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Abstract
Given a smooth closed oriented manifold M of dimension n embedded in ℝn+2 , we study 
properties of the ‘solid angle’ function � ∶ ℝ

n+2⧵M → S
1 . It turns out that a non-critical 

level set of � is an explicit Seifert hypersurface for M. This gives an explicit analytic con-
struction of a Seifert surface in higher dimensions.
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1 Introduction

It has been known since Seifert [13] that every oriented link L =
∐

S1 ⊂ ℝ
3 possesses a 

Seifert surface, that is, a compact oriented surface 𝛴 ⊂ ℝ
3 such that �� = L . Seifert gave 

an explicit algorithm for finding a Seifert surface from a link diagram.
In 1969 Erle [7] proved that any embedding Mn

⊂ ℝ
n+2 of codimension two of a closed 

oriented connected manifold M has a trivial normal bundle and admits a Seifert hypersur-
face 𝛴n+1

⊂ ℝ
n+2 with 𝜕𝛴 = M ⊂ ℝ

n+2 . The proof of the existence of the latter fact is not 
constructive; it relies on the Pontryagin–Thom construction applied to any smooth map 
f ∶ cl.(ℝn+2

�M × D2
) → S1 representing the generator
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with � = f −1(t) for a regular value t ∈ S1 . An easy adjustment has to be made, because f is 
defined outside the tubular neighborhood of M; we refer to [7] for details.

In this paper, we use intuitions from physics to construct a concrete smooth map 
� ∶ ℝ

n+2⧵M → ℝ∕ℤ = S1 . Namely, suppose M ⊂ ℝ
3 is a loop with constant electric cur-

rent. The scalar magnetic potential �̃ of M at a point x ∉ M is the solid angle subtended 
by M, that is, the signed area of a spherical surface bounded by the image of M under 
the radial projection, as seen from x (Fig. 1); see [10, Chapter III] or [9, Section 8.3]. As 
the complement ℝ3⧵M is not simply connected, the potential �̃ is defined only modulo 
a constant, which we normalize to be 1. The potential induces a well-defined function 
� ∶ ℝ

3⧵M → ℝ∕ℤ . This physical interpretation suggests that there exists an open neigh-
borhood N of M such that �|N⧵M is a locally trivial fibration. In particular, a level set �−1

(t) 
should be a (possibly disconnected) Seifert surface for M. In [4, Chapter VII] the second 
author proved that this is indeed the case, although the proof is rather involved. Even for 
a circle, the exact formula for � is complicated; it was given by Maxwell in [10, Chapter 
XIV] in terms of power series and also by Paxton in [11]. The formulae for � for the circle 
show that the analytic behavior of � near M is quite intricate, although we can show that 
� is a locally trivial fibration in U⧵M for some small neighborhood U of M; see Sect. 5.3.

The construction can be generalized to higher dimensions, even though the physi-
cal interpretation seems to be a little less clear. For any closed oriented submanifold 
Mn

⊂ ℝ
n+2 , by the result of Erle [7] there exists a Seifert hypersurface. For any such hyper-

surface � and a point x ∉ � , we define �̃(x) to be the high-dimensional solid angle of M, 
that is, the signed area of the image of the radial projection of � to the (n + 1)-sphere of 
radius 1 and center x. The value of �̃(x) depends on the choice of the hypersurface � , but 
it turns out that under a suitable normalization, �(x) ∶= �̃(x) mod 1 is independent of the 
choice of the Seifert hypersurface. Moreover, there is a formula for �(x) in terms of inte-
grals of some concrete differential forms over M, so the existence of � is needed only to 
show that � is well defined.

As long as t ≠ 0 ∈ ℝ∕ℤ , the preimage �−1
(t) is a bounded hypersurface in ℝn+2⧵M . If, 

additionally, t is a non-critical value, �−1
(t) is smooth. To prove that �−1

(t) is actually a 
Seifert hypersurface for M, we need to study the local behavior of � near M. It turns out 

1 ∈

[
cl.
(
ℝ

n+2
�M × D2

)
, S1

]
= H1

(
ℝ

n+2
�M

)
= Hn(M) = ℤ

M

O

Fig. 1  Scalar magnetic potential as a solid angle. The scalar magnetic potential is calculated at point O 
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that the closure of �−1
(t) is smooth except possibly at the boundary. We obtain the follow-

ing result, which we can state as follows.

Theorem  1.1 Let M ⊂ ℝ
n+2 be a smooth codimension 2 embedding. Let 

� ∶ ℝ
n+2⧵M → ℝ∕ℤ be the solid angle map (or the scalar magnetic potential map).

• On the set of points {x ∈ ℝ
n+2⧵M ∶ (0, 0,… , 0, 1) ∉ Sec x(M)} , the map � is given by

where Sec x is the secant map Sec x(y) =
y − x

‖y − x‖ and � is an explicit function depend-

ing on the dimension n described in (2.18).
• Let t ≠ 0 be a non-critical value of � . Then �−1

(t) is a smooth (open) hypersurface 
whose closure is �−1

(t) ∪M . The closure of �−1
(t) is a possibly disconnected Seifert 

hypersurface for M (in the sense of Definition 2.1), which is a topological submanifold 
of ℝn+2 , smooth up to boundary.

• For t ≠ 0 , the preimage �−1
(t) has finite (n + 1)-dimensional volume.

To the best of our knowledge, up until now, there has been no known high-dimensional 
analogue of Seifert’s algorithm for constructing Seifert hypersurfaces for general links. Our 
method of constructing a Seifert hypersurface is by a mixture of differential geometry and 
analysis, so is not strictly speaking algorithmic. Nevertheless, it is the first explicit con-
struction for general links.

The fact that the hypersurface �−1
(t) is a level set of the scalar magnetic potential func-

tion � leads to the following question. We have, however, not been able to answer it so far.

Question 1 Does the physical interpretation of �−1
(t) imply some specific geometric or 

topological properties, like being a local minimizer for some energy function?

The structure of the paper is the following. Section 1 defines rigorously the solid angle 
map � . Then a formula for � in terms of an integral of an n–form over M is given. In 
Sect. 3 we prove that for t ≠ 0 the inverse images of 𝛷−1

(t) ⊂ ℝ
n+1 are bounded. It is also 

proved that � extends to a smooth map Sn+2⧵M → ℝ∕ℤ . In Sect. 4 we calculate explicitly 
� for a linear subspace. The resulting simple formula is used later in the proof of the local 
behavior of � for general M. In Sect. 5 we derive the Maxwell–Paxton formula for � if M 
is a circle. These explicit calculations allow us to study the local behavior of � in detail 
and give insight for the general case. In Sects. 6 and 7 we study the local behavior of � for 
general M. This is the most technical part of the paper. We prove Theorem 1.1 in Sect. 8.

2  Definition of the map ̊

Consider a point x ∈ ℝ
n+2 and define the map Sec x ∶ ℝ

n+2⧵{x} → Sn+1 given by

�(x) = ∫M

1

‖y − x‖n+1 �
�
xn+2 − yn+2

‖x − y‖
�
⋅

n+1�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ d̂yi ⋯ ∧ dyn+1,
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The map Sec x can be defined geometrically as the radial projection from x onto the sphere: 
for a point y ≠ x take a half-line lxy going out from x and passing through y. We define 
Sec x(y) as the unique point of intersection of lxy and Sx , where Sx is the unit sphere with 
center x.

Let �n+1 be the (n + 1)-form

on Sn+1 . Define also

that is, the volume of the unit (n + 1)-dimensional sphere; for instance, �1 = 2� , �2 = 4�.
Let M be a closed oriented connected and smooth manifold in ℝn+2 with dimM = n.

Definition 2.1 A compact oriented (n + 1)-dimensional submanifold � of ℝn+2 such that 
�� = M , � is smooth except possibly at the boundary and � has finite (n + 1)-dimensional 
volume, is called a Seifert hypersurface for M.

Remark 2.2 Unlike in many places in low-dimensional knot theory, we do not assume that 
� is connected.

By Erle [7] any closed oriented submanifold M ⊂ ℝ
n+2 admits a Seifert hypersurface, 

which is smooth. Given such a hypersurface � , consider x ∈ ℝ
n+2⧵� . The map Sec x 

restricts to a map from � to Sn+1 , which we shall still denote by Sec x.

Definition 2.3 The solid angle of � viewed from x is defined as

The map �̃(x) is a signed area of a spherical surface spanned by Sec x(M) , that is, the radial 
projection of M from the point x.

We have the following fact.

Lemma 2.5 The value �̃(x) mod 1 does not depend on the choice of � . In particular, �̃ 
induces a well-defined function

Proof Take another hypersurface �′ . Let X and X′ be abstract models of � and �′ , that is, 
X and X′ are smooth compact (n + 2)-dimensional manifolds and � ∶ X → � , ��

∶ X�
→ �

� 
are embeddings. Define � to be the closed (n + 2)-dimensional manifold obtained by 

Sec x(y) =
y − x

‖y − x‖ .

�n+1 =

n+2∑
j=1

(−1)j+1ujdu1 ∧⋯ ∧ d̂uj ∧⋯ ∧ dun+2

�n+1 = ∫Sn+1
�n+1,

(2.4)�̃(x) =
1

�n+1
∫
�

Sec ∗

x
�n+1.

� ∶ ℝ
n+2⧵M → ℝ∕ℤ ≅ S1.
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gluing X with X′ along �−1
(M) and ��−1

(M) . Let �
�
∶ � → ℝ

n+2 be the map equal to � on 
X and to �′ on X′.

By functoriality of the integral, we have

Therefore,

The integral on the right-hand side is the evaluation of an (n + 1)-form �∗

�
Sec ∗

x

1

�n+1

�n+1 on 
the fundamental cycle of � . The form 1

�n+1

�n+1 represents an integral cohomology class in 
Hn+1

(Sn+1) ; hence, �∗

�
Sec ∗

x

1

�n+1

�n+1 represents an integral cohomology class on � . 
Therefore,

is an integer. This means that

  ◻

Remark 2.6 One should not confuse the solid angle with the cone angle studied exten-
sively by many authors, like [2, 3, 5]. To begin with, the cone angle is unsigned and takes 
values in ℝ

⩾0 , whereas the solid angle is an element in ℝ∕ℤ . This indicates that there exist 
fundamental differences between the two notions.

From the definition of � , we recover its first important property.

Proposition 2.7 The map � is smooth away from the complement of M ⊂ ℝ
n+2.

Proof Take a point y ∉ M . There exists a smooth compact surface � such that �� = M 
and y ∉ � . Then, a small neighborhood U of y is disjoint from � . Thus, the map Sec x 
depends smoothly on the parameter x. This means that Sec ∗

x
�n+1 depends smoothly on x. 

Integrating over a finite measure hypersurface � preserves smooth dependence of a param-
eter. It follows that �̃ is smooth in U.   ◻

2.1  ̊  via integrals over M

The fact that the definition of �(x) involves a choice of a Seifert hypersurface � is quite 
embarrassing. In fact, it might be hard to find estimates for � because we have little control 
over � . We want to define � via integrals over M itself. The key tool will be the Stokes’ 
formula. We use the fact that while the volume form �n+1 on Sn+1 itself is not exact, its 
restriction �′ to the punctured sphere Sn+1⧵{z} is.

∫X

�
∗ Sec ∗

x
�n+1 = ∫

�

Sec ∗

x
�n+1, ∫X�

�
�∗ Sec ∗

x
�n+1 = ∫

��

Sec ∗

x
�n+1.

1

�n+1
∫
�

Sec ∗

x
�n+1 −

1

�n+1
∫
��

Sec ∗

x
�n+1 = ∫

�

�
∗

�
Sec ∗

x

1

�n+1

�n+1.

1

�n+1
∫
�

�
∗

�
Sec ∗

x
�n+1

1

�n+1
∫
�

Sec ∗

x
�n+1 −

1

�n+1
∫
��

Sec ∗

x
�n+1 ∈ ℤ.
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We need the following result.

Proposition 2.8 Let x ∈ ℝ
n+2⧵M and let z ∈ Sn+1 be such that z ∉ Sec x(M) . Then, there 

exists a Seifert hypersurface � for M such that Sec x(�) misses z.

Remark 2.9 The result is non-trivial in the sense that one can construct a Seifert surface � 
even for an unknot in ℝ3 such that the restriction Sec x|� is onto. However, notice that since 
M is smooth, Sec x|M is never onto Sn+1 because dimM < dim Sn+1.

