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Abstract
In this study four kinds of biochars were prepared from the KOH modified biomass. As the carbon precursors there was 
used the sawdust from the following trees: oak, hornbeam, apple and cherry. The physicochemical properties of the materi-
als were characterized by the  N2 adsorption, scanning electron microscopy, thermal analysis (TG, DTG and DTA), infrared 
spectroscopy, and the Boehm’s titration method. Moreover,  pHpzc (the point of zero charge) was determined. The adsorption 
capacity and the temperature-programmed desorption of ammonia were also studied. The obtained activated biochars were 
characterized by the large specific surface area (672 to 912  m2/g) and the total pore volume (0.30 to 0.4  cm3/g) as well as 
the well-developed microporous structure (85–97%). These observations were also confirmed by the SEM analysis. The 
maximum  NH3 adsorption capacity of the activated biochar was determined to be 3.05 mmol/g. These results prove that the 
sawdust of various origins is appropriate to prepare a cost-effective, environmentally friendly biochar.
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1 Introduction

In the last dozen or so years the research on biochar produc-
tion was intensified. The growing interest in this material 
results from its numerous advantages: this is the material 
rich in carbon, with a large degree of porosity, large specific 
surface area with a stable structure, a large content of sur-
face functional groups and a great cation exchange capacity 
[1–3]. In addition, biochar has a wide range of applications: 
agriculture—soil improvement [4],environmental protec-
tion—removal of harmful gases, i.e.,  CO2,  H2S [5],  NH3 [6, 
7],contaminants from the aqueous solutions—pharmaceuti-
cals [8], dyes ([9], pesticides [10], in soil remediation from 
inorganic and organic pollutants [11],in energy recovery 
technologies—renewable fuel, catalysts [12].

Biochar can be obtained in the pyrolysis process in the 
inert atmosphere from virtually any type of biomass, which 
makes it a competitive material, much cheaper compared to 
the commercial materials [1, 6, 13, 14]. Besides the carbon 

adsorbent, there are obtained also other products such as: oil 
and synthesis gas. The percentage of the obtained products 
depends on the heating rate, temperature and pressure used 
during the pyrolysis [13, 15]. The precursors used to obtain 
biochar are e.g. wood biomass: sawdust [16, 17], cones 
[18–20], food or agricultural waste: nut shells [21, 22], 
cereal straw [1], cotton stalks [23], corn cobs [24, 25], rice 
husks [26], banana peels [27], coffee spent grains [28],natu-
ral fertilizers: chicken manure [29] and waste paper [30].

The adsorption properties of biochar could be improved 
due to development of its porosity, e.g. as a result of physi-
cal or chemical activation. Physical activation includes two 
stages: carbonization of the carbon precursor in the inert 
gas atmosphere and activation at a high temperature with 
the use of an oxidizing gas—carbon dioxide, steam, air or a 
mixture of  CO2 and steam [31, 32]). The chemical activation 
can take place in two ways. The first method of activation 
includes the carbon precursor impregnation with a chemical 
activator, followed by heating at an elevated temperature 
(carbonization/activation) [33]. The other one includes two 
stages. After the initial carbonization of the carbon precursor 
(300 to 600 °C), the biochar is impregnated with a chemical 
agent and then activated (700 to 1200 °C) [33].

The chemical activation is more agvantageous than the 
physical one due to its greater efficiency, larger surface areas 
and the more developed porous structure of the obtained 
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materials [34]. The use of the activation process with KOH 
as an activating agent leads to the formation of a well-devel-
oped porous structure on the biochar surface with a pre-
dominance of micropores as well as the appearance of active 
functional groups [35, 36]. It was proved that the content of 
micropores on the surface of active carbon increases slightly 
with the increasing extent of impregnation [37]. This is due 
to a more intensive reaction between the KOH and carbon 
surface which results in a greater release of  CO2 and CO 
gases as well as the micropores formation [38]. Zhu et al. 
[39] obtained a biochar with a large specific surface area 
(782–2435  m2/g) and developed microporosity (0.301–0.625 
 cm3/g) using the Paulownia sawdust as a carbon precursor. 
The raw sawdust was preheated in the oven (250 °C, 2 h, 
 N2), then the material was impregnated with KOH (80 °C, 
12 h) and the activation process took place. There were used 
the following conditions: impregnation KOH/C weight ratio 
2:1, 4:1 and 6:1; activation temperatures 600, 700, 800 and 
900 °C; activation time 0.5, 1 and 2 h. In turn, Yang et al. 
[40] obtained structured porous biocarbons in the two-stage 
process involving hydrothermal treatment and carbonization 
of the Cedar wood sawdust. The dried sawdust (105 °C, 24 h) 
was poured with the 5 wt% KOH solution and subjected to 
the hydrothermal treatment (the bottle hermetically closed 
with a lid, the temperature 120 °C, for: 30 min, 2 h and 8 h). 
After the hydrothermal treatment, the suspension was sepa-
rated by filtration and dried at 105 °C until the stable weight. 
The obtained product was carbonized (800 °C, 5 °C/min, 
1.5 h) in the argon atmosphere. The activated biochars were 
characterized by the following parameters: specific surface 
area (875–908  m2/g), volume of micropores (0.406–0.420 
 cm3/g). Quan et al. [41] obtained a biochar from the pine 
sawdust. The pyrolysis was performed at 700 °C (tempera-
ture increase 10 °C/min) for 2 h. Then the activation was 
made with KOH. After the pyrolysis the biochar was mixed 
with KOH at the weight ratio of 4:1, placed in the boats in 
the tube furnace, and the activation was performed at the 
temperatures of 700, 800, 900 °C for 2 h in the nitrogen 
atmosphere. The obtained materials were characterized by 
the large specific surface area  SBET = 1729 − 2331  m2/g and 
the volume of micropores  Vmi = 0.671 − 0.795  cm3/g. Liu 
et al. [42] used the coconut shell as the biochar precursor. 
The crude material was impregnated with the KOH solution 
followed by activation at 700 °C. The obtained biochar had 
the developed microporous structure  (Vmi = 0.315  cm3/g) 
and the large specific surface area (860  m2/g). Marques 
et al. [43] obtained the apple tree small branches biochar 
impregnated with the KOH solution and then activated at 
800 ℃ (1–4 h). The finally obtained biochars were charac-
terized by the large specific surface (2114–2472  m2/g) and 
the developed microporosity (91–98%). Oginni et al. [33] 

