
Ann Glob Anal Geom (2018) 54:87–122
https://doi.org/10.1007/s10455-018-9594-4

Variations of the total mixed scalar curvature
of a distribution

Vladimir Rovenski1 · Tomasz Zawadzki2

Received: 6 May 2017 / Accepted: 3 January 2018 / Published online: 18 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract We examine the total mixed scalar curvature of a smoothmanifold endowedwith a
distribution as a functional of a pseudo-Riemannian metric. We develop variational formulas
for quantities of extrinsic geometry of the distribution and use this key and technical result
to find the critical points of this action. Together with the arbitrary variations of the metric,
we consider also variations that preserve the volume of the manifold or partially preserve
the metric (e.g., on the distribution). For each of those cases, we obtain the Euler–Lagrange
equation and its several solutions. Examples of critical metrics that we find are related to
various fields of geometry such as contact and 3-Sasakian manifolds, geodesic Riemannian
flows, codimension-one foliations, and distributions of interesting geometric properties (e.g.,
totally umbilical and minimal).
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1 Introduction

Distributions on manifolds appear in various situations—e.g., as fields of tangent planes of
foliations or kernels of differential forms. When the metric of a pseudo-Riemannian man-
ifold is non-degenerate on a distribution, it defines a pseudo-Riemannian almost-product
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structure—i.e., a pair of orthogonal, complementary distributions that span the tangent bundle
[8]. The mixed scalar curvature is one of the simplest curvature invariants of a pseudo-
Riemannian almost-product structure. It is defined as a sum of sectional curvatures of planes
that non-trivially intersect with both of the distributions. (We give the exact definition and
formula (1) later.) Its investigation led to multiple results regarding the existence of vector
fields [5], foliations [18], and submersions [19] of interesting geometric properties.

The fundamental and open question (similar to the question about existence of Einstein
metrics on a manifold) is the following: What are the best metrics on a smooth manifold
endowed with a distribution? On amanifold with a distribution, we can define the total mixed
scalar curvature as a functional on the space of all pseudo-Riemannian metrics that are non-
degenerate on the distribution. Every suchmetric yields a pseudo-Riemannian almost-product
structure and hence themixed scalar curvature of our distribution (and of itsmetric-dependent
orthogonal complement). Since we deal also with non-compact manifolds, we assume that
the total mixed scalar curvature is in fact an integral of the mixed scalar curvature over a
sufficiently large, relatively compact set. When viewed as a functional of the metric, the total
mixed scalar curvature may be considered an analogue of the Einstein–Hilbert action [1],
and the best metrics (of the above question) are proposed to be among critical metrics of the
action.

The goal of this paper is to examine metrics critical for the total mixed scalar curvature
with respect to different kinds of variations of metric. Apart from varying among all the
metrics that are non-degenerate on the distribution, we shall also restrict to the case when
the varying metric remains fixed on the distribution, and the “complementary” case when
metric varies only on the distribution—preserving its orthogonal complement and the metric
on it. This approach applies to finding an optimal extension of a metric that is defined
only on a distribution—which is a problem of the relationship between sub-Riemannian and
Riemannian geometry.Moreover, in analogy to the Einstein–Hilbert action, all variations will
be considered in two versions: with and without the additional requirement that the metrics
preserve the volume of the manifold [3]. The Euler–Lagrange equations that we obtain for
those various cases are actually similar enough to be viewed as slight modifications of one
general equation, and hence can be presented in a concise form.

The first part of the paper startswith all necessary definitions, continues to the development
of variation formulas for several geometric quantities, and culminates in the formulation of
the Euler–Lagrange equation for the total mixed scalar curvature. The equation we obtain
is difficult to solve in full generality, although it can be related to Ricci-type curvatures
previously described in the literature [12]. It can be decomposed into three independent
parts, two of them being symmetric with respect to interchanging the given distribution and
its orthogonal complement. Those two equations are also the same as the ones obtained
for more restrictive, so-called adapted variations, considered in [2,14]. It is worth noting
that the variation formulas for geometric quantities, that we obtain along the way to the
Euler–Lagrange equation, can be of use also for many other functionals.

The second part of the paper is dedicated to examples of metrics critical for the total
mixed scalar curvature. In Sect. 3.1, we consider the case when the fixed distribution is
one-dimensional, i.e., tangent to the flowlines of a unit vector field. (In four-dimensional,
general relativity setting, this case corresponds to the one examined in [1].) We rephrase the
Euler–Lagrange equation and examine it in the case of geodesic Riemannian flows, compar-
ing the results for different types of variations. In Sect. 3.2, we consider situation “dual” to
the one from Sect. 3.1—fixing a distribution tangent to a codimension-one foliation. Then,
with the assumption of a special coordinate system, the Euler–Lagrange equation can be in
some cases explicitly solved. This setting allows us to find more critical metrics in the case
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of general variations preserving the volume of the manifold. In Sect. 3.3, we consider the
one-dimensional distribution spanned by the Reeb field on a contact manifold, which allows
us to give an interpretation of some geometric quantities that appear in the Euler–Lagrange
equation. Using the results obtained earlier for geodesic Riemannian flows, we show that the
metrics of K -contact structures are critical with respect to all variations that fix the volume
and partially preserve the metric (either on the distribution or everywhere else except it),
thus generalizing a theorem from [4]. As a different application of the variational formulas
obtained earlier, we also examine a measure of non-integrability of the orthogonal comple-
ment of the Reeb field, showing that contact metric structures are critical for this functional.
The results we obtain for contact manifolds are then generalized to the setting of 3-Sasakian
manifolds. Finally, in Sect. 3.4, we consider variation of the total mixed scalar curvature of a
manifold endowed with a non-integrable distribution. Because of the complexity of the aris-
ing Euler–Lagrange equation, we look only for those critical metrics for which the orthogonal
complement of the distribution is integrable. We show that K -contact and 3-Sasakian metrics
(when the orthogonal complement of the distribution is integrable and has dimension one
or three) are critical with respect to all variations that fix the volume and partially preserve
the metric also in this setting. In case of codimension-one distribution, one of the variations
that we consider has a particularly interesting geometric interpretation; we give an additional
example of metric critical with respect to it.

2 Main results

In this part, we give necessary definitions, develop variation formulas for geometric quantities
(that is the most technical and key result), and formulate the Euler–Lagrange equation for
the total mixed scalar curvature of a manifold endowed with a distribution.

2.1 Preliminaries

This section recalls definitions of some functions and tensors, used also in [2,14] and
introduces several new notions related to geometry of pseudo-Riemannian almost-product
manifolds.

Let Sym2(M) be the space of all symmetric (0, 2)-tensors tangent to a smoothmanifoldM .
A pseudo-Riemannian metric of index q on M is an element g ∈ Sym2(M) such that each
gx (x ∈ M) is a non-degenerate bilinear form of index q on the tangent space TxM . For q = 0
(i.e., gx is positive definite), g is a Riemannian metric, and for q = 1 it is called a Lorentz
metric. Let Riem(M) ⊂ Sym2(M) be the subspace of pseudo-Riemannian metrics of given
signature.

Let R(X, Y ) = ∇Y∇X−∇X∇Y +∇[X,Y ] be the curvature tensor of theLevi–Civita connec-
tion∇ of g. At a point x ∈ M , a two-dimensional linear subspace X∧Y (called a plane section)
of TxM is non-degenerate ifW (X, Y ) := g(X, X) g(Y, Y )−g(X, Y ) g(X, Y ) �= 0. For such
section at x , the sectional curvature is the number K (X ∧ Y ) = g(R(X, Y )X, Y )/W (X, Y ).

A subbundle ˜D ⊂ T M (called a distribution) is non-degenerate, if gx is non-degenerate
on ˜Dx ⊂ TxM for every x ∈ M ; in this case, the orthogonal complement of ˜D, denoted
by D, is also non-degenerate [10], and we have ˜Dx ∩ Dx = 0, ˜Dx ⊕ Dx = TxM for
all x ∈ M . A connected manifold Mn+p with a pseudo-Riemannian metric g and a pair
of complementary orthogonal non-degenerate distributions ˜D and D of ranks dim ˜Dx = n
and dimDx = p for every x ∈ M is called a pseudo-Riemannian almost-product structure
on M , [8]. Such (M, ˜D,D, g) is also sometimes called a pseudo-Riemannian almost-product
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manifold. Let Riem(M, ˜D,D) ⊂ Riem(M) be the subspace of metrics making ˜D and D
orthogonal and non-degenerate.

Let XM be the module over C∞(M) of all vector fields on M , and let XD and X
˜D be the

modules of sections of D and ˜D, respectively. The following convention is adopted for the
range of indices:

a, b, c . . . ∈ {1 . . . n}, i, j, k . . . ∈ {1 . . . p}.
The “musical” isomorphisms � and �will be used for rank one and symmetric rank 2 tensors.
For example, if ω ∈ T 1

0 M is a 1-form and X, Y ∈ XM , then ω(Y ) = g(ω�, Y ) and X �(Y ) =
g(X, Y ). For (0, 2)-tensors A and B we have 〈A, B〉 = Tr g(A�B�) = 〈A�, B�〉.

The sectional curvature K (X ∧ Y ) is called mixed if X ∈ ˜D and Y ∈ D. Let {Ea, Ei } be
a local orthonormal frame adapted to (˜D, D), i.e.,

Ea ∈ ˜D, Ei ∈ D,

and let εi = g(Ei , Ei ), εa = g(Ea, Ea).We have |εi | = |εa | = 1 andW (Ea, Ei ) = εaεi �= 0.
The function on M ,

Smix =
∑

a,i

K (Ea ∧ Ei ) =
∑

a,i

εaεi g(R(Ea, Ei )Ea, Ei ) (1)

is called themixed scalar curvature, see [18], and does not depend on the choice of the adapted
orthonormal frame. If a distribution is spanned by a unit vector field N , i.e., g(N , N ) = εN ∈
{−1, 1}, then Smix = εN RicN ,N , where RicN ,N is the Ricci curvature in the N -direction.

To compute Smix on (M, g) we only need to fix one of the distributions, say ˜D, then
we obtain the second distribution as its g-orthogonal complement and the function (1) is
well defined. Given a pair (M, ˜D) of a manifold and a distribution, we shall study pseudo-
Riemannian structures non-degenerate on ˜D and critical for the functional

Jmix,˜D,� : g �→
∫

�

Smix(g) d volg, (2)

where � in (2) is a relatively compact domain of M (and � = M when M is closed),
containing supports of variations of the metric. The Euler–Lagrange equation for (2), that
we shall obtain later, is expressed in terms of extrinsic geometry of the distribution ˜D and
its orthogonal complement D. In order to understand it, we shall define several notions on a
pseudo-Riemannian almost-product manifold (M, ˜D,D, g).

For every X ∈ XM we have X = ˜X + X⊥, where ˜X ≡ X� is the ˜D-component of X
(respectively, X⊥ is the D-component of X ) with respect to g. We define g⊥ and g� by

g⊥(X, Y ) = g(X⊥, Y⊥), g�(X, Y ) = g(X�, Y�), (X, Y ∈ XM ).

The symmetric (0, 2)-tensor rD , given by

rD(X, Y ) =
∑

a

εa g(R(Ea, X⊥)Ea, Y
⊥), (X, Y ∈ XM ),

is referred to as the partial Ricci tensor adapted for D; see [2,14]. In particular, by (1),

Tr grD = Smix(g). (3)

Note that the partial Ricci curvature rD(X, X) in the direction of a unit vector X ∈ D is the
sum of sectional curvatures over all mixed planes containing X .
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Let T, h : ˜D× ˜D → D and T̃ , h̃ : D×D → ˜D be the integrability tensors and the second
fundamental forms of ˜D and D, respectively.

T (X, Y ) = (1/2) [X, Y ]⊥, h(X, Y ) = (1/2) (∇XY + ∇Y X)⊥ (X, Y ∈ X
˜D),

T̃ (X, Y ) = (1/2) [X, Y ]�, h̃(X, Y ) = (1/2) (∇XY + ∇Y X)� (X, Y ∈ XD).

Using an orthonormal adapted frame, one may find the formulae

〈h̃, h̃〉 =
∑

i, j

εiε j g(h̃(Ei , E j ), h̃(Ei , E j )),

〈h, h〉 =
∑

a,b

εaεb g(h(Ea, Eb), h(Ea, Eb)),

〈T̃ , T̃ 〉 =
∑

i, j

εiε j g(T̃ (Ei , E j ), T̃ (Ei , E j )),

〈T, T 〉 =
∑

a,b

εaεb g(T (Ea, Eb), T (Ea, Eb)).

The mean curvature vector fields of ˜D and D are, respectively,

H = Tr gh =
∑

a

εah(Ea, Ea), H̃ = Tr gh̃ =
∑

i

εi h̃(Ei , Ei ).

Adistribution ˜D is called totally umbilical,minimal, or totally geodesic, if h = 1
n H g�, H =

0, or h = 0, respectively. There exist minimal, nowhere totally geodesic distributions of any
codimension> 1 on Lie groups with left-invariant metrics, see [15]. In the case of foliations,
the metric can be chosen to be bundle-like and mixed scalar curvature is leafwise constant.