Proof Let H be the half-line {x + tz, t > 0} . In other words H = Sec −1
x
(z) . Choose any 

Seifert hypersurface � . We might assume that H is transverse to � . The set of intersection 
points of H and � is bounded and discrete, hence finite. Let {w1,… ,wm} = H ∩ � and 
assume these points are ordered in such a way that on H the point w1 appears first (with the 
smallest value of t), then w2, and so on (Fig. 2). 

Choose the last point wm of this intersection and a small disk D ⊂ 𝛴 with center wm. We 
can make D small enough so that for any w�

∈ D the intersection

is empty. Set now

Consider a sphere S = S(x, r) , where r is large. Set S� = S⧵(S ∩ T) . Increasing r if neces-
sary, we may and shall assume that S′ is disjoint from � . The new Seifert hypersurface is 
defined as

With this construction, we have H ∩ �
�
= {w1,… ,wm−1} . Repeating this construction 

finitely many times, we obtain a Seifert hypersurface disjoint from H.   ◻

{x + tw�, t > 1} ∩ 𝛴

T = {x + tw�, t ⩾ 1,w�
∈ D} and �vT = {x + tw�, t ⩾ 1,w�

∈ �D}.

�
�
= (�⧵D) ∪ [(�vT) ∩ B(x, r)] ∪ S�.

Fig. 2  Proof of Proposition 2.8. Reducing the intersection points of H with � . The disk D is replaced by the 
tube T and a large sphere
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Let �z be an n–form on Sn+1⧵{z} such that d�z = �n+1 , and suppose � is a Seifert 
hypersurface for M such that z ∉ Sec x(�) . By Stokes’ formula

Therefore, we obtain the following formula for �:

The necessity of making the map modulo 1 comes now from different choices of the point 
z ∈ Sn+1⧵M.

We shall need an explicit formula for �z . For simplicity, we consider the case when 
z = (0, 0,… , 1) ∈ Sn+1 ⊂ ℝ

n+2 and define � ∶= �z ; the general case can be obtained by 
rotating the coordinate system. We start with the following proposition.

Proposition 2.11 Set z = {0,… , 0, 1} . Let 𝜆 ∶ Sn+1⧵{z} ⊂ ℝ
n+2

→ ℝ be a smooth function 
with variables u = (u1, u2,… , un+2) . If � involves only un+2 (write �(u) = �(un+2) for con-
venience) and satisfies

then on Sn+1⧵{z} we have

Proof Note that

and hence

for all i ∈ {1, 2,… , n + 1} . Therefore, by (2.12),

is the zero (n + 1)-form.   ◻

To obtain a formula for � , it remains to solve (2.12). Rewriting it, we have

The integrating factor of this ordinary differential equation is (1 − u2
n+2

)

n+1

2  , so the general 
solution of (2.12) can be written as

∫
�

Sec ∗

x
�n+1 = ∫M

Sec ∗

x
�z.

(2.10)�(x) =
1

�n+1
∫M

Sec ∗

x
�z mod 1.

(2.12)(1 − u2
n+2

)�
�
(un+2) − (n + 1)un+2�(un+2) = (−1)n,

d
(
�(un+2)�n

)
= �n+1.

u2
1
+⋯ + u2

n+2
= 1 implies u1du1 +⋯ + un+2dun+2 = 0,

uidu1 ∧⋯ ∧ dun+1 = (−1)n+iun+2du1 ∧⋯ ∧ d̂ui ∧⋯ ∧ dun+2

d
(
�(un+2)�n

)
− �n+1 = �

�
(un+2)dun+2 ∧ �n + �(un+2)d�n − �n+1 =

=

(−1)n + (n + 1)un+2�(un+2) − �
�
(un+2)(1 − u2

n+2
)

un+2
du1 ∧⋯ ∧ dun+1

�
�
(un+2) −

(n + 1)un+2(
1 − u2

n+2

) �(un+2) = (−1)n(
1 − u2

n+2

) .



422 Annals of Global Analysis and Geometry (2020) 57:415–454

1 3

The requirement that the solution be smooth at un+2 = −1 translates into the following 
formula

The integral in (2.14) can be explicitly calculated. If n is odd, the result is a polynomial. If 
n is even, successive integration by parts eventually reduces the integral to ∫ √

1 − s2 ds . 
For small values of n, the function � is as follows.

Definition 2.15 From now on, we shall assume that � = �(un+2)�n , where � is as in (2.14).

We see that � is smooth for un+2 ∈ [−1, 1) and has a pole at un+2 = 1 . We shall work mostly 
in regions, where un+2 is bounded away from 1, so that � and its derivatives will be bounded.

2.2  The pullback of the form �

We shall gather some formulae for evaluating the pullback Sec ∗

x
� . This will allow us to 

estimate the derivative of �.
First, notice that

where dy means that we take the exterior derivative with respect to the y variable (we treat 
x as a constant). Consider the expression

To calculate the pullback, we replace dui by dy
yi−xi

‖y−x‖ . Notice that if in the wedge product the 
term (yi − xi)dy‖y − x‖−1 from (2.16) appears twice or more, this term will be zero. There-
fore, the pullback takes the form

where �(i, j) is equal to j − 1 if j < i and j − 2 if j > i . Using the above expression together 
with

(2.13)
(
1 − u2

n+2

) n+1

2 �(un+2) = (−1)n ∫
(
1 − u2

n+2

) n−1

2 dun+2.

(2.14)�(un+2) = (−1)n
(
1 − u2

n+2

)− n+1

2 ∫
un+2

−1

(1 − s2)
n−1

2 ds.

n = 1; �(u3) = (u3 − 1)−1

n = 2; �(u4) = −
1

4

(
� + 2u4

√
1 − u2

4
+ 2 arcsin u4

)(
u2
4
− 1

)−3∕2

n = 3; �(u5) =
1

3
(u5 − 2)(u5 − 1)−1.

(2.16)dy
yi − xi

‖y − x‖ =

dyi

‖y − x‖ + (yi − xi)dy‖y − x‖−1,

Sec ∗

x
du1 ∧⋯ ∧ d̂ui ∧⋯ ∧ dun+1.

Sec ∗

x
du1 ∧⋯ ∧ d̂ui ∧⋯ ∧ dun+1 =

1

‖y − x‖n dy1 ∧⋯ ∧ d̂yi ∧⋯ dyn+1

+
1

‖y − x‖n−1
�
j≠i

(−1)�(i,j)(yj − xj)dy‖y − x‖−1 ∧ dy1 ∧⋯ ∧ d̂yi, dyj ∧⋯ ∧ dyn+1,
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we can calculate the pullback of the form

We calculate

Notice that we can change the order of the sums in the last term of the above expression 
to be 

∑n+1

j=1

∑
i≠j . Since i + �(i, j) = j + �(j, i) ± 1 , the last two sums cancel out. Hence, we 

obtain

In particular, using Definition 2.15 we get a proof of the first part of Theorem 1.1.

If n = 1 we obtain the following explicit formula, used in [4].

It is worth mentioning the formula for n = 1 and a general z (not necessarily (0,  0,  1)), 
which was given in [4, Theorem 5.3.7].

where Dy = (dy1, dy2, dy3).
We conclude by remarking that if

dy‖y − x‖−1 = −1

‖y − x‖3
�
(y1 − x1)dy1 +⋯ + (yn+1 − xn+1)dyn+1

�
,

�n =

n+1∑
i=1

(−1)i+1uidu1 ∧⋯ ∧ d̂ui ∧⋯ ∧ dun+1.

Sec ∗

x
�n =

1

‖y − x‖n+1
n+1�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+1

+
1

‖y − x‖n+3
n+1�
i=1

�
j≠i

(−1)i+�(i,j)(yi − xi)
2
(yj − xj)dyi ∧ dy1 ∧⋯ ∧ d̂yi, dyj ∧⋯ ∧ dyn+1

+
1

‖y − x‖n+3
n+1�
i=1

�
j≠i

(−1)i+�(i,j)(yi − xi)(yj − xj)
2dyj ∧ y1 ∧⋯ ∧ d̂yi, dyj ∧⋯ ∧ dyn+1.

(2.17)Sec ∗

x
�n =

1

‖y − x‖n+1
n+1�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+1.

(2.18)

Sec ∗

x
� =

1

‖y − x‖n+1 �
�
yn+2 − xn+2

‖y − x‖
�

⋅

n+1�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+1.

(2.19)
�(x1, x2, x3) =

1

4� ∫M

(y2 − x2)dy1 − (y1 − x1)dy2

‖y − x‖2
�
1 −

y3 − x3

‖y − x‖
� .

�(x1, x2, x3) =
1

4� ∫M

�
y − x

‖y − x‖ × z

�
⋅ Dy

‖y − x‖
�
1 −

y − x

‖y − x‖ ⋅ z

� ,
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then analogous arguments as those that led to formula (2.17) imply that

2.3  Estimates for derivatives of Sec ∗

x
�

The following results are direct consequences of the pullback formula for � , (2.18). We 
record them for future use in Sects. 3 and 6 . Recall from Sect. 2.2 that � was defined as a 
form on Sn+1⧵(0,… , 0, 1) . The form �z for general z ∈ Sn+1 is obtained by rotation of the 
coordinate system.

Lemma 2.21 For any m ⩾ 0 , there exists a constant C#
m,n

 such that for each nonnegative 
integers k1,… , kn+2 such that 

∑
ki = m , the (higher) differential of the pullback Sec ∗

x
� has 

the form

where

and Hj

i
 are smooth functions satisfying �Hj

i
� ⩽ C#

m,n
‖y − x‖−(n+m−j).

Proof If m = 0 , the proof is a direct consequence of (2.18). The general case follows by an 
easy induction.   ◻

As a consequence of Lemma 2.21, we prove the following fact.

Lemma 2.23 For any D < 1 and for any integer m > 0 , there is a constant CD
n,m

 such that if 

z ∈ Sn+1 , y, x satisfy ⟨ y−x

‖y−x‖ , z⟩ < D and 
∑

ki = m , then the derivative �
m

�x
k1
1
⋯ �x

kn+2
n+2

Sec ∗

x
�z 

is a sum of forms of type Hi1,…,in
dyi1 ∧⋯ ∧ dyin , where all the coefficients Hi1,…,in

 are 
bounded by CD

n,m
‖y − x‖−n−m.

Proof Apply a linear orthogonal map of ℝn+2 that takes z to (0, 0,… , 0, 1) . Let x′ and y′ be 
the images of x and y, respectively, under this map. We have ‖y� − x�‖ = ‖y − x‖ and the 
condition ⟨ y−x

‖y−x‖ , z⟩ < D becomes y
�

n+2
−x�

n+2

‖y−x‖ < D . We shall use (2.22). As D < 1 , on the inter-
val [−1,D] the function � and its derivatives up to m-th inclusive are bounded above by 

�n+1 =

n+2∑
i=1

(−1)i+1uidu1 ∧⋯ ∧ d̂ui ∧⋯ ∧ dun+2,

(2.20)Sec ∗

x
�n+1 =

1

‖y − x‖n+2
n+2�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+2.

�
m

�x
k1
1
⋯ �x

kn+2
n+2

Sec ∗

x
� =

n+1∑
i=1

Hidy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+1,

(2.22)Hi =

m�
j=0

�
(j)

�
yn+2 − xn+2

‖y − x‖
�
H

j

i
,



425Annals of Global Analysis and Geometry (2020) 57:415–454 

1 3

some constant CD,m depending on D and m. The constant CD
n,m

 can be chosen as 
CD
n,m

= (m + 1)C�

D,m
C#
n,m

 .   ◻

3  Properness of ̊

Theorem 3.1 For any t ∈ (0, 1) there exists Rt such that 𝛷−1
(t) ⊂ B(0,Rt) . In other words, 

all fibers of � except �−1
(0) are bounded.

Proof Choose a Seifert hypersurface � for M. We may assume that it is contained in a 
ball B(0, r) for some r > 0 . As � is compact and smooth, there exists a constant C

�
 such 

that if an (n + 1)–form �n+1 on ℝn+2 has all the coefficients bounded from above by T, then 
| ∫

𝛴
𝜔n+1| < C

𝛴
T .