compared the biochars obtained from two types of biomass: 
Kanlow Switchgrass (KS) and Public Miscanthus (PM) as 
a result of one and two-stage activation. The raw biomass 
was heated at 500 °C. Then the starting biomass and the bio-
char after the pyrolysis were impregnated with KOH at the 
weight ratio of 1:1. The activation of the materials obtained 
by these methods was performed at 900 °C for 0.5 h. The 
specific surface area values   were higher for the materials 
obtained as a result of raw biomass impregnation (one-step 
activation). The  SBET values   differed depending on the pre-
cursor and the method of preparation (KS: 599–1272  m2/g 
and PM: 957–1597  m2/g). Applying various carbon precur-
sors and two different methods (carbonization-activation and 
impregnation-activation) at two different KOH/carbon ratios 
Elmouwahidi et al. [44] obtained materials with a developed 
porosity. To sum up, the porous structure and properties of 
the ultimately obtained biochars depend on both the nature 
of the starting material and to a large extent on the param-
eters of the activation process [45].

Toxic gases that pollute the environment pose a seri-
ous threat to human health [46]. One of these gases is 
ammonia. Right after dinitrogen oxide  (N2O), this gas is 
one of the most common compounds in the atmosphere 
[46, 47]. Ammonia is a poisonous gas which is also a valu-
able chemical raw material used in industry, among others, 
for the production of varnishes, plastics, rubbers, disin-
fectants, battery-killing agents, fertilizers and in cooling 
installations as a cooling gas [48, 49]. When the content 
of ammonia in the atmosphere exceeds 35 ppm, it has a 
negative effect on human and animal health [50]. There-
fore, for the sake of the safety of the natural environment 
and people, it is very important to eliminate this gas from 
the surrounding atmosphere.

One of the most frequently used methods of removing 
ammonia polluting the air, taking into account the low 
cost, simplicity of implementation and efficiency in a wide 
range of concentrations, are adsorption processes [51]. 
The adsorbents that work best during this process should 
have a well-developed surface and porosity, which will 
ensure great ammonia removal capacity [49].

The aim of the paper was to obtain a biochar with devel-
oped porosity from the low-cost KOH-activated sawdust 
and to investigate the influence of the type of carbon pre-
cursor on the physicochemical and sorption properties 
against the gas phase impurities represented by ammo-
nia. To sum up, it was crucial for us to obtain effective 
adsorbents with a great adsorption capacity for removal 
of ammonia and possibly in the future of other toxic gases 
from the air, e.g. nitrogen oxides  NOx, sulfur oxides:  SO2 
and  SO3 as well as carbon oxides: CO and  CO2.
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2  Experimental

2.1  Chemicals

The ultra-high purity (UHP) nitrogen 5.0 (99.999%) for 
preparation of biochars was purchased from Air Liquide 
(5.0), Poland. Potassium hydroxide for activation of the 
porous structure of biochars was purchased from POCh, 
Poland.

The gases, UHP helium 5.0 (99.999%) for cleaning (stabi-
lization) of biochar and temperature-programmed desorption 
of ammonia (TPD), and UHP 10% ammonia in helium for 
the pulse chemisorption were purchased from Air Liquide, 
Poland.

