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Abstract We have developed analytical methods for nonlinear Dirac equations. Exam-
ples of such equations include Dirac-harmonic maps with curvature term and the equations
describing the generalized Weierstrass representation of surfaces in three-manifolds. We have
provided the key analytical steps, i.e., small energy regularity and removable singularity
theorems and energy identities for solutions.
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1 Introduction

Dirac type equations on Riemann surfaces are ubiquitous in geometry, as they constitute
the most basic first order system of elliptic equations. The first examples are of course
the Cauchy–Riemann equations. These are linear, but other examples are typically of the
nonlinear type

∂/ψ = Hjkl〈ψj ,ψk〉ψl, (1.1)
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with a notation to be explained shortly. The linear operator on the left-hand side is, of course,
the Dirac operator whereas the nonlinearity on the right-hand side is cubic. As we shall see,
this type of nonlinearity on one hand arises naturally in geometry, because (1.1) is confor-
mally invariant and on the other hand, from the analytical side, it presents a borderline case,
where standard linear methods fail to apply (again, because it is conformally invariant), but
an analytical treatment nevertheless is still possible by utilizing the structure of the equation
in a more sophisticated manner. That is, analytical methods need to be supplemented by
geometric insights. This frame makes (1.1) particularly attractive. In the present article, we
develop a systematic and general treatment of the key steps of the nonlinear analysis.

Let us now describe the underlying geometric structure in more detail. Let (M, g) be a
Riemann surface with a fixed spin structure, and denote the spin bundle by�. On�, there is a
Hermitian metric 〈·, ·〉 compatible with the spin connection ∇ on�. For any orthonormal basis
{eα, α = 1, 2} onM , the (Atiyah-Singer) Dirac operator is defined by ∂/ := eα · ∇eα , where ·
stands for the Clifford multiplication. In this article, we use the summation convention.

We consider (1.1), that is,

∂/ψ = Hjkl〈ψj ,ψk〉ψl, (1.2)

where ψ = (ψ1, ψ2, . . . , ψn) ∈ �(�n),�n :=
n

︷ ︸︸ ︷

� × · · · ×�, n ∈ Z+ and Hjkl =
(H 1

jkl, H
2
jkl , . . . , H

n
jkl) ∈ C1(M,Rn). Denote h0 := max{|Hi

jkl |(x); x ∈ M, i, j, k, l =
1, 2, . . . , n}, h1 := max{|∇Hi

jkl |(x); x ∈ M, i, j, k, l = 1, 2, . . . , n} and |ψ | :=
(
∑n
i=1〈ψi, ψi〉)1/2. We note that (1.2) is conformally invariant.
Let us now discuss examples where (1.2) arises. In fact, we have been led to it through our

study of Dirac-harmonic maps with curvature term (c.f. [6]) which in turn were derived from
the nonlinear supersymmetric σ -model of quantum field theory, where Dirac type equations
describe fermionic particles. Letφ be a smooth map fromM to a Riemannian manifold (N, h)
of dimension n ≥ 2 and φ−1TN the pull-back bundle of TN by φ. On the twisted bundle
� ⊗ φ−1TN , there is a metric (also denoted by 〈·, ·〉) and a natural connection ˜∇ induced
from those on � and φ−1TN . In local coordinates {xα} and {yi} on M and N respectively,
a section ψ of � ⊗ φ−1TN takes the form

ψ(x) = ψj (x)⊗ ∂yj (φ(x))

and ˜∇ can be written as

˜∇ψ(x) = ∇ψi(x)⊗ ∂yi (φ(x))+ �ijk(φ(x))∇φj (x)ψk(x)⊗ ∂yi (φ(x)),

where ψi ∈ �(�), {∂yj } is the natural local basis on N and {�ijk} stands for the Christoffel
symbols of N . The Dirac operator along the map φ is defined as

D/ψ := eα · ˜∇eαψ
= ∂/ψi(x)⊗ ∂yi (φ(x))+ �ijk(φ(x))∇eαφj (x)eα · ψk(x)⊗ ∂yi (φ(x)).

In [6], we considered the following functional:

Lc(φ,ψ) := 1

2

∫

M

[|dφ|2 + 〈ψ,D/ψ〉 − 1

6
Rikjl〈ψi, ψj 〉〈ψk,ψl〉]. (1.3)

We call critical points (φ, ψ) of Lc Dirac-harmonic maps with curvature term. This func-
tional is dictated by the supersymmetry requirements of the σ -model in superstring theory.
The difference is that, here the components of ψ are ordinary spinor fields on M , while

123



Ann Glob Anal Geom (2008) 33:253–270 255

in physics they take values in a Grassmann algebra. The Euler–Lagrange equations of the
functional Lc are (see [6] for details):

τ i(φ)− 1

2
Rilmj 〈ψm,∇φl · ψj 〉 + 1

12
hipRmkjl;p〈ψm,ψj 〉〈ψk,ψl〉 = 0, (1.4)

D/ψi = −1

3
Rijkl〈ψj ,ψk〉ψl, i = 1, 2, . . . , n, (1.5)

where τ(φ) is the tension field of φ, Rijkl stands for a component of the curvature tensor of
N and Rmkjl;p denotes the covariant derivative of hmiRikjl with respect to ∂yp .

