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Abstract Principal response curves analysis (PRC)

is widely applied to experimental multivariate longi-

tudinal data for the study of time-dependent treatment

effects on the multiple outcomes or response variables

(RVs). Often, not all of the RVs included in such a

study are affected by the treatment and RV-selection

can be used to identify those RVs and so give a better

estimate of the principal response. We propose four

backward selection approaches, based on permutation

testing, that differ in whether coefficient size is used or

not in ranking the RVs. These methods are expected to

give a more robust result than the use of a straight-

forward cut-off value for coefficient size. Performance

of all methods is demonstrated in a simulation study

using realistic data. The permutation testing approach

that uses information on coefficient size of RVs speeds

up the algorithm without affecting its performance.

This most successful permutation testing approach

removes roughly 95 % of the RVs that are unaffected

by the treatment irrespective of the characteristics of

the data set and, in the simulations, correctly identifies

up to 97 % of RVs affected by the treatment.

Keywords Principal response curves � multivariate

analysis � variable selection � permutation testing �
longitudinal data � multivariate time series

Introduction

In ecological research, the effect of a treatment is often

assessed for several response variables (RVs) at several

points in time. This results in multivariate longitudinal

data, also called multivariate time series data. For

instance, if we wish to assess how invertebrate

communities in ditches change as a result of a single

application of a certain pesticide, we would select a

number of ditches (experimental sites), assign every

ditch to a treatment of a dose of pesticide or a control

treatment, and measure the abundances of the inver-

tebrate species living in the ditches at several times

before and after treatment. Abundance of invertebrates

is influenced not only by our treatment but also by the

moment of sampling due to external factors such as the

time of year. Principal response curves analysis (PRC)

(Van den Brink and Ter Braak 1998, 1999) removes

these unwanted time effects; succinctly describes the
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time-dependent overall response of the community to

the treatment(s) relative to the control treatment; and

indicates for each of the species whether their response

is positively or negatively correlated to the overall

response and to which extent.

PRC is a special case of redundancy analysis (RDA)

used to describe experimental multivariate longitudi-

nal data. It estimates differences among treatments on a

collection of RVs over time and the extent to which the

response of those individual RVs resembles the overall

response. PRC has been widely applied in aquatic

ecology and ecotoxicology (e.g., Hartgers et al. 1998;

Cuppen et al. 2000; Roessink et al. 2006; Duarte et al.

2008; Verdonschot et al. 2015), terrestrial ecology and

ecotoxicology (e.g., Heegaard and Vandvik 2004;

Pakeman 2004; Britton and Fisher 2007; Moser et al.

2007), microbiology (e.g., Andersen et al. 2010;

Fuentes et al. 2014) and soil science (e.g., Kohler

et al. 2006; Cardoso et al. 2008).

The main results of PRC are two sets of coefficients

visualized in two easily interpretable graphs. The first

set consists of the dose-time coefficients (cdts)

estimated for each combination of the treatment levels

(d ¼ 1; . . .;D) and the time-points (t ¼ 1; . . .; T). The

cdts represent the effect size of treatment d at time

t relative to the reference treatment at the same time.

Thus, by definition, cdt ¼ 0 for the reference treat-

ment. The reference treatment is often the control

treatment, but the choice of reference treatment does

not affect the estimates of differences between treat-

ments; it merely defines the baseline, i.e., relative to

which treatment the results are presented. The cdts are

depicted in the principal response curves, a line-plot of

cdts against time grouped by treatment (Fig. 1). The

second set of coefficients are the weights for the RVs

(bks) estimated for each of the RVs (k ¼ 1; . . .;K).

They represent the resemblance of RV k to the overall

response pattern specified by the principal response

curves (i.e., the cdts) and are typically depicted on a

vertical bar alongside the line-plot. The further bk is

from zero, the more the response pattern of RV

k resembles the overall response pattern (if bk [ 0) or

the negative overall response pattern (if bk\0). A bk
of zero indicates that the expected value of RV k at

time t does not differ between treatments or is

uncorrelated with the overall response pattern.

The cdts and bks can be used to rank dose-time

combinations or RVs, respectively. For instance, if

jc23j[ jc24j, the estimated treatment effect for

treatment 2 is larger at time-point 3 than at time-point

4. The coefficients, however, do neither have a unit nor

a direct interpretation. The coefficients are estimated

under the assumption that ptdk ¼ cdtbk, where ptdk is

the difference in expected value of RV k, at time t

between treatment d and the reference treatment. The

expected value ytdk of RV k, at time t under treatment

d, is thus estimated as ytdk ¼ atk þ ptdk, where atk is the
expected value in the reference group.