2.2  Materials

The sawdust used as the carbon precursors was obtained 
from the treatment of the following deciduous trees: oak, 
hornbeam, cherry and apple. The raw sawdust was ground 
in the laboratory mill (MF 10, IKA, Germany) to collect 
the grain size fraction smaller than 2 mm. Then the materi-
als were placed in the quartz boats and heated in the tube 
furnace (MRT-4, Czylok, Poland) to 800 °C at the heating 
rate of 2 °C/min with the additional isothermal stages at 
180 °C (2 h), 400 °C (2 h) and the final temperature 800 °C 
(3 h). The process proceeded in the nitrogen atmosphere at 
the gas flow rate of 20  dm3/h. The obtained biochars were 
designated C–O (Carbon–Oak), C–H (Carbon–Hornbeam), 
C–A (Carbon–Apple) and C–C (Carbon–Cherry).

For developing develop the porous structure of the 
obtained biochars, the activation process was conducted. 
The obtained materials were mixed with KOH at the weight 
ratio of 1:2 and 1:4 (biochar:KOH), then placed in the quartz 
boats and annealed (5 °C/min) in the tube furnace to 600 °C 
at the nitrogen flow rate of 20  dm3/h. The materials were 
soaked at 600 °C for 2 h. The obtained materials were des-
ignated C–O1-2, C–H1-2, C–A1-2, C–C1-2 and C–O1-4, C–H1-4, 
C–A1-4, C–C1-4.

2.3  Characterization

The low-temperature nitrogen adsorption/desorption iso-
therms were measured at 77 K using the ASAP 2020 volu-
metric analyzer (Micromeritics Inc., Norcross, GA, USA) 
in the Structural Research Laboratory at Jan Kochanowski 
University in Kielce. Just before the measurements, all sam-
ples were degassed at 200 °C for at least 2 h.

Scanning electron microscopy images were obtained 
using the scanning electron microscope (SEM Zeiss Ultra 
Plus, EDS Bruker Quantax 400, Germany). During the 

measurements the voltage of 2 kV was applied. The energy-
dispersive X-ray spectroscopy (SEM/EDX, acceleration: 
15 kV) was used for the quantitative measurements.

The Perkin–Elmer Spectrum 400 FT-IR/FT-NIR spec-
trometer (Perkin–Elmer, Waltham, MA, USA) with the 
endurance single bounce diamond, attenuated total reflec-
tion (ATR) cell was used for spectra registration. The spectra 
4000–650  cm−1 were recorded. All materials were dried and 
ground before the measurements.

The Boehm’s titration method [52, 53] was used for deter-
mination of the functional acidic and basic oxygen surface 
groups. The 0.2 g mass weights of the biochars were dis-
persed in the sodium bicarbonate, sodium carbonate, sodium 
hydroxide and sodium ethoxide solutions (all at the concen-
tration of 0.1 mol/dm3) for determination of the functional 
acidic groups. However, hydrochloric acid (0.05 mol/dm3) 
was used for determination of the total basic groups. After 
shaking for 48 h at room temperature the suspensions were 
filtrated and 10  cm3 of the filtrate was titrated with 0.1 mol/
dm3 HCl for determination of the acidic groups and with 
0.05 mol/dm3 NaOH for the total basic group determina-
tion. The titration endpoint was determined using the methyl 
orange indicator.

The biochars  pHpzc (point of zero charge) was analyzed by 
means of the method used in [54, 55]. At the beginning the 
solutions of the pH between 3 and 12 in the 0.01 mol/dm3 
NaCl solution were prepared by adding 0.1 or 1 mol/dm3 of 
HCl and 0.1 or 1 mol/dm3 of NaOH. The biochar samples 
(0.15 g) were added to the solutions (50  cm3) with an appro-
priate pH value. Next, they were shaken in the incubator 
(Orbital Shaker-Incubator ES-20, Grant-bio) for 180 min at 
298 K. Then the final pH was measured. After this time, the 
relationships between the final and the initial values of pH 
were determined. The  pHpzc indicates the intersection point 
of the experimental curves and  pHinitial =  pHfinal line [54, 55]. 
The pH-meter inoLab pH 730, WTW was used for the pH 
value measurement.

The thermal behavior and composition of the volatile 
and fixed carbon in the biochars were determined using the 
Derivatograph C (Paulik, Paulik & Erdey, MOM, Buda-
pest). The tested materials (about 20 mg) were placed in the 
small corundum crucible.  Al2O3 was used as the reference 
material. The analyses were made in air  (O2) or inert (N2) 
atmosphere in the temperature range from 20 to 1200 °C 
(heating rate 10 °C/min). The TG, DTG and DTA curves 
were registered.