The Weingarten operator AZ of ˜D with respect to Z ∈ D, and the operator T �
Z are

defined by

g(AZ (X), Y ) = g(h(X, Y ), Z), g
(

T �
Z (X), Y

)

= g(T (X, Y ), Z) (X, Y ∈ X
˜D).

Similarly, we define for N ∈ ˜D

g( ÃN (X), Y ) = g(h̃(X, Y ), N ), g
(

T̃ �
N (X), Y

)

= g(T̃ (X, Y ), N ) (X, Y ∈ XD).

For the local orthonormal frame {Ei , Ea} (adapted to the distributions), we use the following
convention for various (1, 1)-tensors: T̃ �

a := T̃ �
Ea

, Ai := AEi , etc.
The Divergence Theorem states that

∫

M (div ξ) d volg = 0, when M is closed; this is
also true if M is open and ξ ∈ XM is supported in a relatively compact domain � ⊂ M .
The D⊥-divergence of ξ is defined by div⊥ ξ = ∑

i εi g(∇Ei ξ, Ei ) ; similarly, ˜div ξ =
∑

a εa g(∇Ea ξ, Ea). Thus, the divergence of ξ is div ξ = Tr (∇ξ) = div⊥ ξ + ˜div ξ . Observe
that for X ∈ XD we get

div⊥X = div X + g(X, H). (4)

Indeed, using H = ∑

a≤n εa h(Ea, Ea) and g(X, Ea) = 0, one derives (4):

div X − div⊥X =
∑

a

εa g(∇Ea X, Ea) = −
∑

a

εa g(h(Ea, Ea), X) = −g(X, H).
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For a (1, 2)-tensor P define a (0, 2)-tensor div⊥P by

(div⊥P)(X, Y ) =
∑

i

εi g((∇Ei P)(X, Y ), Ei ) (X, Y ∈ X
˜D).

Then the divergence of P is div P = ˜div P+div⊥P . For aD-valued (1, 2)-tensor P , similarly
to (4), we have

∑

a

εa g((∇Ea P)(X, Y ), Ea) = −g(P(X, Y ), H)

and

div⊥P = div P + 〈P, H〉 , (5)

where 〈P, H〉(X, Y ) := g(P(X, Y ), H) is a (0, 2)-tensor. For example, div⊥ h = div h +
〈h, H〉.

For any function f on M , we introduce the following notation of the projections of its
gradient onto distributions ˜D and D:

∇� f ≡ ˜∇ f := (∇ f )�, ∇⊥ f := (∇ f )⊥.

The ˜D-Laplacian of a function f is given by the formula ˜� f = ˜div (˜∇ f ). The D-
deformation tensor DefD Z of a vector field Z (e.g., Z = H ) is the symmetric part of
∇Z restricted to D,

2 DefD Z(X, Y ) = g(∇X Z , Y ) + g(∇Y Z , X) (X, Y ∈ XD).

As in [2,14], we define self-adjoint (1, 1)-tensors:A := ∑

i εi A
2
i , called the Casorati oper-

ator ofD, and T := ∑

i εi (T
�
i )2. Similarly, we define ˜A = ∑

a εa Ã2
a and ˜T = ∑

a εa(T̃
�
a )2.

We also define the symmetric (0, 2)-tensors 	 and ˜	 by formulas

	(X, Y ) = Tr
(

AY AX + T �
Y T

�
X

)

(X, Y ∈ XD),

˜	(X, Y ) = Tr
(

ÃY ÃX + T̃ �
Y T̃

�
X

)

(X, Y ∈ X
˜D).

The partial Ricci tensor can be presented in terms of the extrinsic geometry. Using its def-
inition and the decomposition of tangent bundle into two orthogonal distributions, similarly
as in [2], one can obtain the following lemma, that we prove below for readers’ convenience.

Lemma 1 Let g ∈ Riem(M, ˜D, D). Then the following identity holds:

rD = div h̃ + 〈h̃, H̃〉 − ˜A� − ˜T � − 	 + DefD H. (6)

Proof For X, Y ∈ XD and U, V ∈ X
˜D we have, see [11, Lemma 2.25],

g(R∇(U, X)V, Y ) = g(((∇U C̃)V − C̃V C̃U )X, Y ) + g(((∇X C)Y − CY CX )U, V ), (7)

where the conullity tensors C̃ : ˜D × D → D and C : D × ˜D → ˜D are defined by

C̃U (X) = −(∇X U )⊥, CX (U ) = − (∇U X)� .

Note that C̃U = ÃU + T̃ �
U , CX = AX + T �

X , ˜	(U, V ) = Tr g(C̃V C̃U ) and 	(X, Y ) =
Tr g(CYCX ). We can assume that ∇X Y ∈ ˜Dx and ∇X Ea ∈ Dx at a given point x ∈ M .
Note that

∑

a

εag((∇X C)Y (Ea), Ea) = ∇X

(

g

(

∑

a

εah(Ea, Ea), Y

))

= g(∇X H, Y ).
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Let ˜div C̃ = ∑n
a=1 εa(∇a C̃)a . Then, tracing (7) over ˜Dx yields

rD(X, Y ) = g(˜div C̃(X), Y ) − g

(

∑

a

εaC̃
2
a (X), Y

)

+ g(∇X H, Y ) − Tr g(CYCX ) . (8)

Using Tr g(AY T
�
X ) = 0 = Tr g(T

�
Y AX ) (since h is symmetric and T is antisymmetric), we

extract (6) as the symmetric part of (8). ��
The extrinsic scalar curvatures of ˜D and D are defined by

Sex = g(H, H) − 〈h, h〉, ˜Sex = g(H̃ , H̃) − 〈h̃, h̃〉,
respectively. Tracing (6) over D and applying (3) and the equalities

Tr A = 〈h, h〉, Tr T = −〈T, T 〉,
Tr g	 = Tr (A + T ) = 〈h, h〉 − 〈T, T 〉,

Tr g (div h) = div H, Tr g (DefD H) = div H + g(H, H)

yields the formula (see also [18])

Smix = Sex + ˜Sex + 〈T, T 〉 + 〈T̃ , T̃ 〉 + div(H + H̃) , (9)

which shows how Smix is built of invariants of the extrinsic geometry of the distributions.
We define the following (1, 2)-tensors on (M, ˜D,D, g) for all X, Y, Z ∈ XM :

α(X, Y ) = 1

2

(

AX⊥(Y�) + AY⊥(X�)
)

, α̃(X, Y ) = 1

2

(

ÃX�(Y⊥) + ÃY�(X⊥)
)

,

θ(X, Y ) = 1

2

(

T �

X⊥(Y�) + T �

Y⊥(X�)
)

, θ̃ (X, Y ) = 1

2

(

T̃ �

X�(Y⊥) + T̃ �

Y�(X⊥)
)

,

δ̃Z (X, Y ) = 1

2

(

g
(

∇X� Z , Y⊥)

+ g(∇Y� Z , X⊥)
)

.

For any (0, 2)-tensors P, Q and S on T M , we define a tensor 
P,Q by

〈
P,Q, S〉 =
∑

λ,μ

ελεμ[S(P(eλ, eμ), Q(eλ, eμ)) + S(Q(eλ, eμ), P(eλ, eμ))],

where {eλ} is a full orthonormal basis of TM and ελ = g(eλ, eλ) ∈ {−1, 1}. Note that

P,Q = 
Q,P and 
P,Q1+Q2 = 
P,Q1 + 
P,Q2

for all (0, 2)-tensors P, Q, Q1, Q2.We also use symmetric (0, 2)-tensors�h and�T defined
as in [2,14],

〈�h, S〉 = S(H, H) −
∑

a, b

εa εb S(h(Ea, Eb), h(Ea, Eb)),

〈�T , S〉 = −
∑

a, b

εa εb S(T (Ea, Eb), T (Ea, Eb))

for any symmetric (0, 2)-tensor S. Note that �T = − 1
2 
T,T and �h = H � ⊗ H � − 1

2
h,h .
Tensors �h̃ and �T̃ are defined analogously.

We define a self-adjoint (1, 1)-tensor (with zero trace)

K =
∑

i

εi

[

T �
i , Ai

]

=
∑

i

εi

(

T �
i Ai − Ai T

�
i

)
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and its counterpart ˜K = ∑

a εa [T̃ �
a , Ãa]. It is easy to see that all the above tensors defined

with the use of an adapted orthonormal frame in fact do not depend on the choice of such
frame.

Remark 1 (see [14]) Let us clarify the geometrical sense of �h and K̃. If g is definite on ˜D,
then �h = 0 if and only if one of the following point-wise conditions holds:

(i) h = 0; (ii) H �= 0, Sex = 0 and the image of h is spanned by H .

If D is integrable, then T̃ �
a = 0 (a = 1, . . . , n), hence K̃ := ∑

a εa [T̃ �
a , Ãa] = 0. If D is

totally umbilical, then every operator Ãa is a multiple of identity and K̃ vanishes as well.

2.2 Variation formulas

Let (M, ˜D, g)be amanifoldwith distribution and apseudo-Riemannianmetric g.Weconsider
smooth 1-parameter variations {gt ∈ Riem(M) : |t | < ε} of the metric g0 = g. We
assume that the induced infinitesimal variations, represented by a symmetric (0, 2)-tensor
Bt ≡ ∂gt/∂t , are supported in a relatively compact domain � in M , i.e., gt = g outside �

for all |t | < ε. We adopt the notations

∂t ≡ ∂/∂t, B ≡ ∂t gt | t=0,

but we shall also write B instead of Bt to make formulas easier to read, wherever it does
not lead to confusion. Since B is symmetric, for any (0, 2)-tensor C , we have 〈C, B〉 =
〈Sym(C), B〉. We denote by D(t) the gt -orthogonal complement of ˜D.

Definition 1 (i) Let ˜D be a distribution on (M, g). A family of metrics {gt ∈ Riem(M) :
|t | < ε} such that g0 = g and for all |t | < ε:

gt (X, Y ) = g(X, Y ) (X, Y ∈ X
˜D),

will be called g⊥-variation. For g⊥-variations the metric on ˜D is preserved.
(ii) Let ˜D be a distribution on (M, g) and let D be its g-orthogonal complement. A family

of metrics {gt ∈ Riem(M) : |t | < ε} such that g0 = g, for all |t | < ε the distributions
˜D and D remain orthogonal and

gt (X, Y ) = g(X, Y ) (X, Y ∈ XD),

will be called g�-variation. For g�-variations only the metric on ˜D changes.

We will now relate the variations defined above to arbitrary variations of g. Let D =
D(0) be the g-orthogonal complement of ˜D. While the distributions ˜D and D may not
be gt -orthogonal for t > 0, we can assume that they span the tangent bundle. For any
X ∈ T M , let X

˜D denote the g-orthogonal projection of X onto ˜D and let XD denote
the g-orthogonal projection of X onto D. Let V = (D × ˜D) + (˜D × D) be the subspace
of T M × T M spanned by (D × ˜D) ∪ (˜D × D). Then, given g ∈ Riem(M), we have
gt = gt |D×D + gt |D×˜D + gt | ˜D×D + gt | ˜D×˜D , where

gt | ˜D×˜D(X, Y ) = gt (X ˜D, Y
˜D), gt |D×D(X, Y ) = gt (XD, YD),

gt |D×˜D(X, Y ) = gt (XD, Y
˜D), gt | ˜D×D(X, Y ) = gt (X ˜D, YD);

thus, gt |V(X, Y ) = gt (XD, Y
˜D)+gt (X ˜D, YD), and we can present gt in the following form:

gt =
(

gt |D×D gt |D×˜D
gt | ˜D×D gt | ˜D×˜D

)

.
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Similarly, Bt = B⊥
t +B/

t + B̃t , where B⊥
t = ∂t gt |D×D, B̃t = ∂t gt | ˜D×˜D and B/

t = ∂t gt |V.
For g⊥-variations, gt = gt |D×D + gt |V + g0 | ˜D×˜D and for g�-variations gt = g0|D×D +
gt | ˜D×˜D (as gt |V = g0 |V = 0), we have, respectively,

Bt = B⊥
t + B/

t =
(

B⊥
t |D×D B/

t |D×˜D
B/

t | ˜D×D 0

)

, Bt = B̃t =
(

0 0
0 B̃t | ˜D×˜D

)

.

By the above, the derivative Bt of any variation gt can be decomposed into sum of derivatives
of some g⊥- and g�-variations.

For all X, Y, Z ∈ XM , the Levi–Civita connection ∇ t of gt (|t | < ε) evolves as, see for
example [17],

2 gt
(

∂t
(∇ t

X Y
)

, Z
) = (∇ t

X B
)

(Y, Z) + (∇ t
Y B

)

(X, Z) − (∇ t
Z B

)

(X, Y ), (10)

where the first covariant derivative of a (0, 2)-tensor B is expressed as

(∇Z B)(Y, V ) = Z(B(Y, V )) − B(∇ZY, V ) − B(Y,∇Z V ).

Let D(t) be the gt -orthogonal complement of ˜D. Let � and ⊥ denote the gt -orthogonal
projections onto ˜D and D(t), respectively; note that these projections are t-dependent.

Lemma 2 Let gt be a g⊥-variation of g with Bt = ∂t gt . Let {Ea, Ei } be a local (˜D, D)-
adapted and orthonormal for t = 0 frame, that evolves according to

∂t Ea = 0, ∂tEi = −(1/2)
(

B�
t (Ei )

)⊥ −
(

B�
t (Ei )

)�
. (11)

Then, for all t, {Ea(t), Ei (t)} is a gt -orthonormal frame adapted to (˜D,D(t)).