Standard PRC assumes that only one factor (e.g.,

treatment) is relevant, while other (environmental)

factors are either as similar as possible or, if not,

randomized by design of the experiment. PRC has also

been applied to monitoring sites where this assump-

tion is more problematic. It should be noted that it is

possible to adjust for unwanted variation between sites

if this variation is due to one or more measured

environmental variables. The environmental variables

can be included as covariates in addition to the factor

time which is the default covariate in PRC. This

possibility is not yet available in Vegan (Oksanen

et al. 2015), a much used R-package that includes a

PRC-function, but it is available in Canoco 5 (Šmi-

lauer and Lepš 2014), a computer program for

multivariate statistical analysis using ordination. An

example is given in Fuentes et al. (2014).

When PRC is applied in aquatic ecology, the

research interest typically is the response of a com-

munity as a whole to a treatment and the set of RVs

thus typically consists of abundance data on all

available species or taxa (e.g., all taxa of invertebrates)

at an experimental site. RVs are included irrespective

of their expected susceptibility to the treatment

beforehand, and a large proportion of the included

RVs could thus be unaffected by the treatment. PRC

handles RVs that do not follow the response pattern

(Noise-RVs) by assigning these RVs bk-estimates

close to zero which is advantageous in contrast to the

use of, e.g., Bray-Curtis Similarity (Bray and Curtis

1957) which is calculated with equal weights for all

RVs (Van den Brink and Ter Braak 1998). But

although inclusion of Noise-RVs in PRC does not add

bias to cdt-estimates, their inclusion introduces extra

noise into the data set which adds extra imprecision to

the estimates and reduces power. It would be advan-

tageous to be able to point out which RVs are Noise-

RVs. Reducing the data set accordingly would not

only improve cdt-estimation, it would also improve

comparability of results of PRC between studies. As of
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yet this is difficult because the coefficients have no

unit, so only the shape of the principal response curves

and the order of the species weights can be compared

between studies. Reduction of the number of RVs in

the analysis would also improve the readability of RV-

weights graphs. At present, authors improve readabil-

ity of the RV-weights graph by showing only RVs that

exceed a certain threshold (mostly 0.5). Although

effective in reducing the number of RVs, this practice

is at best sub-optimal because bk values (1) depend on

the extent to which other RVs in the same data set are

affected by the treatment, (2) are affected by the type

of scaling used, and (3) are affected by the choice of

standardization (see Online Resource 1 for details and

illustrated examples on effect of these factors on bk-

estimates).

In this paper, we propose permutation testing

approaches as an improved method for RV-selection

in PRC. We further show that these approaches are

robust to high residual correlation between RVs and to

adding additional RVs with strong effect (very high

bk) or adding many RVs with no effect (bk ¼ 0) to the

data set. We specifically show that information

obtained from ranking RVs based on bk scores of the

full model can help accelerate the algorithm for

variable selection without performance loss.

Materials and methods

Principal response curves analysis

PRC models the expected value of RV k at time t in

treatment level d as the sum of three effects: (1) the

expected value of the RV in the reference group atk, (2)

the time-specific effect of treatment level (ptdk), and

−1.5

−1.0

−0.5

0.0

−5 0 5 10 15 20 25
Time

c d
t
−

es
tim

at
e

Bithynia tentaculata
Amoeba spp.
Oligochaeta
Erpobdella octoculata
Colurella uncicinata
Cephalodella spec
Colurella obtusa
Radix peregra
Stylaria lacustris
Monommata longiseta
Oecetes furva
Cladotanytarsus spec.
Ceriodaphnia pulchella
Procladius spec.
Notonecta glauca
Psectrocladius group sordidellus/limbatellus
Holocentropus picicornis
Laccophilus minutus
Molanna angustata
Tanytarsus spec.
Corynoneura scutellata 
Ciliaten (vnl Halteria sp)
Helobdella stagnalis
Lepadella spec
Hydracarina
Sialis lutaria
Copepoda spp
Cloeon simile
Potamopyrgus antipodarum
Copepodiet
Sphaeriidae
Daphnia longispina
Gammarus pulex
Asellus aquaticus
Coenagrionidae
Armiger crista
Hygrotus versicolor
Chironomus spec.
Ostracoda spp
Hygrotus inaequalis
Caenis luctuosa
Chaoborus obscuripes
Ceratopogonidae
Simocephalus vetulus
Ablabesmyia phatta/monilis
Mystacides longicornis/nigra
Strombidium viride
Cloeon dipterum
Nauplius Larvae
Caenis horaria