The content of volatile carbon, i.e., less humified organic 
matter (%VC) was determined from the TGA data in the 
 N2 atmosphere in the temperature range 150–900  °C 
(TG%900,N2), assuming that the physically bound water 
(moisture) is desorbed up to 150 °C. The ash percentage 
(%A) is the residue after the complete thermal degrada-
tion of the material in the  O2 atmosphere at 1200 °C (TG% 
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1200,O2). The content of fixed carbon, more humified organic 
matter (%FC) was determined as the difference of TG% 
1200,O2 and TG% 900,N2. The share of the thermostable bio-
char fraction  (Cthermo, poorly thermodegradable, ash-free, in 
relation to the dry mass) was also determined as the content 
of stable substances (%FC) in relation to the sum of volatile 
(%VC) and fixed substances (% FC) [56] This parameter is 
considered reliable for assessing the level of organic matter 
stability in pyrocarbons, compost materials or other organic 
wastes [57].

The pulse chemisorption and temperature-programmed 
desorption (TPD) measurements of ammonia were made 
using the automatic AutoChem II 2920 analyzer (Micromer-
itics, Norcross, GA, USA). Before testing all biochars were 
degassed at 200 °C for 2 h (ASAP 2020, Micromeritics, 
Norcross, GA, USA). The first stage of the measurements 
was the stabilization of the material (50 mg of biochar in the 
quartz reactor) in the helium atmosphere at the temperature 
of 250 °C (20 °C/min for 40 min).

The chemisorption studies were carried out at the three 
temperatures: 0 °C, 10 °C and 20 °C. The standard gas (10% 
 NH3 in helium) was dosed from the loop of known volume. 
The TCD detector registered the next doses. Dosing was 
performed until the surface of the analyzed material was 
saturated. The total amount of gaseous ammonia adsorbed 
on the biochar surface was calculated. In the next stage the 
experiments of thermo-programmed desorption were per-
formed. The temperature increased from the measurement 
temperature, at which the chemisorption process was ini-
tially conducted to 250 °C (with the temperature increase 
rate of 10 °C/min).

2.4  Calculations

The porous structure standard parameters: specific surface 
area, pore volume as well as pore size distribution were 
determined based on the experimental nitrogen adsorption 
isotherms. Determination of the specific surface area  (SBET) 
was made in the range of the relative pressure from 0.05 
to 0.20 taking into account the nitrogen molecule surface 
area equal to 0.162  nm2 [58]. Determination of the total 
pore volume  (Vt) was made from one point of the adsorp-
tion isotherm at the relative pressure p/p0 = 0.99 [59]. To 
calculate the pore size distribution functions (PSDs), the 
non-local density functional (NLDFT) method was applied 
for the carbon slit-shaped pores which characterizes the sur-
face energetical heterogeneity and geometrical corrugation 
[60, 61]. The calculations were made applying the numerical 
program SAIEUS (Micromeritics). The maxima of the PSD 
curves were used to determine the micropore widths,  wmi. 
Microporosity, expressed in % was calculated as the ratio of 
the micropore volume  Vmi to the total pore volume  Vt.

3  Results and discussion

The main factors influencing the structural and surface 
properties of carbon materials obtained from the indus-
trial waste are: (1) the nature of the carbon precursor, its 
composition and structure; (2) activation method, type and 
amount of activating substance. In the presented research 
the source of the organic matter was the sawdust of four 
different kinds of trees: oak, hornbeam, apple and cherry. 
Despite the fact that they are different species of trees, 
their structure was not significantly diversified. Figure 1a 
and b presents the experimental nitrogen adsorption–des-
orption isotherms for the studied biochars. All isotherms 
are Type I according to the IUPAC classification [62]. The 
large adsorption values   at low relative pressures indicate 
a strongly developed structure of micropores in the tested 
materials. The almost parallel course of the isotherms 
to the axis of relative pressures in the range of medium 
and high pressures (p/p0 ~ 0.2–0.9) is confirmed by a very 
small share of mesopores.

The lowest situated isotherms determined for the 
non-activated C–O and C–H biochars (Fig. 1a) as well 
as C–A and C–C (Fig. 1b) indicate their least developed 
surface and porosity. The use of KOH as an activating 
agent resulted in intensive development of the surface and 
structure of the pores, especially in the area of micropo-
res. The influence of the amount of the activating agent 
is also clearly visible on the isotherms (Fig. 1). The iso-
therms determined for the materials with the maximum 
KOH content (1:4) are the highest situated, indicating the 
most effective development of the surface and volume of 
micropores. These observations are confirmed by the val-
ues of the structural parameters in Table 1.