Proof Since ∂t Ea = 0 and Ea(0) ∈ ˜D, we have for g⊥-variation ∂t (gt (Ea, Eb)) = 0. Also,

∂t (gt (Ea, Ei )) = (∂t gt )(Ea(t), Ei (t)) + gt (∂t Ea(t), Ei (t)) + gt (Ea(t), ∂tEi (t))

= Bt (Ea(t), Ei (t)) − 1

2
gt

(

(

B�
t (Ei (t))

)⊥
, Ea(t)

)

− gt
(

Ea(t), B
�
t (Ei (t))�

)

= 0.

Now that we know that gt (Ea, Ei ) = 0, it follows that Ei (t) ∈ D(t), and for any X , we have
gt (Ei , X�) = 0. We can finish the proof by computing

∂t (gt (Ei , E j )) = (∂t gt )(Ei (t), E j (t)) + gt (∂tEi (t), E j (t)) + gt (Ei (t), ∂tE j (t))

= Bt (Ei (t), E j (t)) − 1

2
gt

(

(

B�
t (Ei (t))

)⊥
, E j (t)

)

− 1

2
gt

(

Ei (t),
(

B�
t E j (t)

)⊥)

= 0.

��
The evolution of D(t) gives rise to the evolution of both ˜D- and D(t)-components of any

vector X on M .

Lemma 3 Let gt be a g⊥-variation of g. Then for any t-dependent vector X on M, we have

∂t (X
�) = (∂t X)� + (B�(X⊥))�, ∂t (X

⊥) = (∂t X)⊥ − (B�(X⊥))�.
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Proof Using the frame from Lemma 2, we can write

X� =
∑

a

εagt (Xt , Ea(t))Ea, X⊥ =
∑

i

εi gt (Xt , Ei (t))Ei (t). (12)

We have

Bt (Ea(t), Eb(t)) = (∂t gt )(Ea(t), Eb(t))

= ∂t (gt (Ea, Eb)) − gt (∂t Ea(t), Eb(t)) − gt (Ea(t), ∂t Eb(t)) = 0;
hence, (B�(X�))� = 0, which implies

(B�(X))� = (B�(X⊥))�. (13)

The proof follows from differentiating (12) and using (11) and (13). ��
Remark 2 Let B be a symmetric (0,2)-tensor. The following computations will be used to
obtain variation formulas:

〈 〈α, H̃〉, B〉 =
∑

a,i

εaεi g(α(Ea, Ei ), H̃)B(Ea, Ei )

+
∑

a,i

εaεi g(α(Ei , Ea), H̃)B(Ei , Ea)

= 2
∑

a,i

εaεi g(α(Ea, Ei ), H̃)B(Ea, Ei )

=
∑

a,i

εaεi g(Ai (Ea), H̃)B(Ea, Ei ),

〈
α,θ , B〉 =
∑

a,i

εaεi B(Ai (Ea), T
�
i (Ea)).

Later we will also use the fact that for X ∈ ˜D, N ∈ D we have


α,θ̃ (X, N ) = 1

2

∑

a,i

εaεi g(X, Ai Ea)g(N , T̃ �
a Ei ).

Similar formulas can be obtained for 
α,α̃ , 
θ,α̃ , etc.

The key and most technical result of this section is the following.

Proposition 1 Let gt be a g⊥-variation of g. Then

∂t 〈h̃, h̃〉 = 〈div h̃ − 4
α̃,θ + ˜K�, B〉 − div〈h̃, B〉, (14a)

∂t g(H̃ , H̃) = 〈 (div H̃) g⊥ + 4 〈θ, H̃〉, B〉 − div((Tr DB�)H̃), (14b)

∂t 〈h, h〉 = 2 div(〈α, B〉) − 2 〈(div α) |V + 
α,α̃+θ̃ − 1

2
�h, B〉 − B(H, H), (14c)

∂t g(H, H) = 2
〈 〈θ̃ − α̃, H〉 + Sym(H � ⊗ H̃ �) − δ̃H , B

〉 − B(H, H)

+2 div((B�H)�), (14d)

∂t 〈T̃ , T̃ 〉 = 2 〈 T̃ � + 
θ̃,θ−α − (div θ̃ ) |V, B 〉 + 2 div〈θ̃ , B〉, (14e)

∂t 〈T, T 〉 = −〈�T , B〉. (14f)
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Proof In the proof we denote by (i) j the j th term of the right-hand side of formula (i). We
shall use an adapted frame that satisfies ∇ t

X E j ∈ ˜D and ∇ t
X Eb ∈ D for all X ∈ TxM , at

a point x ∈ M for which all the formulas are considered, and for the value of parameter t
at which the variation is computed. (All the results hold true without this assumption, but it
simplifies the computations.)

Proof of (14a). We use Lemma 3 to compute ∂t 〈h̃, h̃〉, as a sum of 10 terms in g(· , Ea),

∂t 〈h̃, h̃〉 =
∑

i, j

εiε j B(h̃(Ei , E j ), h̃(Ei , E j ))

+
∑

i, j

εiε j g

(

h̃(Ei , E j ), ∂t

(

(

∇ t
Ei E j + ∇ t

E j
Ei

)�))

=
∑

i, j,a

εiε jεag(h̃(Ei , E j ), Ea) g

(

∇ t
(∂tEi )�E j + ∇ t

(∂tE j )
�Ei + ∇ t

Ei
(

(∂tE j )
�)

+∇ t
E j

(

(∂tEi )�
)

+ ∇ t
Ei

(

(∂tE j )
⊥)

+ ∇ t
E j

(

(∂tEi )⊥
)

+ ∇ t
(∂tEi )⊥ E j + ∇ t

(∂tE j )
⊥ Ei

+(∂t∇ t )Ei E j + (∂t∇ t )E j Ei , Ea

)

, (15)

where we used B(h̃(Ei , E j ), h̃(Ei , E j )) = 0 (since B vanishes on ˜D× ˜D). The last two terms
(15)9 and (15)10 are equal, and their sum can be computed in the following way:

2g
(

(∂t∇ t )Ei E j , Ea
) =

(

∇ t
Ei B

)

(E j , Ea) +
(

∇ t
E j

B
)

(Ei , Ea) − (∇ t
Ea

B
)

(Ei , E j )

= ∇ t
Ei B(E j , Ea)−B

(

∇ t
Ei Ea, E j

)

+∇ t
E j

B(Ei , Ea)−B
(

∇ t
E j

Ea, Ei
)

−∇ t
Ea

B(Ei , E j ) + B
(∇ t

Ea
Ei , E j

) + B
(∇ t

Ea
E j , Ei

)

.

Using Lemma 2, we rewrite (15) as

∂t 〈h̃, h̃〉 = −
∑

i, j,a

εiε jεa∇ t
Ea

B(Ei , E j ) g(h̃(Ei , E j ), Ea)

−
∑

i, j

εiε j
[

g(h̃(B�Ei , E j ), h̃(Ei , E j )) + g(h̃(B�E j , Ei ), h̃(Ei , E j ))
]

−
∑

i, j,a

εiε jεa g
(

∇ t
Ei

(

(

B�E j
)�)

+ ∇ t
E j

(

(

B�Ei
)�)

, Ea

)

g(h̃(Ei , E j ), Ea)

−
∑

i, j,a

εiε jεa g

(

∇ t

(B�E j )
�Ei + ∇ t

(B�Ei)�E j , Ea

)

g(h̃(Ei , E j ), Ea)

+
∑

i, j,a

εiε jεa

(

∇ t
Ei B(E j , Ea) + ∇ t

E j
B(Ei , Ea)

)

g(h̃(Ei , E j ), Ea)

−
∑

i, j,a

εiε jεa

(

B
(

∇ t
Ei Ea, E j

)

+ B
(

∇ t
E j
Ea, Ei

))

g(h̃(Ei , E j ), Ea)

+
∑

i, j,a

εiε jεa
(

B
(∇ t

Ea
Ei , E j

) + B
(∇ t

Ea
E j , Ei

))

g(h̃(Ei , E j ), Ea). (16)
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From the definition 2 Sym(C) = C + C∗, we have
〈

2
∑

a

εa

(

T̃ �
a Ãa

)�

, B

〉

= 2

〈

Sym

(

∑

a

εa T̃
�
a Ãa

)�

, B

〉

=
〈

∑

a

εa

[

T̃ �
a , Ãa

]�

, B

〉

= 〈˜K�, B〉,

and we obtain (14a), using the following computations for all seven lines of (16):
∑

i, j

εiε j g(h̃(B�Ei , E j ), h̃(Ei , E j )) = 〈Ã�, B〉,
∑

i, j,a

εiε jεa g
(

∇ t
Ei

(

B�(E j )
�)

, Ea

)

g(h̃(Ei , E j ), Ea) = div〈α̃, B〉 − 〈(div α̃) |V, B〉,

∑

i, j,a

εiε jεa g

(

∇ t

(B�E j)
�Ei , Ea

)

g(h̃(Ei , E j ), Ea)

= −
∑

i,a

εi εa B
(

Ãa(Ei ), Ai (Ea) − T �
i (Ea)

)

= −〈
α̃,α−θ , B〉,
∑

i, j,a

εiε jεa g(h̃(Ei , E j ), Ea)∇ t
Ei B(Ea, E j ) = div〈α̃, B〉 − 〈(div α̃) |V, B〉,

∑

i, j,a

εiε jεa g(h̃(Ei , E j ), Ea)∇ t
Ea

B(Ei , E j ) = div〈h̃, B〉 − 〈div h̃, B〉,
∑

i, j,a

εiε jεa B
(

∇ t
Ei Ea, E j

)

g(h̃(Ei , E j ), Ea) = −〈Ã� + ˜K�/2, B〉,
∑

i, j,a

εiε jεa g(h̃(Ei , E j ), Ea) B
(∇ t

Ea
Ei , E j

)

= −
∑

i,a

εiεa B
(

Ãa(Ei ), Ai (Ea) + T �
i (Ea)

)

= −〈
α̃,α+θ , B〉.

As an example, we give a detailed computation of the fourth line above:
∑

i, j,a

εiε jεa g(h̃(Ei , E j ), Ea)∇ t
Ei B(Ea, E j )

=
∑

i, j,a

εiε jεa ∇ t
i (g(h̃(Ei , E j ), Ea)B(Ea, E j ))

−
∑

i, j,a

εiε jεa B(Ea, E j )∇ t
i (g(h̃(Ei , E j ), Ea))

=
∑

i, j,a

εiε jεa ∇ t
i (g(B(Ea, E j ) ÃaE j , Ei ))

−
∑

i, j,a

εiε jεa B(Ea, E j )
(

∇ t
i g

(

ÃaE j , Ei
))

=
∑

i

εi g

⎛

⎝∇ t
i

⎛

⎝

∑

j,a

ε jεa B(Ea, E j ) ÃaE j

⎞

⎠ , Ei

⎞

⎠
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−
∑

j,a

ε jεa B(Ea, E j )g

(

∑

i

εi ∇ t
i ÃaE j , Ei

)

⎞

⎠

= div⊥〈B, α̃〉 − 〈B |V, div⊥ α̃〉 = div〈α̃, B〉 − 〈(div α̃) |V, B〉.
Note that while α̃ = α̃ |V, its divergence div α̃ may not vanish on D × D or ˜D × ˜D.

Proof of (14b). We compute for any X ∈ TxM , using Lemmas 2 and 3,

g(∂t H̃ , X) =
∑

i

εi g

(

∂t

(

(

∇ t
Ei Ei

)�)

, X

)

=
∑

i

εi g
(

∂t

(

∇ t
Ei Ei

)

, X�)

=
∑

i

εi

(

∇
(−B�Ei)� Ei − ∇(

1
2 B

�Ei
)⊥ Ei − ∇Ei

(

(

B�Ei
)�)

−∇Ei

(

(

1

2
B�Ei

)⊥)

+ (∂t∇ t )Ei Ei , X�
)

. (17)

Using known formula (10) for t-derivative of the Levi–Civita connection, see [17], we present
(17)5 (i.e., the fifth term in g(·, X�) of (17)) as the following sum (we omit summation by i
below):

g
(

(

∂t∇ t)

Ei Ei , X�)

= ∇Ei
(

g
(

B�Ei , X�))

− g
(

B�Ei ,∇Ei X
�)

− 1

2
∇X�(B(Ei , Ei )) − B

((

Ai + T �
i

)

(X�), Ei
)

+ B
(

(∇ t
X�Ei

)⊥
, Ei

)

− B
(

∇ t
Ei Ei , X

�)

. (18)

The last two terms above, (18)5 and (18)6, vanish by the assumption (∇ t
X�Ei )⊥ = (∇ t

Ei Ei )
⊥ =

0 and vanishing of B on ˜D × ˜D. We present the term (17)3 as the sum of two terms

− g
(

∇Ei ((B
�Ei )�), X�)

= −g
(

∇Ei
(

B�Ei
)

, X�)

+ g
(

∇Ei
(

(

B�Ei
)⊥)

, X�)

, (19)

and then rewrite the term (19)2 as

g
(

∇Ei ((B
�Ei )⊥), X�)

= −g
(

(

B�Ei
)⊥

,∇Ei X
�)

= −
∑

j

ε j g
(

(

B�Ei
)⊥

, E j

)

g
(

E j ,∇Ei X
�)

=
∑

j

ε j B(Ei , E j ) g
(

∇Ei E j , X
�)

=
∑

j

ε j B(Ei , E j ) g(h̃(Ei , E j ), X
�).