Now take R ≫ 0 and suppose x ∉ B(0,R + r) . Then the distance of x to any point y ∈ � 
is at least R. Then Sec ∗

x
�n+1 has all the coefficients bounded by R−n−1 , see (2.20), and 

therefore, | ∫
�
Sec ∗

x
�n+1| ⩽ C

�
R−1−n . This means that

or equivalently, that if t ∉ (−C
�
R−1−n,C

�
R−1−n

) , then 𝛷−1
(t) ⊂ B(0,R + r) .   ◻

Corollary 3.2 The map � ∶ ℝ
n+2⧵M → S1 extends to a Cn+1 smooth map from Sn+2⧵M to 

S1.

Sketch of proof Smoothness of � at infinity is equivalent to the smoothness of 
w ↦ �(

w

‖w‖2 ) at w = 0 . The proof of Theorem 3.1 generalizes to show that for any m > 0 
there exists Cm with a property that �D�

�(x)� ⩽ Cm ⋅ ‖x‖−n−1−��� , and 
‖D� w

‖w‖2 ‖ ⩽ Cm‖w‖−���−1 whenever |�| ⩽ m . Here � is a multi-index.
Now by the di Bruno’s formula for higher derivatives of the composite function, we 

infer that �D�
�(

w

‖w‖2 )� ⩽ C‖w‖n+2−���. (The worst case occurs when � is differentiated only 

once, while w

‖w‖2 is differentiated |�| times.) Hence, the limit at w → 0 of all derivatives of 

w ↦ �

�
w

‖w‖2
�

 of order up to n + 1 is zero.   ◻

We can also strengthen the argument of Theorem  3.1 to obtain more detailed information 
about the behavior of � at a large scale.

Theorem 3.3 Suppose � is a Seifert hypersurface and r is such that 𝛴 ⊂ B(0, r) . For any 
R > r , if ‖x‖ > R we have

where C
�

 depends solely on � and not on R and r.

Proof Using (2.20) write

𝛷(ℝ
n+2⧵B(0,R + r)) ⊂ (−C

𝛴
R−1−n,C

𝛴
R−1−n

),

������

n+2�
i=1

xi
��

�xi
+ (n + 1)�

������
⩽ C

�
(n + 2)

rRn+2

(R − r)n+2
‖x‖−(n+2),
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This implies that

where

and

Write also

Now suppose ‖x‖ > R and ‖y‖ < r . Then −�1 − �3 has all the coefficients bounded by 
rRn+2

(R−r)n+2
‖x‖−n−2 . Likewise, notice that

where we used Schwarz’ inequality in the last estimate. Therefore, −�2 − �3 has all the 
coefficients bounded by ‖y‖

‖y−x‖n+2 , and by assumptions on ‖x‖ and ‖y‖ we have that

We conclude that

As �(x) = ∫
�
�3 , we obtain the statement.   ◻

The statement of Theorem 3.3, in theory, can be used to obtain information about C
�

 
from the behavior of � at infinity. The left-hand side of (3.4) is equal to ���
∑n+2

i=1
xi

��

�xi
+ (n + 1)�

��� and does not depend on � . Therefore, if we know � and its 
derivatives, we can find a lower bound for C

�
 , which roughly tells, how complicated � 

� Sec ∗

x
�n+1

�xi
=

−1

‖y − x‖n+2 (−1)
i+1dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+2+

+ (n + 2)
yi − xi

‖y − x‖n+4
n+2�
j=1

(−1)j+1(yj − xj)dy1 ∧⋯ ∧ d̂yj ∧⋯ ∧ dyn+2.

n+2∑
i=1

xi
� Sec ∗

x
�n+1

�xi
= −�1 + (n + 2)�2,

�1 =
1

‖y − x‖n+2
n+2�
i=1

(−1)i+1xidy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+2

�2 =
1

‖y − x‖n+4
n+2�
i=1

n+2�
j=1

(−1)j+1(yi − xi)(yj − xj)xidy1 ∧⋯ ∧ d̂yj ∧⋯ ∧ dyn+2.

�3 =
1

‖y − x‖n+2
n+2�
i=1

(−1)i+1(yi − xi)dy1 ∧⋯ ∧ d̂yi ∧⋯ ∧ dyn+2.

������

n+2�
i=1

(yi − xi)xi + ‖y − x‖2
������
=

������

n+2�
i=1

(yi − xi)yi

������
⩽ ‖y‖‖y − x‖,

‖y‖
‖y − x‖n+2 ⩽

rRn+2

(R − r)n+2
‖x‖−n−2.

(3.4)
����∫�

−�1 + (n + 2)�2 + (n + 1)�3
���� ⩽ C

�
(n + 2)

rRn+2

(R − r)n+2
‖x‖−(n+2).
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might be. Unfortunately, we do not know of any examples where this can be used 
effectively.

4  ̊  for an n‑dimensional linear surface

4.1  Calculations

The analysis of � near M will rely on replacing M by its tangent space and estimate the 
error. Therefore, we shall now define M for an n-dimensional surface. Define

The first technical problem arises because H is not compact; therefore, the map � does not 
even have to be defined. In what follows, we shall define �H for H as above. We need to 
choose an analogue of the ‘Seifert hypersurface’, and our choice will be a half-hyperplane. 
As H is not compact, we cannot apply the argument of Lemma 2.5 to conclude that �H 
does not depend on the choice of a half-hyperplane. And indeed, �H will depend on this 
choice. In fact, �H will be well defined up to an overall constant. In particular, the deriva-
tives of �H are well defined. This dependence is considered as a feature. Calculations for 
��

�xj
 will be important in Sect. 6.
Set 𝛴 = {w ∶ w1 ⩽ 0, w2 = 0} ⊂ ℝ

n+2 . For any point x ∉ � , the value of the map �(x) 
is (up to a sign) the area of the image Sec x(�) . This image can be calculated explicitly.

Choose a point y = (y1,… , yn+2) ∈ Sn+1 . The half-line from x ∉ � through x + y is 
given by t ↦ x + ty , t ⩾ 0 ; see Fig. 3. By definition, y ∈ Sec x(�) if and only if this half-
line intersects � , that is, for some t0 > 0 we have

Note that if x2 = 0 , then the half-line through x and any point in � will meet H, 
which results in an n-dimensional image Sec x(�) in Sn+1 . Suppose x2 ≠ 0 . The condition 

H =

{
w ∈ ℝ

n+2
∶ w1 = 0,w2 = 0

}
.

(4.1)x2 + t0y2 = 0 and x1 + t0y1 ⩽ 0.

Fig. 3  The half-line from (x1, x2) through (x1 + y1, x2 + y2) hitting the Seifert hypersurface �
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t0 > 0 together with (4.1) implies that the signs of x2 and y2 must be opposite. Plugging 
t0 from the first equation of (4.1) into the second one, we obtain

The calculation of � boils down to the study of the set of x1, x2 satisfying (4.2). Write 
x1 = r cos 2�� and x2 = r sin 2�� . Multiply (4.2) by y2

x2
 (which is negative) to obtain the 

inequality

There are four cases depending on in which quadrant of the plane contains (x1, x2) ; see 
Fig. 4. We next calculate the area of the image Sec x(�) of each of those four cases. To 
do so, we first deal with the calculations and then discuss the choice of the sign. For the 
moment, we choose a sign for the area as � ∈ {−1,+1} ; refer to Sect. 4.2 for the discussion 
of the sign convention.

Notice that the area of the two-dimensional circular sector in Fig. 4 is (up to normali-
zation) equal to the (n + 1)-dimensional area of the image Sec x(�) . This is because the 
defining equations are homogeneous, and other variables y3,… , yn+2 do not enter in the 
definition of the region. 

Case 1  x1 ⩾ 0 and x2 > 0 . The region Sec x(�) is given by y2 < 0 (because the sign of y2 
is opposite to the sign of x2 ), y1 ⩽ y2∕ tan 2�� and tan 2�� ∈ (0,∞) . The area of 
the sector corresponding to Case 1 is equal to �� , and hence, �(x) = �� , where � 
is a sign.

(4.2)x1 −
x2y1

y2
⩽ 0.

y1 ⩽ y2∕ tan 2��.

HΣ

Case 1Case 2

Case 3 Case 4

Fig. 4  The four cases of possible position of points (x1, x2) and the image of the projection. Instead of draw-
ing the preimage in the boundary on a circle, we draw a circular sector in a disk for better readability
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Case 2  x1 ⩽ 0 and x2 > 0 . The region Sec x(�) is given by y2 < 0 , y1 ⩽ y2∕ tan 2�� , 
where tan 2�� ∈ (−∞, 0) . The area of the sector is equal to �� and so �(x) = ��.

Case 3  x1 ⩽ 0 and x2 < 0 . Then y2 > 0 and tan 2�� ∈ (0,∞) . The area of the sector 
is � − �� , but now the hypersurface � is seen from the other side; hence, the 
signed area is �(�� − �) . After normalizing and taking modulo 1, we obtain that 
�(x) = ��.

Case 4  x1 ⩾ 0 , x2 < 0 . Then y2 > 0 and tan 2�� ∈ (−∞, 0) . As in Case 3, we deduce 
that the area is � − �� and we obtain �(x) = ��.

Putting all the cases together, we see that �(x) = ��.
Suppose we take another ‘Seifert surface’ for H, denoted �′ , given by u1 = 0 , u2 ⩽ 0 . 

Let �′ be the map � defined relatively to �′ . To calculate �′ , we could repeat the above 
procedure, yet we present a quicker argument. A counterclockwise rotation A in the 
(u1, u2)-plane by angle �

2
 fixes H and takes � to �′ . In particular, ��

(x) = �(Ax) . Hence, 
�

�
(x) = �(� −

1

4
) We notice that �′ ≠ � , but on the other hand ��

−� is a constant. 
This approach shows that if we take a linear hypersurface (a half-space) for the ‘Seifert 
surface’ of � , then it is well defined up to a constant, and so the derivatives are well 
defined.

4.2  The sign convention

Given that � is defined as an integral of a differential form, changing the orientation of H 
induces a reversal of the sign of � . We use the example of a linear surface to show how the 
sign is computed.

Choose the orientation of H in such a way that �

�u3
,… ,

�

�un+2
 is a positive basis of TH. 

Stokes’ theorem is applicable if � is oriented by the rule “normal outwards first”, see [14, 
Chapter 5], so that �

�u1
,

�

�u3
,… ,

�

�un+2
 is an oriented basis of T�.

The way of seeing the sign is by calculating ∫
�
Sec ∗

x
�n+1 . By (2.20) we know that

Given the orientation of � , we have

Notice that on the left-hand side we have an integral of a differential form, whereas on the 
right-hand side the integral is with respect to the (n + 1)-dimensional Lebesgue measure on 
a subset of ℝn+1.

The function ∫ 1

‖y−x‖2 dy3 … dyn+2 is positive; therefore, �̃ is positive for x2 > 0 , nega-
tive for x2 < 0 and 0 for x2 = 0, x1 > 0 (notice that (4.3) is not defined if x2 = 0 and x1 ⩽ 0 : 
if this holds, the point (x1, x2,… , xn+2) lies on � and the integral diverges). Therefore, 
𝜕

𝜕x2

�𝛷|x2=0,x1>0 is nonnegative. This is possible only if the choice of sign is � = +1.

�̃(x1,… , xn+2) = ∫
�

Sec ∗

x
�n+1 = ∫ y1 ⩽ 0

y2 = 0

x2

‖y − x‖n+2 dy1 ∧ dy3 ∧⋯ ∧ dyn+2.

(4.3)
∫y1⩽0,y2=0

x2

‖y − x‖n+2 dy1 ∧ dy3 ∧⋯ ∧ dyn+2

= x2 ∫
0

−∞

�
∫

1

‖y − x‖n+2 dy3 … dyn+2

�
dy1.
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5  ̊  for a circle

In Sect.  5 the manifold M is the round unit circle, that is 
M = {(x1, x2, x3) ∈ ℝ

3
∶ x2

1
+ x2

2
= 1, x3 = 0} . We now use the formula for � via the 

integrals of the pullback of � , see (2.18), to give an explicit formula for � . The output 
is given in terms of elliptic integrals. Detailed calculations can be found, e.g., in [4]; 
therefore, we omit some tedious computations. We focus on the analysis of the behavior 
of � near the circle.

5.1  Elliptic integrals

For the reader’s convenience, we give a quick review of elliptic integrals and their prop-
erties. We shall use these definitions in future calculations. This section is based on [1].

Definition 5.1 Let � ∈ [0,�∕2] . For any k ∈ [0, 1] , the complementary modulus k′ of k is 
defined by k� =

√
1 − k2 . 