The specific surface area  (SBET) values   for the unacti-
vated biochars ranged from 333  m2/g for the C–O mate-
rial to 387  m2/g for the C–C material while the values   
of the total pore volume  (Vt) ranged from 0.16  cm3/g for 
C–O to 0.21  cm3/g for C–C. The activation with KOH has 
brought very good results. The activation by mixing car-
bon with KOH at the ratio 1:2 resulted in the over twofold 
increase in the specific surface area and  Vt value. For all 
materials obtained in this way, the surface values   ranged 
from 714  m2/g for the C–O1-2 material to 788  m2/g for 
the C–C1-2 material, while the  Vt values   ranged from 0.33 
 cm3/g for C–O1-2 to 0.40  cm3/g for C–A1-2. On the other 
hand, the activation by mixing carbon with KOH at the 
ratio 1:4 improved these parameters. The values   increased 
and ranged from 718  m2/g for the C–H1-4 material to 912 
 m2/g for the C–A1-4 material. The  Vt values   ranged from 
0.33  cm3/g for the C–H1-4 material to 0.43  cm3/g for the 
C–A1-4 material. As the aim of these studies was to obtain 
a biochar with well-developed microporosity, the volumes 
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of micropores  (Vmi) should be dominant. Our goal has 
been achieved. The micropore volumes determined for the 
materials with the most developed porosity, i.e., C–H1-4 
and C–A1-4, are 0.32  cm3/g and 0.40  cm3/g, respectively. 
A large proportion of the micropores: from 85 to 97% was 
observed for all activated biochars (Table 1). It was proved 
that the biochar/KOH mass ratio plays an important role in 
the development of the porous structure. The development 

of the porous structure takes place as a result of the inter-
calation of metal (potassium) into the carbon structure and 
it is the larger the greater the impregnation factor is, owing 
to which there is formed a larger number of pores. The 
general reaction is as follows:

(1)4 KOH + C → K2CO3 + K2O + 2 H2,

Fig. 1  Nitrogen adsorption–desorption isotherms for the biochars obtained based on the carbon precursors: oak and hornbeam sawdust (a) as 
well as apple tree and cherry tree sawdust (b)

Table 1  Structural parameters 
of the biochars

Notation: SBET the BET specific surface area, Vt the pore volume, VultraDFT the ultramicropores volume 
(pores width < 0.7 nm) obtained by the DFT method, VmicroDFT the micropores volume (pores width < 2 nm) 
obtained by the DFT method; obtained from the difference of  Vt and  Vmi, wmiDFT micropore diameter at the 
maximum of the PSD curve obtained by the DFT method, Microporosity the micropores share;

Biochars SBET  (m2/g) Vt  (cm3/g) VultraDFT  (cm3/g) VmicroDFT 
 (cm3/g)

wmiDFT (nm) Micr-
oporos-
ity (%)

C–O 333 0.16 0.06 0.15 0.65 94
C–O1-2 714 0.33 0.19 0.32 0.60 97
C–O1-4 831 0.38 0.21 0.37 0.60 97
C–H 374 0.18 0.08 0.17 0.64 94
C–H1-2 672 0.31 0.17 0.30 0.60 97
C–H1-4 718 0.33 0.17 0.32 0.61 97
C–A 379 0.21 0.19 0.20 0.55 95
C–A1-2 775 0.40 0.18 0.34 0.61 85
C–A1-4 912 0.43 0.18 0.40 0.64 93
C–C 387 0.21 0.20 0.21 0.56 100
C–C1-2 788 0.37 0.21 0.35 0.60 95
C–C1-4 880 0.41 0.20 0.39 0.61 95
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however, after [63] it runs multi -stage according to the 
reactions:

Moreover, if the temperature or contact time is too high 
or the optimal KOH content is exceeded, the activation yield 
decreases, pore sizes get larger and the micropores share 
is reduced. Then too intensive reaction of KOH with car-
bon takes place, causing significant losses of carbon matter. 
Moreover, as a result of the decomposition of an excessive 
amount of KOH in the system, the water is formed (reaction 
2) [64, 65]. At the high temperature of the process, the water 
causes the excessive carbon gasification [45].

The selection of the carbon precursor plays also an 
important role in the development of the porous structure. 
The sawdust has a tubular structure [45, 66]. This type of 
structure, existing in the raw sawdust, allows them to adsorb 
effectively the reagent thus enabling the biochar activation 
[45].

The pore size distribution functions (PSDs) for the bio-
chars were calculated using the DFT method. They are pre-
sented in Fig. 2a and b.

(2)2 KOH → K2O + H2O;

(3)C + H2O → H2 + CO;

(4)CO + H2O → H2 + CO2;

(5)K2O + CO2 → K2CO3.

The maximum can be seen on all PSD curves, indicating 
the presence of pores of the sizes < 2 nm, which corresponds 
to the width of micropores. As follows from Table 1 the 
micropore sizes range from 0.55 to 0.65 nm in the case of 
the non-activated biochars while in the case of the materials 
after the KOH activation process the values vary from 0.60 
to 0.64 nm.

In order to analyze the morphology of the tested biochars 
before and after the activation with KOH, SEM imaging was 
performed (Figs. 3, 4).

As follows from Figs. 3 and 4 depending on the carbon 
precursor the analyzed carbon materials are characterized 
by different porous structures. The unactivated biochars 
obtained based on the oak (C–O, Fig. 3a) and horn (C–H, 
Fig. 3d) have poorly developed porous structures. The car-
bons C–A (Fig. 4a) and C–C (Fig. 4d) were characterized by 
slightly better developed porosity in the case of the non-acti-
vated materials which was confirmed by the SEM images. It 
can be clearly visible that the activation with KOH caused 
the development of porosity of the tested biochars (Figs. 3b, 
c, e, f, 4b, c, e, f). In all cases after the KOH activation 
there was observed a layered structure which can indicate 
the order of the tested biochars. To sum up, it can be stated 
that the KOH activation affects the microporous structure 
of the obtained carbons including the size and volume of 
micropores but it does not affect mesoporosity (Table 1).