Note that (18)1 + (18)2 + (19)1 =0. For the sum (17)2 + (17)4, we get

g

(

−∇(

1
2 B�Ei

)⊥ Ei − ∇Ei

(

(

1

2
B�Ei

)⊥)

, X�
)

= −g
(

h̃
(

Ei , B�Ei
)

, X�)

.

For the term (17)1, we get

−
∑

i

εi g
(

∇
(B�Ei)�Ei , X�)

= −
∑

i,a

εaεi g
(

∇Ea Ei , X�)

g
(

B�Ei , Ea
)
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=
∑

i,a

εaεi g
((

Ai + T �
i

)

(Ea), X
�)

B(Ei , Ea)

= 〈 〈α + θ, X�〉, B〉.
For the term (18)3, we obtain

−
∑

i

εi ∇X�(B(Ei , Ei )) = −X�(Tr DB).

For the term (18)4, we get

−
∑

i

εi B
((

Ai + T �
i

)

(X�), Ei
)

= −
∑

i

εi g
((

Ai + T �
i

)

(X�), B�(Ei )
)

= −
∑

i,a

εiεa g
(

B� (Ei ) , Ea
)

g
((

Ai + T �
i

)

(X�), Ea

)

= −
∑

i,a

εiεa B (Ei , Ea) g
((

Ai − T �
i

)

(Ea), X
�)

= 〈 〈θ − α, X�〉, B〉.
Finally, we collect results: (17)= (17)1 + (17)2 + (19)1 + (19)2 + (17)4 + (18)1 + (18)2 +
(18)3 + (18)4 + (18)5 + (18)6 to obtain

g(∂t H̃ , X) = 〈 2〈θ, X�〉, B〉 − 1

2
X�(Tr DB). (20)

Let X = H̃ . Using B(H̃ , H̃) = 0 and H̃(Tr DB�) = div((Tr DB�)H̃) − (Tr DB�) div H̃ ,
we get

∂t g(H̃ , H̃) = 2 g(∂t H̃ , H̃) = 〈 4 〈θ, H̃〉, B〉 − div((Tr DB�)H̃) + (Tr DB) div H̃ .

Finally note that Tr DB = 〈g, B〉, and that completes the proof of (14b).
The computations for h and H are easier, since B(X, Y ) = 0 for X, Y ∈ ˜D.

Proof of (14c). We observe that

∂t 〈h, h〉 =
∑

a,b

εaεb
(

B(h(Ea, Eb), h(Ea, Eb)) + 2 g(∂t h(Ea, Eb), h(Ea, Eb))
)

,

where, using Lemma 3 and formula (10) for ∂t∇ t , we compute

g(∂t h(Ea, Eb), h(Ea, Eb)) = 1

2
g

(

∂t

(

(

∇ t
Ea

Eb + ∇ t
Eb

Ea

)⊥)

, h(Ea, Eb)

)

= 1

2
g

(

∂t

(

∇ t
Ea

Eb + ∇ t
Eb

Ea

)

, h(Ea, Eb)
)

= 1

2
g

(

(∂t∇ t )Ea Eb + (∂t∇ t )Eb Ea, h(Ea, Eb)
)

= 1

2

∑

i

εi g(h(Ea, Eb), Ei )
(

∇ t
Ea

B(Ei , Eb) + ∇ t
Eb
B(Ei , Ea)

− 2 B(h(Ea, Eb), Ei )+B
(

∇ t
Ei Ea, Eb

)

+B
(

∇ t
Ei Eb, Ea

)

)

.

We used in the above
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2 g((∂t∇ t )Ea Eb, Ei ) = ∇ t
Ea

B(Ei , Eb) + ∇ t
Eb
B(Ei , Ea)

− 2B(h(Ea, Eb), Ei ) + B
(

∇ t
Ei Ea, Eb

)

+ B
(

∇ t
Ei Eb, Ea

)

− B

(

(

∇ t
Ea
Eb+∇ t

Eb
Ea

)�
, Ei

)

−∇Ei B(Ea, Eb) − B
(∇EaEi , Eb

)

− B
(∇EbEi , Ea

)

.

and the assumptions
(

∇ t
Ea
Eb

)� =
(

∇ t
Eb
Ea

)� = 0,
(∇EbEi

)⊥ = (∇EaEi
)⊥ = 0 and

B(X, Y ) = 0 for X, Y ∈ ˜D, due to which the last four terms in the formula above vanish.
Note that

∑

a,b,i

εaεbεi g(h(Ea, Eb), Ei )∇ t
Ea

B(Eb, Ei ) = div〈B, α〉 − 〈(div α) |V, B〉,
∑

a,b,i

εaεbεi g(h(Ea, Eb), Ei )B(∇ t
Ei Ea, Eb) = −〈
α,α̃+θ̃ , B〉.

Finally, we obtain (14c):

∂t 〈h, h〉 =
∑

a,b

εaεbB(h(Ea, Eb), h(Ea, Eb)) + 2 div〈B, α〉 − 2 〈(div α) |V, B〉

−2
∑

a,b

εaεbB(h(Ea, Eb), h(Ea, Eb)) − 2 〈
α,α̃+θ̃ , B〉.

Proof of (14d). We observe that

∂t g(H, H) = B(H, H) + 2 g(∂t H, H).

For arbitrary X ∈ TxM , using Lemma 3 and formula (10) for ∂t∇ t , we obtain

g(∂t H, X) =
∑

a

εag
(

∂t

(

(∇ t
Ea
Ea

)⊥)

, X
)

=
∑

a

εag
(

(

∂t∇ t)

Ea
Ea, X

⊥)

−
∑

a

εag
(

B�
(

(∇ t
Ea
Ea

)⊥)

, X�)

=
∑

a

εa
(∇ t

Ea
B

)

(

Ea, X
⊥)

− 1

2

∑

a

εa
(∇ t

X⊥ B
)

(Ea, Ea) − B(H, X�).

We have
∑

a

εa
(∇ t

Ea
B

)

(Ea, X
⊥) =

∑

a

εa∇ t
Ea
g(B�(X⊥), Ea)

−
∑

a

εa B
(

∇ t
Ea
Ea, X

⊥)

−
∑

a

εag
(

B�Ea,∇ t
Ea

X⊥)

=
∑

a

εag
(

∇ t
Ea

(B�(X⊥)), Ea

)

+ g
(

B�(X⊥), H
)

− B(H, X⊥)

−
∑

a,i

εaεi B(Ea, Ei )g
(

∇ t
Ea

X⊥, Ei
)

= div(B�(X⊥))� + g(B�(X⊥), H̃) − g(B�(X⊥), H) − 〈δ̃X⊥ , B〉.
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Also, for g⊥-variations

1

2

∑

a

εa
(∇ t

X⊥ B
)

(Ea, Ea) = −
∑

a

εa B
(∇ t

X⊥Ea, Ea
) = 〈〈α̃ − θ̃ , X⊥〉, B〉;

hence,

g(∂t H, X) = div(B�(X⊥))� + g(B�(X⊥), H̃) − g(B�(X⊥), H) − 〈δ̃X⊥ , B〉
− 〈〈α̃ − θ̃ , X⊥〉, B〉 − B(H, X�). (21)

It follows that

∂t g(H, H) = B(H, H) + 2
(〈 〈θ̃ − α̃, H〉 , B〉 + div(B�H)� − B(H, H)

+B(H, H̃) − 〈δ̃H , B〉)

Finally, using B(H, H̃) = 〈Sym(H � ⊗ H̃ �), B〉, we obtain (14d).
Proof of (14e). We compute

∂t 〈T̃ , T̃ 〉 =
∑

i, j

εiε j ∂t g(T̃ (Ei , E j ), T̃ (Ei , E j ))

=
∑

i, j

εiε j
(

B(T̃ (Ei , E j ), T̃ (Ei , E j )) + 2 g(∂t T̃ (Ei , E j ), T̃ (Ei , E j ))
)

.

For the last term of the above, by symmetry (∂t∇ t )Ei E j = (∂t∇ t )E j Ei and omitting sum,
we get

2 g(∂t T̃ (Ei , E j ), T̃ (Ei , E j )) = g

(

∂t

(

(

∇ t
Ei E j − ∇ t

E j
Ei

)�)

, T̃ (Ei , E j )

)

= g
(

∂t

(

∇ t
Ei E j − ∇ t

E j
Ei

)

, T̃ (Ei , E j )
)

+ g

(

B�

(

(

∇ t
Ei E j − ∇ t

E j
Ei

)⊥)

, T̃ (Ei , E j )

)

= g

(

∇(∂tEi )� E j +∇(∂tEi )⊥ E j +∇Ei ((∂tE j )
�) + ∇Ei ((∂tE j )

⊥)

−∇(∂tE j )
� Ei − ∇(∂tE j )

⊥ Ei − ∇E j ((∂tEi )�)

−∇E j ((∂tEi )⊥), T̃ (Ei , E j )

)

, (22)

where we have used the assumption (∇ t
Ei E j )

⊥ = (∇ t
E j
Ei )⊥ = 0. We will compute eight

terms in (22) separately. First we calculate

g
(

T̃
(

(∂tEi )⊥, E j

)

, X�)

= −1

2
g

(

T̃
(

(

B�Ei
)⊥

, E j

)

, X�)

= −1

2

∑

a

εa g
(

T̃
(

(

B�Ei
)⊥

, E j

)

, Ea

)

g(Ea, X
�)

= −1

2

∑

a

εa g
(

T̃ �
a

(

B�Ei
)

, E j

)

g(Ea, X
�).
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Then, assuming X = T̃ (Ei , E j ), we find the sum (22)2 + (22)8:

2
∑

i, j,a

εiε jεa

(

−1

2

)

g
(

T̃ �
a (B�Ei ), E j

)

g
(

Ea, T̃ (Ei , E j )
)

=
∑

i, j,a

εiε jεa g
(

T̃ �
a E j , B

�Ei
)

g
(

T̃ �
a Ei , E j

)

=
∑

i, j,a,k

εiε jεaεk g
(

T̃ �
a E j , Ek

)

B(Ei , Ek) g
(

T̃ �
a Ei , E j

)

= −
∑

i,a,k

εiεaεk g
(

T̃ �
a Ek, T̃ �

a Ei
)

B(Ei , Ek)

=
∑

i,a,k

εiεaεk g

(

(

T̃ �
a

)2
Ek, Ei

)

B(Ei , Ek).

For (22)4 + (22)6 we have the same, thus (22)2 + (22)4 + (22)6 + (22)8 = 2 〈T̃ , B〉.
For (22)1, which is equal to (22)5, we have

−
∑

i, j

εiε j g
(

∇(B�Ei )�E j , T̃ (Ei , E j )
)

= −
∑

i, j,a

εiε jεa g
(

∇EaE j , T̃ (Ei , E j )
)

B(Ei , Ea)

=
∑

i, j,a

εiε jεa g
((

A j + T �
j

)

Ea, T̃ (Ei , E j )
)

B(Ei , Ea)

=
∑

i, j,a,b

εiε jεaεb g
((

A j + T �
j

)

Ea, Eb

)

g
(

T̃ �
b Ei , E j

)

B(Ei , Ea)

= −
∑

i, j,b

εiε jεb B
(

Ei ,
(

A j − T �
j

)

Eb

)

g
(

T̃ �
b E j , Ei

)

= −
∑

j,b

ε jεb B
(

T̃ �
b E j ,

(

A j − T �
j

)

Eb

)

= 〈
θ̃,θ−α, B〉.

Thus, (22)1 + (22)5 = 〈2
θ̃,θ−α, B〉. For the term (22)3, we have
∑

i, j

εiε j g
(

∇Ei
(

(−B�E j
)�)

, T̃ (Ei , E j )
)

=
∑

i, j,a

εiε jεa g
(

∇Ei
(

(−B�E j
)�)

, Ea

)

g
(

T̃ (Ei , E j ), Ea

)

= −
∑

i, j,a

εiε jεa

(

∇Ei g
(

(

B�E j
)�

, Ea

)

− g
(

(

B�E j
)�

,∇Ei Ea

)

)

g
(

T̃ �
a (Ei ), E j

)

= −
∑

i, j,a

εiε jεa

(

∇Ei
(

g(B(E j , Ea)
(

−T̃ �
a E j

)

, Ei )
)

− B(E j , Ea)∇Ei g
(

−T̃ �
a E j , Ei

)

)

= div⊥〈θ̃ , B〉 −
∑

i, j,a

εiε jεa B(E j , Ea)∇Ei g
(

T̃ �
a E j , Ei

)

+ g
(

(

B�E j
)�

,∇ t
Ei Ea

)

g
(

T̃ �
a Ei , E j

)
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= div⊥〈θ̃ , B〉 − 〈 (div⊥ θ̃ ) |V, B〉
= div〈θ̃ , B〉 + 〈 〈θ̃ , B〉, H〉 − 〈(div θ̃ ) |V, B〉 − 〈 〈θ̃ , B〉, H〉,

where we have used the assumption
(

∇ t
Ei Ea

)� = 0 to remove the second term of the third

line above. Thus, (22)3 + (22)7 = 2 div〈θ̃ , B〉−2 〈(div θ̃ ) |V, B〉. Using the above, we obtain
(14e).
Proof of (14f). We calculate using Lemma 3,

g(∂t T (Ea, Eb), X
⊥) = 1

2
g

(

∂t

(

(

∇ t
Ea
Eb − ∇ t

Eb
Ea

)⊥)

, X⊥
)

= 1

2
g

(

∂t

(

∇ t
Ea
Eb − ∇ t

Eb
Ea

)

, X⊥)

−1

2
g

(

B�

(

(

∇ t
Ea
Eb − ∇ t

Eb
Ea

)⊥)

, (X⊥)�
)

= 0.