In particular, if φ is a constant map, then (1.5) becomes

∂/ψi = −1

3
Rijkl〈ψj ,ψk〉ψl, i = 1, 2, . . . , n, (1.6)

which is a Dirac equation of type (1.2).
Another more classical example of an equation of type (1.2) comes from the geometry of

surfaces in three-manifolds via the generalized Weierstrass representation, as we shall now
explain. When n = 1, it takes the form

∂/ψ = H |ψ |2ψ (1.7)

for H ∈ C1(M), ψ ∈ �(�). A similar equation was considered by Ammann and Humbert
in [2] when they studied the first conformal Dirac eigenvalue. See also [1] for a Yamabe type
problem.

Recall the classical Weierstrass formula that represents minimal surfaces X immersed
in R

3 in terms of a holomorphic 1-form and a meromorphic function. The generalized
Weierstrass representation was found to express a general surface immersed in R

3 (as well as
in R

4 and some three-dimensional Lie groups) by Dirac equations (see e.g. [8,11,16]). For
the ambient space R

3, a surface X : M → R
3 is represented by

X = Re

∫

(i(ψ2
1 + ψ̄2

2 ), ψ̄
2
2 − ψ2

1 , 2ψ2ψ̄2),

where ψ :=
(

ψ1

ψ2

)

: R
2 → C

2 satisfies the following equation:

[

2

(

0 ∂̄

−∂ 0

)

+
(

U 0
0 U

)](

ψ1

ψ2

)

= 0, (1.8)

with U = H |ψ |2. On the Euclidean plane R
2 the spin structure is unique, and the spinor

bundle � is trivial. By choosing a representation of {eα} as

σ1 =
(

0 1
−1 0

)

, σ2 =
(

0 i
i 0

)

, i := √−1

the Dirac operator can be expressed as

∂/ψ =
(

0 1
−1 0

) (

∂xψ1

∂xψ2

)

+
(

0 i
i 0

) (

∂yψ1

∂yψ2

)

= 2

(

0 ∂̄

−∂ 0

)(

ψ1

ψ2

)

, (1.9)
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where ψ :=
(

ψ1

ψ2

)

: R
2 → C

2 is a spinor field, ∂ := 1
2 (∂x − i∂y), ∂̄ := 1

2 (∂x + i∂y).

Therefore, Eq. 1.8 can be written as (1.7) which is a special case of (1.2) with n = 1. Similar
types of equations will be discussed in Sect. 5.

We now turn to the analytical aspects and introduce the following energy functional:

E(ψ) :=
∫

M

|ψ |4. (1.10)

For the analysis of the equation (1.2), we use ‖ψ‖L4 , instead of ‖∇ψ‖
L

4
3

, as the energy

functional of ψ , since the former is strong enough to get various estimates in most cases, as
one can see in [4] and [5].

For a solution ψ of (1.2), if ψ ∈ Lr for some r > 4, then the standard argument of
elliptic regularity theory implies the smoothness of ψ . Furthermore, under the condition of
uniformly bounded Lr(r > 4) norms, one has compactness for these solutions. However, if
we only assume the boundedness of the L4 norm of ψ , then the compactness is no longer
true. One then naturally considers the blow up phenomenon for the solutions. In particular,
it is interesting to know whether the energy identity and removable singularity results hold.
ψ ∈ L4 is the borderline case for the geometric analysis of the solutions of (1.2), since the
standard bootstrap method in elliptic estimates fails in the first step. It turns out that this can
be overcome by establishing some Lp elliptic boundary estimates and combining various
estimates in delicate ways.

In this article, our aim is to study properties of the solution space of this and similar
types of equations. We will prove small energy regularity theorems in which basic a priori
estimates for smooth solutions of (1.2) and related types of equations are given. Then we
prove a removable singularity theorem, which provides a key tool for the blow up analysis of
the solutions. Based on these, we consider the blow up process of solutions under a uniform
bound for the L4 norm, and we will establish an energy identity for these solutions. For har-
monic maps, holomorphic curves and also maps with uniformly L2-bounded tension fields,
these results are derived in [7,10,13–15,17].

We would like to remark that these considerations are closely related to the regularity of
weak solutions, corresponding to the well-known case of harmonic maps in dimension two.
Based on the discussion in this article, we believe that, using an Lp theory for boundary
value problems of the Dirac equations (see [3] for the L2 theory), regularity results for weak
solutions are available.

2 Small energy regularity theorem

In this section, we will prove a small energy regularity theorem. Since the problem is local
and Eq. 1.2 is conformally invariant, without loss of generality, we may assumeM to be the
unit disk

B = {(x, y) ∈ R
2|x2 + y2 < 1}

equipped with the Euclidean metric.

Theorem 2.1 (Small energy regularity theorem) There exists a small constant ε > 0 such
that for any smooth solution ψ of (1.2) satisfying

E(ψ;B) :=
∫

B

|ψ |4 < ε, (2.1)
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we have

‖ψ‖B ′,k,p ≤ C‖ψ‖B,0,4, (2.2)

∀B ′ ⊂⊂ B, 1 < p and k ∈ Z+, where C = C(B ′, k, p) > 0 is a constant, and ‖ · ‖B,k,p
denotes the norm in Wk,p(B,�n).

For proving this result, we need the following Lp boundary estimates for Dirac operators.
This is essentially Lemma 4.8 in [4], but we will give another proof here.