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Fig. 1 Principal response curves (left) for the Pyrifos data (Van

den Brink and Ter Braak 1999) for the different doses of

Chlorpyrifos (0 yellow circle, 0.1 green circle, 0.9 orange circle,

6 pink circle, and 44 lg/L purple circle) with bk-estimates

(right). Only RVs with an absolute bk-estimate above 0.5 are

labeled. (Color figure online)
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(3) an error term (�ik). The (multivariate) regression

model for yik, i.e., the observed value of RV k in

observation i (where i ¼ 1; . . .,I with I ¼ T�number of

experimental sites), is:

yik ¼
XT

t¼1

atkwit þ
XT

t¼1

XD

d¼1

ptdkzidt þ �ik ð1Þ

where wit and zidt are indicator variables (0/1 or

dummy variables) that indicate, respectively, whether

(1) or not (0) observations are in the reference

treatment and whether or not observations received

dose d at time t. The general assumption of PRC is that

ptdk ¼ bkcdt which implies that bk and cdt can be

estimated by partial RDA (i.e., reduced rank regres-

sion with concomitant variables) (Davies and Tso

1982) using Eq. 1. Note that, in contrast to what is

written in Smilde et al. (2012) and in the appendix of

Timmerman and Ter Braak (2008), atk is a free,

unknown parameter of the model that is estimated by

the partial RDA. Note that the estimation procedure

also works with unbalanced data, as PRC fits in the

regression framework which is more general than the

ANOVA framework used by Smilde et al. (2012).

The estimates for cdt and bk are determined on an

arbitrary scale because cdtbk ¼ bbk � cdt
b ;where b is an

arbitrary scalar (i.e., any real number). As a result, the

coefficients lack a unit and a direct interpretation and

the scalar can be chosen such that it gives the

coefficients the desired properties. In Canoco (Šmi-

lauer and Lepš 2014), the first software package to

include PRC, the default is to scale coefficients such

that the mean square of bk-estimates is 1 and we used

this scaling in Fig. 1. The result is that, ceteris paribus,

larger true treatment effects result in larger absolute

estimates of cdt: The bk-estimates are expected to fall

roughly between -3 and 3, independent of treatment

effect. Therefore, when applying this scaling one

could opt to select RVs based on a cut-off value of

absolute bk (usually 0.5).

This approach, which we will refer to as Naive RV-

selection (Naive RVS), has some pitfalls. We wish to

distinguish RVs affected by the treatment (Effect-

RVs) from RVs that are uncorrelated to the overall

response pattern. Such RVs are either unaffected by

the treatment (Noise-RVs) or contribute to minor

response patterns. In a situation with only Noise-RVs

however, due to scaling, some Noise-RVs will get a

bk-estimate above the cut-off value. Vice versa,

scaling causes the bk-estimate of an Effect-RV to be

lower when a very strongly affected Effect-RV is in

the data set than when that strongly affected RV is not

in the data set. As a result, including a very strongly

affected RV to the data set could result in bk-estimates

of other RVs to drop below the cut-off value. Another

pitfall is that Naive RVS has little value when

coefficients are scaled differently. Coefficients could

for instance be scaled such that mean square of ecdts is
1, where ecdts are a centered version of the cdts. In

Vegan (Oksanen et al. 2015) the default option scales

the coefficients differently with both the bks and cdts

showing effect sizes. For any of these scaling-meth-

ods, choosing a cut-off value in advance does not

make sense.

Response variable selection protocols

Ideally, an RVS protocol would make perfect predic-

tions and thus remove all the Noise-RVs from the

model and keep all the Effect-RVs in the model. Such

a result is not feasible in practice. Therefore, we aim at

achieving an optimal, yet realistic method for RVS, in

which every Noise-RV has a 1� a probability to be

removed from the model (e.g., a ¼ 0:05) while

keeping as many Effect-RVs in the model as possible.

With this aim there is no need to correct for

multiplicity in statistical testing of RVs (such as

Bonferroni) in the RVS protocols that we propose.

