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A. Simčič . P. M. Leru . A.-M. Eftimie . B. Šikoparija . P. Radišić .
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Abstract Ragweed Pollen Alarm System (R-PAS)

has been running since 2014 to provide pollen

information for countries in the Pannonian biogeo-

graphical region (PBR). The aim of this study was to

develop forecast models of the representative aerobi-

ological monitoring stations, identified by analysis

based on a neural network computation. Monitoring

stations with 7-day Hirst-type pollen trap having

10-year long validated data set of ragweed pollen were

selected for the study from the PBR. Variables

including forecasted meteorological data, pollen data

of the previous days and nearby monitoring stations

were used as input of the model. We used the

multilayer perceptron model to forecast the pollen

concentration. The multilayer perceptron (MLP) is a

feedforward artificial neural network. MLP is a data-

driven method to forecast the behaviour of complex

systems. In our case, it has three layers, one of which is

hidden. MLP utilizes a supervised learning technique

called backpropagation for training to get better
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performance. By testing the neural network, we

selected different sets of variables to predict pollen

levels for the next 3 days in each of the monitoring

stations. The predicted pollen level categories (low–

medium–high–very high) are shown on isarithmic

map. We used the mean square error, mean absolute

error and correlation coefficient metrics to show the

forecasting system’s performance. The average of the

Pearson correlations is around 0.6 but shows big

variability (0.13–0.88) among different locations.

Model uncertainty is mainly caused by the limitation

of the available input data and the variability in

ragweed season patterns. Visualization of the results

of the neural network forecast on isarithmic maps is a

good tool to communicate pollen information to

general public in the PBR.

Keywords Ragweed � Pollen � Forecast � Neural

network � MLP

1 Introduction

Pollen emitted in high amounts by wind-pollinated

plants can provoke numerous respiratory problems

such as allergic rhinoconjunctivitis and asthma.

Almost 40% of the European population suffer from

pollen allergies (D’Amato et al. 2007). Common

ragweed (Ambrosia artemisiifolia L.) produces highly

allergenic pollen. This plant was introduced to Europe

at the beginning of the twentieth century (Csontos

et al. 2010) and greatly spread during the last two

decades. The largest populations of ragweed in Europe

can be found in the Pannonian biogeographical region

(PBR), but the Po and Rhône valleys (Italy and France,

respectively) are also considered to be highly infested

regions (Mandrioli et al. 1998; Járai-Komlódi 2000;

Chauvel and Cadet 2011; Thibaudon et al. 2014). The

PBR lies in the south-eastern part of Central Europe

and forms a topographically discrete unit set in the

European landscape. It is dominated by a large flat

alluvial basin transected by two major rivers—the

Danube and the Tisza (Sundseth 2009). The basin

(once an ancient inland sea) is almost completely

enclosed on all sides by imposing geographical

boundaries—the Carpathian Mountains, the Alps and

the Dinarics. PBR includes the entire area of Hungary,

large regions of Croatia, Serbia, Slovakia and

Slovenia, and peripheral areas of Austria, Czech

Republic, Romania and Ukraine. Ragweed found an

optimal habitat in this region (Török et al. 2003;

Peternel et al. 2005; Chrenová et al. 2010; Csontos

et al. 2010; Rodinkova et al. 2012), causing extreme

levels of pollen concentrations (Smith et al. 2013;

Šikoparija et al. 2017). In Hungary, almost 50% of

allergic patients (2.5 million people) suffer from

ragweed allergy. Approximately 5 million hectares

(around 85%) of the Hungarian agricultural area are

endangered by ragweed, and approximately 0.7 mil-

lion hectares are strongly invaded by this plant (Tóth

et al. 2004; Basky and Magyar 2009). However,

ragweed infestation of PBR is more than a local

problem, because it acts as a source of long-distance

transport of pollen grains, detected in ragweed-free

regions in Northern and Western Europe (Smith et al.

2008; Zink et al. 2012; de Weger et al. 2016; Cecchi

et al. 2006; Grewling et al. 2016). Due to its enormous

populations and geomorphology-driven transport

mechanism of airborne pollen (Šikoparija et al.

2013), PBR is often called the ‘epicentre’ of ragweed

pollution in Europe. Recognizing the cross-boundary

nature of this problem, PBR countries started Rag-

weed Pollen Alarm System (R-PAS), a joint project

initiated by the Hungarian Aerobiological Network in

2014, with the aim of creating a forecast of daily

pollen concentrations and visualizing the predicted

levels according to symptom thresholds on high

resolution maps. Symptom levels of pollen allergy

could be different by regions on ethnic (genetic) basis

(Sofiev and Bergmann 2014). Because of this, data of

PBR patients of Pollen Hayfever Diary (Bastl et al.