Lemma 2.2 Suppose ψ is a solution of

∂/ψ = f (2.3)

on B, with ψ |∂B = ϕ, and f ∈ Lp(B,�n), ϕ ∈ W 1,p(∂B,�n) for some p > 1, then

‖ψ‖B,1,p ≤ C(‖f ‖B,0,p + ‖ϕ‖∂B,1,p), (2.4)

where C = C(p) > 0 is a constant.

Proof of Lemma 2.2 First, let

w(x) :=
∫

B

�(x − y)f (y)dy

be the Dirac–Newton potential of f , where

�(x) := − 1

2π

x

|x|2 ·

is the Green function of ∂/. Using the relation between � and the Green function ˜� of the
Laplace operator: � = ∂/˜�, one sees that w = ∂/w̃, where

w̃(x) :=
∫

B

˜�(x − y)f (y)dy.

From the Calderon–Zygmund inequality (see e.g. [9] Theorem 9.9):

‖∇2w̃‖B,0,p ≤ C‖f ‖B,0,p.
Noting that

∇αw = ∇α∂/w̃ = σβ∇α∇βw̃,
it follows that

‖∇w‖B,0,p ≤ C‖f ‖B,0,p. (2.5)

Second, for any ξ ∈ W 1,p
0 (B,�n) and F ∈ Lp(B,�n) satisfying

∂/ξ = F, (2.6)

we have

‖∇ξ‖B,0,p ≤ ‖F‖B,0,p. (2.7)
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In fact, there exists a sequence of ξk ∈ C1
0 (B,�

n) such that ξk → ξ in W 1,p which implies
∂/ξk → ∂/ξ in Lp. Denote Fk := ∂/ξk , since ξk has compact support , we know (see, e.g., [12])
that ξk is the Dirac–Newton potential of Fk , and by (2.5) we have

‖∇ξk‖B,0,p ≤ ‖Fk‖B,0,p,
letting k → +∞ yields (2.7).

Now we extend ϕ to ϕ̃ on B \ Bδ (0 < δ < 1
2 ) by

ϕ̃(r, θ) := ϕ(θ), δ ≤ r ≤ 1, θ ∈ ∂B.
Choose a cut-off function η such that 0 ≤ η ≤ 1,

η =
{

1 r ≥ 3
4 ,

0 r ≤ 1
2 ,

and |η′| ≤ 2, define

ϕ̂ := ηϕ̃,

then ϕ̂ ∈ W 1,p(B,�n) and ψ − ϕ̂ ∈ W 1,p
0 (B,�n).

From (2.7), we have

‖∇(ψ − ϕ̂)‖B,0,p ≤ C‖∂/(ψ − ϕ̂)‖B,0,p
≤ C(‖f ‖B,0,p + ‖∂/ϕ̂‖B,0,p),

which implies

‖∇ψ‖B,0,p ≤ C(‖f ‖B,0,p + ‖∂/ϕ̂‖B,0,p + ‖∇ϕ̂‖B,0,p). (2.8)

Note that

‖∇ϕ̂‖B,0,p = ‖∇(ηϕ̃)‖B,0,p
≤ C(‖ϕ̃‖B 3

4
\B 1

2
,0,p + ‖∇ϕ̃‖B\B 1

2
,0,p)

≤ C‖ϕ‖∂B,0,p +

⎡

⎢

⎢

⎣

∫

B\B 1
2

(

1

r
|∇ϕ|

)p

⎤

⎥

⎥

⎦

1
p

≤ C(‖ϕ‖∂B,0,p + ‖∇ϕ‖∂B,0,p),
namely,

‖∇ϕ̂‖B,0,p ≤ C‖ϕ‖∂B,1,p. (2.9)

Similarly,

‖∂/ϕ̂‖B,0,p ≤ C‖ϕ‖∂B,1,p. (2.10)

Substituting (2.9) and (2.10) into (2.8) then yields:

‖∇ψ‖B,0,p ≤ C(‖f ‖B,0,p + ‖ϕ‖∂B,1,p). (2.11)

By the Poincaré inequality,

‖ψ − ϕ̂‖B,0,p ≤ C‖∇(ψ − ϕ̂)‖B,0,p,
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hence

‖ψ‖B,0,p ≤ C‖∇(ψ − ϕ̂)‖B,0,p + ‖ϕ̂‖B,0,p, (2.12)

but

‖ϕ̂‖B,0,p = ‖ηϕ̃‖B,0,p ≤ C‖ϕ‖∂B,0,p,
putting this and (2.9), (2.11) into (2.12), we finally obtain (2.4). Q.E.D.

Now we can give the

Proof of Theorem 2.1 We first derive the following estimate:

‖ψ‖B ′,0,p ≤ C‖ψ‖B,0,4, (2.13)

∀B ′ ⊂⊂ B, where C = C(B ′, p) > 0 is a constant.
For this, we choose a cut-off function η such that 0 ≤ η ≤ 1, η|B ′ ≡ 1, and suppη ⊂ B.