For any RV k, the hypothesis that its expected value

is independent from the treatment (i.e., whether or not

bk ¼ 0) can be tested by calculating a permutation p

value and comparing it to a: A permutation p value for

RV k is obtained by performing 500 permutations in

which time series of observations from RV k on the

same experimental unit (e.g., ditch, plot, or site) are

permuted between treatments (including the control

treatment). We estimate bk in PRC on non-permuted

data and on all 500 permuted data sets. The permu-

tation p value is the proportion of the 501 estimated bks

(including the bk from non-permuted data) greater

than or equal to the estimated bk from PRC with non-

permuted data, if the estimated bk from the PRC with

non-permuted data is positive. If the estimated bk from

PRC with non-permuted data is negative, the propor-

tion equal or lower is used. The number of 500 is large

enough to provide sufficient power at a ¼ 0:05 and is

still acceptable in terms of computing time.
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As an alternative to Naive RVS, we propose four

RVS protocols based on permutation testing (in short:

permutation RVS protocols) that all incorporate

permutation p value calculation as described above.

All four permutation RVS protocols are backward

procedures, indicating that they start with the whole

set of RVs and predict which of those are Noise-RVs

that can be removed from the model and which are

Effect-RVs that should be kept.

Two-Step RVS The most thorough permutation

RVS protocol is the Two-Step RVS. In this protocol,

we calculate a permutation p value for all RVs in the

data set. If any of the permutation p values is higher or

equal to a; the RVwith the highest permutation p value

is removed from the model. Thereafter, we repeat the

procedure with the remaining RVs and keep repeating

until only RVs with a permutation p value lower than a
remain. The advantage of this elaborate approach is

that it accounts for RVs being correlated. The pitfall is

that it is computationally intensive because many

permutation p values need to be calculated (e.g., for

K ¼ 200; as many as 0:5ðK2 þ KÞ ¼ 20; 100).

Screening RVS We could do with a less computa-

tionally intensive protocol if it would be reasonable to

assume that the permutation p value of an RV is

independent of the other RVs in the data set. This

simpler protocol, called the Screening RVS protocol,

calculates a permutation p value once for each RV in

the data set using the full model. All RVs with

permutation p values higher or equal to a are removed

from the model at once.

Stepwise RVS Importantly, estimated bks of Noise-

RVs are expected to be closer to zero than estimated

bks of Effect-RVs. Thus, to incorporate this informa-

tion, a third RVS approach uses an even less compu-

tationally intensive procedure. This protocol, called

the Stepwise RVS protocol, performs PRC on the data

set, selects the RV with the estimated bk closest to

zero, and calculates a permutation p value for that RV.

If that permutation p value is higher or equal to a; it
removes the RV from the model. If it is not, it keeps

the RV in the model and calculates the permutation

p value of the RV with the estimated bk second closest

to zero. Once an RV is kept in the model, its

permutation p value is not calculated again. Stepwise

RVS is computationally less intensive than Screening

RVS because the PRC-procedure, which is performed

501 times per permutation p value, gets faster with a

smaller number of RVs in the model. In Stepwise

RVS, permutation p values are calculated using PRC

on the reduced model with increasingly less RVs as the

procedure progresses, whereas, in Screening RVS, all

permutation p values are calculated using PRC on the

full set of RVs.

Stepwise Stop RVS When we are willing to assume

that all RVs with an absolute estimated bk under a

certain threshold are Noise-RVs, we can make an even

faster version of theStepwise RVS protocol: the

Stepwise Stop RVS protocol. This protocol is the

same as the Stepwise RVS protocol, except that it

stops entirely when the first permutation p value lower

than a is encountered.

Simulation study

We evaluated the performance of the four permutation

testing protocols and Naive RVS in a simulation study.

The data used in this simulation study were modeled

after the so-called Pyrifos data set. The Pyrifos data

set, used as example throughout this paper, consists of

log-transformed abundance data obtained from a

toxicological experiment in outdoor experimental

ditches, explained in detail by van Wijngaarden et al.