Then we obtain (14f):

∂t 〈T, T 〉 = ∂t
∑

a,b

εaεb g(T (Ea, Eb), T (Ea, Eb))

=
∑

a,b

εaεb
(

B(T (Ea, Eb), T (Ea, Eb)) + 2 g(∂t T (Ea, Eb), T (Ea, Eb))
)

=
∑

a,b

εaεb B(T (Ea, Eb), T (Ea, Eb)) = −〈�T , B〉.

This completes the proof. ��

Corollary 1 For g⊥-variations, we have

∂t˜Sex = 〈(div H̃) g⊥ + 4〈θ, H̃〉 − div h̃ + 4
α̃,θ − ˜K�, B〉
+ div(〈h̃, B〉 − (Tr DB)H̃), (23a)

∂t Sex = 〈−�h + 2〈θ̃ − α̃, H〉 + 2 Sym(H � ⊗ H̃ �) − 2 δ̃H + 2(div α) |V
+2
α,α̃+θ̃ , B〉 + 2 div

(

(B�H)� − 〈α, B〉). (23b)

Proof Formula (23a) follows from (14a) and (14b), and (23b) follows from (14c) and (14d).
��

Similarly as Lemma 2, one can prove the following

Lemma 4 Let {Ea, Ei } be a local (˜D, D)-adapted and g-orthonormal frame. For any vari-
ation gt , the frame evolving according to equations:

Ea(0) = Ea, ∂t Ea = −1

2
(B�Ea)

�,

Ei (0) = Ei , ∂tEi = −(B�Ei )� − 1

2
(B�Ei )⊥,

where B = ∂t gt , remains an orthonormal frame adapted to ˜D and D(t).
For any g�-variation, the frame evolving according to equations:
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Ea(0) = Ea, ∂t Ea = −1

2
(B�Ea)

�,

Ei (0) = Ei , ∂tEi = 0,

where B = ∂t gt , remains an orthonormal frame adapted to ˜D and D.

Lemma 3 remains true without any changes for both gt - and g�-variations, and Proposi-
tion 1 has the following analogue.

Proposition 2 For g�-variations of g, we have

∂t 〈h̃, h̃〉 = 〈�h̃, B〉 − B(H̃ , H̃), (24a)

∂t g(H̃ , H̃) = −B(H̃ , H̃), (24b)

∂t 〈h, h〉 = 〈div h + K�, B〉 − div〈h, B〉, (24c)

∂t g(H, H) = 〈 (div H) g�, B〉 − div
((

Tr
˜DB�

)

H
)

, (24d)

∂t 〈T̃ , T̃ 〉 = −〈�T̃ , B〉, (24e)

∂t 〈T, T 〉 = 2 〈 T �, B 〉. (24f)

Proof The claim follows in fact from the computations that we already did in the proof
of Proposition 1. Careful comparison of Lemmas 2 and 4 indicates that in order to obtain
(24a)–(24f) it is enough to take formulas dual (with respect to interchanging ˜D and D) to
(14a)–(14f) and assume in them that B = B|˜D×˜D . ��

Remark 3 Note that g�-variations coincide with one of two families of adapted variations
considered in a previous paper of the authors [14] and in [2]. The adapted variations are
a special case of variations considered in this paper—as they are additionally required to
keep the distributions ˜D and D(0) orthogonal for all gt . Here we make no such assumption,
allowing the gt -orthogonal complement of the distribution ˜D to vary, which enables us to
consider arbitrary variations of the metric. Indeed, one can prove that variation formulas for
general variations gt are sums of the corresponding formulas from Propositions 1 and 2. This
follows from the fact that every infinitesimal variation of g can be decomposed into the sum
of infinitesimal g⊥- and g�-variations. Such decomposition would not be possible with the
use of adapted variations only.

As the last of technical tools that we shall use, we note the following formula for variation
of the volume form, true for any variation of a metric gt with B = ∂t gt |t=0 [17]:

∂td volg|t=0 = 1

2
(Tr g B) d volg . (25)

2.3 Euler–Lagrange equation

In this section, we present the Euler–Lagrange equation for the action (2). We consider
different kinds of variations of metric. For arbitrary variations of the metric, the Euler–
Lagrange equation is simply a condition for vanishing of the gradient of the functional:
δ Jmix,˜D,�(g), where

d

dt
Jmix,˜D,�(gt ) | t=0 =

∫

�

〈δ Jmix,˜D,�, B〉d volg
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for any variation gt with B = ∂t gt|t=0 . In analogue to the Einstein–Hilbert action, one can
also consider variations preserving the volume of�. For such variations, using (25), we have

0 = ∂t

∫

M
d volg =

∫

M
∂td volg =

∫

M

1

2
(Tr B)d volg = 1

2

∫

�

〈g, B〉d volg .

Hence, metric g is critical for the volume-preserving variations if and only if the condition
∫

�

〈δ Jmix,˜D,�, B〉d volg = 0

holds for all B satisfying
∫

�
〈g, B〉 = 0. It follows that the Euler–Lagrange equation is now

δ Jmix,˜D,� = λg, (26)

where λ ∈ R is an arbitrary constant [3] (i.e., every metric satisfying it with some constant
λ ∈ R is critical). Unfortunately, in our case the functional Jmix,˜D,� is not a Riemannian
functional (i.e., it is not invariant under all diffeomorphisms of M), hence we cannot take as
λ an arbitrary function [3]. Note that the Euler–Lagrange equation for arbitrary variations is
a special case of (26), with λ = 0.

We can also consider volume-preserving g�- and g⊥-variations. For g�-variations, B
is restricted to ˜D × ˜D and for g⊥-variations B vanishes on ˜D × ˜D. Hence, the Euler–
Lagrange equation is still (26), only either restricted to ˜D×˜D (for g�-variations) or considered
everywhere except ˜D × ˜D (for g⊥-variations).

Theorem 1 (Euler–Lagrange equation) A metric g ∈ Riem(M, ˜D,D) is critical for the
action (2) with respect to volume-preserving g⊥-variations if and only if

rD − 〈h̃, H̃〉 + ˜A� − ˜T � + �h + �T + 	 − DefD (H) + ˜K�

−1

2

(

Smix + div(H̃ − H)
)

g⊥ = λg⊥, (27a)

2〈θ, H̃〉 + (div(α − θ̃ )) |V + 〈θ̃ − α̃, H〉 + Sym(H � ⊗ H̃ �)

− δ̃H + 2
α̃,θ + 
α,α̃ + 
θ,θ̃ = 0. (27b)

A metric g ∈ Riem(M, ˜D,D) is critical for the action (2) with respect to volume-preserving
g�-variations if and only if

r
˜D − 〈h, H〉 + A� − T � + �h̃ + �T̃ + ˜	 − Def

˜D (H̃) + K�

−1

2

(

˜Smix + div(H − H̃)
)

g� = λg�. (27c)

Proof Let gt be a g⊥-variation, and let Q(g) := Smix − div(H + H̃). Then

d

dt
Jmix,˜D,�(gt ) | t=0 = d

dt

∫

�

Q(gt ) d volgt | t=0 + d

dt

∫

�

div(H + H̃) d volgt | t=0 .

Differentiating the formula div X ·d volg = LX (d volg), andusing (25)weobtain ∂t ( div X) =
div(∂t X) + (1/2) X (Tr B�) for any t-dependent vector field X . In particular, it follows that

d

dt

∫

�

div(H + H̃) d volgt =
∫

�

∂t (div(H + H̃)) d volgt +
∫

�

div(H + H̃) ∂t (d volgt )

=
∫

�

div(∂t (H + H̃)) d volgt
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+
∫

�

(1/2) ((H + H̃)(Tr B�)) d volgt

+
∫

�

(1/2)(Tr B�) div(H + H̃) (d volgt )

=
∫

�

div(∂t (H + H̃)) d volgt +(1/2)
∫

�

div((Tr B�) · (H + H̃)) d volgt .

For g⊥-variations supported inside�, it follows from (20) and (21) that both fields ∂t (H+ H̃)

and (Tr B�) · (H + H̃) vanish on ∂�, and hence d
dt

∫

�
div(H + H̃) d volg = 0. We have

therefore
d

dt
Jmix,˜D,�(gt ) | t=0 = d

dt

∫

�

Q(gt ) d volgt | t=0,

and Q(g) can be presented using (9) as

Q(g) = Sex(g) + ˜Sex(g) + 〈T, T 〉g + 〈T̃ , T̃ 〉g . (28)

Applying Corollary 1 and Proposition 1 to (28), using (5) and removing integrals of diver-
gences of vector fields compactly supported in �, we get
∫

�

∂t Q(gt ) | t=0 d volg =
∫

�

〈

4
α̃,θ − div h̃ − ˜K� − �h − �T + 2 T̃ � + 4 〈θ, H̃〉
+(div H̃)g⊥ + 2(div α) |V + 2
α,α̃+θ̃ + 2 〈θ̃ − α̃, H〉
+ 2 Sym(H � ⊗ H̃ �) − 2 δ̃H + 2
θ̃,θ−α − 2(div θ̃ ) |V, B

〉

d volg,

(29)

where B = {∂t gt } | t=0. Since

d

dt
Jmix,˜D,�(gt )| t=0 =

∫

�

∂t Q(gt ) | t=0 d volg +
∫

�

Q(g) (∂td volgt | t=0),

by (29) and (25), we have

d

dt
Jmix,˜D,�(gt )| t=0 =

∫

�

〈

4
α̃,θ − div h̃ − ˜K� − �h − �T + 2 T̃ � + 4 〈θ, H̃〉
+ 2(div(α − θ̃ )) |V + 2
α,α̃+θ̃ + 2〈θ̃ − α̃, H〉 + 2 Sym(H � ⊗ H̃ �)

− 2 δ̃H + 2
θ̃,θ−α + 1

2

(

Smix + div(H̃ − H)
)

g⊥, B
〉

d volg .

(30)

If g is critical for Jmix,˜D,� with respect to g⊥-variations, then the integral in (30) is zero for
arbitrary symmetric (0, 2)-tensor B vanishing on ˜D × ˜D. This yields the Euler–Lagrange
equation, that we can decompose into two independent parts: its D ×D and V-components,
obtaining the following:

div h̃ + ˜K� + �h + �T − 2 T̃ � − 1

2

(

Smix + div(H̃ − H)
)

g⊥ = 0, (31a)

2 〈θ, H̃〉 + 2
α̃,θ + (div(α − θ̃ )) |V + 
α,α̃+θ̃ + 〈θ̃ − α̃, H〉
+Sym(H � ⊗ H̃ �) − δ̃H + 
θ̃,θ−α = 0. (31b)
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For volume-preserving g⊥-variations, the Euler–Lagrange equation will be (31b), and
instead of (31a), one needs to consider the following:

div h̃ + ˜K� + �h + �T − 2 T̃ � − 1

2

(

Smix + div(H̃ − H)
)

g⊥ = λg⊥. (32)

Using tensor rD (Lemma 1) and replacing div h̃ in (31a) according to (6), we rewrite (32) as
(27a). Using the properties 
P,Q = 
Q,P and 
P,Q1+Q2 = 
P,Q1 + 
P,Q2 , we rewrite
(31b) as (27b). Finally, using the fact that all variation formulas for g�-variations are dual
to the D × D components of the variation formulas for g⊥-variations, we can take the dual
equation to (32) to obtain the following Euler–Lagrange equation for volume-preserving
g�-variations:

div h + K� + �h̃ + �T̃ − 2 T � − 1

2

(

Smix + div(H − H̃)
)

g� = λg�, (33)

as the dual to Smix is Smix. Using the dual of Lemma 1 yields (27c). ��

Remark 4 (i) Equations (27a) and (27c) are dual to each other and coincide with the equa-
tions obtained in [14] for adapted variations of metric (see Remark 3 with a discussion of
their relationship with g⊥- and g�-variations). However, (27a) corresponds to the vari-
ation of the orthogonal complement of ˜D and cannot be obtained by means of adapted
variations.

(ii) We can relate the Euler–Lagrange equation for different types of variations. To obtain
the Euler–Lagrange equation for arbitrary, not necessarily preserving volume of (M, g),
g⊥-variations (respectively, g�-variations), one should merely set λ = 0 in the
Euler–Lagrange equation obtained for volume-preserving g⊥-variations (respectively,
g�-variations). To obtain the Euler–Lagrange equation for arbitrary variations gt pre-
serving the volume of (M, g), one should consider both Euler–Lagrange equations for
volume-preserving g⊥- and g�-variations, with the same, arbitrary constant λ ∈ R.