1. The integral 

 is called an elliptic integral of the first kind. If � = �∕2 , it is called a complete elliptic 
integral of the first kind, denoted by �(k) ∶= �(�∕2, k).

2. The integral 

 is called an elliptic integral of the second kind. If � = �∕2 , it is called a complete 
elliptic integral of the second kind, denoted by �(k) ∶= �(�∕2, k).

3. The integral 

 is called an elliptic integral of the third kind. If � = �∕2 , it is called a complete elliptic 
integral of the third kind, denoted by �(�

2, k) ∶= �(�∕2, �2, k).
4. Heuman’s Lambda function �0(�, k) can be defined by the formula 

Although �(k) blows up at k = 1 , we know how fast it goes to infinity as k approaches 
1 from below.

Proposition 5.3 (see [6, formula (10) on page 318]) We have

(5.2)�(�, k) = ∫
�

0

dt√
1 − k2 sin2 t

�(�, k) = ∫
�

0

√
1 − k2 sin2 t dt

�(�, �2, k) = ∫
�

0

dt

(1 − �2 sin2 t)
√
1 − k2 sin2 t

�0(�, k) =
2

�

(
�(k)�(�, k�) +�(k)�(�, k�) −�(k)�(�, k�)

)
.
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In particular,

The differentials of �(k) and �(k) are calculated, e.g., in [1, page 282].

and

where k� =
√
1 − k2 . The derivative of the Heuman’s Lambda function �0(�, k) is given by 

the following formula; see [1, formulae 710.11 and 730.04].

and

5.2  Computation of ̊  for the circle

In this section, we follow closely [4, Sections 6.2 and 6.3]. The circle U has the parameteriza-
tion � ∶ [−�, �] → ℝ

3 given by

Suppose x ∈ ℝ
3 is such that x ∉ {u2

1
+ u2

2
= 1, u3 ⩽ 0} . Then Sec x(U) does not contain 

(0, 0, 1) and (2.19) implies:

where

Write x1 = r cos � , x2 = r sin � for r ⩾ 0 . Substituting this into (5.9), we observe that � 
does not depend on � ; hence, we can write � = �(r, x3) , that is,

�(k) = ln
4√

1 − k2
+ O

�
(1 − k2) ln

√
1 − k2

�
as k → 1−.

(5.4)lim
k→1−

�
�(k) − ln

4√
1 − k2

�
= 0.

(5.5)
d

dk
�(k) =

�(k) − (k�)2�(k)

k(k�)2

(5.6)d

dk
�(k) =

�(k) −�(k)

k

(5.7)
�

�k
�0(�, k) =

2(�(k) −�(k)) sin � cos �

�k
√
1 − k�2 sin2 �

(5.8)
�

��
�0(�, k) =

2(�(k) − k�2 sin2 ��(k))

�

√
1 − k�2 sin2 �

.

�(t) = (cos t, sin t, 0).

(5.9)�(x1, x2, x3) =
1

4� ∫
�

−�

(x1 cos t + x2 sin t − 1)dt

Q + x3

√
Q

,

Q = 1 + ‖x‖2 − 2x1 cos t − 2x2 sin t.
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We have some special cases where we can compute the integral explicitly. If x3 = 0 , we use 
the identity

and deal with improper integrals; there are two situations:

• r < 1 : we have 

• r > 1 : we have 

This agrees with the geometric interpretation. If we choose the disk D = {r ⩽ 1, x3 = 0} 
as a Seifert surface for U, then for x = (r cos �, r sin �, 0) with r > 1 , the image Sec x(D) 
is one-dimensional, so �(x) = 0 . Conversely, for x = (r cos �, r sin �, 0) with r < 1 we 
choose a Seifert surface � to be the disk D with a smaller disk centered at x replaced 
by a hemisphere with center at x. In this way, the image Sec x(�) is a hemisphere; see 
Fig. 5.

Remark 5.11 The inverse image �−1
(0) contains (and actually it is equal) to the set 

{x2
1
+ x2

2
> 1, x3 = 0} . This shows that the assumption that t ≠ 0 in Theorem  3.1 is 

necessary.

We now express �(r, x3) in terms of elliptic integrals. We use the following simplifi-
cation, which follows by explicit computations.

(5.10)�(r, x3) =
1

4� ∫
�

−�

(r cos t − 1)dt

1 + r2 + x2
3
− 2r cos t + x3

√
1 + r2 + x2

3
− 2r cos t

.

cos t =
1 − tan2(t∕2)

1 + tan2(t∕2)

�(r, 0) =
1

4�

[
−
t

2
− arctan

(
1 + r

1 − r
tan

t

2

)]�
−�

= −
1

2
;

�(r, 0) =
1

4�

[
−
t

2
+ arctan

(
r + 1

r − 1
tan

t

2

)]�
−�

= 0.

x

Fig. 5  A Seifert surface for the circle with the property that its image under Sec x is a hemisphere
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Define

Then

Using (5.12) and cos 2� = 1 − 2 sin2 � , we write

We may write the formula in terms of Heuman’s Lambda function �0 using the formula 
relating � and �0 ; see [1, page 228] or [11]. After straightforward but tedious calculations, 
we obtain the following explicit formula.

Proposition 5.13 (see [4, Proposition 6.3.1]) Let x = (x1, x2, x3) ∈ ℝ
3.

• If x ∉ {x2
1
+ x2

2
= 1, x3 ⩽ 0}    and    x3 ≠ 0 . Then

(5.12)

r cos t − 1

1 + r2 + x2
3
− 2r cos t + x3

√
1 + r2 + x2

3
− 2r cos t

=

−x3(r cos t − 1)

(1 + r2 − 2r cos t)

√
1 + r2 + x2

3
− 2r cos t

+
r cos t − 1

1 + r2 − 2r cos t
.

C(r) = ∫
�

−�

r cos t − 1

1 + r2 − 2r cos t
dt.

C(r) ∶=

⎧⎪⎨⎪⎩

0 if r > 1

−𝜋 if r = 1

−2𝜋 if r < 1

.

4��(r, x3) = C(r) +
2x3√

(1 + r)2 + x2
3

∫
�∕2

0

dt√
1 −

4r

(1 + r)2 + x2
3

sin2 t

−

2x3(r
2
− 1)

(1 + r2)2
√

(1 + r)2 + x2
3

∫
�∕2

0

dt(
1 −

4r

(1 + r2)
sin2 t

)√
1 −

4r

(1 + r)2 + x2
3

sin2 t

=

2x3√
(1 + r)2 + x2

3

�

(√
4r

(1 + r)2 + x2
3

)

+

2x3(1 − r)

(1 + r)

√
(1 + r)2 + x2

3

�

(
4r

(1 + r)2
,

√
4r

(1 + r)2 + x2
3

)
+ C(r).
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where

• If x3 = 0    but    x2
1
+ x2

2
≠ 1 , then

• If x2
1
+ x2

2
= 1 and x3 < 0 , then

Another approach in computing the solid angle for an unknot was given by F. Paxton; 
see [11]. He showed that the solid angle subtended at a point P with height L from the 
unknot and with distance r0 from the axis of the unknot is equal to

where Rmax =

√
(1 + r0)

2 + L2 , � = arctan
L

|1−r0| and k is given by (5.14). It can be shown 
that the Paxton formula agrees with the result of Proposition 5.13.

Finally, we remark that the computation of the solid angle of the unknot was already 
studied by Maxwell. He gave the formulae in terms of infinite series; see [10, Chapter 
XIV].

5.3  Behavior of ̊  near U

We shall now investigate the behavior of � and its partial derivatives near U. Let us write

where 𝜀 > 0 is small and � ∈ [0, 1] . We have the following result.

4��(r, x3) = C(r) +
2x3�

(1 + r)2 + x2
3

�(k)

+ ��0

⎛
⎜⎜⎜⎝
arcsin

�x3��
(1 − r)2 + x2

3

, k

⎞
⎟⎟⎟⎠

x3(1 − r)

�x3‖1 − r� ,

(5.14)k =

√
4r

(1 + r)2 + x2
3

.

�(r, 0) =
C(r)

4�
.

�(1, x3) = −�(1,−x3) =
1

4
+

1

4�

2x3√
4 + x2

3

�

(√
4

4 + x2
3

)
.

𝛷 =

⎧
⎪⎪⎨⎪⎪⎩

1

2
−

1

4𝜋

2L

Rmax

�(k) −
1

4
�0(𝜉, k) if r0 < 1

1

4
−

1

4𝜋

2L

Rmax

�(k) if r0 = 1

−
1

4𝜋

2L

Rmax

�(k) +
1

4
�0(𝜉, k) if r0 > 1

x1 = 1 + � cos 2��, x2 = 0 and x3 = � sin 2��
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Proposition 5.15 (see [4, Proposition 6.4.2]) The limit as � → 0+ is given by

Sketch of proof Use r = 1 + � cos 2�� , x3 = � sin 2�� and apply Proposition 5.13 together 
with a fact that

  ◻

Remark 5.16 The sign of the limit is −� and not +� . It is not hard to see that the orienta-
tion convention for the circle, that is, such that t ↦ (cos t, sin t, 0) is an oriented parameteri-
zation of U is opposite to the convention adopted in Sect. 4.2.

Next we compute the derivatives of � near U. It is clear that the map � for the circle 
is invariant with respect to the rotational symmetry around the z–axis. Hence, if � is the 
longitudinal coordinate near U, then �

��
� = 0 . The two coordinates we have to deal 

with are the meridional and radial coordinates � and � . The first result is the following.

Proposition 5.17 (see [4, Proposition 6.4.3]) We have

We observe that as � → 0+ , we have k → 1− by (5.14). The numerator �(k) − �(k) 
blows up, so the right-hand side of the formula in Proposition  5.17 is divergent as 
� → 0 . For future use, we remark that by (5.4) and Proposition 5.17 we have

for some constant Clin , which can be explicitly calculated.
By Proposition  5.17 the sign of �

��
� depends on sin 2�� . Hence, 

�(1 + � cos 2��, 0, � sin 2��) is non-decreasing with respect to � when � ∈ [0,
1

2
] and it is 

non-increasing when � ∈ [
1

2
, 1] . Since we know that

Dini’s theorem, see, e.g., [12, Theorem  7.13], yields that as � → 0+ , 
�(1 + � cos 2��, 0, � sin 2��) converges uniformly to −� on [0,  1]. With this, the map 
(�, �) ↦ �(1 + � cos 2��, 0, � sin 2��) extends to the set {� = 0} even though � itself is not 
defined at (1, 0, 0).

Remark 5.19 This extension of � through {� = 0} will be generalized in the Continuous 
Extension Lemma 7.10.

We now estimate the derivative of � with respect to �.

lim
�→0+

�(1 + � cos 2��, 0, � sin 2��) = −� ∈ ℝ∕Z.

lim
�→0+

2� sin 2��√
4 + 4� cos 2�� + �2

�

��
4 + 4� cos 2��

4 + 4� cos 2�� + �2

�
= 0.

�

��
�(1 + � cos 2��, 0, � sin 2��) =

1

4�

2 sin 2��(�(k) − �(k))

(1 + � cos 2��)
√
4 + 4� cos 2�� + �2

.

(5.18)
||||
�

��
�(1 + � cos 2��, 0, � sin 2��)

|||| ⩽ Clin(− ln �)

lim
�→0+

�(1 + � cos 2��, 0, � sin 2��) = −�,
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Proposition 5.20 (see [4, Proposition 6.4.4])

and

Proof Set

Note that

and

Using (5.7) and (5.8), we have

See also [4, Equation (6.11) and Proposition 6.4.3]. As � → 0+ , we have k → 1 , k′ → 0 . 
Since k��(k) → 0 and k��(k) → 0 as � → 0+ , the only significant term in the above expres-

sion is − �(k)√
1 − k�2 sin2 2��

 , and hence,

𝜕

𝜕𝜆
𝛷(1 + 𝜀 cos 2𝜋𝜆, 0, 𝜀 sin 2𝜋𝜆) < 0

lim
�→0+

�

��
�(1 + � cos 2��, 0, � sin 2��) = −1.

k =

�
4 + 4� cos 2��

4 + 4� cos 2�� + �2

k� =
√
1 − k2 =

�√
4 + 4� cos 2�� + �2

.

�k

��
= 2�

−k�3 sin 2��√
1 + � cos 2��

�k�

��
=

−k√
1 − k2

�k

��
= −

k

k�
�k

��
.