The EDS (X-ray energy dispersion spectroscopy) studies 
were carried out simultaneously with the SEM analysis. This 
technique makes the qualitative and quantitative elemental 

Fig. 2  Pore size distributions (PSDs) calculated by the DFT method for the biochars obtained based on the carbon precursors: oak and hornbeam 
sawdust (a) as well as apple tree and cherry tree sawdust (b)
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analyses of the biochars possible [67]. Table 2 presents the 
results of EDS chemical composition microanalysis for the 
non-activated and KOH activated biochars.

Analyzing the obtained EDS results it can be observed 
that the basic chemical components of all tested biochars 
are carbon and oxygen and, to a much smaller extent, 
potassium. Only in the case of the biochar obtained from 
the sawdust of fruit trees, i.e., apple and cherry trees, the 

presence of calcium ions was additionally found. The pres-
ence of carbon and oxygen results from the presence of 
cellulose, hemicellulose and lignin in the wood biomass 
as well as in the obtained biocarbons [68, 69]. The amount 
of carbon in the non-activated materials ranges from 85.50 
to 90.86% w/w. After the biochar activation the values   
are slightly smaller and range from 72.02 to 84.03%. The 
oxygen content is from 8.74 to 12.06% and from 13.94 to 

Fig. 3  SEM images for the biochars: C–O (a), C–O1-2 (b), C–O1-4 (c) and C–H (d), C–H1-2 (e), C–H1-4 (f)
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22.19% for the inactivated and activated biochars, respec-
tively. This element is bound in the form of surface oxygen 
groups, and the increase in its content along with that in 
the degree of impregnation indicates an increase in the 
number of these groups on the surface of the tested materi-
als. The presence of other elements, such as potassium and 

calcium, is largely influenced by the chemical composition 
of the biomass, i.e., raw sawdust.

The presence of the surface functional groups was con-
firmed by the ATR-FTIR analysis (Figs. 5, 6).

The low-intensity bands in the range of 3755–3576  cm−1 
for all analyzed materials correspond to the asymmetric 

Fig. 4  SEM images for the biochars: C–A (a), C–A1-2 (b), C–A1-4 (c) and C–C (d), C–C1-2 (e), C–C1-4 (f)
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and symmetric stretching vibrations of the surface O–H 
groups [20, 70–72]). In turn, the 2174  cm−1 band is related 
to the presence of carbon monoxide (CO) in the tested 
materials [70]. The vibrations associated with the pres-
ence of double bonds between carbon atoms or those of 
carbon and oxygen are responsible for the intense band at 
1740  cm−1 [73, 74]. The band at 1570  cm−1 is character-
istic of the C=C bond [75]. On the other hand, the bands 
in the range of 1500–1100  cm−1 (exactly at 1366  cm−1, 
1232  cm−1, 1100  cm−1) indicate the presence of carbonyl 
groups (C=O) [76]. Their presence on the biochar sur-
face is consistent with the results of the Boehm titration 
(Table 3). In turn, the 1000  cm−1 and 1005  cm−1 bands 
are characteristic of the C–OH stretching vibrations [76]. 

The band in the range from 900 to 750   cm−1 indicates 
the C–H bending vibrations [72]. It should be highlighted 
that activation changes the chemical structure of the bio-
carbons surface. The band 1570  cm−1 increases with the 
increasing KOH ratio, while the bands at 1740, 1366 and 
1232  cm−1 increase at the 1–2 ratio but decrease at the 
1–4 KOH ratio.

The Boehm’s titration method [52, 53] was used to char-
acterize the chemical nature of biochars surface. The indi-
vidual acid groups undergo neutralization in the following 
order: carboxylic − neutralized when influenced by  NaHCO3; 
carboxyl + lactone − affected by  Na2CO3; carboxylic + lac-
tone + phenolic—neutralized by NaOH; carboxylic + lac-
tone + phenolic + carbonyl − neutralized when influenced by 
 C2H5ONa. Summing up, the content of basic functionalities 
was determined by titration of unreacted HCl that was previ-
ously used to neutralize the basic groups using the NaOH 
solution. The surface functional groups have a significant 
impact on the adsorption process, ensuring selectivity in the 
removal of specific pollutants. The functional groups affect 
the surface charge of the adsorbent and thus its adsorption 
capacity [77].

The content of the functional groups determined on the 
surface of the studied KOH activated biochars are presented 
in Table 3.