(1996) and Van den Brink et al. (1996). In the

experiment, experimental ditches were randomly

allocated to the reference treatment or a dose of

insecticide chlorpyrifos. The RVs are abundances of

species of invertebrates. In this simulation study, we

generated data from scenarios inspired by the Pyrifos-

experiment. In the Pyrifos-like data scenario, an

experiment was conducted in which the effects of

three levels of treatment (reference, low and high

dose) were measured on four independent locations

per treatment at five different time-points. The Pyri-

fos-like data contain abundance data of 100 RVs, 50 of

which are Noise-RVs which are unaffected by the

treatment (bk ¼ 0) and 50 are Effect-RVs which have

a low, medium, high or reversed low treatment effect

(bk ¼ 1;2;3; or �1). Covariance between time-points

is auto-regressive and covariance between RVs

resembles covariance in the Pyrifos data set. Error

terms were simulated using a multivariate normal

distribution. We back-transformed the sum of the

structural effect and the error term to the abundance-

scale, used it as expected value for a random draw
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from a Poisson-distribution, and log-transformed the

result (for more details: Online Resource 2).

To provide additional experimental outcomes that

approximated the range of treatment effects in the

literature, we also generated data based on 17 data

scenarios similar to the Pyrifos-like data scenario with

one or two parameters manipulated. We manipulated

the composition of the set of Effect-RVs, the number

of Noise-RVs, the number of ditches, the amount of

covariance between RVs, and the treatment-effect

size. For an overview, see Table 1.

For each of the 18 data scenarios, 100 data sets were

generated which were centered before analysis (Cen-

tering). We also analyzed each data set after standard-

izing data per RV (Standardization) resulting in

another 18 simulation scenarios. Standardization in

addition to Centering is useful when it is of interest

whether RVs are affected by a treatment (positively,

negatively, or not at all) and not so much what the size

of the difference in effect between RVs is. For Naive

RVS, coefficients were scaled such that mean squares

of bk are 1 as this is the only scaling that is sensible for

this protocol. Scaling of coefficients does not affect

the RV-selection in the permutation RVS protocols.

Performance of the RVS protocols was evaluated

using sensitivity and specificity. Sensitivity is the

number of Effect-RVs kept in the model divided by the

total number of Effect-RVs in the data set. Specificity

is the number of Noise-RVs removed from the model

divided by the total number of Noise-RVs in the data

set. Permutation method is expected to have a

specificity of 0.95 with a ¼ 0:05, indicating that 5 %

of saved RVs could in fact be Noise-RVs. In the ideal

situation, sensitivity would be 1, indicating that all

effect-RVs are identified. In practice, we would expect

sensitivity to increase with increasing power, e.g.,

with larger effect size or more observations.

There is a trade-off between specificity and sensi-

tivity which becomes apparent when comparing both

Stepwise RVS procedures. All RVs removed in the

Stepwise Stop RVS procedure are also removed in the

Stepwise RVS procedure. In the Stepwise RVS

procedure, some additional RVs could be removed.

Stepwise Stop RVS thus always keeps the same or

more Effect-RVs in the model than Stepwise RVS and

thus has an equal or higher sensitivity. Stepwise Stop

RVS always removes the same number or less Noise-

RVs from the model than Stepwise RVS and thus has

an equal or lower specificity.

The overall quality of RVS protocols was evaluated

with the Matthews correlation coefficient (Mc)

(Matthews 1975) which is a correlation coefficient

between a prediction and the reality:

Mc ¼
TP � TN� FP � FN

ðTPþ FNÞðTNþ FPÞðTPþ FPÞðTNþ FNÞ
ð2Þ

where TP (true positives) is the number of kept Effect-

RVs, TN (true negatives) is the number of removed

Noise-RVs, FP (false positives) is the number of kept

Noise-RVs, and FN (false negatives) is the number of

removed Effect-RVs. The Mc ranges between -1 and

1 where 1 indicates perfect prediction (i.e., all Noise-

RVs removed, all Effect-RVs kept), 0 indicates

prediction no better than random, and -1 indicates

Table 1 Overview of data scenarios in the simulation study with three treatments, incl. control, at five time-points

Data scenario Description

Pyrifos-like As described in ‘‘Simulation study’’ section (4 replications, 50 effect-RVs, 50 Noise-RVs)

More ditches As Pyrifos-like, with 4 additional ditches per treatment (8 total)

Most ditches As Pyrifos-like, with 8 additional ditches per treatment (12 total)

Weak effect-RVs As Pyrifos-like, with effect-RVs consisting of 38 RVs with bk ¼ 1 and 12 RVs with bk ¼ �1

Strong effect-RVs As pyrifos-like, with 12 additional strong effect-RVs with bk ¼ 10

One Noise-RV As Pyrifos-like, with only 1 Noise-RV

Many Noise-RVs As Pyrifos-like, with 150 additional Noise-RVs (200 total)

No covariance As Pyrifos-like, except there is no covariance between RVs

More covariance As Pyrifos-like, with 40 % higher correlation between RVs

\name of data scenario[? All nine data scenarios described above, with a larger treatment effect (cdt
þ ¼ 4cdt)
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total disagreement between prediction and reality (i.e.,

all Noise-RVs kept, all Effect-RVs removed).