�

��
�(1 + � cos 2��, 0, � sin 2��)

=
1

4�

�

��
(2 sin 2��k��(k) ± ��0(arcsin � sin 2���, k))

=
1

2�
sin 2��

�
�(k)

�k�

��
+ k�

��(k)

��

�
+ k��(k) cos 2��

±
1

4

�
�

�(arcsin � sin 2���)�0(arcsin � sin 2���, k))
�
�(arcsin � sin 2���)

��

±
1

4

�
�

�k
�0(arcsin � sin 2���, k))

�
�k

��

=
1

2�
sin 2��

�k

��

�
�(k) −�(k)

kk�

�
+ k��(k) cos 2��

−

�
�(k) − k�2 sin2 2���(k))√

1 − k�2 sin2 2��

�
−

1

2�

�
(�(k) −�(k)) sin 2�� cos 2��

k
√
1 − k�2 sin2 2��

�
�k

��
.
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  ◻

We have estimated the derivatives of � with respect to � and � . We can now give the fol-
lowing corollary, which is a straightforward consequence of (5.18).

Corollary 5.21 The derivatives �

�xj
�(x1, x2, x3) , j = 1, 2, 3 have at most a logarithmic pole 

at points (x1, x2, x3) close to U. More precisely, there exists a constant Ccirc such that

We remark that from (2.18), we get much weaker estimates on the derivative. We do not 
know whether these weaker estimates can be improved for general manifolds M.

To conclude, we show level sets of the function (r, x3) ↦ �(r, x3) for the circle in Fig. 6. 
Notice that in the figure the half-lines stemming from point (1, 0) (and not parallel to the 
x3 = 0 line) intersect infinitely many level sets near the point (1,  0). This suggests that 
the radial derivative �

��
�(1 + � cos 2��, � sin 2��) is unbounded as � → 0+ . We proved this 

fact rigorously in Proposition 5.17.

6  Derivatives of ̊  near M

We begin by recalling a well-known fact in differential geometry.

Proposition 6.1 Let X ⊂ ℝ
n+2 be a k-dimensional, smooth, compact submanifold with 

smooth boundary. Then, there exists a constant CX such that for every x ∈ ℝ
n+2 and for any 

r > 0 we have

lim
�→0+

�

��
�(1 + � cos 2��, 0, � sin 2��) = −�(1) = −1.

|||||
�

�xj
�(x1, x2, x3)

|||||
⩽ Ccirc(− ln dist((x1, x2, x3),U)).

vol k(X ∩ B(x, r)) ⩽ CXr
k.

Fig. 6  Level sets of the function 
(r, x3) ↦ �(r, x3) for the circle
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Moreover, increasing CX if necessary, we may assume that if � is a k–form on ℝn+2 whose 
coefficients are bounded by T, then | ∫

X∩B(x,r)
�| ⩽ CXTr

k.

The result is well known to the experts; therefore, we present only a sketchy proof.

Sketch of proof Let �k be the volume of unit k-dimensional ball. By smoothness of X, we 

infer that limr→0

vol k(X ∩ B(x, r))

rk
 is 0, 1

2
�k or �k depending on whether x ∉ X , x ∈ �X or 

x ∈ X⧵�X . Using Vitali’s covering theorem, see, e.g., [8, Section 1.5], one shows that there 

exists r0 independent of x such that 
vol k(X ∩ B(x, r))

rk
⩽ 2�k for all r < r0 . We take CX to be 

the maximum of 2�k and vol k(X)∕rk0.
The second part is standard and left to the reader.   ◻

6.1  The Separation Lemma

The form �z used in Sect.  2.2 has a pole at z ∈ Sn+1 . In the applications for given 
x ∈ ℝ

n+2⧵M , we choose a point z such that z ∉ Sec x(M) . Such a point exists; see 
Remark 2.9. However, in order to obtain a meaningful bound for Sec ∗

x
�z , we need to know 

that z is separated from Sec x(M) , in the sense that there exists a constant D such that 
⟨y, z⟩ ⩽ D for any y ∈ Sec x(M) . In this section, we show that the constant D < 1 can be 
chosen independently of x.

Lemma 6.2 (Separation lemma) There exist 𝜀0 > 0 and D < 1 such that the set N0 of 
points at distance less than �0 from M and not lying in M (using algebraic sums this set 
can be written as N0 = (M + B(0, �0))⧵M ) can be covered by a finite number of open sets 
U1,… ,Ul with the following property: for each i there exists a point zi ∈ Sn+1 such that for 
any x ∈ Ui we have Sec x(M) ⊂ {u ∈ Sn+1 ∶ ⟨u, zi⟩ ⩽ D}.

Remark 6.3 In general, it is impossible for a given point x ∈ M to find an element z ∈ Sn+1 
and a neighborhood U ⊂ ℝ

n+2 of x, such that for every x� ∈ U we have z ∉ Sec x� (M) . In 
fact, the opposite holds. For any z ∈ Sn+1 the sequence xn = x −

z

n
 has the property that 

z ∈ Sec xn
(M) and xn → x . This is the main reason why the proof of an apparently obvious 

lemma is not trivial.
Put differently, the subtlety of the proof of Lemma 6.2 lies in the fact that the image 

Sec x(M) can be defined for x ∈ M as a closure of Sec x(M⧵{x}) , but we cannot argue that 
Sec x(M) depends continuously on x, if x ∈ M.

Proof of Lemma 6.2 Take a point x ∈ M . Let V be the affine subspace tangent to M at x, 
that is, V = x + TxM . The image Sec x(V⧵{x}) is the intersection

Lemma 6.4 For any open subset U ⊂ Sn+1 containing Sx , there exists r > 0 such that 
Sec x(M ∩ B(x, r)⧵{x}) is contained in U.

Sx ∶= TxM ∩ Sn+1.
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Proof Suppose the contrary, that is, for any n there exists a point yn ∈ M such that 
‖x − yn‖ <

1

n
 and Sec x(yn) ∉ U . In particular, yn → x . As M is a smooth submanifold of 

ℝ
n+2 , the tangent space TxM is the linear space of limits of secant lines through x. This 

means that if yn → x and yn ∈ M , then, up to passing to a subsequence, Sec x(yn) converges 
to a point in Sx . But then, starting with some n0 > 0 , we must have Sec x(yn) ∈ U for all 
n > n0 . Contradiction.   ◻

Choose now a neighborhood U of Sx and r from Lemma 6.4. As Sx is invariant with 
respect to the symmetry y ↦ −y , we may and shall assume that U also is. We assume that 
U is small neighborhood of Sx , but in fact we shall only need that U is not dense in Sn+1 . 
We shall need the following technical result.

Lemma 6.5 Suppose v ∈ Sn+1⧵U . Then there exists an open neighborhood Wv ⊂ ℝ
n+2 of x, 

such that if x� ∈ Wv , then either v ∉ Sec x� (M ∩ B(x, r)) or −v ∉ Sec x� (M ∩ B(x, r)).

Proof of Lemma 6.5 We argue by contradiction. Assume the statement of the lemma does 
not hold. That is, there is a sequence xn converging to x such that both v and −v belong 
to Sec xn

(M ∩ B(x, r)) . This means that for any n the line lxn ∶= {xn + tv, t ∈ ℝ} intersects 
M ∩ B(x, r) in at least one point for t > 0 and at least one point for t < 0 . For each n, choose 
a point y+

n
 in M ∩ B(x, r) ∩ lxn ∩ {t > 0} and a point y−

n
 in M ∩ B(x, r) ∩ lxn ∩ {t < 0} . In par-

ticular, Sec xn
(y+

n
) = v and Sec xn

(y−
n
) = −v.

By taking subsequences of {y+
n
} and {y−

n
} we can assume that y+

n
→ y+ and y−

n
→ y− for 

some y+, y− ∈ M ∩ B(x, r) ; compare Fig. 7.
If y+ ≠ x , then the line lx = {x + tv} passes through y+ , but this means that 

v ∈ Sec x(M ∩ B(x, r)) , but the assumption was that v ∉ U , so we obtain a contradiction. 
So y+ = x . Analogously we prove that y− = x.

Finally, suppose y+ = y− = x . The line lx = {x + tv} is the limit of secant lines passing 
through y+

n
 and y−

n
 ; therefore, lx is tangent to M at x. But then v ∈ Sx ⊂ U . Contradiction.  

 ◻

We extend the argument of Lemma 6.5 in the following way.

M

lx1

lx2

x

x2

x1

M

lx1

lx2

x

x2

x1

Fig. 7  Proof of Lemma 6.5. To the left: a sequence of lines lx1 , lx2 converges to a line that is tangent to M 
at x, so that v ∈ TxM . To the right: a sequence of lines lx1 , lx2 converges to a line that passes through x and 
intersects M at some point. Then v ∈ Sec x(M)
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Lemma 6.6 Suppose v ∈ Sn+1⧵U . Then there exist an open set Vloc ⊂ Sn+1 containing 
v and an open ball Bloc ⊂ B(x, r) containing x such that if x� ∈ Bloc then there exists a 
choice of sign � ∈ {±1} possibly depending on x such that �Vloc is disjoint from the image 
Sec x� (M ∩ B(x, r)).

Proof The proof is a modification of the proof of Lemma 6.5. We leave the details for the 
reader.   ◻

Resuming the proof of Lemma 6.2, define the sets Bloc+ and Bloc− by

Then clearly Bloc+ ∪ Bloc− = Bloc.

Lemma 6.7 The subsets Bloc+⧵M and Bloc−⧵M are open subsets of Bloc⧵M.

Proof The lemma follows from the fact that M ∩ B(x, r) is closed and Sec x′ is continuous 
with respect to x′ as long as x� ∉ M .   ◻

The next step in the proof of the Separation Lemma 6.2 is the following.

Lemma 6.8 There exists an open set Bx ⊂ ℝ
n+2 containing x, a point vx ∈ Sn+1 and an open 

set Vx ⊂ Sn+1 containing vx such that if x� ∈ Bx and v� ∈ Vx then either v′ or −v� does not 
belong to Sec x� (M).

Moreover, there are two subsets B±

x
 of Bx such that B+

x
∪ B−

x
= Bx , B±

x
 are open in Bx⧵M 

and if x� ∈ B±

x
 and v� ∈ Vx , then Sec x� (M) does not contain ±v�.

Proof Let U and r > 0 be as in the statement of Lemma 6.4. The set Sec x(M⧵B(x, r)) is 
the image of the compact manifold M⧵B(x, r) of dimension n under a smooth map; hence, 
its interior is empty. Therefore, there exists a point v ∈ Sn+1 such that neither v nor −v is 
in the image Sec x(M⧵B(x, r)) and also neither v nor −v is in U. By the continuity of Sec x , 
there exist a small ball Bgl ⊂ B(x, r) with center x and a small ball Vgl ⊂ Sn+1 containing v 
such that if v� ∈ Vgl and x� ∈ Bgl , then neither v′ nor −v� belongs to Sec x� (M⧵B(x, r)) . Let 
Vloc and Bloc be from Lemma 6.6. Define Vx = Vloc ∩ Vgl and Bx = Bloc ∩ Bgl . Then for any 
x� ∈ Bx and v� ∈ Vx we have that either v� ∉ Sec x�M or −v ∉ Sec x�.

We define B±

x
 as intersections of Bloc± with Bx , where Bloc± are as in Lemma 6.7.   ◻

We resume the proof of the Separation Lemma 6.2. Define

As Vx is an open set containing vx , we have 𝛿x < 1 . This means that if x� ∈ Bx and 
y ∈ Sec x(M) , then either ⟨y, vx⟩ ⩽ �x or ⟨y,−vx⟩ ⩽ �x.

Cover now M by open sets Bx for x ∈ M . As M is compact, there exists a finite set 
x1,… , xn such that M ⊂ Bx1

∪⋯ ∪ Bxn
 . The compactness of M implies also that there 

exists 𝜀0 > 0 such that the set M + B(0, �0) , that is, the set of points at distance less than 
�0 from M, is contained in Bx1

∪⋯ ∪ Bxn
 . Define D = max(�x1 ,… , �xn ) and let 

Bloc± = {x� ∈ Bloc ∶ for every v� ∈ Vlocwe have ± v� ∉ Sec x� (M ∩ B(x, r))}.