2014) were used to set region-specific threshold levels.

Advanced techniques such as neural networks,

multilayer perceptron and the support vector regres-

sion learning methods have been used for forecasting

air quality parameters (Juhos et al. 2009; Paschalidou

et al. 2011; Voukantsis et al. 2011; Kassomenos et al.

2013). However, methods of machine learning have

only been scarcely applied in airborne pollen-related

studies. They were used for forecasting (a) daily pollen

concentrations of ragweed pollen (Csépe et al. 2014),

olive pollen (Aznarte et al. 2007), Oleaceae, Poaceae

and Urticaceae pollen (Voukantsis et al. 2010) and

Betula pollen (Puc 2012) (b) pollen-induced symp-

toms (Voukantsis et al. 2013), (c) risk level of pollen in

the air (Csépe et al. 2014; Castellano-Méndez et al.

2005) and (d) the severity of the Poaceae pollen season
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(Sánchez Mesa et al. 2005). Furthermore, Aznarte

et al. (2007) used neuro-fuzzy models for forecasting

olive pollen concentrations. The above-mentioned

applications of neural networks and neuro-fuzzy

models produced better results than traditional statis-

tical methods (Sánchez Mesa et al. 2005). These

methods of machine learning (1) can deal with the

complexity of the mechanisms concerning the release

and dispersion of the airborne pollen, (2) can be

applied for different tasks (e.g. optimization and

forecasting), (3) are computationally efficient and

can be easily integrated into operational use of the

models (Voukantsis et al. 2010).

The aim of this study is to develop a forecast model

of the aerobiological monitoring stations based on a

neural network computation for the PBR.

2 Materials and methods

We used the multilayer perceptron (MLP) model to

forecast the pollen concentration. The multilayer

perceptron is a feedforward artificial neural network,

a data-driven method to forecast complex systems.

MLP utilizes a supervised learning technique called

backpropagation for training to get better performance

and uses sigmoid activation function for the decision

making. Pollen data from 3 days before (3-day lagged

pollen) were used as input of the model. 1-day and

2-day lagged data were not considered because these

are often unavailable in operational practice. Moni-

toring stations with 7-day Hirst-type pollen traps

(Hirst 1952) having 10-year long validated data set of

ragweed pollen were selected for the study from 28

monitoring stations of the PBR or nearby areas.

Meteorological data (daily mean, minimum and

maximum temperature, precipitation, daily mean wind

speed and relative humidity) of the actual and the

previous day were obtained from the ? 3 h and ? 6 h

forecast files of the GDAS FNL (Global Data Assim-

ilation System—Final) data set through the NCAR

Research Data Archive (NOAA 2015). Linear inter-

polation was performed on the 0.25-degree model grid

to obtain data at a specific location.

Model validation has been performed on data

collected in 2018 which were not included in the

training of models. Three monitoring stations were

chosen for validating the models in order to represent

area in the centre (Budapest), the edge (Novi Sad) and

outside the PBR (Zadar).

The following statistical indices were used to

compare the performance of the models: (1) correla-

tion coefficient as a measure of the strength; (2) root

mean square error (RMSE); and (3) mean absolute

error (MAE) as measures of the error in the forecast.

Results were compared to the performance of 3-day

persistence forecasts as a baseline method.

Categories of pollen levels used in the forecast

(0–9, 10–29, 30–99, 100–499, [ 500 pollen/m3) are

calculated from symptom levels collected with the

Hungarian version of the Pollen Hayfever Diary (Bastl

et al. 2014). Category accuracy is defined as the

number of data pairs where the observed and predicted

concentrations fall in the same category, divided with

the number of all observed and predicted data pairs. As

only the categories, and not the concentration values,

are communicated to the public, category accuracy is

an important measure of model accuracy from the

operational perspective.

The predicted pollen levels are shown on isarithmic

map using nearest-neighbour interpolation and a

Gaussian smoothing with 0.1� kernel. Points are

masked with grey (no data) in a distance larger than

100 km from the nearest data point or in an elevation

higher than 700 m above mean sea level. For the latter,

1-km terrain data from the GLOBE digital elevation

model were used (Hastings and Dunbar 1999). Visu-

alization was performed with Cartopy and the Scien-

tific Python libraries (Oliphant 2007; Met Office

2010).