Denote ξ := ηψ , then

∂/ξ = ∂/(ηψ)

= η∂/ψ + ∇η · ψ
= ηHjkl〈ψj ,ψk〉ψl + ∇η · ψ. (2.14)

From Lemma 2.2, for any 1 < q < 2,

‖ξ‖B,1,q ≤ C‖ηHjkl〈ψj ,ψk〉ψl + ∇η · ψ‖B,0,q
≤ C(h0‖η|ψ |3‖B,0,q + ‖ψ‖B,0,q ). (2.15)

Now observing that

‖η|ψ |3‖B,0,q =
⎡

⎣

∫

B

(|ψ |2|ηψ |)q
⎤

⎦

1
q

=
⎛

⎝

∫

B

(|ψ |2q |ξ |q)
⎞

⎠

1
q

≤
⎛

⎝

∫

B

|ψ |4
⎞

⎠

1
2
⎛

⎝

∫

B

|ξ |q∗
⎞

⎠

1
q∗

, (2.16)

where q∗ := 2q
2−q , putting (2.16) into (2.15), and using the Sobolev embedding, we have

‖ξ‖B,0,q∗ ≤ C(h0‖ψ‖2
B,0,4‖ξ‖B,0,q∗ + ‖ψ‖B,0,4).

Thus, if ε > 0 is small enough such that Ch0
√
ε < 1

2 , then for ψ with
∫

B

|ψ |4 < ε

we have

‖ξ‖B,0,q∗ ≤ C‖ψ‖B,0,4.
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Clearly, for any p > 1, one can find some q < 2 such that p = q∗. This establishes (2.13).
Next, since

∫

B

|∇ξ |2 =
∫

B

|∂/ξ |2

=
∫

B

|η∂/ψ + ∇η · ψ |2

≤ C

⎛

⎝

∫

B

|ψ |6 +
∫

B

|ψ |2
⎞

⎠ ,

we have

‖∇ξ‖B,0,2 ≤ C(‖ψ‖3
B,0,6 + ‖ψ‖B,0,2)

≤ C(‖ψ‖3
B,0,4 + ‖ψ‖B,0,4)

≤ C‖ψ‖B,0,4(1 + ‖ψ‖2
B,0,4)

≤ C‖ψ‖B,0,4,
where in the second step we have used (2.13) and in the last step we have used (2.1). We then
have,

‖∇ψ‖B ′,0,2 ≤ C‖ψ‖B,0,4, (2.17)

where C > 0 is constant depending only on h0 and B ′. Using the Weitzenböck formula and
noting that the scalar curvature vanishes in this case, we have

∇α∇αψ = −∂/2ψ

= −∂/(Hjkl〈ψj ,ψk〉ψl)
= −〈ψj ,ψk〉(∇Hjkl · ψl)−Hjkl(〈∇eαψj , ψk〉 + 〈ψj ,∇eαψk〉)(eα · ψl)

−HjklH l
pqr 〈ψj ,ψk〉〈ψp,ψq〉ψr.

Therefore, for any η ∈ C∞(B),

|�(ηψ)| ≤ C(|ψ | + |∇ψ | + |∇ψ ||ψ |2 + |ψ |3 + |ψ |5),
where C > 0 is a constant depending only on η, h0 and h1, from which we have

‖ηψ‖2,p ≤ C(‖ψ‖0,p + ‖∇ψ‖0,p + ‖|∇ψ ||ψ |2‖0,p + ‖|ψ |3‖0,p + ‖|ψ |5‖0,p). (2.18)

Using the above estimates (2.13) and (2.17), we have

‖|∇ψ ||ψ |2‖B ′,0, 4
3

≤ ‖∇ψ‖B ′,0,2‖ψ‖2
B ′,0,8

≤ C‖ψ‖B,0,4,

‖|ψ |3‖B,0,p ≤ C‖ψ‖B,0,4,

‖|ψ |5‖B,0,p ≤ C‖ψ‖B,0,4.
Substituting these into (2.18) on B ′ with p = 4

3 and using (2.13), (2.17) again, we conclude
that

‖ηψ‖B ′,2, 4
3

≤ C‖ψ‖B,0,4.
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This implies that

‖ψ‖B ′′,2, 4
3

≤ C‖ψ‖B,0,4
for any B ′′ ⊂⊂ B ′. By Sobolev,

‖ψ‖B ′′,1,4 ≤ C‖ψ‖B,0,4,
and consequently, ‖ψ‖L∞(B ′′) ≤ C‖ψ‖B,0,4.

Choose p = 2 in (2.18) and use the above estimates, we have

‖ψ‖B ′,2,2 ≤ C‖ψ‖B,0,4.
This yields

‖ψ‖B ′,1,p ≤ C‖ψ‖B,0,4.
We can then obtain all the desired estimates by the standard bootstrap method, for example,
using ‖ψ‖B ′,1,p ≤ C‖ψ‖B,0,4 in (2.18) we have ‖ψ‖B ′′,2,p ≤ C‖ψ‖B,0,4 for anyB ′′ ⊂⊂ B ′
and p > 1. Q.E.D.

From the above estimates, we have the following (see e.g. [12]):

Corollary 2.3 LetM be a compact Riemannian surface without boundary, with a fixed spin
structure. If ψ ∈ W 1,p is a solution of

∂/ψ = F (2.19)

with F ∈ Lp , then

‖ψ‖M,1,p ≤ C(‖F‖M,0,p + ‖ψ‖M,0,p), (2.20)

where C = C(M,p) > 0 is a constant.

Proof Assume that {Uα, ϕα} is a finite covering of M by charts. Let {gα} be a partition of
unit subordinate to this covering. Denote ψα := gαψ , and Fα := ∂/ψα = gαF + ∇gα · ψ ,
then in each chart {Uα, ϕα}, using (2.7) we have

‖ψα‖Uα,1,p ≤ Cα(‖Fα‖M,0,p + ‖ψα‖M,0,p),
noting that ψ = ∑

α

ψα , ‖∇gα‖ ≤ C and gα < 1, we obtain (2.20). Q.E.D.