�x = sup
y∈Sn+2⧵Vx

⟨vx, y⟩.
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N0 = (M + B(0, �0))⧵M . For i = 1,… , n define vi = vxi and B±

i
= B±

xi
∩ N0 . Then B±

i
 cover 

N0 and for any i, if x� ∈ B±

i
 and y ∈ Sec x� (M) , then ⟨y,±vi⟩ ⩽ D as desired.   ◻

For points x that are at distance greater than �0 from M, the statement of the Separa-
tion Lemma 6.2 holds as well.

Theorem  6.9 (Separation Theorem) There exists a constant D < 1 such that for any 
x ∈ ℝ

n+2⧵M there exists an open neighborhood Ux ⊂ ℝ
n+2 of x and a point z ∈ Sn+2 , such 

that for any x� ∈ Ux and y ∈ Sec x� (M) we have ⟨y, z⟩ < D.

Proof Denote by Dclose the constant D from the Separation Lemma 6.2. The constant Dclose 
works for points at distance less than �0 from M.

We work with points far from M. Choose R > 0 large enough so that M ⊂ B(0,R) . For 
any x ∉ B(0,R) we can take the point x

‖x‖ for z and then if y ∈ Sec x(M) , then ⟨y, z⟩ ⩽ 0 . By 
the continuity of x ↦ Sec x , we may choose a neighborhood Wx of x such that if x� ∈ Wx 
and yn ∈ Sec x� (M) , then ⟨y, z⟩ is bounded from above by a small positive number, say 1

10
 . 

This takes care of the exterior of the ball B(0, R). We define Dfar =
1

10
 . The constant Dfar 

works for points outside the ball B(0, R).
Let P = {x ∈ B(0,R) ∶ dist (x,M) ⩾ �0} . For any point x ∈ P , Sec x(M) is the image of 

an n-dimensional compact manifold under a smooth map, so it is a closed nowhere dense 
subset of Sn+1 . Thus, there exist a point zx ∈ Sn+1 and a neighborhood of Ux of zx such that 
Ux ∩ Sec x(M) = � . Shrinking Ux if necessary, we may guarantee that there exists a neigh-
borhood Wx ⊂ ℝ

n+2 of x such that if x� ∈ Wx and y ∈ Sec x� (M) , then y ∉ Ux . We define 
again

The sets Wx cover P, and we take a finite subcover Wx1
,… ,WxM

 . We define Dmid as the 
maximum of �x1 ,… , �xM . The constant Dmid works for points that are at distance between at 
least �0 from M, but stay inside B(0, R).

It is enough to take D = max(Dclose,Dmid,Dfar) .   ◻

From now on, we assume that D < 1 is fixed.

6.2  The Drilled Ball Lemma

We begin to bound the value of �

�xi
�(x) . To this end, we shall differentiate the coefficients 

of Sec ∗

x
�z . The point z will always be chosen in such a way that ⟨Sec x� (y), z⟩ < D for all 

y ∈ M and for all x′ sufficiently close to x.
The next result estimates the contribution to ��

�xj
 from integrating Sec ∗

x
� on a drilled ball.

Lemma 6.10 Suppose �, � ∈ (0, 1) and x ∈ ℝ
n+2 . Fix 𝜀 > 0 and define

Then, for any i = 1,… , n + 2

𝛿x = sup
y∈Sn+2⧵Vx

⟨zx, y⟩ < 1.

M
���

∶= M ∩ (B(x, ��)⧵B(x, ��)).
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where � = n� − (n + 1)� and Cdrill = CMC
D
n,1

 is independent of � , � and x.

Proof By Lemma  2.23 and the Separation Lemma  6.2, the derivative of the pullback 
�

�xi
Sec ∗

x
� is an n–form whose coefficients are bounded from above by 

CD
n,1

‖y−x‖n+1 . If y ∈ M
���

 , 
then ‖y − x‖ ⩾ �

� . The form �

�xi
Sec ∗

x
� is integrated over M

���
 . We use Proposition  6.1 

twice: first to conclude that the volume of M
���

 is bounded from above by CM�
n� and sec-

ond to conclude that the integral is bounded by CD
n,1
CM�

n�−(n+1)� .   ◻

The next result shows that if M is locally parameterized by some �  , then if we take a 
first-order approximation, the contribution to the derivative of �(x) from the local piece 
does not change much. We need to set up some assumptions.

Choose 𝜀 > 0 and � ∈ (
1

2
, 1) . For a fixed point x at distance � from M, we set 

M
��

= M ∩ B(x, ��) . We assume that �, � are such that M
��

 can parameterized by

where B′ is some bounded open subset in ℝn and � (0) is the point on M
��

 that is nearest 
to x. We also assume that B′ is a star-shaped, that is, if w ∈ B� , then tw is also in B′ for 
t ∈ [0, 1] . For simplicity of the formulae, we may transform B′ in such a way that

Choose 𝜎 > 0 in such a way that B′ is a subset of an n-dimensional ball B(0, �) and B′ 
is not a subset of B(0, �∕2) . Let �1 be the first-order approximation of � , that is 
�1(w) = � (0) + D� (0)w . Let M1 be the image of B′ under �1 . Write C1 and C2 for the 
supremum of the first and second derivatives of � on B′.

Lemma 6.12 (Approximation Lemma) Suppose

and � ⩾
1

2
 . There exists a constant Capp depending on � such that

where � = �(n + 3) − (n + 2).

Proof As our first step, we relate � with � and � .   ◻

|||||
𝜕

𝜕xi ∫M
𝛼𝛽𝜀

Sec ∗

x
𝜂

|||||
< Cdrill𝜀

𝛾 ,

� ∶ B�
→ M

��
,

(6.11)D� (0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 … 0

0 1 … 0

⋮ ⋮ ⋱ ⋮

0 0 … 1

0 0 … 0

0 0 … 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(6.13)𝜀 < min
(
(4C2)

−1∕𝛼 , 2−1∕(𝛼−1), (32C2)
−1∕(2𝛼−1)

)

|||||
�

�xj ∫M
��

Sec ∗

x
� −

�

�xj ∫M1

Sec ∗

x
�

|||||
⩽ Capp�

� ,
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Lemma 6.14 We have � ⩽ 4��.

Proof of Lemma 6.14 Suppose w ∈ B(0, �) , w ≠ 0 . Write w̃ for the vector in ℝn+2 given by 
1

‖w‖ (w, 0, 0) . Define a function �w ∶ ℝ → ℝ by the formula �w(t) = ⟨� (t
w

‖w‖ ), w̃⟩ . By the 

definition, we have �w(0) = 0 . From (6.11) we calculate that d
dt
�w(0) = 1 . Furthermore, as 

the second derivative of � is bounded by C2 we have that | d
2

dt2
𝛹w(t)| < C2 . It follows that 

�w(t) ⩾ t −
C2

2
t2 . Set t0 = 2�� . As 𝜀

𝛼
<

1

4C2

 by the assumptions, we have 

�w(t0) ⩾ 2�� − 2C2�
2�

⩾
3

2
�
� . Clearly, �w(t0) ⩽ ‖� (t0

w

‖w‖ )‖ ; hence, ‖� (t0
w

‖w‖ )‖ ⩾
3

2
�
�.

The condition 𝜀 < 2−1∕(𝛼−1) implies that 1
2
𝜀
𝛼
> 𝜀 . By the triangle inequality,

This means that � (t0
w

‖w‖ ) cannot possibly belong to B(x, ��) ; hence, it is not in the image 
� (B�

) = M ∩ B(x, ��) . This shows that t0
w

‖w‖ cannot belong to B′ . As w was an arbitrary 
point in B′ , this implies that no element in B′ can have norm 2�� . As B′ is connected, this 
implies that B′ must be contained in B(0, 2��) . By the definition of � , we immediately 
recover that � ⩽ 4�� .   ◻

We resume the proof of Lemma  6.12. Choose w ∈ B(0, �) . Write y0 = � (w) , 
y1 = �1(w) . By the Taylor formula, we have

We have ‖w‖ < 4𝜀𝛼 and 2𝛼 > 1 . Using the assumption that 𝜀 < (32C2)
−1∕(2𝛼−1) we infer 

that C2(4�
�
)
2
⩽

1

2
� so that ‖�1(w) − � (w)‖ ⩽

1

2
� . Therefore, as dist (x,M

��
) = � , we infer 

that for each point y′ in the interval connecting y0 and y1 we have ‖x − y�‖ ⩾
1

2
� ; see Fig. 8.

Write now for i = 1,… , n + 1:

‖𝛹 (t0
w

‖w‖ ) − x‖ ⩾ ‖𝛹 (t0
w

‖w‖ )‖ − ‖x‖ > 𝜀 + 𝜀
𝛼
− 𝜀 = 𝜀

𝛼 .

(6.15)‖y0 − y1‖ = ‖�1(w) − � (w)‖ ⩽ C2‖w‖2.

Fig. 8  Notation of the proof of 
Approximation Lemma 6.12



444 Annals of Global Analysis and Geometry (2020) 57:415–454

1 3

By the mean value theorem, for any i, j there exists a point y′ in the interval connecting y0 
and y1 such that

where �v is the directional derivative in the direction of the vector y0−y1

‖y0−y1‖ . Now 
‖x − y�‖ ⩾

1

2
� ; hence, by Lemma 2.21:

From (6.15) we deduce that

for some constant C depending on C2.
Set Gij(w) and Hij(w) to be defined by

The values of Gij and Hij are bounded by a constant depending on C1 . Moreover, the expres-
sion D� (w) − D�1(w) has all entries bounded from above by ‖w‖ times a constant; hence, 
an exercise in linear algebra shows that

for some constant CG depending on C1 . Now write

We estimate using (6.19):

Combining this with (6.19), we infer that

where the factor �−n−1 comes from the estimate of Fij(x,� (w)) and the constant C depends 
on previous constants, that is, C depends on C1 , C2.

We use now (6.21) together with (6.16) and the definitions of Gij , Hij . After straightfor-
ward calculations, we obtain for some constant C:

(6.16)
� Sec ∗

x
�

�xi
=

∑
i≠j

Fij(x, y)dy1 ∧⋯ d̂yi, dyj …∧ dyn+2.

(6.17)Fij(x, y0) − Fij(x, y1) = ‖y0 − y1‖�vFij(x, y
�
),

(6.18)|||�vFij(x, y
�
)
||| ⩽ CD

n,2

(
1

2
�

)−n−2

.

(6.19)
���Fij(x,� (w)) − Fij(x,�1(w))

��� ⩽ C‖w‖2�−n−2

�
∗dy1 ∧⋯ d̂yi, dyj …∧ dyn+2 = Gijdw1 ∧⋯ ∧ dwn

�
∗

1
dy1 ∧⋯ d̂yi, dyj …∧ dyn+2 = Hijdw1 ∧⋯ ∧ dwn.

(6.20)�Gij(w) − Hij(w)� ⩽ CG‖w‖

�
∗Fij(x, y)dy1 ∧⋯ d̂yi, dyj …∧ dyn+2 − �

∗

1
Fij(x, y)dy1 ∧⋯ d̂yi, dyj …∧ dyn+2

=

(
Fij(x,� (w))Gij(w) − Fij(x,�1)(w)Hij(w)

)
dw1 ∧⋯ ∧ dwn.

|Fij(x,� (w))Gij − Fij(x,�1)Hij| ⩽
|Fij(x,� (w)) − Fij(x,�1(w))| ⋅ |Hij(w)| + |Fij(x,� (w)| ⋅ |Gij(w) − Hij(w)|.

(6.21)�Fij(x,� (w))Gij − Fij(x,�1)Hij� ⩽ C(‖w‖2�−n−2 + ‖w‖�−n−1),
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The last expression is bounded by Capp(�
(n+3)�−(n+2)

+ �
(n+2)�−(n+1)

) , where Capp is a new 
constant. As 𝛼 < 1 and 𝜀 ≪ 1 , the term �(n+3)�−(n+2) is dominating.   ◻

In the following result, we show that the constants in the Approximation Lemma 6.12 
can be made universal, that is, depending only on M and � and not on x and �.

Proposition 6.22 For any � ∈ (
1

2
, 1) there exist constants C

�
 and 𝜀1 > 0 such that for any 

x ∉ M such that dist (x,M) < 𝜀1 we have

Here �V is a map � defined relatively to the plane V that is tangent to M at a point y such 
that dist (x,M) = ‖x − y‖.

