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The Hermitian structure used for a flag manifold G/T in Sect. 4 is not a Kähler structure
unless G is a product of SU (2)’s. This is because the connection used is the canonical
connection on the homogeneous space G/T , which has non-zero torsion since [t⊥, t⊥] �⊆ t.
Indeed, using the metric to lower indices, the torsion at eT is the 3-form given by

(X, Y, Z) �→ −g0([X, Y ], Z), X, Y, Z ∈ t⊥ � TeT G/T [1].

Such a structure on G/T turns it into what is called a “Kähler with torsion (KT)” manifold. The
general results and constructions established in the previous sections carry over unchanged
to KT manifolds except for Proposition 3 which states that the symplectic Dirac operators D
and D̃ are formally self-adjoint. For connections with torsion and parallel complex structure,
a sufficient condition for D and D̃ to be self-adjoint is the vanishing of the torsion vector
field, defined by

T =
n∑

j=1

T(a j , b j ),

where T is the torsion of ∇ and {a1, . . . , an, b1, . . . , bn} is a symplectic frame [2]. In the
case of flag manifolds, a symplectic basis at eT is proportional to {Zα, Z−α} where Zα is a
root vector for α. Since T(Zα, Z−α) = −[Zα, Z−α]t⊥ = 0, we see that T vanishes. Thus
the results concerning flag manifolds are correct using the symplectic Dolbeault operators
corresponding to their KT structures.

The online version of the original article can be found under doi:10.1007/s10455-013-9369-x.
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