3 Removable singularity theorem

For a given smooth solution ψ of (1.2) on the sphere S
2, one can create a solution ˜ψ on the

Euclidean plane R
2 through the stereographic projection from the north pole N , by virtue

of the conformal invariance of the equation. Conversely, given a solution ψ on R
2, through

the stereographic projection, we only have a solution ψ on S
2 \ {N}, which then leads to the

question of removable singularities. In this section, we will prove the following

Theorem 3.1 (Removable singularity theorem) Letψ be a solution of (1.2) which is smooth
on B \ {0}. If

∫

B

|ψ |4 < ∞, (3.1)

then ψ extends to a smooth solution of (1.2) on the whole B.
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Proof Since (1.2) is conformally invariant, by a rescaling transformation, we may assume
that

∫

B

|ψ |4 < ε,

where ε > 0 is a small constant whose appropriate value will be determined later. For any
given small δ > 0, we choose a cut-off function ηδ ∈ C∞

0 (B2δ) such that 0 ≤ ηδ ≤ 1,

ηδ =
{

1 in Bδ,

0 in B \ B2δ,

and |∇ηδ| ≤ C/δ. Then

∂/[(1 − ηδ)ψ] = (1 − ηδ)∂/ψ − ∇ηδ · ψ
= (1 − ηδ)Hjkl〈ψj ,ψk〉ψl − ∇ηδ · ψ.

By Lemma 2.2, we have

‖(1 − ηδ)ψ‖B,1, 4
3

≤ C‖(1 − ηδ)Hjkl〈ψj ,ψk〉ψl − ∇ηδ · ψ‖B,0, 4
3

+C‖ψ‖∂B,1, 4
3

≤ C(h0‖ψ‖3
B,0,4 + ‖∇ηδ · ψ‖B,0, 4

3
+ ‖ψ‖∂B,1, 4

3
). (3.2)

By the Sobolev embedding theorem, we have

‖(1 − ηδ)ψ‖B,0,4 ≤ C(h0‖ψ‖3
B,0,4 + ‖∇ηδ · ψ‖B,0, 4

3
+ ‖ψ‖∂B,1, 4

3
). (3.3)

We note that as δ → 0,

‖∇ηδ · ψ‖B,0, 4
3

=
⎛

⎜

⎝

∫

B2δ\Bδ
|∇ηδ| 4

3 |ψ | 4
3

⎞

⎟

⎠

3
4

≤ C

δ

⎛

⎜

⎝

∫

B2δ

|ψ | 4
3

⎞

⎟

⎠

3
4

≤ C

⎛

⎜

⎝

∫

B2δ

|ψ |4
⎞

⎟

⎠

1
4

→ 0,

therefore, letting δ → 0 in (3.3) we obtain

‖ψ‖B,0,4 ≤ Ch0‖ψ‖2
B,0,4‖ψ‖B,0,4 + C‖ψ‖∂B,1, 4

3
.

We choose ε > 0 so small that Ch0
√
ε < 1/2, then

‖ψ‖B,0,4 ≤ C‖ψ‖∂B,1, 4
3

≤ C

⎛

⎝

∫

∂B

|∇ψ | 4
3

⎞

⎠

3
4

+ C

⎛

⎝

∫

∂B

|ψ |4
⎞

⎠

1
4

.
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By a rescaling argument, we have for any r ∈ (0, 1],
⎛

⎜

⎝

∫

Br

|ψ |4
⎞

⎟

⎠

1
4

≤ C

⎛

⎜

⎝r

∫

∂Br

|∇ψ | 4
3

⎞

⎟

⎠

3
4

+ C

⎛

⎜

⎝r

∫

∂Br

|ψ |4
⎞

⎟

⎠

1
4

≤ C

⎡

⎢

⎢

⎣

⎛

⎜

⎝r

∫

∂Br

|∇ψ | 4
3

⎞

⎟

⎠

1
4

+
⎛

⎜

⎝r

∫

∂Br

|ψ |4
⎞

⎟

⎠

1
4
⎤

⎥

⎥

⎦

,

that is,
∫

Br

|ψ |4 ≤ Cr

∫

∂Br

|∇ψ | 4
3 + Cr

∫

∂Br

|ψ |4. (3.4)

Denote

ψ̄ := 1

2π

∫

∂B

ψ,

then on B \ {0}:
∂/(ψ − ψ̄) = Hjkl〈ψj ,ψk〉ψl = Hjkl〈ψj ,ψk〉(ψl − ψ̄ l)+Hjkl〈ψj ,ψk〉ψ̄ l .