The effect of RVS on model fit was evaluated in

terms of difference in residual mean squared error

(RMSEdiff ). RMSE of the reduced model

(RMSEreduced) was compared to RMSE of the reduced

set of RVs calculated using fitted values from the full

model (RMSEfull).

After evaluating performance of the RVS protocols,

we applied the best protocol to the Pyrifos data as a

case study. In order to better compare the shapes of

PRC on the full and the reduced data set, we scaled

such that the population variance of all available case

scores fxi ¼ cdtzidtg was 1. For balanced data, this

corresponds to setting the mean square of ecdts to 1. The
scaling such that the mean square of bk is 1 always

results in higher bk-estimates and lower cdt-estimates

when comparing results before to after removing

Noise-RV, because Noise-RVs typically have low bk-

estimates. All data simulations and analyses were

performed in R 3.1.0. The scripts to replicate the case

study are available in Online Resource 3.

Results

General results

In our simulation study, we assessed sensitivity,

specificity, and Mc of the Two-Step, Screening,

Stepwise, and Stepwise Stop permutation RVS proto-

cols and Naive RVS. The aim was to find an RV-

selection method that is 0.95 specific while being as

sensitive as possible. Computing time of the Two-Step

RVS protocol was extremely long. Analysis of one

data set generated using the Pyrifos-like data scenario

took on average 2 h and 24 min, whereas Screening

RVS took 3 min 50 s, Stepwise RVS took 2 min and

48 s, and Naive RVS took less than a second.

Therefore, Two-Step RVS was run on 12 rather than

100 data sets per scenario. The results thereof gave no

reason to assume that Two-Step RVS outperformed

Screening or Stepwise RVS. On the contrary, based on

confidence intervals around the mean, we found that

mean specificity in the Two-Step RVS was different

from 0.95 in 7 out of 36 simulation scenarios, whereas

for Screening and Stepwise RVS, also based on 12

iterations, mean specificity was different from 0.95 in

respectively 3 and 0 out of 36 data scenarios. As a

result, we decided to base results of the Two-Step RVS

on 12 iterations and not report the results in text.

Based on 100 data sets per scenario, we concluded

that Screening and Stepwise RVS hardly differed in

specificity and sensitivity. Per scenario, the difference

between methods in mean specificity ranged from

-0.020 to 0.030 and the difference in mean sensitivity

ranged from-0.011 to 0.006. The Stepwise Stop RVS

protocol did not meet the requirement of being 0.95

specific. The 95 % confidence interval of mean

specificity excluded 0.95 in all of the 36 simulation

scenarios. Therefore, we will only report on results

from Stepwise RVS in text which we will compare to

results from Naive RVS. Full results for all methods

and all simulation scenarios can be found in Online

Resource 4 in Table 1–4.

The overall quality of prediction Mc of both

Stepwise RVS and Naive RVS (from 0.25 to 0.92)

was moderately to highly positive except in the Weak

Effect-RVs data scenarios (due to very low power) and

One Noise-RV data scenarios (due to specificity of

either 0 or 1) for both Stepwise and Naive RVS, and in

Many Noise-RVs data scenarios using Naive RVS.

RMSEdiff ; the difference between RMSEfull and

RMSEreduced; was not large and did not differ much

between the RVS protocols, indicating that removing

RVs from the model with RV-selection did not

influence model predictions for RVs kept in the model

much. In the data scenarios with Pyrifos-like treatment

effect, RMSEdiff ranged from -0.142 to 0.066 and in

the data scenarios with increased treatment effects

(such as Pyrifos-like?) RMSEdiff ranged from -0.341

to 0.068.

Comparing mean Mc within the same simulation

scenario, Mc of Stepwise RVS was higher than Naive

RVS in all but 5 out of 36 simulation scenarios

(difference from -0.05 to 0.25, mean = 0.05). The

main difference in performance of both methods lies in

the trade-off between specificity and sensitivity.