Proof Cover M by a finite number of subsets Ui such that each of these subsets can be 
parameterized by a map �i ∶ Vi → Ui , where Vi is a bounded subset of ℝn . By the com-
pactness of M, there exists 𝜀1 > 0 such that if U ⊂ M has diameter less than �1 , then U 
is contained in one of the Ui . Shrinking �1 if necessary, we may and shall assume that if 
dist (x,M) < 𝜀1 , then there is a unique point y ∈ M such that dist (x,M) = ‖x − y‖.

Set C1 and C2 to be the upper bound on the first and the second derivatives of all of the 
�i . The derivative D�i(w) is injective for all w ∈ Vi . We assume that C0 > 0 is such that 
‖D�i(w)v‖ ⩾ C0‖v‖ for all v ∈ ℝ

n , i = 1,… , n and w ∈ Vi.
Choose a point x at distance 𝜀 > 0 to M such that 2𝜀𝛼 < 𝜀1 and 𝜀 < 𝜀1 . Let 

M
��

= B(x, ��) ∩M . As this set has diameter less than �1 , we infer that M
𝛼𝜀

⊂ Ui for some 
i. Let B = 𝛹

−1
i
(M

𝛼𝜀
) ⊂ Vi . Let y ∈ M be the unique point realizing dist (x,M) = ‖x − y‖ . 

We translate the set B in such a way that �i(0) = y . Next, we rotate the coordinate system 

in ℝn+2 in such a way that the image of D� (0) has a block structure A⊕

(
0 0

0 0

)
 for some 

invertible matrix A. We know that A−1 is a matrix with coefficients bounded by a universal 
constant depending on c1 and C1 . Define now B0 = A−1

(B) and �x = �i◦A . Then � has first 
and second derivatives bounded by a constant depending on C1,C2 and c1 . Denote these 
constants by C1(x),C2(x) . Let also be C0(x) > 0 be such that if w,w�

∈ B , then 
‖�x(w) − �x(w

�
)‖ ⩾ C0(x)‖w − w�‖ . Such constant exists because D� (w) is injective and 

we use the mean value theorem. Moreover, C0(x) is bounded below by a constant depend-
ing on C1 , C2 and C0.

It remains to ensure that the following two conditions are satisfied. First, the set 
B = �

−1
x
(M

��
) has to be star-shaped, second the inequality (6.13) is satisfied. The second 

condition is obviously guaranteed by taking �1 sufficiently small. We claim that the first 
condition can also be guaranteed by taking small �1 . To see this, we first notice that if �1 is 
sufficiently small, then M

��
 is connected for all 𝜀 < 𝜀1 . Next, we take a closer look at the 

definition of B ⊂ Vi . Namely, we can think of B as the set of points w ∈ Vi satisfying the 
inequality R(w) ⩽ �

� , where

For v ∈ ℝ
n we have

�����∫B�

�

�xj

�
�

∗ Sec x(y) − �
∗

1
Sec x(y)

������
⩽ ∫B(0,�)

C(‖w‖2�−n−2 + ‖w‖�−n−1).

||||
��

�xi
(x) −

��V

�xi
(x)

|||| ⩽ C
�
�
(n+2)�−(n+1).

R(w) = ‖�x(w) − x‖2 = ⟨�x(w) − x,�x(w) − x⟩.
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By the construction of �x, we have that ⟨D�x(0)v,D�x(0)v⟩ = ‖v‖2; hence,

Generalizing this for w ∈ B and v ∈ ℝ
n, we have

Now ‖D2
�x(w)(v)‖ ⩽ C2(x)‖v‖2 and by the mean value theorem also 

‖DR(w) − DR(0)‖ ⩽ C2(x)‖w‖ . Suppose ‖x − �x(w)‖ ⩽ �
� . Then ‖�x(w) − �x(0)‖ ⩽ 2�� 

and so ‖w‖ ⩽ 2C0(x)�
� . Hence,

This shows that R is a convex function if � is sufficiently small. Hence, B is a convex sub-
set, in particular, it is also star-shaped. Therefore, all the assumptions of the Approximation 
Lemma 6.12 are satisfied; the statement follows.   ◻

6.3  Approximation Theorem

Combining the Drilled Ball Lemma 6.10 and Proposition 6.22, we obtain a result which is 
the main technical estimate.

Theorem 6.23 (Approximation Theorem) For any � ∈ (
n+2

n+4
, 1) there exists a constant C

�
 

such that if x is at distance 𝜀 > 0 to M and 𝜀 < 𝜀1 , y0 ∈ M is a point realizing the mini-
mum of dist(x,  M) and V is the tangent space to M passing through y0 , then for any 
j = 1,… , n + 2

Here, �V is the map � defined relatively to the hyperplane V.

Remark 6.24 In Sect. 4, we have shown that �V is not well defined, but if we restrict to 
‘Seifert hypersurfaces’ for V which are half-spaces (and that is what we in fact do), then 
�V is defined up to an overall constant. In particular, its derivatives do not depend on the 
choice of the half-space.

Proof Let � =
�

�xj
Sec ∗

x
� . Set also �0 =

n+2

n+3
−

�

n+3
 . We have (n + 3)�0 − (n + 2) = −� ; 

hence, by Proposition 6.22 we obtain.

Set �k+1 = �k +
1

n
(�k − �) . By the assumptions, we have 𝛼0 < 𝜃 , so 𝛼k+1 < 𝛼k and the 

sequence �k diverges to −∞ . Suppose k0 < ∞ is the first index, when �k0 ⩽ 0 . Set �k0 = 0 

D2R(0)(v, v) = 2⟨D�x(0)(v, v),�x(0) − x⟩ + ⟨D�x(0)v,D�x(0)v⟩.

D2R(0)(v, v) ⩾ (1 − 2�C2(x))‖v‖2.

D2R(w)(v, v) = ‖DR(w)v‖2 + 2⟨D2
�x(w)(v, v),�x(w) − x⟩.

D2R(w)(v, v) ⩾ (1 − 2��C0(x)C2(x) − 2��C2(x))‖v‖2.

|||||
�

�xj
�(x) −

�

�xj
�V (x)

|||||
⩽ C

�
�
−� .

(6.25)
|||||∫M∩B(x,��0 )

� − ∫V∩B(x,��0 )

�

|||||
⩽ Capp�

−� .
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in this case. We use repeatedly the Drilled Ball Lemma  6.10 for � = �k+1 and � = �k , 
k = 0,… , k0 − 1 . We are allowed to do that because for k < k0 − 1 we have

and n�k0 − (n + 1)�k0−1 ⩾ −� . Summing the inequality from the Drilled Ball Lemma 6.10 
for k from 0 to k0 − 1 , we arrive at

Recall that �k0 = 0 . Equation (6.26) does not cover the part of M outside of B(x, 1). How-
ever, on M⧵B(x, 1) , the form � is easily seen to have coefficients bounded above by a con-
stant independent of � and x; hence,

for some constant Cext depending on M but not on x and � . It remains to show

We cannot use the Drilled Ball Lemma 6.10 directly, because V is unbounded. However, 
we shall use similar ideas as in the proof of the Drilled Ball Lemma 6.10. The form � is 
an n-form whose coefficients on V are bounded by CD�

n,1
‖y − x‖−(n+1), where D′ is such that 

𝜋
−1
x
(V) ⊂ {un+2 < D�

} . Its restriction to V is equal to some function Fx(y) times the volume 
form on V, where �Fx(y)� ⩽ CVC

D�

n,1
‖y − x‖−(n+1) (it is easy to see that as V is a half-plane, 

CV exists). Therefore, we need to bound

The method is standard. Introduce radial coordinates on V centered at y0 , and notice that 
‖y − x‖ ⩽ 2‖y0 − y‖ as long as y ∈ V⧵B(x, ��0 ) . Perform first the integral (6.29) over radial 
coordinates obtaining the integral over the radius only, that is

where �n−1 is the volume of a unit sphere of dimension n − 1 . This proves (6.28) with 
Cflat = 2n−1�n−1CVC

D�

n,1
.

Combining (6.25), (6.26),(6.27) and (6.28), we obtain the desired statement.   ◻

6.4  The main estimate for the derivative

This section extends the intuitions given in Sect. 5.3.

n�k+1 − (n + 1)�k = n
(
n + 1

n
�k −

1

n
�

)
− (n + 1)�k = −�

(6.26)
|||||∫M∩B(x,�

�k0 )⧵B(x,��0 )

�

|||||
⩽ k0 ⋅ Cdrill�

−� .

(6.27)
|||||∫M⧵B(x,1)

�

|||||
⩽ Cext,

(6.28)
|||||∫V∩B(x,��0 )

� − ∫V

�

|||||
⩽ Cflat�

−� .

(6.29)∫V⧵B(x,��0 )

‖y − x‖−(n+1).

∫V⧵B(x,��0 )

‖y − x‖−(n+1) ⩽ ∫
∞

�0

2n−1�n−1r
n−1

⋅ r−n−1dr =

= 2n−1�−�0�n−1 ⩽ 2n−1�n−1�
−� ,
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The normal bundle of M ⊂ ℝ
n+2 is trivial, see [7], but there might be many different 

trivializations, one class for each element of [M, SO(2)] = [M, S1] = H1
(M) . Choose a pair 

of two normal vectors v1, v2 on M such that at each point y ∈ M , v1(y) and v2(y) form an 
oriented orthonormal basis of the normal space NyM . Choose 𝜀0 < 𝜀1 and let N be the tubu-
lar neighborhood of M of radius �0 . By taking 𝜀0 > 0 sufficiently small, we may and shall 
assume that each y� ∈ N can be uniquely written as y + t1v1 + t2v2 for y ∈ M and t1, t2 ∈ ℝ.

Let y ∈ M . Choose a local coordinate system w1,… ,wn in a neighborhood of y such 
that |||

�wj

�xi

||| ⩽ Cw for some constant Cw . The local coordinate system w1,… ,wn on M induces 
a local coordinate system on N given by w1,… ,wn, t1, t2 . Let r,� be such that 
t1 = r cos(2��) , t2 = r sin(2��).

Theorem 6.30 (Main Estimate Theorem) For � ∈

(
n+2

n+4
, 1
)
 , we have 

||||
��

�wj

|||| ⩽ CwC�
r−� and 

|||
��

�r

||| ⩽ C
�
r−� . Moreover, |||

��

��
− �

||| ⩽ C
�
r1−� , where � ∈ {±1} depending on the orientation 

of M.

Proof Choose a point x = (w1,… ,wn, t1, t2) . Let y0 = (w1,… ,wn, 0, 0) be the point mini-
mizing the distance from x to M. We shall use the Approximation Theorem 6.23. So let V 
be the n-dimensional plane tangent to M at y0 . The map �V is the map � relative to V. By 
the explicit calculations in Sect. 4, we infer that ��V

�wj

(x) =
��V

�r
(x) = 0 for j = 1,… , n and 

��V

��
= � . Now ��

�wj

 differs from the derivatives of �V by at most C
�
r−� by the Approximation 

Theorem 6.23.
On the other hand, by the chain rule ��

��
= −r sin�

��

�t1
+ r cos�

��

�t2
 . Applying Theo-

rem  6.23, we infer that |||
��

��
(x) −

��V

��
(x)

||| ⩽ C
�
r1−� . The same argument shows that 

|||
��

�r
(x)

||| ⩽ C
�
r−� . Notice that the derivatives with respect to r and � do not depend on Cw : 

this is so because the length of the framing vectors v1 and v2 is 1.   ◻

7  Behavior of ̊  near M

Throughout the section, we choose � ∈

(
n+2

n+4
, 1
)
 . The constant �0 is as defined in Sect. 6.4. 

We decrease further �0 to ensure that

so that, by Theorem 6.30

(7.1)C
𝜃
𝜀
1−𝜃
0

<
1

2

(7.2)
||||
𝜕𝛷

𝜕𝜙
− 𝜖

|||| <
1

2
.
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7.1  Local triviality of ̊  near M

Let now X = (0, �0] × S1 ×M . Let � ∶ X → N⧵M be a parameterization given by

The composition �◦� ∶ X → S1 will still be denoted by � . We are going to show that this 
map is a locally trivial fibration whose fibers have bounded (n + 1)-dimensional volume.

Lemma 7.3 (Fibration Lemma) The map � ∶ X → S1 is a smooth, locally trivial fibration, 
whose fiber is (0, �0] ×M.