From Lemma 2.2, we have

‖ψ − ψ̄‖B,1, 4
3

≤ C(‖Hjkl〈ψj ,ψk〉(ψl − ψ̄ l)‖B,0, 4
3

+ ‖Hjkl〈ψj ,ψk〉ψ̄ l‖B,0, 4
3

+‖ψ − ψ̄‖∂B,1, 4
3
),

using the Poincare’s inequality, we obtain

‖ψ − ψ̄‖B,1, 4
3

≤ C(‖Hjkl〈ψj ,ψk〉(ψl − ψ̄ l)‖B,0, 4
3

+ ‖Hjkl〈ψj ,ψk〉ψ̄ l‖B,0, 4
3

+‖∇(ψ − ψ̄)‖∂B,0, 4
3
)

≤ Ch0‖ψ‖2
B,0,4‖ψ − ψ̄‖B,0,4 + Ch0‖ψ‖2

B,0,4‖ψ̄‖B,0,4
+C‖∇ψ‖∂B,0, 4

3

≤ Ch0‖ψ‖2
B,0,4‖ψ − ψ̄‖B,1, 4

3
+ Ch0‖ψ‖2

B,0,4‖ψ‖∂B,0,1
+C‖∇ψ‖∂B,0, 4

3
,

using the smallness of ‖ψ‖B,0,4 again, we have

‖ψ − ψ̄‖B,1, 4
3

≤ Ch0‖ψ‖2
B,0,4‖ψ‖∂B,0,4 + C‖∇ψ‖∂B,0, 4

3
,

therefore,

‖∇ψ‖B,0, 4
3

≤ Ch0‖ψ‖2
B,0,4‖ψ‖∂B,0,4 + C‖∇ψ‖∂B,0, 4

3
,

that is,
⎛

⎝

∫

B

|∇ψ | 4
3

⎞

⎠

3
4

≤ Ch0

⎛

⎝

∫

B

|ψ |4
⎞

⎠

1
2
⎛

⎝

∫

∂B

|ψ |4
⎞

⎠

1
4

+ C

⎛

⎝

∫

∂B

|∇ψ | 4
3

⎞

⎠

3
4

.
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It is then easy to see that

∫

B

|∇ψ | 4
3 ≤ Ch

4
3
0

⎛

⎝

∫

B

|ψ |4
⎞

⎠

2
3
⎛

⎝

∫

∂B

|ψ |4
⎞

⎠

1
3

+ C

∫

∂B

|∇ψ | 4
3

≤ σ

∫

B

|ψ |4 + C

σ

∫

∂B

|ψ |4 + C

∫

∂B

|∇ψ | 4
3 ,

where σ > 0 is small constant, and C > 0 is constant depending only on h0. By rescaling
again, we have

∫

Br

|∇ψ | 4
3 ≤ σ

∫

Br

|ψ |4 + C

σ
r

∫

∂Br

|ψ |4 + Cr

∫

∂Br

|∇ψ | 4
3 (3.5)

Combining (3.4) and (3.5), we have

∫

Br

|ψ |4 +
∫

Br

|∇ψ | 4
3 ≤ Cr

⎛

⎜

⎝

∫

∂Br

|ψ |4 +
∫

∂Br

|∇ψ | 4
3

⎞

⎟

⎠ . (3.6)

Denote F(r) := ∫

Br
|ψ |4 + |∇ψ | 4

3 , then

F(r) ≤ CrF ′(r),

which implies that

F(r) ≤ F(1)r
1
C . (3.7)

From this, it follows that ψ ∈ W 1,p for some p > 4/3, and then, by the standard bootstrap
method, one can conclude the smoothness of ψ . Q.E.D.

Remark When ψ is the spinor representing a surface M in R
3 with mean curvature H , and

z = x + iy is the parameterization of M , then the metric of M is

ds2 = |ψ |4dzdz̄,

and the condition (3.1) means that (M, ds2) has finite area.

4 Energy identity

Let M be a compact Riemann surface with a fixed spin structure. Given a sequence {ψm}
of solutions of (1.2) on M , if we assume it is uniformly bounded in Lp(p > 4), then the
standard bootstrap method implies that {ψm} is uniformly bounded inCr(r ∈ Z+). However,
in the case of the L4-norm, examples show that this compactness is no longer true. If {ψm}
converges to ψ weakly in L4, then in the limit we may encounter bubbling phenomenon;
namely, by a rescaling argument and the previous removable singularity theorem, we may
get some solutions on S

2, and this causes an energy loss. Comparing to the well-known case
of harmonic maps, one naturally asks whether the blow up set is finite and the energy iden-
tity holds. In view of the Weierstrass representation, this corresponds to the question of the
convergence of surfaces with a uniform area bound.

We will need the following lower bound for the energy of the bubbles:
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Lemma 4.1 There exists a constant A > 0 such that for any nontrivial solution ψ of (1.2)
on S

2, we have
∫

S2

|ψ |4 ≥ A. (4.1)

Proof First, for any solution ψ on S
2,

‖ψ‖ 4
3

≤ C‖∂/ψ‖ 4
3
. (4.2)

Otherwise, for any k ∈ Z+, there is a ψk which solves (1.2), but

‖ψk‖ 4
3
> k‖∂/ψk‖ 4

3
.

Denote ηk := ψk/‖ψk‖ 4
3
, then

‖∂/ηk‖ 4
3
< 1/k, ‖ηk‖ 4

3
= 1. (4.3)

Using Corollary 2.3, we have

‖ηk‖1, 4
3

≤ C(‖∂/ηk‖ 4
3

+ ‖ηk‖ 4
3
) ≤ C,

which implies that there exists some η0 such that ηk converges to η0 weakly in W 1, 4
3 . By

Sobolev, ηk → η0 inL
4
3 , so ‖η0‖ 4

3
= limk→∞ ‖ηk‖ 4

3
= 1.But ∂/ηk converges to ∂/η0 weakly

in L
4
3 , and from (4.3), it is easy to see that ∂/η0 = 0, hence η0 ≡ 0 since there is no nontrivial

harmonic spinor on S
2. This contradicts ‖η0‖ 4

3
= 1.