Stepwise RVS was more successful than Naive RVS

in identifying the vast majority of Noise-RVs, as

judged from the mean specificity results per simula-

tion scenario. Mean specificity of Stepwise RVS was

consistently high (from 0.87 to 0.95) and its 95 %

confidence interval included 0.95 in 23 out of 36

simulation scenarios, whereas mean specificity of

Naive RVS was highly varying (from 0.37 to 1) and its

95 % confidence interval never included 0.95. For

both Stepwise RVS and Naive RVS, mean specificity
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approached 0.95 more closely with increasing power.

In Stepwise RVS, the 95 % confidence interval

included 0.95 more often in data scenarios with larger

treatment effect (16 out of 18) than in data scenarios

with Pyrifos-like treatment effect (7 out of 18). For

Naive RVS, mean specificity of scenarios with was

higher than of scenarios without larger treatment

effects (e.g., compare Pyrifos? to Pyrifos-like), the

difference ranged from 0.08 to 0.43 (mean 0.31).

Mean specificity also increased with increasing sam-

ple size (difference between Pyrifos-like, More

Ditches, and Most Ditches data scenarios; Online

Resource 4; Fig. 1). Mean sensitivity is highly vari-

able for both Stepwise (from 0.17 to 0.97) and Naive

RVS (from 0.35 to 0.95). For Stepwise RVS, mean

sensitivity increases when the analysis has more power

(due to larger treatment effects or increased sample

size). Such a straightforward relationship could not be

found for Naive RVS. Mean sensitivity between

simulation scenarios with and without larger treatment

effects did not increase in all cases and was not clearly

affected by increasing the sample size.

Standardization rather than only Centering did not

affect results of Stepwise RVS regarding specificity

(difference -0.06 to 0.0006) and sensitivity (from

-0.006 to 0.017) to great extent. For Naive RVS,

Standardization in addition to Centering resulted in

lower mean specificity (from -0.02 to -0.25; mean

-0.10 ) and higher mean sensitivity (from 0.01 to

0.32; mean 0.11).

Results of Stepwise RVS are more robust to

changes in the composition of the set of RVs than

results of Naive RVS. Mean specificity and sensitivity

changed less than 0.05 point after adding additional

strong Effect-RVs to the Pyrifos-like data set (Strong

Effect-RVs; Fig. 2) and after removing or adding

Noise-RVs (One Noise-RV and Many Noise-RVs;

Online Resource 4, Fig. 2). Note that we calculated

specificity and sensitivity of the Strong Effect-RVs

data scenario without including results on the addi-

tional strong Effect-RVs as to better compare results to

the Pyrifos-like data scenario. Using Naive RVS,

specificity increased and sensitivity decreased com-

paring Pyrifos-like to Strong Effect-RVs simulations

scenarios. Comparing the One Noise-RV to the Many

Noise-RVs data scenario, specificity decreased and

sensitivity slightly increased. These changes are

smaller when using Standardization in addition to

Centering.

We found that both Stepwise and Naive RVS do not

differ in performance between the No Covariance,

Pyrifos-like, and More Covariance data scenarios

(Online Resource 4, Fig. 3). This indicates that

covariance in the residuals is not reflected in the bk-

estimates which confirms that PRC deals with this

issue well.

Case study

StepwiseRVSon thePyrifos data reduced the set ofRVs

from 178 to 38 species (Fig. 3). The shape of the

principal response curves was mildly affected (Fig. 4).

In general, the shape after RVS seems slightly smoother

and the unexpected W-shape around Time = 2 of the

6 lg/L dose before RVS has disappeared.

When scaling such that mean square of bk is 1,

species with an absolute bk-estimate over 0.5 in the

full model were more likely to be in the reduced model

(26 out of 50; 52 %) than species with an absolute bk-

estimate under 0.5 (12 out of 128; 9.4 %).

Discussion

The main reason to apply response variable selection

(RVS) in PRC is to be able to distinguish between

those species that do follow the principal response and

those that do not. Standard PRC usually gives small

coefficients to species of the latter group. By setting

these coefficients actually to zero, that is, by removing

these species, the noise in the data caused by these

species is removed from the estimation of the principal

response curves. The result is a better estimate of the

true response when there were many Noise-RVs and as

visibly suggested in the case study where the response

curves were smoother after RVS.