In general, it is difficult to find critical points of (2) for arbitrary variations of met-
ric. A trivial example of such metric is the one of the metric product of manifolds, i.e.,
with both ˜D and D integrable and totally geodesic. A more interesting case (to be con-
sidered in further work) are critical left-invariant metrics on Lie groups endowed with
left-invariant distributions. There exist, however, many interesting examples of metrics criti-
calwith respect to volume-preserving variations, or volume-preserving g⊥- and g�-variations
considered separately—we shall present some of them in further sections. Note that the
volume-preserving g⊥- and g�-variations generalize other variations considered in litera-
ture, e.g., the variation among associated metrics on a contact manifold [4], discussed in
Sect. 3.3.

3 Particular cases

In this part of the paper, we examine the Euler–Lagrange equations (27a)–(27c), assuming
particular (co)dimension of the distribution ˜D or the existence of an additional structure on
the manifold M . In these special geometric settings, we obtain examples of metrics critical
for the action (2), with respect to variations previously discussed.
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3.1 Flows

Let ˜D be spanned by a nonsingular vector field N , and then it is tangent to the one-dimensional
foliation by the flowlines of N . In this case, Smix = εN RicN ,N , RN = R(N , · )N is the
Jacobi operator and the partial Ricci tensor takes a particularly simple form:

r
˜D = εN RicN ,N g�, rD = εN (RN )�.

We have h̃ = h̃scN , where h̃sc = εN 〈h̃, N 〉 is the scalar second fundamental form of D. Let
ÃN be the Weingarten operator associated with h̃sc and let τ̃i = Tr Ã i

N (i ≥ 0). We have
Sex = g(H, H) − 〈h, h〉 = g(H, H) − g(H, H) = 0, ˜Sex = τ̃ 21 − τ̃2 and

div N =
∑

i

εi g(∇Ei N , Ei ) = −g

(

N ,
∑

i

εi∇Ei Ei

)

= −g(N , H̃) = −τ̃1,

div(τ̃1N ) = N (τ̃1) + τ̃1 div N = N (τ̃1) − τ̃ 21 .

The curvature of the flow lines is H = εN ∇N N . From Theorem 1, we obtain the following.

Corollary 2 (Euler–Lagrange equation) Let a distribution ˜D be spanned by a unit vector
field N on a manifold M with respect to g ∈ Riem(M, ˜D,D). Then g is critical for the action
(2) with respect to volume-preserving g⊥-variations if and only if

εN

(

RN + Ã2
N −

(

T̃ �
N

)2 +
[

T̃ �
N , ÃN

]

)�

− τ̃1h̃sc + H � ⊗ H � − DefD H

−1

2

(

εN RicN ,N + div(εN τ̃1N − H)
)

g⊥ = λg⊥, (34a)

div⊥T̃ �
N |D + 2

(

T̃ �
N (H)

)� = 0; (34b)

and the metric g is critical for the action (2)with respect to volume-preserving g�-variations
if and only if

εN RicN ,N −4〈T̃ , T̃ 〉 − div(εN τ̃1N + H) = 2λ. (34c)

Moreover, the metric g is critical for the action (2) with respect to all volume-preserving
variations if and only if all equations (34a)–(34c) hold, with the same constant λ.

Proof An easy computation shows that

˜A = εN Ã2
N , 〈h̃scN , H̃〉 = τ̃1h̃sc, 	 = H � ⊗ H �, ˜	 = (εN τ̃2 − 〈T̃ , T̃ 〉) g�,

A = g(H, H) ˜id , T = 0, 〈h, H〉 = g(H, H) g�,

H = εN∇N N , h = H g�, 〈h, h〉 = g(H, H),

H̃ = εN τ̃1N , τ̃1 = εN Tr gh̃sc, 〈h̃, h̃〉 = εN τ̃2, Def
˜D H̃ = εN N (τ̃1) g

� . (35)

Notice that (H � ⊗ H �)(X, Y ) = g(H, X) g(H, Y ). Substituting

�h = 0 = Sex, ˜Sex = εN (τ̃ 21 − τ̃2), ˜T = εN T̃
� 2
N

into (27a) and using (35) yields (34a). Substituting

h = H g�, �h̃ = εN
(

τ̃ 21 − τ̃2
)

g�, �T̃ = −〈T̃ , T̃ 〉 g�, K� = 0

into (27c) and using (35) yields (34c).

123



110 Ann Glob Anal Geom (2018) 54:87–122

Let X be orthogonal to N with ∇Z X ∈ ˜D for all Z ∈ T M . We have θ = 0 and since

2 (div α)(X, N ) = g(∇N H − τ̃1H, X),

2 〈θ̃ − α̃, H〉(X, N ) = −g
(

T̃ �
N (H) + ÃN (H), X

)

,

2 Sym(H � ⊗ H �)(X, N ) = g(τ̃1H, X),

2 δ̃H (X, N ) = g(∇N H, X),

2
α,α̃(X, N ) = g( ÃN (H), X),

the Euler–Lagrange Eq. (27b) reduces to

(div θ̃ ) |V − 〈θ̃ , H〉 = 0. (36)

For X ∈ D such that ∇Z X ∈ ˜D for all Z ∈ T M , we have

2 div θ̃ (X, N ) =
∑

i

εi g
((

∇Ei T̃
�
N

)

(X), Ei
)

+ εN g
(

∇N

(

T̃ �
N (X)

)

, N
)

=
(

div⊥ T̃ �
N

)

(X) + g
(

T̃ �
N (H), X

)

.

Hence, (36) is written as (34b). ��
By (5), we have div h̃ = N (h̃sc) − τ̃1h̃sc and div h = (div H) g̃. Then, see (6) and (9),

εN

(

RN + Ã2
N +

(

T̃ �
N

)2
)�

= N (h̃sc) − H � ⊗ H � + DefD H,

εN RicN ,N = div H + εN (N (τ̃1) − τ̃2) + 〈T̃ , T̃ 〉. (37)

Remark that (37)2 is simply the trace of (37)1.
A flow of a unit vector N is called geodesic if the orbits are geodesics (h = 0) and

Riemannian if the metric is bundle-like (h̃ = 0). A nonsingular Killing vector field clearly
defines a Riemannian flow; moreover, a Killing vector field of constant length generates a
geodesic Riemannian flow. Restricting Corollary 2 to the case of a geodesic Riemannian flow,
we obtain the following.

Corollary 3 Let ˜D be spanned by a unit vector field N that generates a geodesic Riemannian
flow on a pseudo-Riemannian manifold (Mp+1, g). Then g is critical for the action (2) with
respect to volume-preserving g⊥-variations if and only if all the following conditions hold:

RN = (1/p) RicN ,N id ⊥, (38a)

RicX,N = 0 (X ∈ D), (38b)

RicN ,N = const; (38c)

and the metric g is critical for the action (2)with respect to volume-preserving g�-variations
if and only if (38c) holds.

Proof From (37)1 we obtain RN = −
(

T̃ �
N

)2
and (34a) takes the form

2εN (RN )� − 1

2
εN RicN ,N g⊥ = λg⊥,

which together with RicN ,N = Tr RN yields (38a) and (38c).
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For a geodesic Riemannian N -flow, (34b) reduces to condition div⊥T̃ �
N (X) = 0 for all

X ∈ D, that we shall now examine. A Riemannian geodesic flow locally gives rise to a
Riemannian submersion with totally geodesic fibers. Such mappings can be described by the
following tensor, introduced by Gray [8] and adjusted here to our notation:

OXY = (∇X⊥Y�)⊥ + (∇X⊥Y⊥)� (X, Y ∈ T M).

It follows that O is antisymmetric with respect to g and OXY = T̃ (X, Y ) for X, Y ∈ D.
Hence, for X, Y ∈ Dwe have g(T̃ �

N X, Y ) = g(T̃ (X, Y ), N ) = g(OXY, N ) = −g(OX N , Y )

and we obtain T̃ �
N X = −OX N .

Let X ∈ D and ∇Z X ∈ ˜D for all Z ∈ T M . Using an adapted frame with Ei ∈ ˜D at a
point, the fact that ∇N N = 0, and the antisymmetry of ∇ZO for all Z ∈ T M , we obtain:

(

div⊥T̃ �
N

)

(X) =
∑

i

g
(

∇Ei T̃
�
N X, Ei

)

= −
∑

i

g
(∇EiOX N , Ei

)

= −
∑

i

g
((∇EiO

)

X N , Ei
) =

∑

i

g
((∇EiO

)

X Ei , N
)

.

From the formula (5.37e) from [16], adjusted to our definitions of R and Ric, it follows that

(div⊥T̃ �
N )(X) = −

∑

i

g(R(Ei , X)Ei , N ) = −RicX,N .

Thus, we obtain (38b). Finally, for volume-preserving g�-variations, we have the Euler–
Lagrange Eq. (34c), that for geodesic Riemannian flows takes the form εN RicN ,N = − 2

3λ.��
From Corollary 3, we immediately obtain the following.

Corollary 4 Let (Mp+1, g), with p > 1, be an Einstein manifold with a geodesic Rieman-
nian flow. Let ˜D be the 1-dimensional distribution tangent to the flowlines. Then g is critical
for the action (2) with respect to volume-preserving g⊥ and g�-variations.

The following proposition shows that the only manifolds with geodesic Riemannian flows
critical for the action (2) with respect to all volume-preserving variations locally are in fact
metric products.

Proposition 3 Let ˜D be spanned by a unit vector field N that generates a geodesic Rieman-
nian flow on a pseudo-Riemannian manifold (Mp+1, g). If g is a critical metric for the action
(2) with respect to all volume-preserving variations then D is integrable.

Proof Using Remark 4(ii), we can write the Euler–Lagrange equation for arbitrary volume-
preserving variations as follows:

εN

(

RN −
(

T̃ �
N

)2
)�

= 1

2

(

εN RicN ,N +2λ
)

g⊥, (39a)

RicX,N = 0 (X ∈ D), (39b)

εN RicN ,N = 4 〈T̃ , T̃ 〉 + 2λ, (39c)

where λ ∈ R is an arbitrary constant. Using RN = −
(

T̃ �
N

)2
and Tr

(

T̃ �
N

)2 = −〈T̃ , T̃ 〉, we
obtain from (39c) λ = −3〈T̃ , T̃ 〉/2. On the other hand, (39a) yields

−2

(

(

T̃ �
N

)2
)�

= 1

2

(

〈T̃ , T̃ 〉 + 2λ
)

g⊥,
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and taking its trace we obtain (4 − p)〈T̃ , T̃ 〉 = 2λp. It follows from n, p ≥ 0 that the two
equations for λ have a solution only for 〈T̃ , T̃ 〉 = 0. ��
3.2 Codimension-one foliations

In this section, we consider the action (2), where ˜D is tangent to a codimension-one foliation
(of dimension n > 1). We find metrics critical with respect to volume-preserving g⊥- and
g�-variations, as well as arbitrary volume-preserving variations.

Let F be a codimension-one foliation tangent to the distribution ˜D. Let hsc be the scalar
second fundamental form, and AN theWeingarten operator ofF ; thenwe define the functions
τi = Tr Ai

N (i ≥ 0)—the power sums of the principal curvatures ki of the leaves. The τ ’s
can be expressed using the elementary symmetric functions σ1, . . . , σn ,

σ j =
∑

i1<···<i j

ki1 · · · · · ki j (0 ≤ j ≤ n),

called mean curvatures in the literature. For example, σ0 = 1 = τ0, σ1 = τ1, and 2σ2 =
τ 21 − τ2.

We have T = 0 = T̃ and

hsc(X, Y ) = εN g(∇X Y, N ), AN (X) = −∇X N (X, Y ∈ TF).

We define the vector field (˜div AN )� ∈ X
˜D by the following equation:

g((˜div AN )�, X) = (˜div AN )(X) (X ∈ X
˜D).

Then we can formulate the following.

Proposition 4 Let ˜D be the distribution tangent to a codimension-one foliation of a manifold
Mn+1. Then a metric g on M is critical for the action (2) with respect to volume-preserving
g⊥-variations if and only if

τ 21 − τ2 = 2εN λ, (40a)

(˜divAN )� − ∇�τ1 = 0, (40b)

and g on M is critical for the action (2) with respect to volume-preserving g�-variations if
and only if:

∇Nhsc − τ1hsc = 1

2

(

2 εN
(

N (τ1) − τ 21
) + εN

(

τ 21 − τ2
) + 2λ

)

g�. (40c)

Moreover, a metric g on M is critical for the action (2) with respect to all volume-preserving
variations if and only if (40a)–(40c) hold with the same constant λ.

Proof Equations (40a) and (40c) follow from (27a) and (27c). This can be shown by a direct
computation, but since the orthogonal complement of ˜D is spanned by a single vector field N ,
we can use the equations obtained for flows, as adapted (i.e., with ∂t g restricted toD×D) g⊥-
variations in this section correspond to g�-variations in Sect. 3.1. (See Remarks 3 and 4(i).)
Hence, (40a) is dual to (34c) and (40c) is dual to (34a), with the additional assumption that ˜D
is integrable. Indeed, using (37) in (34c) and (34a), then taking their duals and setting T = 0,
we obtain (40a) and (40c). For X ∈ ˜D and N ∈ D, we have

2 〈α̃, H〉(X, N ) = τ1 g(X, H̃),

2 Sym(H � ⊗ H̃ �)(X, N ) = τ1 g(X, H̃),
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2 δ̃H (X, N ) = X (τ1),

2
α,α̃(X, N ) = g(AN (H̃), X),

2 (div α)(X, N ) = (div AN )(X).

