3. The degree 5 term of (⋆) with a 
factor of x3 gives 0 = A5

xx

|||∇
2
yz
D3||| . Since A5 = �5 ≠ 0 , this shows that |||∇

2
yz
D3||| = 0 . Using 

Hesse’s theorem, we can write D3 as a function of y. This contradicts �zzz ≠ 0 .   ◻

0 =
|||∇

2
yz
�4||| =

|||∇
2C4 + x∇2C3 + x2 ∇2C2|||

=
|||∇

2C4||| + x
⟨
∇2C4,∇2C3

⟩

+ x2
(|||∇

2C3||| +
⟨
∇2C4,∇2C2

⟩)

+ x3
⟨
∇2C3,∇2C2

⟩
+ x4

|||∇
2C2|||,

0 =
|||∇

2Ck||| =
|||∇

2C�||| =
⟨
∇2Ck,∇2C�

⟩
,

∇2� =

(
∇2� ∇�

∇� 2�

)
+ z

(
∇2� 2∇�

2∇� 6�

)
.
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We will continue to use the decomposition with Greek letters. The previous lemma shows 
that � = 0.

Lemma 15 � = 1.

Proof Assume � ≠ 1 , so that ∇� ≠ 0 . We can rotate the x-y coordinates to write � = 1 + cx 
for some 0 ≠ c ∈ ℝ . Thus (z3) (⋆) gives 0 = −�yy(2c)

2 , so that �yy = 0 . We compute

Thus 
(
z2y

)
 (⋆) gives �yyy = 0 . Now 

[
z2x3

]
 (⋆) gives �5

yy
= 0 . We compute

This is a polynomial in x, whose quartic term is proportional to 
(
�3
xxy

)3

 . Thus 
[
x4yz

]
 (⋆) 

gives �3
y
= 0 . Now 

[
x2z2

]
 (⋆) gives �4

yy
= 0 . Now the degree 7 term of (⋆) gives 0 = c

(
�5
xy

)2

 , 
so that �5

y
= 0.

Now 
[
z2
]
 (⋆) gives 2

3
= �2

xy
+ c2 , so that 

[
xz2

]
 (⋆) gives 0 = �3

xyy
+ c . But � is harmonic, 

giving

Thus �3
xx
= 0 = �2

xx
 . Now 

[
x3
]
 (⋆) gives �5 = 0 , contradicting �5 ≠ 0 .   ◻

Now that � = 1 , 
(
z2
)
 (⋆) gives 2||∇2�|| = −2∕3 . Using Hesse’s theorem, we can change 

coordinates so that �3 = bx3 , for some b ∈ ℝ . Combining these equations with ��2 = 0 (from 
∇�3 = 0 ), we can choose coordinates so that �2 = xy√

3
 , independent of whether or not b van-

ishes. We will show that b does indeed vanish. (z) (⋆) gives

so that

Taking the coefficients of x0 , x1 , and x2 , respectively, of this equation gives

(
z2
)|||∇

2�
||| = −4c2�yy − 2�

(
�xy

)2
+ 4c�xy�y = −4c2�yy − 2

(
�xy

)2
+ 2c�xy

(
2 − �r

)
�y.

(yz)
|||∇

2�
||| = 2

|||||||

0 �xyy �xy
�xy �yy �y
2c �y 2�

|||||||
.

0 = ��3 = ��3 + 2c + z��2 = �3
xx
+ z �2

xx
.

2xyz

3
√
3
+ 4bzx3 =[z]

���∇
2�

��� = z

�
2
�
∇2�,∇2�

�
+
����
∇2� ∇�

∇� 0

����

�

=z

�
12bx �yy −

4√
3
�xy − 6bx

�
�y
�2

+
2√
3
�x�y

�

=z

�
12bx �yy −

4√
3
�xy − 2bx3 +

2

3
x

�
3bx2 +

y
√
3

��
,

0 = 12bx �yy −
4√
3
�xy − 4bx3.
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In particular, 6
√
3b = �3

xxy
= −�3

yyy
, where the second inequality comes from �3 being har-

monic. Now we compute

In particular, 
[
y2
]
 (⋆) gives

Now 
[
x3yz

]
 (⋆) gives

so that b = 0 . Now [z] (⋆) is simply �xy = 0 . The remainder of (⋆) is

Thus (xy) (⋆) gives 0 = �xxx�yyy . Without loss of generality, by changing coordinates we 
have �yyy = 0 . Thus (⋆) becomes

In particular, 0 = −
32

3
�5 , contradicting �5 = �5 ≠ 0 .   ◻

Combining the previous three propositions gives Theorem 2.

Acknowledgements This research was funded by the Simons Collaboration on Special Holonomy in Geom-
etry and Physics (#488635 Simon Salamon) while the author was working at King’s College London. I am 
very grateful for many interesting and productive discussions about this work with others, especially Bobby 
Acharya, Lorenzo Foscolo, Andrei Moroianu, and Simon Salamon. Finally, I thank the referee whose com-
ments have improved the clarity of the exposition.

Funding  This research was funded by the Simons Collaboration on Special Holonomy in Geometry and 
Physics (#488635 Simon Salamon).

Availability of data and material Data sharing not applicable to this article as no datasets were generated or 
analysed during the current study.

Compliance with ethical standards 

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 

�
x1
�
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�
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�
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3
√
3

2
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�
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�
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�
x3
�
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√
3b
�
x1
�
�yy.

�
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����∇
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�
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�
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3
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y√
3
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= �yy

�
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3

�
.

0 =
[
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�yy�xx = �4
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yyyy
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yyyy
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�
8
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3
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r

�
� =
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�xx 0
y√
3

0 �yy
x√
3

y√
3

x√
3

2

��������
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1

3

�
�r − �2

r

�
�.
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(

8
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4

3
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r

)
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