3 Results

3.1 The structure of the model

Testing of the multilayer perceptron model of the

neural network selected different sets of variables to

predict pollen levels for the next 3 days in each of the

monitoring stations. The trained model consists of

three layers with one hidden layer (Fig. 1). Indepen-

dent variables selected by the model were the day of

the year (DOY), 3-day lagged pollen concentration

and meteorological variables. The predicted 24-h

mean ragweed pollen levels (pollen/m3) are shown

on isarithmic map using categories according to

region-specific threshold levels. In another forecast
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model, we use the same explanatory variables except

the lagged pollen measurements. The labelling of the

variable sets is ‘with lagged pollen’ and ‘without

lagged pollen’ based on the use of lagged pollen

concentration as input variable.

3.2 Performance of the forecasting models

We investigated the connection between the measured

and the forecasted pollen levels. The statistical

evaluation showed that the performance had wide

variability (Fig. 2). The best correlation was around

0.9 in both correlation types. The average Pearson

correlations were 0.63 and 0.65, the Spearman average

correlations were 0.73 and 0.62, and the Kendall

average correlations were 0.73 and 0.62, obtained by

‘with lagged pollen’ and ‘without lagged pollen’

methods, respectively (Fig. 2). The 3-day persistence

forecast had average correlations of 0.61, 0.77 and

0.69 (Pearson, Spearman and Kendall, respectively).

Pearson correlations improved in the ‘with lagged

pollen model’ compared to 3-day persistence at 22 of

28 stations; however, Spearman correlations and

RMSE only improved at 12 stations. Model outputs

that have max, median and min. MAE are shown in

Figs. 3, 4 and 5. If we consider the forecast of the

categories, then the category accuracy is 53%. A

general observation is that better correlations were

obtained for stations with higher mean concentrations.

However, this pattern is not entirely consistent, as

spatial variability of concentrations is high and each

station is affected by local effects. Peaks in the RMSE

plot help to identify stations with significant local

impacts (Fig. 2). Lagged pollen data improved

correlation only at 11 (Pearson) and 16 (Spearman)

of the 28 stations. This warns us that lagged values

might gain too large weights compared to the mete-

orological variables, which can decrease the model’s

sensitivity on the weather-related variability.

The performance of the prediction of pollen

concentrations and categories is demonstrated in three

monitoring stations (Zadar, Budapest and Novi Sad),

representing high, average and low MAE values,

respectively (Figs. 6, 7, 8).

4 Discussion

Pollen forecasts are important tools enabling allergy

sufferers to anticipate high levels and reduce or

prevent symptoms. R-PAS forecast maps (Fig. 9)

were published daily from mid-July to mid-October,

during ragweed pollen season in the PBR (Mányoki

et al. 2014). According to Kiotseridis et al. (2013), a

pollen alarm system should be evidence based and

easy to understand. The presentation of the pollen

forecast in colour-coded maps fulfils these criteria, as

this map is informative for the public in the PBR. Most

of the people who followed pollen information found

the information and services useful (Szigeti and

Magyar 2018). The colour-coding of the map was

adapted to express extreme pollen levels occurring in

the peak period in this region ([ 500, but sometimes

even[ 1000 pollen grains/m3/day). Such high levels

do not occur in Western Europe; consequently, their

former maps had no details of pollen concentrations

with values higher than 50 pollen grains/m3-

/day (European Aeroallergen Network 2016).

Day of the year

Lag 3 pollen

T avg

T max

T min

Precipita�on

Wind

Rela�ve humidity

Input layer Hidden layer Output layer Target

Predicted pollen/m3

Fig. 1 The trained neural network model for the Ragweed Pollen Alarm System of the Pannonian biogeographical region
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The average Pearson correlations were 0.63 and

0.65, and the Spearman average correlations were 0.73

and 0.62. This showed weaker connection than that

demonstrated by Csépe et al. (2014). This is probably

due to the smaller training set. When we considered

the forecast by each of the categories, then the

category hit rate was 53%. More training variables

gave better forecasts for high concentrations, but there

was a larger noise in the early and late season. Periods

and stations with low concentrations had lower

correlation values as the ragweed pollen concentration

categories are more sensitive to low concentrations.