Using the above equations and the fact that for all X ∈ ˜D we have

(div AN )(X) =
∑

λ

ελg(∇λ(AN (X)), eλ) −
∑

λ

ελg(AN (∇λX), eλ)

=
∑

a

εa g(∇Ea (AN (X)), Ea) + εN g(∇N (AN (X)), N )

−
∑

a

εa g(AN (∇Ea X), Ea) = (˜div AN )(X) − g(AN (X), H̃),

we reduce (27b) to (40b). ��
From Proposition 4, we obtain the following.

Corollary 5 Let ˜D be tangent to a codimension-one foliation of a pseudo-Riemannian man-
ifold (Mn+1, g), and let the unit normal field N of F be complete in M. Then metric g is
critical for the action (2) with respect to all volume-preserving variations if and only if

τ 21 − τ2 = 2εN λ, ∇Nhsc − τ1hsc = 2λ

1 − n
g�, (41)

(˜divAN )� − ∇�τ1 = 0, (42)

and τ1 is bounded on M only for λ ≥ 0; moreover, τ1 = 0 when λ = 0.

Proof Taking trace of (40c) and using (40a), we obtain

N (τ1) − τ 21 = 2nεNλ

1 − n
. (43)

Using the above and (40a) in (40c) yields (41)2. Equation (43) has a global bounded solution
only for λ ≥ 0, and for λ = 0, this solution is τ1 = 0. ��

Codimension-one foliations admit biregular foliated coordinates (x0, . . . , xn), see [7,
Section 5.1], i.e., the leaves are the level sets {x0 = c} and N -curves are given by {xi =
ci (i > 0)}. From now on, we assume that a foliated pseudo-Riemannian manifold (M,F, g)
admits orthogonal biregular foliated coordinates (hence, gi j = 0 for i �= j), then g =
g00 dx20 + ∑

i>0 gii (dxi )
2. Denote by gii,μ the derivative of gii in the ∂μ-direction. We

adopt the convention μ ∈ {0, . . . , n}, a, i, j ∈ {1, . . . , n}. We have g00 = εN |g00| and
gii = εi |gii |.
Lemma 5 For a pseudo-Riemannian metric in orthogonal biregular foliated coordinates of
a codimension-one foliation on (M, g), one has [13]

N = ∂0/
√|g00| (the unit normal),

�
j
i0 = (1/2) δ

j
i gii,0/gii , �i

00 = −(1/2) g00,i/gii , �0
i j = −δi j gii,0/(2 g00),

hi j = �0
i j

√
g00 = −1

2
εN δi j gii,0/

√|g00| (the second fundamental form),

A j
i = −�

j
i0/

√|g00| = − 1

2
√|g00| δ

j
i
gii,0
gii

(the Weingarten operator),

123



114 Ann Glob Anal Geom (2018) 54:87–122

τ1 = − 1

2
√|g00|

∑

i>0

gii,0
gii

, τ2 = 1

4 |g00|
∑

i>0

(

gii,0
gii

)2

, etc.

Using the above, one can obtain

(∇N hsc)i i = − εN

2 |g00|
(

gii,00 − 1

2
gii,0(log |g00|), 0 − (gii,0)

2/gii

)

,

(˜divAN )(∂i ) = ∂i

(

− 1

2
√|g00| · gii, 0

gii

)

− 1

2
√|g00| · gii, 0

gii

∑

a>0

�a
ai

+ 1

2
√|g00|

∑

a>0

�a
ai
gaa, 0

gaa

for i = 1, . . . , n, where

�a
ai = 1

2
· gaa, i

gaa
. (44)

Lemma 6 Let F be a codimension-one foliation of a pseudo-Riemannian manifold (M, g)
tangent to ˜D, with a unit normal field N complete in M. Let there exist global orthogonal
biregular foliated coordinates (x0, x1, . . . , xn), with the leaves of F given by {x0 = c}, and
g of the form

gii = εi fi (x1, . . . xn) e
−2

∫ √|g00| yi (t,x1,...,xn) d t , i = 1, . . . , n, (45)

where fi (i = 1, . . . n) are positive functions. Then (41) is written as the system

τ 21 − τ2 = 2εNλ, (46a)

∂0yi − τ1
√|g00| yi − 2λ

1 − n
εN

√|g00| = 0, i = 1, . . . , n (46b)

where τ1 = y1 + · · · + yn, τ2 = y21 + · · · + y2n , λ is a constant and g00 is a smooth function
of constant sign. Also, (42) takes the following form:

∂i yi + yi
∑

a>0

�a
ai −

∑

a>0

ya�
a
ai − ∂i

∑

a>0

ya = 0, i = 1, . . . , n,

which can be written equivalently as

∂i
∑

a>0, a �=i

ya +
∑

a>0, a �=i

�a
ai (yi − ya) = 0, i = 1, . . . , n. (47)

Proof This follows from a straightforward computation, using (45) and Lemma 5. ��
The following lemma shows how the Euler–Lagrange Eqs. (46b) and (46a) are related,

when the same constant λ is considered in both of them.

Lemma 7 Let g00 ≡ 1 and let y1, . . . , yn be functions that satisfy (46b). If at some point
x0 = 0 (46a) holds, then y1, . . . , yn satisfy (46a) for all values x0 ∈ R.

Proof Let y1, . . . , yn satisfy (46b). Then

∂0
(

τ 21 − τ2x
) = ∂0

(

n
∑

i=1

yi

)2

− ∂0

n
∑

i=1

y2i
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= 2

⎛

⎝

n
∑

j=1

y j

⎞

⎠ ·
(

n
∑

i=1

∂0yi

)

− 2

(

n
∑

i=1

yi∂0yi

)

= 2
n

∑

i=1

(∂0yi )(τ1 − yi ) = 2
n

∑

i=1

(

2λ

1 − n
εN + τ1yi

)

(τ1 − yi )

= 2
n

∑

i=1

(

2λ

1 − n
εN τ1 − 2λ

1 − n
εN yi + τ 21 yi − τ1y

2
i

)

= 2

(

2nλ

1 − n
εN τ1 − 2λ

1 − n
εN τ1 + τ 31 − τ1τ2

)

= 2τ1
(−2λ εN + τ 21 − τ2

)

.

Defining u := −2λ εN +τ 21 −τ2, we can write the above equation as ∂0u = 2τ1 ·u. It follows
from the uniqueness of solution of this ODE, that the only solution satisfying u(0) = 0 is
u ≡ 0. ��

We use the last lemma to give a construction of metric of the form (45) with g00 ≡ 1, that
is critical for the action (2) with respect to arbitrary volume-preserving variations.

Proposition 5 Assume the following for i = 1, . . . , n:

• λ ≥ 0, g00 ≡ 1 and let ηi (x1, . . . , xn) be functions on Rn satisfying
(

n
∑

i=1

ηi

)2

−
n

∑

i=1

η2i = −2εnλ ,

• yi (x0, x1, . . . , xn) satisfies (46b)with τ1 = ∑

i yi and yi (0, x1, . . . , xn)=ηi (x1, . . . , xn),
• �a

ai are any functions satisfying (47) such that �a
ai = �a

ia ,• fa(x1, . . . , xn) are any functions satisfying

∂i fa = 2 fa ·
(

�a
ai + ∂i

∫

ya(t, x1, . . . , xn) d t

)

.

Then the metric g given by (45), with fi and yi as above, is critical for the action (2) with
respect to arbitrary volume-preserving variations.

Proof Equation (46b) holds by the construction, (46a) holds by Lemma 7, and (47) holds by
the construction and Eq. (44). ��
Example 1 Let n = 2, εN = 1 and g00 ≡ 1. Then we have the following solution of (46b)
and (46a):

y1 = −√|λ| coth(√|λ|x0 + √|λ|c), y2 = −√|λ| tanh(√|λ|x0 + √|λ|c),
where c is an arbitrary constant.

It is more difficult to find critical metrics of particular geometric properties.

Proposition 6 Let g be a metric on Mn+1, with n > 1, critical for the action (2)with respect
to all volume-preserving variations and let ˜D be tangent to a codimension-one foliation. If
˜D is minimal, then ˜D is totally geodesic.

Proof If τ1 = 0, then (43) yields λ = 0 and from (46a), we obtain τ2 = 0. It follows that
y1 = · · · = yn = 0 and ˜D is totally geodesic. ��
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Proposition 7 Let g be a metric on Mn+1, with n > 1, critical for the action (2)with respect
to all volume-preserving variations and let ˜D be tangent to a codimension-one foliation, with
unit normal field N. If ˜D is totally umbilical, then it has constant mean curvature τ1.

Proof Let y1 = · · · = yn = y, then τ1 = ny, τ2 = τ 21 /n and (46a) yields 2εNλ =
(n − 1)τ 21 /n. From (43) we obtain N (τ1) = 0. For totally umbilical foliations (42) reduces
to

n − 1

n
∇�τ1 = 0.

Since n > 1, τ1 is constant on M . ��
3.3 Contact and 3-Sasakian structures

Contact manifolds come with a natural foliation given by the flowlines of the Reeb field.
They also admit an (in general, non-unique) associated metric of well examined properties;
we show that for such metric one of the Euler–Lagrange Eq. (27b), always holds. We use
this fact later to show that 3-Sasakian structures are a natural source of the metrics critical
for the action (2). Recall [4] that a manifold M2n+1 with a 1-form η such that

dη(ξ, X) = 0 (X ∈ T M), η(ξ) = 1,

is called a contact manifold, and ξ is called the characteristic vector field (or the Reeb field).
A Riemannian metric g on a contact manifold (M2n+1, η) is associated if there exists a
(1, 1)-tensor φ such that for all X, Y ∈ T M

η(X) = g(ξ, X), dη(X, Y ) = g(X, φ(Y )), φ2 = −I + η ⊗ ξ. (48)

The above (φ, ξ, η, g) is called a contact metric structure on M . For all contact manifolds we
consider in this section, let ˜D be spanned by ξ and let D denote its orthogonal complement.

Remark 5 While we shall consider only the Riemannian metric in this section, there is a
natural way to make a Riemannian contact manifold (M, η, g) a pseudo-Riemannian contact
manifold: by setting ḡ = g − 2 η ⊗ η as the new metric [6]. Then −ḡ(X, ξ) = η(X) for all
X ∈ T M and the remaining equations of (48) hold for ḡwithout changes. This transformation
does not invalidate our main results.

Proposition 8 Let (φ, ξ, η, g) be a contact metric structure on M. Then the Euler–Lagrange
Eq. (34b) is satisfied for N = ξ .

Proof For a contact metric structure, we have (see [4])

H = ∇ξ ξ = 0. (49)

For all X, Y such that g(X, ξ) = g(Y, ξ) = 0

dη(X, Y ) = −1

2
η([X, Y ]) = −1

2
g([X, Y ], ξ)

= −g
(

T̃ �
ξ (X), Y

)

= g
(

X, T̃ �
ξ (Y )

)

.

Hence, it follows from (48), that

g(X, φ(Y )) = g
(

X, T̃ �
ξ (Y )

)

,
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and since φ(ξ) = 0, we obtain the following equality: T̃ �
ξ = φ. By (49), (34b) for N = ξ

reduces to div⊥(T̃ �
ξ )|D = 0, which takes the following form:

(div⊥φ)(Y ) = 0 (Y ∈ D). (50)

For Y ∈ D, the formula for contact metric structures in [4, Corollary 6.1] yields

2 g((∇Ei φ)(Y ), Ei ) = g([φ, φ](Y, Ei ), φ(Ei )),

where

[φ, φ](X, Y ) = φ2[X, Y ] + [φ(X), φ(Y )] − φ[φ(X), Y ] − φ[X, φ(Y )].
As in [4, Corollary 6.1], considering an orthonormal φ-basis (see [4, p. 44]), i.e., assuming
that Ei+p/2 = φ(Ei ) for i = 1, . . . , p/2, we obtain that

p
∑

i=1

g([φ, φ](Y, Ei ), φ(Ei )) = −
p

∑

i=1

g([φ, φ](Y, φ(Ei )), φ2(Ei )).

Hence, (div⊥φ)(Y ) = 0 and (34b) is satisfied. ��
On any contact manifold, there exists a (non-unique) contact metric structure; see [4].

Among them there is a class particularly interesting from the geometric point of view.

Definition 2 [4] A contact metric structure for which ξ is Killing is called K -contact.

Proposition 9 Any K -contact metric g is critical for the action (51), with respect to both
volume-preserving g⊥- and g�-variations.

Proof We have already seen in (49) that the integral curves of ξ are geodesics for the contact
metric structure. On the other hand, a nonsingular Killing vector field defines a Riemannian
flow (h̃ = 0). Thus, in case of a K -contact structure, we can use Corollary 3.