One may argue that PRC after selection of response

variables is a PRC of a subset of the species only and

no longer the PRC of the whole community. We argue

that it is still the PRC of the whole community, but one

in which non-responding species received a zero

coefficient. This differential weighing of species was

already an advantage of PRC over similarity analysis

(Van den Brink and Ter Braak 1998), but is an even

bigger advantage in PRC with Stepwise RVS.

We found no differences in performance between

the Two-Step, Screening, and Stepwise RVS protocols.

In Two-Step RVS, RVs were removed from the model
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one at a time, based on permutation p values that were

recalculated every time an RV was removed from the

model. In Screening RVS, permutation p values were

calculated once for every RV using the full model. As

Two-Step RVS did not yield better results than

Screening RVS, we concluded that calculating

permutation p values based onmodels with increasingly

less Noise-RVs did not enhance performance. This

conclusion was supported by the finding that adding

additional Noise-RVs to or removing Noise-RVs from

the data did not affect specificity and sensitivity of

permutation RVS protocols.

Naive RVS Stepwise RVS
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Fig. 2 Specificity and sensitivity of Naive and Stepwise RVS

when applied to standardized (points) or centered (crosses) data

generated using the Pyrifos-like/Pyrifos-like? (pink circle top

row/bottom row), strong effects RVs/strong effects RVs?

(purple circle), and weak effects RVs/weak effects RVs?

(orange circle) data scenarios. Mean specificity and sensitivity

over 100 simulations are represented by large symbols, and

specificity and sensitivity per simulation are represented by

small symbols. Ellipses indicate the 95 % confidence region of

the mean of the estimates. As the confidence regions are small

the ellipses are difficult to see. (Color figure online)
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We concluded that permutation p values of RVs

were independent of other RVs in the data set because

the performance of Screening RVS did not differ from

the other protocols. Furthermore, we found that adding

additional residual covariance did not affect the

quality of bk-estimates. So we confirmed that PRC is

robust against between-species covariance in the

residual, even though residual covariance between

species is ignored in estimating the PRC coefficients

as PRC uses simple least-squares. This is in contrast to

what we would expect when selecting predictors

rather than RV, such as in multiple regression. In that

situation, one would expect coefficients, and thus their

p values, and model predictions to be altered as a result

of selection.

Performance of Stepwise RVS did not differ from

performance of Screening RVS except for being

computationally less intensive. It is less intensive, as

calculating permutation p values is faster in data sets

with a smaller number of RVs, and Stepwise RVS

calculates permutation p values using an ever smaller

set of RVs. The order of deleted RVs was determined

based on estimated bk, which is a reasonable indicator

of effect size. The Stepwise Stop RVS protocol was

computationally even less intensive than Stepwise

RVS. This method, however, does not meet the goal of

0.95 specificity. Therefore, Stepwise RVS was

selected as the preferred permutation RVS protocol.

Stepwise RVS combined a stable high specificity

with a sensitivity that increased with power. Its

performance was unaffected by the number of

Noise-RVs in the data set, additional covariance in

the residuals, adding additional strong Effect-RVs,

bFig. 3 bk-Estimates for the Pyrifos data set (Van den Brink and

Ter Braak 1999) before (light green bars) and after RV-selection

using Stepwise RVS (dark pink bars) (scaled such that mean

square ofecdts is 1). Abbreviated names of the species are printed

in black if kept and printed in gray if removed from the model.

Shaded areas represent which RV would be kept when using

Naive RVS (with the appropriate scaling). (Color figure online)
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Fig. 4 Principal response

curves for the Pyrifos data

(Van den Brink and Ter

Braak 1999) before (solid

line) and after RV-selection

using Stepwise RVS

(dashed line) for the

different doses of

Chlorpyrifos (0 yellow
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scaled such that mean square

of ecdts is 1. Note that the
shape of the PRC before
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the shape in Fig. 1. (Color

figure online)
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and the choice of Centering or Standardization of the

data. In contrast, Naive RVS was highly variable in

specificity and sensitivity and was affected by number

of Noise-RVs in the data set and adding additional

strong Effect-RVs. Because true bk of RVs in data

from practice are unknown, so is the performance of

Naive RVS in terms of specificity and sensitivity. We

therefore advise Stepwise RVS as the preferred

method for RVS in PRC over Naive RVS. We see

Stepwise RVS in PRC as an easy applicable and

interpretable tool to enhance the insight in the

response to treatment of a community over time.
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