Now from (4.2) and (2.20), we have

‖ψ‖1, 4
3

≤ C(‖∂/ψ‖ 4
3

+ ‖ψ‖ 4
3
)

≤ C‖∂/ψ‖ 4
3

≤ Ch0‖ψ‖3
4,

therefore,

‖ψ‖4 ≤ Ch0‖ψ‖3
4,

and if ‖ψ‖4 is so small that Ch0‖ψ‖2
4 < 1, then we have ψ ≡ 0. Equivalently, we can find

a constant A > 0 such that for any nontrivial solution ψ of (1.2) on S
2, the energy

∫

M
|ψ |4

is bounded below by A. Q.E.D.
Let

S := ∩r>0{x ∈ M| lim inf
m→+∞

∫

B(x,r)

|ψm|4 ≥ ε}

be the blow up set of {ψm}, where ε is as in Theorem 2.1.

Theorem 4.2 (Energy identity) LetM be a compact Riemann surface with fixed spin struc-
ture, and suppose that {ψm} is a sequence of smooth solutions of (1.2) on M satisfying

E(ψm) :=
∫

M

|ψm|4 ≤ � < +∞. (4.4)
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If {ψm} converges to ψ weakly in L4(M) (but not strongly,) then the (non-empty) blow up
set S must be finite:

S = {p1, p2, . . . , pK }.
Furthermore, there exists a constant c0 > 0 depending only on M such that if

sup
M,i,j,k,l

|Hi
jkl |

√
� < c0, (4.5)

then the energy identity for {ψm} holds, namely, for each blow up point pk(k = 1, 2, . . . , K),
there exist a finite number of solutions {ξak }a=1,2,··· ,Ak of (1.2) on S

2 such that

lim
n→+∞E(ψm) = E(ψ)+

K
∑

k=1

Ak
∑

a=1

E(ξak ). (4.6)

Proof Since the removable singularity theorem, the small energy regularity theorem, and
Lemma 4.1 provide key ingredients for establishing the energy identity, the theorem can then
be proved by an argument as the proof of Theorem 3.6 in [5], see also [7]. Here we only give
a sketch of proof.

First, the condition E(ψm) ≤ � < +∞ and Theorem 2.1 imply that the blow up set
S must be finite. We choose small disks Bδk for each pk such that Bδk ∩ Bδj = φ for
k �= j, k, j = 1, 2, . . . , K. Furthermore, by Theorem 2.1, {ψm} strongly converges to ψ in
L4 on M \ ∪Kk=1Bδk , (4.6) is then equivalent to

K
∑

k=1

lim
δk→0

lim
n→∞E(ψm;Bδk ) =

K
∑

k=1

Ak
∑

a=1

E(ξak ). (4.7)

It suffices to prove that for each blow-up point p, we have

lim
δ→0

lim
m→∞E(ψm;Bδ) =

A
∑

a=1

E(ξ l). (4.8)

By virtue of the conformal invariance of the equation (1.2), and the locality of the problem,
we may assume that each disk Bδ is equipped with the Euclidean metric. For each ψm, we
choose λm and xm ∈ Bδ such that λm → 0, xm → p and

E(ψm;Bλm(xm)) = max
x∈Bδ(p)

E(ψm;Bλm(x)) = ε

2
.

Rescaling by

˜ψm(x) := λ
− 1

2
m ψm(xm + λmx),

then

E(˜ψm;B) = E(ψm;Bλm(xm)) = ε

2
< ε,

E(˜ψm;BR) = E(ψm;BλmR(xm)) ≤ �.

By Theorem 2.1, we have a subsequence of {ψm} which strongly converges to some ˜ψ in
L4(BR) for any R ≥ 1. We thus obtain a nonconstant solution ˜ψ of (1.2) on R

2, and hence a
nonconstant solution ξ1 of (1.2) on S

2 \ {N} with bounded energy. Theorem 3.1 then gives
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us a nonconstant solution of (1.2) on the whole S
2, and we obtain the first bubble ξ1 at the

blow up point p.
Next, denote

A(δ,R,m) := {x ∈ R
2|λmR ≤ |x − xm| ≤ δ},

then (4.8) is equivalent to

lim
R→∞ lim

δ→0
lim
m→∞E(ψm;A(δ,R,m)) =

A
∑

a=2

E(ξa). (4.9)

For a fixed blow-up point p, the number of bubbles ξ must be finite; this follows easily
from Lemma 4.1. We only consider (4.9) in the case of exactly one bubble at the blow up
point p, because the case of at least two bubbles can be reduced to this case. Then, (4.9) is
just

lim
R→∞ lim

δ→0
lim
m→∞E(ψm;A(δ,R,m)) = 0. (4.10)

In order to prove this, we consider a conformal transformation f : R × S
1 → R

2, f (t, θ) =
(e−t , θ), where R × S

1 is given the metric g = dt2 + dθ2. for the pull-back �m := f ∗ψm,
then E(�m) ≤ �. Set T0 := |logδ|, Tm := |logλmR|.