Proof Choose r ∈ (0, �0] and x ∈ M . Consider the map �r,x ∶ S1 → S1 given by 
�r,x = �|

{r}×S1×{x} . The derivative of �r,x is equal to ��
��

 ; by (7.2) it belongs either to the 
interval (− 3

2
,−

1

2
) or to ( 1

2
,
3

2
) depending on the � . By the mean value theorem, a map from 

S1 to S1 with derivative in ( 1
2
,
3

2
) or in (− 3

2
,−

1

2
) is a diffeomorphism. It follows that �r,x is a 

diffeomorphism. In particular, given r ∈ (0, �0] and x ∈ M , for any t ∈ S1 , there exists a 
unique point �t(r, x) such that �(r,�t(r, x), x) = t . In this way, we get a bijection 
�t(r, x) ∶ (0, �0] ×M → �

−1
(t).

Again by (7.2) | 𝜕𝛷
𝜕𝜙
| > 1

2
> 0 , so by the implicit function theorem we infer that �t is in 

fact a smooth map. Then �t is a smooth parameterization of the fiber of � . It remains to 
show that � is locally trivial.

To this end, we choose a point t ∈ S1 and let U ⊂ S1 be a neighborhood of t. Define the 
map �̃ ∶ (0, �0] × U ×M → �

−1
(U) by the formula

Clearly, �̃ is a bijection. As �t depends smoothly on the parameter t, we infer that �̃ is a 
smooth map and the map �−1

(U) → (0, �0] × U ×M given by (r,�, x) ↦ (r,�(r,�, x), x) 
is its inverse. Therefore, �̃ is a local trivialization.   ◻

Remark 7.4 Define the map �M ∶ X → S1 ×M by �M(r,�, x) = (�(r,�, x), x) . The same 
argument as in the proof of Fibration Lemma 7.3 shows that �M is a locally trivial fibration 
with fiber (0, �0] . For given (t, x) ∈ S1 ×M, the map r ↦ (r,�t(r, x), x) parameterizes the 
fiber over (t, x).

As a consequence of Fibration Lemma 7.3, we show that � ∶ ℝ
n+2⧵M → S1 does not 

have too many critical points. This is a consequence of Sard’s theorem and the control of � 
near M provided by Lemma 7.3.

Proposition 7.5 The set of critical values of � ∶ ℝ
n+2⧵M → S1 is a closed nowhere dense 

set of measure zero.

Proof Extend � to a map from Sn+2⧵M → S1 as in Corollary 3.2. We split the Sn+2⧵M as 
a union of Sn+2⧵N and N⧵M , where, recall, N is the set of points at distance less than or 
equal to �0 . By Sard’s theorem, the map � restricted to Sn+2⧵N has a set of critical points 
which is closed boundary and of measure zero. On the other hand, on N⧵M the map has no 
critical points at all, because by the Fibration Lemma 7.3 the map � restricted to N⧵M ≅ X 
is a locally trivial fibration.   ◻

� ∶ (r,�, x) ↦ x + v1r cos� + v2r sin�.

�̃(r, t, x) = (r,�t(r, x), x).
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We conclude by showing the following control of the fibers of � ∶ X → S1:

Lemma 7.6 (Bounded Volume Lemma) There exists a constant A > 0 such that for any 
t ∈ S1 the (n + 1)-dimensional volume of �−1

(t) ∩ X is bounded from above by A.

Proof Parameterize �−1
(t) ∩ X by �t ∶ (0, �0] ×M → X as in the proof of the Fibra-

tion Lemma  7.3. Choose local coordinate system on an open subset Y ⊂ M , and let 
Xloc
r

= [r, �0] × S1 × Y  . We aim to show that

is bounded by a constant independent of r. Write

where dln+1 is the (n + 1)-dimensional Lebesgue measure on [r, �0] × Y  , we write � for �t 
and �′

z
 is a shorthand for ��

�z
 , and z is any variable of {r,w1,… ,wn} . By the implicit func-

tion theorem ��

z
= −

��

�z

(
��

��

)−1

 . Equation (7.2) implies that |||
��

��

||| ⩾
1

2
 , then

Hence,

where C
�
 is a constant. Thus,

Now M being compact can be covered by a finite number of coordinate neighborhoods, we 
sum up all the contributions to get

  ◻

Remark 7.9 Bounded Volume Lemma  7.6 shows that the volume of the fibers �−1
(t) 

is bounded near M by a constant that does not depend on t. This does not generalize to 
bounding a global volume of �−1

(t) : one can show that the volume of �−1
(0) is infinite 

using Corollary 3.2.

7.2  Extension to of ̊  through r = 0

We pass to study the closure of the fibers �−1
(t) ∩ X . This is done by extending the map 

� . Set

vol n+1(�
−1
(t) ∩ Xloc

r
)

(7.7)vol n+1�
−1
(t) ∩ Xloc

r
= ∫

[r,�0]×Y

√
1 + ��2

w1
+⋯ + ��2

wn
+ ��2

r
dln+1,

(7.8)
|��

wj
| ⩽ 2C

�
Cwr

−� , j = 1,… , n

|��

r
| ⩽ 2C

�
r−� .

√
1 + ��2

w1
+⋯ + ��2

wn
+ ��2

r
⩽

√
1 + 4C2

�
+ 4(n + 1)C2

w
C2
�
r−� ⩽ C

�
r−� ,

vol n+1�
−1
(t) ∩ Xloc

r
⩽ C

�
(�

1−�
0

− r1−�) vol nY ⩽ C
�
�
1−�
0

vol nY .

vol n+1�
−1
(t) ∩ X ⩽ C

�
�
1−�
0

vol nM.
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The manifold X can be regarded as an analytic blowup of the neighborhood N⧵M.

Lemma 7.10 (Continuous Extension Lemma) The map � ∶ X → S1 extends to a continu-
ous map � ∶ X → S1.

Proof Let fr ∶ S1 ×M → S1 be given by fr(�, x) = �(r,�, x) . We shall show that as r → 0 
the functions fr converge uniformly. The limit, f0 , will be the desired extension.

We use Proposition  6.30. In fact, choose r0, r1 ∈ (0, �0] . Then for (�, x) ∈ S1 ×M we 
have

As r ↦ r1−� is a uniformly continuous function taking value 0 at 0, we obtain that fr uni-
formly converge to some limit, which we call f0 . This amounts to saying that � extends to 
a continuous function on X .   ◻

Remark 7.11 Consider the map �M defined in Remark 7.4. Then the proof of the Continu-
ous Extension Lemma 7.10 generalizes to showing that the map �M extends to the continu-
ous map �M ∶ X → S1 ×M.

We can also calculate the function � for r = 0.

Proposition 7.12 There exists a continuous function � ∶ M → S1 such that 
�(0,�, x) = �� + �(x) mod 1.

Proof By Main Estimate Theorem 6.30 we have that for any c > 0 there exists rc > 0 such 
that if r ∈ (0, rc) , then for �,��

∈ S1 and x ∈ M:

As �(r,�, x) converges uniformly to �(0,�, x) , we infer that (7.13) holds for r = 0 and 
arbitrary c > 0 . This means that actually

This is possible only if �(0,�, x) = �(0, 0, x) ± � mod 1 , where the sign is equal to � . We 
set �(x) = �(0, 0, x) .   ◻

Recall from the Fibration Lemma 7.3 that

is a diffeomorphism.

Theorem 7.14 For any t ∈ S1 , the maps �t ∶ (0, �0] ×M → �
−1
(t) extend to a continuous 

map 𝛩t ∶ [0, 𝜀0] ×M → 𝛷
−1
(t) ⊂ X . The map �t is injective.

X = [0, �0] × S1 ×M.

|fr0 (�, x) − fr1 (�, x)| ⩽ ∫
r1

r0

||||
�

�r
fr(�, x)

||||dr ⩽ ∫
r1

r0

C
�
r−�dr =

C
�

1 − �
(r1−�

0
− r1−�

1
).

(7.13)(1 − c)|� − �
�| ⩽ |�(r,�, x) −�(r,��, x)| ⩽ (1 + c)|� − �

�|.

|�(0,�, x) −�(0,��, x)| = |� − �
�|.

�t ∶ (0, �0] ×M → �
−1
(t)
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Proof By (7.8) ��t

�r
 is bounded by 2C

�
r−� , so we the same argument as in the proof of 

Lemma 7.10 shows that �t(r, x) converges as r → 0 uniformly with respect to x. Therefore, 
�t is well defined.

The composition �M◦�t ∶ (0, �0] ×M → (0, �0] ×M is an identity. Hence, 
�M◦�t ∶ [0, �0] ×M → [0, �0] ×M is also an identity. In particular, �t is injective.   ◻

We next prove the surjectivity of �t . Before we state the proof, we indicate a possible 
problem in Fig. 9.

Theorem 7.15 The map �t is onto �
−1
(t).

Proof By the Fibration Lemma 7.3, the map �t is onto 𝛷−1
(t) ⊂ X . Hence, it is enough to 

show that �t|{0}×M is onto �
−1
(t) ∩ (X⧵X).

Observe that by Proposition 7.12 the intersection �
−1
(t) ∩ {0} × S1 × {x} consist of one 

point for any x ∈ M and t.
On the other hand, since �

−1
(t) ∩ ({0} × S1 × {x}) is a single point, this point has to be 

equal to �t(0, x) . Therefore, �t(0, x) is onto �
−1
(t) ∩ {r = 0} so �t(r, x) is onto �

−1
(t) .  

 ◻

As a corollary, we shall show the following result.

r 0 r ε0

Φ

Θt

Fig. 9  The picture indicates the necessity of proving the surjectivity of �t ; the map �t is not onto. In Theo-
rem 7.15 we show that the situation as on the picture cannot happen
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Theorem  7.16 (Continuous Fibration Theorem) The map � ∶ X → S1 is a continuous, 
locally trivial fibration.

Proof We show that for any closed interval I ⊂ S1 , the preimage XI ∶= �
−1
(I) is home-

omorphic to the product YI ∶= I × [0, �0] ×M by a homeomorphism that preserves the 
fibers. Consider the map �I ∶ YI → XI given by �I(t, x) = �t(x) for x ∈ [0, �0] ×M . By 
Theorems 7.14 and 7.15, this map is a bijection. Moreover, its inverse is � , which is con-
tinuous by the Continuous Extension Lemma 7.10. A continuous bijection between com-
pact sets is a homeomorphism. It is clear that �I preserves the fibers.   ◻

8  Constructing Seifert hypersurfaces based on ̊

Theorem 8.1 Let t ∈ S1 be a non-critical value of the map � and t ≠ 0 . Then the closure 
of �−1

(t) is a Seifert hypersurface for M which is smooth up to boundary. Moreover, the 
(n + 1)-dimensional volume of �−1

(t) is finite.

Proof Let � = �
−1
(t) . Recall that N is the closure of a tubular neighborhood of � . By the 

implicit function theorem, � is a smooth open submanifold of ℝn+2⧵M . By Theorem 3.1 
we infer that � is contained in some ball B(0, R) for large R. This implies that �⧵intN is 
compact (here int denotes the interior of N).

The main problem is to show that boundary of the closure of � is M. To this end 
we study the intersection �0 ∶= � ∩ (N⧵M) . Notice that we have a diffeomorphism 
�0 ≅ �

−1
(t) ∩ X via the map X

≃

−→(N⧵M).
Now �0 is a smooth submanifold diffeomorphic to (0, �0] ×M . By Theorem 7.14 the 

closure �0 of �0 in X is homeomorphic to the product [0, �0] ×M . Under the map X → N 
the closure �0 is mapped to the closure of � in N. It follows that the boundary of the clo-
sure of � ∩ N is M itself.

To show the finiteness of the volume of � , notice that the area of �⧵N is finite, because 
�⧵N is smooth and compact. The finiteness of the volume of � ∩ N follows from the 
Bounded Volume Lemma 7.6.   ◻

In numerical applications, calculating the map � in N can be challenging due to the lack of 
a good bound for derivatives of � in N. Therefore, the following corollary should be useful.

Proposition 8.2 Choose t ∈ S1 , t ≠ 0 to be a non-critical value of � . Define 
M�

= �
−1
(t) ∩ �N . Let ��

= �
−1
(t)⧵N . Then M′ is diffeomorphic to M, isotopic to M as 

knots in Sn+2 and �′ is a smooth surface for M′.

Proof The fact that M′ is diffeomorphic to M follows from the Fibration Lemma 7.3. The 
isotopy is given by Mr = �◦�t({r} ×M) , where � is as in Theorem 7.14 and � ∶ X → N 
is the projection. By definition ���

= M� and as �′ is closed and bounded, it is also com-
pact.   ◻
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