Better correlations generally correspond to stations

with higher concentrations and lower variability

Fig. 2 The statistical evaluation of the neural network (mul-

tilayer perceptron) forecasting model in the Pannonian biogeo-

graphical region. Stations are ordered in a descending order

based on their 10-year mean concentration. Baseline method is

the 3-day persistence forecast
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among years. Therefore, Pearson correlation coeffi-

cients ranged from 0.13 (Wien, with relatively low

concentrations) to 0.88 (Subotica, one of the most

infested locations). As Pearson correlation is sensitive

to extreme values, the correct forecasting of a short

period with high concentration can produce a good

Pearson correlation. For low to medium pollen levels,

both the reference measurement and the output of the

network are likely to be uncertain, and hence the

correlations are low.

Traditional pollen monitoring (i.e. Hirst-type sam-

pling) and manual pollen counting are time-

consuming (Crouzy et al. 2016). Another disadvantage

of the traditional systems is that data are produced on

working days, but not during vacation times and

holidays. Csépe et al. (2014) showed that 3-day lagged

pollen data provided acceptable forecast results in

Szeged. The same result was found in the current study

using the data of 28 monitoring stations. In a large

international pollen alarm system, such as R-PAS, the

coordination of data update is the most critical point

during the routine operation. Obtaining 1- or 2-day

lagged pollen data from all monitoring stations on

every day of the pollen season would have unneces-

sarily high costs compared to the added value.

However, 3-day lagged pollen data are available on

holidays as well, and therefore pollen forecast could

be published continuously.

To improve the performance of the forecast model,

further developments are needed. It is planned to

investigate new explanation variable set in the neural

network model (e.g. cumulated meteorological vari-

ables). Predicted values of pollen data may be used in

transport (source-based) models (Zink et al. 2012;

Prank et al. 2013; Burki et al. 2019). It is expected that

source-based models would be improved when pollen

forecasts based on 3-day lagged pollen monitoring
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Fig. 6 Predicted ragweed pollen concentration data (left) and on alarm thresholds (right) with and without pollen data in Zadar
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data are added. High-resolution pollen inventories

(Skjøth et al. 2010, 2019) and real-time data (Crouzy

et al. 2016) may also improve the system’s perfor-

mance. Meanwhile, some error sources can not be
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Fig. 7 Predicted ragweed pollen concentration data (left) and on alarm thresholds (right) with and without pollen data in Budapest

Novisad Pollen levels Categories
withLag

withoutLag

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

Pr
ed

ic
te

d 
(p

ol
le

n 
gr

ai
n 

/ m
3 )

Actual (pollen grain / m3)

0

1

2

3

4

5

0 1 2 3 4 5 6

Pr
ed

ic
te

d 
(t

re
sh

ol
d)

Actual (treshold)

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

Pr
ed

ic
te

d 
(p

ol
le

n 
gr

ai
n 

/ m
3 )

Actual (pollen grain / m3)

0

1

2

3

4

5

0 1 2 3 4 5 6

Pr
ed

ic
te

d 
(t

re
sh

ol
d)

Actual (treshold)

Fig. 8 Predicted ragweed pollen concentration data (left) and on alarm thresholds (right) with and without pollen data in Novi Sad
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ruled out. These are the incidental large-scale trans-

port events, the variability of the pollen season pattern,

the changes in near-site ragweed population and the

error of input meteorological data. Variability in the

pollen season characteristic (Fehér and Járai-Komlódi

1997) is caused by climatic-phenological reasons and

is the subject of active research (Stjepanović et al.

2015).

The strength of the model is its rapid operational

run-time and low computational resource utilization (a

generic virtual private server is sufficient to run). It can

be easily adapted to other monitoring stations by

adding a new neural network to the existing models.

The daily produced data can be integrated into neural

networks, thus increasing its performance. The disad-

vantage, however, is that the system is very sensitive

to the input data of training set of neural network. The

size of the training database is important, because

longer data sets show better performance (lower

RMSE and higher correlations). The forecast effi-

ciency of the algorithm decreases in the case of an

unusual season timeline, if pollens are present in early

or late periods which are not represented by the

training data set.

Fig. 9 Maps of observed and predicted ragweed pollen concentrations on 22 August 2018
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González-Manteiga, W. (2005). Artificial neural networks

as a useful tool to predict the risk level of Betula pollen in

the air. International Journal of Biometeorology, 49,

310–316.

Cecchi, L., Morabito, M., Domeneghetti, P., Crisci, M. A.,

Onorari, M., & Orlandini, S. (2006). Long distance trans-

port of ragweed pollen as a potential cause of allergy in

central Italy. Annals of Allergy, Asthma & Immunology,

96(1), 86–91.
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Šikoparija, B., Skjøth, C. A., Celenk, S., Testoni, C., Abra-
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