Using Theorem 3.1, through an argument by contradiction (c.f. p. 82 in [5] for more
details), one can prove that there is a K > 0 such that if m ≥ K , then

∫

[t,t+1]×S1

|�m|4 < ε, ∀t ∈ [T0, Tm − 1]. (4.11)

Choose a cut-off function η on B(xm, 2δ) as follows:

η ∈ C∞
0 (B2δ \ BλmR/2); η ≡ 1 in Bδ \ BλmR

|∇η| ≤ C/δ in B2δ \ Bδ; |∇η| ≤ C/λmR in BλmR \ BλmR/2,
where we denote Bδ := B(xm, δ) etc. for simplicity. Then from Lemma 2.2 we have

‖ηψm‖L4 ≤ C‖η∂/ψm + ∇η · ψm‖
L

4
3

≤ C‖h0|η||ψm|3 + |∇η||ψm|‖
L

4
3

≤ Ch0‖ψm‖2
L4‖ηψm‖L4 + C

⎡

⎢

⎣

∫

A(2δ,R/2,m)

(|∇η||ψm|) 4
3

⎤

⎥

⎦

3
4

≤ Ch0
√
�‖ηψm‖L4 + C

⎡

⎢

⎣

∫

A(2δ,R/2,m)

(|∇η||ψm|) 4
3

⎤

⎥

⎦

3
4

.

Clearly, there exists a constant c0 > 0 such that when (4.5) is satisfied, we haveCh0
√
� < 1,

from the above estimate, we then have

‖ηψm‖L4 ≤ C

⎡

⎢

⎣

∫

B2δ\Bδ
(|∇η||ψm|) 4

3

⎤

⎥

⎦

3
4

+ C

⎡

⎢

⎣

∫

BλmR\BλmR/2
(|∇η||ψm|) 4

3

⎤

⎥

⎦

3
4

.
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Therefore,

‖ψm‖L4(A(δ,R,m)) ≤ C

⎡

⎢

⎣

∫

B2δ\Bδ
|ψm|4

⎤

⎥

⎦

1
4

+ C

⎡

⎢

⎣

∫

BλmR\BλmR/2
|ψm|4

⎤

⎥

⎦

1
4

≤ Cε
1
4 + Cε

1
4 ,

where in the last step, we used (4.11). This proves (4.10). Q.E.D.

5 Related types of Dirac equations

Let M be a compact Riemann surface with fixed spin structure. For any local orthonormal
basis {eα}α=1,2, one can define the so-called chirality operator

� := i e1 · e2 · .
This definition is independent of the choice of {eα}α=1,2, therefore, � is globally defined on
M . Define

�+ := 1

2
(Id + �), �− := 1

2
(Id − �).

LetU = U(ψ),V = V (ψ) be complex functions. We consider the following Dirac equation:

∂/ψ = [U(ψ)�+ + V (ψ)�−]ψ. (5.1)

Clearly, (1.2) corresponds to the case U = V = −H |ψ |2. Comparing to (1.2), the Dirac
equation for surfaces immersed into some three-dimensional Lie group N takes a special
form of (5.1). For example (c.f. Sect. 2.3 in [16])

N = SU(2) : U = V̄ = −(H − i)|ψ |2; (5.2)

N = Nil : U = V = −H |ψ |2 − i

2
(|ψ1|2 − |ψ2|2); (5.3)

N = S̃L2 : U = −H |ψ |2 − i

(

3

2
|ψ2|2 − |ψ1|2

)

,

V = −H |ψ |2 − i

(

|ψ2|2 − 3

2
|ψ1|2

)

. (5.4)

Using the same methods as in the previous sections, one can conclude similar results for the
above types of Dirac equations.

Corollary 5.1 There exists a small constant ε > 0 such that for any smooth solution ψ of
(5.1), with U,V satisfying one of (5.2), (5.3), (5.4), and

E(ψ;B) :=
∫

B

|ψ |4 < ε, (5.5)

we have

‖ψ‖B ′,k,p ≤ C‖ψ‖B,0,4, (5.6)
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∀B ′ ⊂⊂ B, 1 < p and k ∈ Z+, where C = C(B ′, k, p) > 0 is constant, and ‖ · ‖B,k,p
denotes the norm in Wk,p(B,�n).

Corollary 5.2 Let ψ be a solution of (5.1), with U,V satisfying one of (5.2), (5.3), (5.4),
which is smooth on B\{0}. If

∫

B

|ψ |4 < ∞, (5.7)

then ψ extends to a smooth solution on the whole B.

Corollary 5.3 Let M be a compact Riemann surface with fixed spin structure, and suppose
that {ψm} is a sequence of smooth solutions of (5.1), with U,V satisfying one of (5.2), (5.3),
(5.4) respectively, on M and

E(ψm) :=
∫

M

|ψm|4 ≤ � < +∞. (5.8)

If {ψm} converges to ψ weakly in L4(M) (but not strongly), then the (non-empty) blow up
set S must be finite:

S = {p1, p2, . . . , pK }.
Furthermore, there exists a constant c0 > 0 depending only on M such that if

(sup
M

|H | + α)
√
� < c0, (5.9)

with α = 1, 1
2 ,

3
2 respectively, then the energy identity for {ψm} holds, namely, for each blow

up point pk(k = 1, 2, . . . , K), there exist a finite number of solutions {ξak }a=1,2,...,Ak of (5.1)
on S

2 such that

lim
m→+∞E(ψm) = E(ψ)+

K
∑

k=1

Ak
∑

a=1

E(ξak ). (5.10)
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