The obtained results indicate the predominance of acidic 
and basic groups on the surface of the tested biochars. Note 
that an increase in the KOH ratio results in an increase 
mainly in the carboxyl and carbonyl groups and to a much 
smaller extent in the phenolic ones, which is consistent with 
the  pHpzc data. As can be seen, the number of functional 

Table 2  The EDS analysis for the biochars

Biochars C (% w/w) O (% w/w) K (% w/w) Ca (% w/w)

C–O 90.86 8.74 0.40 –
C–O1-2 82.51 16.29 1.19 –
C–O1-4 79.32 19.26 1.42 –
C–H 90.28 9.60 0.12 –
C–H1-2 81.59 15.34 3.07 –
C–H1-4 80.41 15.77 3.82 –
C–A 87.81 10.34 0.80 1.05
C–A1-2 82.93 15.78 0.09 1.20
C–A1-4 82.07 19.43 0.01 1.54
C–C 85.50 12.06 1.01 1.43
C–C1-2 84.93 13.94 0.13 1.00
C–C1-4 75.02 22.19 0.20 2.59

Fig. 5  FTIR spectra for the 
biochars obtained from the 
hornbeam and oak sawdust
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groups depends on the precursor from which the biochars 
were obtained and on the activator content (KOH).

The point of zero charge  (pHpzc) determines the value of 
pH at which the net surface charge on the adsorbent equals 
zero [54, 78]. The value of  pHpzc determined for the tested 
materials from the graphs (Figs. 7, 8) is approx. 6.6–6.9 
(Table 3) indicating that in the solution of pH >  pHpzc the 
biochar surface has a negative charge while for pH <  pHpzc 
the surface has a positive charge [54, 78]. The  pHpzc val-
ues are consistent with the results obtained by the Boehm's 
method (Table 3).

The thermal analysis was applied for estimation of the 
thermal stability of the materials. Figures 9 and 10 show the 
TG%, DTG and DTA curves for the biochars obtained from 
various organic precursors.

As follows from the analysis of the mass loss curves 
(TG%) the starting biochars are thermally stable only up to 
the temperature of ~ 300–400 °C and the complete thermal 

degradation of the carbon material is over in the temper-
ature range of 800–1000 °C, depending on the organic 
material precursor. The KOH impregnation causes reduc-
tion in the thermal stability, the process of thermal deg-
radation begins and ends at the temperatures lower than 
it is observed for the unmodified biochars. This is related 
to better development of porosity and surface function-
alities due to the use of the activator. Moreover, activa-
tion with the use of KOH resulted in the carbon content 
decrease and significant oxygen content increase, which 
occur mainly in the form of surface functional groups in 
activated materials. These functionalities are a subject 
to desorption and thermal degradation much more easily 
than the ordered carbon structures, therefore the thermal 
stability of activated biochars is smaller. The analysis of 
the TG% = f (T) curves (Figs. 9, 10) shows that the type 
of organic precursor and the action of the activating agent 
affect the thermal stability.

Fig. 6  FTIR spectra for the bio-
chars obtained from the apple 
tree and cherry tree sawdust

Table 3  The biochars functional surface groups determined by the Boehm method and the  pHpzc values

Biochars Total basic groups 
(mmol/g)

Total acidic groups 
(mmol/g)

Phenolic groups 
(mmol/g)

Lactone groups 
(mmol/g)

Carboxylic groups 
(mmol/g)

Carbonyl groups 
(mmol/g)

pHpzc

C–O1-2 0.68 1.53 0.62 0.37 0.25 0.29 6.67
C–O1-4 0.69 1.74 0.68 0.44 0.25 0.37 6.62
C–H1-2 1.06 1.17 0.50 0.50 0.12 0.05 6.61
C–H1-4 1.12 1.56 1.12 0.13 0.25 0.06 6.53
C–A1-2 1.19 1.62 0.87 0.38 0.25 0.12 6.88
C–A1-4 1.06 2.11 1.00 0.25 0.50 0.36 6.25
C–C1-2 0.94 1.50 0.59 0.47 0.34 0.10 6.33
C–C1-4 1.06 1.76 0.26 0.56 0.50 0.44 6.62
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On the basis of the TGA analysis performed in the atmos-
phere of  O2 and  N2, a proximate assessment of the type of 
carbon matter in the tested biocarbons was made. The results 
of research on the ash content, volatile and fixed carbon as 
well as the share of fixed carbon matter in the biocarbons 
are presented in Table 4.

According to data analysis in Table 4 the activation 
with the use of KOH changes the nature of the struc-
ture of the carbon material effectively. As the activation 
degree increased, the volatile matter (% VC) contents 
increased significantly, while the fixed carbon contents (% 
FC) decreased slightly in the biocarbons obtained from 

Fig. 7  Point of zero charge 
 (pHpzc) for the biochars 
obtained from the oak and 
hornbeam sawdust

Fig. 8  Point of zero charge 
 (pHpzc) for the biochars 
obtained from the apple tree and 
cherry tree sawdust
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different biomass sources (Table 4). At the same time it 
was found that the share of the thermostable carbon mat-
ter (%  Cthermo) in the starting biocarbons is very similar 
(~ 90%, Table 4) whereas the activation with an increasing 
amount of KOH causes a slight decrease in the share of 

the thermally stable fraction. This confirms that pyrolysis 
at the temperature of 800 °C is an effective method of 
obtaining stable biochars while the additional modification 
changes the materials structure effectively reducing their 
thermal stability.

