Skip to main content
Log in

MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Two types of metal-organic framework (MOF)/graphite oxide hybrid materials were prepared. One is based on a zinc-containing, MOF-5 and the other on a copper-containing HKUST-1. The materials are characterized by X-ray diffraction, sorption of nitrogen, thermal analyses, Fourier Transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Their features are compared to the ones of the parent materials. The water stability and ammonia adsorption capacity of the hybrid materials were also evaluated. It was found that the latter compounds exhibit features similar to the ones of the parent MOF. In most cases, their porosity increased compared to the one calculated considering the physical mixture of MOF and GO. This new porosity likely located between the two components of the hybrid materials is responsible for the enhanced ammonia adsorption capacity of the compounds. However, for both the zinc-based and the copper-based materials (MOFs and hybrid materials), a collapse of the framework was observed as a result of ammonia adsorption. This collapse is caused by the interactions of ammonia with the metallic centers of MOFs either by hydrogen bonding (zinc-based materials) or coordination and subsequent complexation (copper-based materials). Whereas the MOF-5 based compounds collapse in presence of humidity, the copper-based materials are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biemmi, E., Christian, S., Stock, N., Bein, T.: High throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater. 117, 111–117 (2009)

    Article  CAS  Google Scholar 

  • Bissessur, R., Liu, P.K.Y., White, W., Scully, S.F.: Encapsulation of polyanilines into graphite oxide. Langmuir 22, 1729–1734 (2006)

    Article  CAS  Google Scholar 

  • Britt, D., Tranchemontagne, D., Yaghi, O.M.: Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Nat. Acad. Sci. USA 105, 11623–11627 (2008)

    Article  CAS  Google Scholar 

  • Brodie, M.B.-C.: Note sur un nouveau procede pour la purification et la desagragation du graphite. Ann. Chim. Phys. 45, 351–353 (1860)

    Google Scholar 

  • Buchsteiner, A., Lerf, A., Pieper, J.: Water dynamics in graphite oxide investigating by neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006)

    Article  CAS  Google Scholar 

  • Chui, S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n . Science 23, 1148–1150 (1999)

    Article  Google Scholar 

  • Dubinin, M.M.: In: Walker, P.L. (ed.) Chemistry and Physics of Carbon, vol. 2, pp. 51–120. Dekker, New York (1966)

    Google Scholar 

  • Greathouse, J.A., Allendorf, M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 10678–10679 (2006)

  • Hafizovic, J., Bjørgen, M., Olsbye, U., Dietzel, P.D.C., Bordiga, S., Prestipino, C., Lamberti, C., Lillerud, K.P.: The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 129, 3612–3620 (2007)

    Article  CAS  Google Scholar 

  • Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., Yan, Y.: Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 58, 105–114 (2003)

    Article  CAS  Google Scholar 

  • Hummers, W.S., Offeman, R.E.: Preparation of graphite oxide. J. Am. Chem. Soc. 8, 1339 (1958)

    Article  Google Scholar 

  • Kaye, S.S., Dailly, A., Yaghi, O.M., Long, J.R.: Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007)

    Article  CAS  Google Scholar 

  • Konar, S., Mukherjee, P.S., Zangrando, E., Lloret, F., Chaudhuri, N.R.: A Three-dimensional homometallic molecular ferrimagnet. Angew. Chem. Int. Ed. 41, 1561–1563 (2002)

    Article  CAS  Google Scholar 

  • Küsgens, P., Rose, M., Senkovska, I., Fröde, H., Henschel, A., Siegle, S., Kaskel, S.: Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 20, 325–330 (2009)

    Article  Google Scholar 

  • Lerf, A., He, H., Forster, M., Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)

    Article  CAS  Google Scholar 

  • Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  • Liu, N., Wu, D., Wu, H., Luo, F., Chen, L.: Controllable synthesis of metal hydroxide and oxide nanostructures by ionic liquids assisted electrochemical corrosion method. J. Solid State Sci. 10, 1049–1055 (2008)

    Article  CAS  Google Scholar 

  • Lu, C.-H., Yeh, C.-H.: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram. Int. 26, 351–357 (2000)