By [4, Theorem 7.2], if (M, g) is a K -contact manifold then (38a) and (38c) are satisfied
with RicN ,N = p. As was shown in Proposition 8, also (38b) holds. ��

In [4], the action (2), which reduces to

Jmix,˜D,� : g →
∫

�

RicN ,N (g) d volg (51)

has been studied on the set of metrics associated with a given contact form.

Definition 3 [4, p. 24] A contact structure is regular if ξ is regular as a vector field, that
is, every point of the manifold has a neighborhood such that any integral curve of ξ passing
through the neighborhood passes through only once.

Theorem 2 (see Theorem 10.12 in [4]) An associated metric g on a compact regular contact
manifold (M, η) is critical for the action (51) considered on the set of metrics associated
with η if and only if it is K -contact.

We have g(ξ, ξ) = 1 for any associated metric and the volume form of associated metric
on a contact manifold can be expressed only in terms of η and dη. Therefore, variations
of the metric restricted to the set of all associated metrics form a subclass of the volume-
preserving g⊥-variations. Hence, on compact regular contact manifolds, Proposition 9 and
Theorem 2 together give the following characteristic of some critical metrics—for a larger
space of variations.
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Corollary 6 Let (M, η) be a compact regular contact manifold, and let g be an associated
metric. Then g is critical for the action (51) for volume-preserving g⊥-variations if and only
if g is K -contact.

Flowlines of Reeb vector fields on contact manifolds are often described as having “max-
imally non-integrable” orthogonal distributions. We can give this notion a precise meaning
by considering the following action:

JT̃ ,�
: g →

∫

�

〈T̃ , T̃ 〉 d volg, (52)

and showing that contactmetric structures are its critical points.Note that (52) is the total norm
of the integrability tensor of the varying orthogonal complement of a fixed distribution ˜D.

Proposition 10 A metric g ∈ Riem(M, ˜D,D) is critical for the action (52) with respect to
volume-preserving g⊥-variations if and only if

2 ˜T � = −
(

1

2
〈T̃ , T̃ 〉 − λ

)

g⊥ , (53a)


θ̃,θ−α = (div θ̃ ) |V. (53b)

Proof Let gt be a g⊥-variation. Using Proposition 1, we obtain

d

dt
JT̃ ,�

(gt ) | t=0 =
∫

�

〈 2 ˜T � + 2
θ̃,θ−α − 2 (div θ̃ ) |V + 1

2
〈T̃ , T̃ , 〉 g⊥, B〉 d volg .

Decomposing the resulting Euler–Lagrange equation into parts defined on D × D and V
yields (53a) and (53b). ��

Note that, as expected, distributions with integrable orthogonal complement are critical
for (52). Also, using the results obtained for the contact metric structure, we get the following.

Proposition 11 Let (φ, ξ, η, g) be a contact metric structure on M and let ˜D be spanned
by ξ . Then g is critical for the action (52) with respect to volume-preserving g⊥-variations.

Proof Using results from the proof of Proposition 8, we compute

〈T̃ , T̃ 〉 =
∑

i, j

g(T̃ (Ei , E j ), T̃ (Ei , E j )) =
∑

i, j

g(T̃ �
ξ (Ei ), E j )

2

=
∑

i

g(φ(Ei ), φ(Ei ))2 = p.

We also have ˜T = (T̃ �
ξ )2 = − id ; hence, ˜T � = − g⊥. By the above, (53a) is satisfied; (53b)

reduces to (div θ̃ )|V = 0 and holds by Proposition 8. ��
In higher dimensions, contact metric structures are generalized by contact 3-structures,

defined as follows [9].

Definition 4 A contact 3-structure is defined as a set of three contact structures, ηa, a =
1, 2, 3, with the same associated metric g satisfying

φc = φa ◦ φb − ηa ⊗ ξb = −φb ◦ φa + ηb ⊗ ξa

for any cyclic permutation (a, b, c) of (1, 2, 3). If each of them is Sasakian structure, it is
called a Sasakian 3-structure (some authors call it a 3-Sasakian structure).
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Theorem 3 [9] A contact 3-structure is necessarily a Sasakian 3-structure.

For any Sasakian 3-structure, let ˜D be the distribution spanned by 3 characteristic vector
fields ξ1, ξ2, ξ3, its orthogonal complement will be denoted by D. Since [ξa, ξb] = 2ξc for
any cyclic permutation (a, b, c) of (1, 2, 3), we see that ˜D is integrable.

Proposition 12 Themetric of a Sasakian 3-structure on M is critical for the action (2) (where
˜D is spanned by the characteristic vector fields), with respect to both volume-preserving g⊥-
and g�-variations.

Proof Since every ξa defines a Sasakian structure, we can use the following formulas for any
unit vectors X, Y orthogonal to ξa (so we can also have X = ξb, etc.):

R(X, Y )ξa = ηa(Y )X − ηa(X)Y, R(X, ξa)Y = −g(X, Y )ξa + ηa(Y )X.

The above formulas are consistent with their analogues for ξb and ξc, and yield the following:
rD = 3g⊥ and r

˜D = pg� . We also have

�T̃ (ξa, ξb) = ˜	(ξa, ξb) = −pg(ξa, ξb),

T̃ �(X, Y ) = −3g(X, Y ) (X, Y ∈ D)

and 〈T̃ , T̃ 〉 = 3p. It follows that (27a) and (27c) are satisfied, but never with the same
constant λ. The remaining Euler–Lagrange Eq. (27b) reduces to (div θ̃ )|V = 0. Since g is a

K -contact metric for ξa , for all Y ∈ T M we have ∇Y ξa = −φa(Y ) [4] and T̃ �
a (Y ) = φa(Y ),

and it follows that (div θ̃ )(Y, ξa) = (div φa)(Y ). As for any contact metric structure, we have
∇ξa ξa = 0 and φa(ξa) = 0. Any vector X ∈ D is orthogonal to ξa and in all tensor formulas
we can assume that ∇Z X is colinear with ξa for all Z ∈ T M . Then

(div θ̃ )(X, ξa) =
∑

i

g((∇Ei φa)(X), Ei ) + g((∇ξbφa)(X), ξb)

+ g((∇ξcφa)(X), ξc) + g((∇ξaφa)(X), ξa)

=
∑

i

g((∇Ei φa)(X), Ei ) + g((∇ξbφa)(X), ξb)

+ g((∇ξcφa)(X), ξc) − g(φa(X),∇ξa ξa)

=
∑

i

g((∇Ei φa)(X), Ei ) + g((∇ξbφa)(X), ξb) + g((∇ξcφa)(X), ξc).

and similarly for ξb, ξc. The formula we obtained above, when considered for a contact metric
structure (φa, ξa, ηa, g) on M , is precisely (div⊥φa)(X). In the proof of Proposition 8 we
showed that (50) holds, and hence (27b) is satisfied. ��
3.4 Non-integrable distributions

In this section we examine the action (2) for a fixed, non-integrable distribution ˜D on a
manifold (M, g). As there is no explicit procedure of solving the Euler–Lagrange equation
in this case, we must resort to considering particular examples of critical metrics. For this
purpose, we set as ˜D the distribution orthogonal to the Reeb fields on contact and 3-Sasakian
manifolds. In this setting, dual to the one considered in Sect. 3.3, K -contact and 3-Sasakian
metrics are critical for the action (2) for volume-preserving g⊥- and g�-variations. We
show how a K -contact metric can be slightly modified and still remain critical. Finally, we
consider g⊥-variations of a codimension-one distribution, and give an example of contact
metric structure (that is not K -contact) critical with respect to them.
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Proposition 13 Let ˜D be a totally geodesic, non-integrable distributionwith totally geodesic,
integrable orthogonal complement D on (M, g). Then g is critical for the action (2) with
respect to volume-preserving g⊥-variations if and only if

�T − 1

2
〈T, T 〉 g⊥ = λg⊥; (54a)

and g is critical for the action (2) with respect to volume-preserving g�-variations if and
only if

− 2 T � − 1

2
〈T, T 〉 g� = λg�. (54b)

Proof The Euler–Lagrange Eq. (27b) is always satisfied, since by the assumptions all its
terms vanish. Equation (32) becomes (54a) and (33) takes the form (54b). Notice that D is
tangent to a totally geodesic Riemannian foliation. ��

One can show, similarly as in the proof of Proposition 3, that (54a) and (54b) cannot hold
together with the same constant λ. Thus, in the setting of Proposition 13, one can find metrics
critical for volume-preserving g⊥- and g�-variations, but only considered separately (each
with different constant λ in the corresponding Euler–Lagrange equation).

Note that (54a) yields that the mapping D � X �→ T �
X ∈ T ∗M ⊗ T M is conformal with

respect to the metric g and the metric induced by g on T ∗M ⊗ T M . Since

�T (X, Y ) = −
∑

a,b

εaεbg(T (Ea, Eb), X)g(T (Ea, Eb), Y ) = Tr
(

T �
Y T

�
X

)

can be related to the Killing form on SO(n), it is natural to look for examples of critical
metrics on manifolds with the action of this group.

Example 2 (i) Let (M, g) be a K -contact manifold and let ˜D be the orthogonal distribution
of the Reeb field. Then g is critical for the action (2) with respect to volume-preserving
g⊥- and g�-variations. Indeed, for the Reeb field ξ we have: �T = −ng⊥ and T � =
−g� (in general, T � = −εN g�, see Remark 5).

(ii) Let (M, g) be a 3-Sasakian manifold and let ˜D be the distribution orthogonal to all
integral manifolds of the Reeb fields ξ1, ξ2, ξ3. Then g is critical for the action (2) with
respect to volume-preserving g⊥- and g�-variations. Indeed, we have �T = −ng⊥
and T � = −3 · g�.

(iii) Let (M, g) be a K -contact manifold and let ˜D be the orthogonal distribution of the
Reeb field. Let ḡ = φg� + ψg⊥, with positive functions φ,ψ ∈ C∞(M), then the
relations between geometric quantities on (M, ḡ) and (M, g) are following: 〈T, T 〉ḡ =
ψφ−2〈T, T 〉 and T �

ḡ = ψφ−1T �. We also have τ1 = − n
2ψ−1/2φ−1N (φ) on (M, ḡ).

It follows that for all positive functions φ,ψ ∈ C∞(M) satisfying N (φ) = 0 and
ψ−1/2φ = const the metric ḡ is critical for the action (2) with respect to volume-
preserving g⊥- and g�-variations.

Remark 6 Let ˜D be a distribution with integrable complement D. Then for X ∈ ˜D and

N ∈ D we have 〈θ, H̃〉(X, N ) = 1
2 g

(

H̃ , T �
N X

)

and 
α̃,θ (X, N ) = − 1
2 g

(

H̃ , T �
N X

)

. It

follows that the Euler–Lagrange Eq. (27b) does not depend of the integrability tensor T of
˜D, only on its extrinsic geometry.

If ˜D is a codimension-one distribution, its orthogonal complement is always integrable.
Then every g⊥-variation corresponds to a family of foliations (by curves gt -orthogonal to ˜D)
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that share the same transversal geometry. For example, if ˜D is totally geodesic or umbilical,
all foliations corresponding to metrics gt are Riemannian or conformal. Thus, g⊥-variation
can be a tool to find the locally “best” (e.g., minimizing a functional) metrics for foliations
of some fixed transverse property. Using equations dual to the ones formulated in Sect. 3.1
and some easy computations, we can obtain the following.

Proposition 14 Let ˜D be a codimension one distribution on a manifold Mn+1 with unit
normal field N. Ametric g on M is critical for the action (2)with respect to volume-preserving
g⊥-variations if and only if:

εN RicN ,N −4〈T, T 〉 − div(εN τ1N + H̃) = 2λ, (55a)

(˜divAN )� − ∇�τ1 = 0. (55b)

Ametric g on M is critical for the action (2)with respect to volume-preserving g�-variations
if and only if:

εN

(

RN + A2
N −

(

T �
N

)2 +
[

T �
N , AN

]

)�

− τ1hsc + H̃ � ⊗ H̃ � − Def
˜D H̃

−1

2

(

εN RicN ,N + div(εN τ1N − H̃)
)

g� = λg�. (55c)

A metric g on M is critical for the action (2) with respect to all volume-preserving variations
if and only if (55a)–(55c) hold, with the same constant λ.

Example 3 As an example, we can consider the following contact metric structure on R
3,

which is not K -contact [4]. Let

η = 1

2
(dz − y dx), g = 1

4

⎛

⎝

1 + y2 + z2 z −y
z 1 0

−y 0 1

⎞

⎠ .

Using an adapted orthonormal frame: E1 = 2( ∂
∂x −z ∂

∂y +y ∂
∂z ), E2 = 2 ∂

∂y , E3 = N = 2 ∂
∂z ,

one can show that in {E1, E2} basis of D we have

ÃN =
(

0 −1
−1 0

)

, T̃ �
N =

(

0 1
−1 0

)

.

We have RicN ,N = 0 [4], H̃ = 0 = H , τ1 = 0 and (RN + A2
N − (T �

N )2 + [T �
N , AN ])� is not

conformal, hence (55c) is not satisfied, although (55a) holds. Further computations show that
∇E1E2 = −2E3 and ∇E1E3 = 2E2 are the only non-vanishing derivatives of vector fields
Ea from the frame, with respect to that frame. We obtain (˜divAN )� = 0 and hence also (55b)
is satisfied. It follows that g is critical for the action (2) with respect to volume-preserving
g⊥-variations.
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