Fig. 9  TG%, DTG and DTA curves for the biochars based on the oak (a) and hornbeam (b) sawdust

Fig. 10  TG%, DTG and DTA curves for the biochars obtained based on the apple tree (a) and cherry tree (b) sawdust
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The results of pulse chemisorption and temperature-
programmed desorption (TPD) of ammonia for the studied 
biochars are presented in Table 5. When analyzing the data 
of the pulse chemisorption of ammonia there was observed 
the following dependence: for all tested biochars, ammonia 
adsorption increases with the increasing temperature. The 
adsorption capacity of the obtained biochars depends on 
several factors: the carbon precursor, the degree of devel-
opment of the porous structure and the size of the specific 
surface area. The developed microporous structure, and thus 
the large specific surface area (Table 1) play a key role in the 
process of ammonia adsorption on the tested adsorbents. The 
largest adsorption capacity was demonstrated for the C-A1-4 
material: 3.05 mmol/g (temperature 20 °C), the remaining 
biochars were characterized by a slightly smaller value of 
this parameter. The smallest adsorption capacity value was 
obtained for the material C–H1-2: 2.24 mmol/g. The results 
of EDS, FTIR Boehm’s titration and  pHpzc clearly show 
that the KOH activation causes oxidation of the surface and 
formation of oxygen functional groups in which those of 

strongly acidic character dominate. This has a positive effect 
on the ammonia chemisorption.

Based on results of the ammonia temperature pro-
grammed desorption TPD (Table 5) it was found that a very 
small amount of ammonia was desorbed although quite a 
large amount of this gas was adsorbed. The small  NH3 des-
orption is related to the dominant presence of acidic groups 
(which proves that it is chemisorbed on the acidic groups). 
However, such an effect is beneficial because the tested car-
bon materials can trap the toxic gas ammonia.

Table 6 summarizes the maximum sorption capacities 
of the tested biochars and other carbon materials in order 
to compare their adsorption capacity from the gas phase 
with respect to  NH3 based on the literature data. It was 
shown that the tested biochars are characterized by good 
adsorption properties.

4  Conclusions

The paper proves that sawdust is a cheap and good car-
bon precursor. Moreover, the activation with KOH ena-
bles preparation of adsorbents with very good structural 
parameters, large specific surface area and developed 
microporosity. After the activation process, the adsorbents 
were characterized by an ordered porous structure. The 
type of organic precursor and the action of the activator 
affect the thermal stability of the obtained biochar. The 
predominance of acidic and basic groups was observed 
on the surface of all tested biochars. It was proved that the 
obtained carbon adsorbents remove the harmful gas, which 
is ammonia, from the gas phase effectively. Moreover, very 
little of this gas is desorbed, so the resulting biochars can 
be promising as far as the trap of  NH3 and possibly of 
other toxic gases is concerned.

Table 4  The proximate analysis and thermostability indices of bio-
carbons

Sample %VC %A %FC %Cthermo

C–O 9.4 1.2 89.4 90.5
C–O1-2 18.2 2.4 79.4 81.4
C–O1-4 23.3 0.1 76.6 76.7
C–H 7.7 0.3 92.0 92.3
C–H1-2 22.4 3.4 74.2 76.8
C–H1-4 26.3 4.7 69.0 72.4
C–A 11.6 5.4 83.0 87.7
C–A1-2 22.4 0.1 77.5 77.6
C–A1-4 23.7 0.1 76.2 76.3
C–C 10.0 1.5 88.5 89.8
C–C1-2 22.0 0.1 77.9 78.0
C–C1-4 37.3 2.2 60.5 61.9

Table 5  The  NH3 adsorption 
capacity and TPD for the tested 
activated biochars

Biochars NH3 adsorption capacity (mmol/g)
Pressure ~ 750 mmHg

TPD  NH3 (mmol/g)
Pressure ~ 750 mmHg

T (℃) 0 10 20 0–250 10–250 20–250

C–O1-2 1.19 1.74 2.38 0.20 0.23 0.27
C–O1-4 2.02 2.33 2.78 0.20 0.24 0.28
C–H1-2 0.96 1.39 2.24 0.19 0.20 0.31
C–H1-4 1.21 1.62 2.40 0.22 0.25 0.29
C–A1-2 1.80 2.23 2.59 0.26 0.33 0.41
C–A1-4 2.01 2.55 3.05 0.28 0.32 0.36
C–C1-2 1.81 2.34 2.61 0.14 0.28 0.32
C–C1-4 1.92 2.48 2.95 0.16 0.26 0.42
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