    Article  CAS  Google Scholar 

  • Matsuo, Y., Tabata, T.: Preparation and characterization of silylated graphite oxide. Carbon 43, 2875–2882 (2005)

    Article  CAS  Google Scholar 

  • Morishige, K., Hamada, T.: Iron oxide pillared graphite. Langmuir 21, 6277–6281 (2005)

    Article  CAS  Google Scholar 

  • Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastré, J.: Metal-organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)

    Article  CAS  Google Scholar 

  • Nakamoto, K.: Complexes of alkoxides, alcohols, ethers, ketones, aldehydes, esters and carboxylic groups. In: Nakamoto, K. (ed.) Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp. 62–67. Wiley, New York (2009)

    Google Scholar 

  • Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 4, 1593–1597 (2009)

    Article  Google Scholar 

  • Pellé, F., Surblé, S., Serre, C., Millange, F., Férey, G., Angew: Enhanced Eu3+ luminescence in a new hybrid material with an open-framework structure. J. Lumin. 122–123, 492–495 (2007)

    Article  Google Scholar 

  • Petit, C., Bandosz, T.J.: Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J. Phys. Chem. C 113, 3800–3809 (2009a)

    Article  CAS  Google Scholar 

  • Petit, C., Bandosz, T.J.: MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater. 21, 4753–4757 (2009b)

    CAS  Google Scholar 

  • Petit, C., Bandosz, T.J.: Role of surface heterogeneity in the removal of ammonia from air on micro/mesoporous activated carbons modified with molybdenum and tungsten oxides. Microporous Mesoporous Mater. 118, 61–67 (2009c)

    Article  CAS  Google Scholar 

  • Petit, C., Bandosz, T.J.: Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv. Funct. Mater. 20, 111–118 (2010a)

    Article  CAS  Google Scholar 

  • Petit, C., Seredych, M., Bandosz, T.J.: Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19, 9176–9185 (2009d)

    Article  CAS  Google Scholar 

  • Petit, C., Burress, J., Bandosz, T.J.: Cu-based MOF/graphene composites: synthesis and surface characterization. Carbon (2010b, submitted)

  • Petit, C., Beacom, B., Bandosz, T.J.: Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir (2010c, submitted)

  • Rosi, N.L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., Yaghi, O.M.: Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005)

    Article  CAS  Google Scholar 

  • Seo, Y.K., Hundal, G., Jang, I.T., Hwang, Y.K., Jun, C.H., Chang, J.S.: Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 119, 331–337 (2009)

    Article  CAS  Google Scholar 

  • Seredych, M., Petit, C., Tamashausky, A.V., Bandosz, T.J.: Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon 47, 445–456 (2009)

    Article  CAS  Google Scholar 

  • Shi, N., Yin, G., Han, M., Jiang, L., Xu, Z.: Self-assembly of two different hierarchical nanostructures on either side of an organic supramolecular film in one step. Chem. Eur. J. 14, 6255–6259 (2008)

    Article  CAS  Google Scholar 

  • Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.M., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  • Stuart, J.: Metal-organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003)

    Article  Google Scholar 

  • Szabo, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., Dekany, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)

    Article  CAS  Google Scholar 

  • Szymanski, G.S., Karpinski, Z., Biniak, S., Swiatkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002)

    Article  CAS  Google Scholar 

  • Wu, X., Bai, H., Zhang, J., Chen, F., Shi, G.: Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 109, 22836–22842 (2005)

    Article  CAS  Google Scholar 

  • Yang, S.J., Choi, J.Y., Chae, H.K., Cho, J.H., Nahm, K.S., Park, C.R.: Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem. Mater. 21, 1893–1897 (2009)

    Article  CAS  Google Scholar 

  • Yoo, Y., Jeong, H.-K.: Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 21, 2441–2443 (2008)

    Article  Google Scholar 

  • Yoo, Y., Lai, Z., Ng, Z., Khan, E.A., Jeong, H.-K., Ching, C.-B.: Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009)

    Article  Google Scholar 

  • Zacher, D., Baunemann, A., Hermes, S., Fischer, R.A.: Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa J. Bandosz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandosz, T.J., Petit, C. MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption 17, 5–16 (2011). https://doi.org/10.1007/s10450-010-9267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9267-5

Keywords

Navigation